~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/arm64/mm/init.c

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Based on arch/arm/mm/init.c
  3  *
  4  * Copyright (C) 1995-2005 Russell King
  5  * Copyright (C) 2012 ARM Ltd.
  6  *
  7  * This program is free software; you can redistribute it and/or modify
  8  * it under the terms of the GNU General Public License version 2 as
  9  * published by the Free Software Foundation.
 10  *
 11  * This program is distributed in the hope that it will be useful,
 12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14  * GNU General Public License for more details.
 15  *
 16  * You should have received a copy of the GNU General Public License
 17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 18  */
 19 
 20 #include <linux/kernel.h>
 21 #include <linux/export.h>
 22 #include <linux/errno.h>
 23 #include <linux/swap.h>
 24 #include <linux/init.h>
 25 #include <linux/bootmem.h>
 26 #include <linux/cache.h>
 27 #include <linux/mman.h>
 28 #include <linux/nodemask.h>
 29 #include <linux/initrd.h>
 30 #include <linux/gfp.h>
 31 #include <linux/memblock.h>
 32 #include <linux/sort.h>
 33 #include <linux/of.h>
 34 #include <linux/of_fdt.h>
 35 #include <linux/dma-mapping.h>
 36 #include <linux/dma-contiguous.h>
 37 #include <linux/efi.h>
 38 #include <linux/swiotlb.h>
 39 #include <linux/vmalloc.h>
 40 #include <linux/mm.h>
 41 #include <linux/kexec.h>
 42 #include <linux/crash_dump.h>
 43 
 44 #include <asm/boot.h>
 45 #include <asm/fixmap.h>
 46 #include <asm/kasan.h>
 47 #include <asm/kernel-pgtable.h>
 48 #include <asm/memory.h>
 49 #include <asm/numa.h>
 50 #include <asm/sections.h>
 51 #include <asm/setup.h>
 52 #include <asm/sizes.h>
 53 #include <asm/tlb.h>
 54 #include <asm/alternative.h>
 55 
 56 /*
 57  * We need to be able to catch inadvertent references to memstart_addr
 58  * that occur (potentially in generic code) before arm64_memblock_init()
 59  * executes, which assigns it its actual value. So use a default value
 60  * that cannot be mistaken for a real physical address.
 61  */
 62 s64 memstart_addr __ro_after_init = -1;
 63 phys_addr_t arm64_dma_phys_limit __ro_after_init;
 64 
 65 #ifdef CONFIG_BLK_DEV_INITRD
 66 static int __init early_initrd(char *p)
 67 {
 68         unsigned long start, size;
 69         char *endp;
 70 
 71         start = memparse(p, &endp);
 72         if (*endp == ',') {
 73                 size = memparse(endp + 1, NULL);
 74 
 75                 initrd_start = start;
 76                 initrd_end = start + size;
 77         }
 78         return 0;
 79 }
 80 early_param("initrd", early_initrd);
 81 #endif
 82 
 83 #ifdef CONFIG_KEXEC_CORE
 84 /*
 85  * reserve_crashkernel() - reserves memory for crash kernel
 86  *
 87  * This function reserves memory area given in "crashkernel=" kernel command
 88  * line parameter. The memory reserved is used by dump capture kernel when
 89  * primary kernel is crashing.
 90  */
 91 static void __init reserve_crashkernel(void)
 92 {
 93         unsigned long long crash_base, crash_size;
 94         int ret;
 95 
 96         ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
 97                                 &crash_size, &crash_base);
 98         /* no crashkernel= or invalid value specified */
 99         if (ret || !crash_size)
100                 return;
101 
102         crash_size = PAGE_ALIGN(crash_size);
103 
104         if (crash_base == 0) {
105                 /* Current arm64 boot protocol requires 2MB alignment */
106                 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
107                                 crash_size, SZ_2M);
108                 if (crash_base == 0) {
109                         pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
110                                 crash_size);
111                         return;
112                 }
113         } else {
114                 /* User specifies base address explicitly. */
115                 if (!memblock_is_region_memory(crash_base, crash_size)) {
116                         pr_warn("cannot reserve crashkernel: region is not memory\n");
117                         return;
118                 }
119 
120                 if (memblock_is_region_reserved(crash_base, crash_size)) {
121                         pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
122                         return;
123                 }
124 
125                 if (!IS_ALIGNED(crash_base, SZ_2M)) {
126                         pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
127                         return;
128                 }
129         }
130         memblock_reserve(crash_base, crash_size);
131 
132         pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
133                 crash_base, crash_base + crash_size, crash_size >> 20);
134 
135         crashk_res.start = crash_base;
136         crashk_res.end = crash_base + crash_size - 1;
137 }
138 
139 static void __init kexec_reserve_crashkres_pages(void)
140 {
141 #ifdef CONFIG_HIBERNATION
142         phys_addr_t addr;
143         struct page *page;
144 
145         if (!crashk_res.end)
146                 return;
147 
148         /*
149          * To reduce the size of hibernation image, all the pages are
150          * marked as Reserved initially.
151          */
152         for (addr = crashk_res.start; addr < (crashk_res.end + 1);
153                         addr += PAGE_SIZE) {
154                 page = phys_to_page(addr);
155                 SetPageReserved(page);
156         }
157 #endif
158 }
159 #else
160 static void __init reserve_crashkernel(void)
161 {
162 }
163 
164 static void __init kexec_reserve_crashkres_pages(void)
165 {
166 }
167 #endif /* CONFIG_KEXEC_CORE */
168 
169 #ifdef CONFIG_CRASH_DUMP
170 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
171                 const char *uname, int depth, void *data)
172 {
173         const __be32 *reg;
174         int len;
175 
176         if (depth != 1 || strcmp(uname, "chosen") != 0)
177                 return 0;
178 
179         reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
180         if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
181                 return 1;
182 
183         elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
184         elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
185 
186         return 1;
187 }
188 
189 /*
190  * reserve_elfcorehdr() - reserves memory for elf core header
191  *
192  * This function reserves the memory occupied by an elf core header
193  * described in the device tree. This region contains all the
194  * information about primary kernel's core image and is used by a dump
195  * capture kernel to access the system memory on primary kernel.
196  */
197 static void __init reserve_elfcorehdr(void)
198 {
199         of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
200 
201         if (!elfcorehdr_size)
202                 return;
203 
204         if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
205                 pr_warn("elfcorehdr is overlapped\n");
206                 return;
207         }
208 
209         memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
210 
211         pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
212                 elfcorehdr_size >> 10, elfcorehdr_addr);
213 }
214 #else
215 static void __init reserve_elfcorehdr(void)
216 {
217 }
218 #endif /* CONFIG_CRASH_DUMP */
219 /*
220  * Return the maximum physical address for ZONE_DMA (DMA_BIT_MASK(32)). It
221  * currently assumes that for memory starting above 4G, 32-bit devices will
222  * use a DMA offset.
223  */
224 static phys_addr_t __init max_zone_dma_phys(void)
225 {
226         phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
227         return min(offset + (1ULL << 32), memblock_end_of_DRAM());
228 }
229 
230 #ifdef CONFIG_NUMA
231 
232 static void __init zone_sizes_init(unsigned long min, unsigned long max)
233 {
234         unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
235 
236         if (IS_ENABLED(CONFIG_ZONE_DMA))
237                 max_zone_pfns[ZONE_DMA] = PFN_DOWN(max_zone_dma_phys());
238         max_zone_pfns[ZONE_NORMAL] = max;
239 
240         free_area_init_nodes(max_zone_pfns);
241 }
242 
243 #else
244 
245 static void __init zone_sizes_init(unsigned long min, unsigned long max)
246 {
247         struct memblock_region *reg;
248         unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
249         unsigned long max_dma = min;
250 
251         memset(zone_size, 0, sizeof(zone_size));
252 
253         /* 4GB maximum for 32-bit only capable devices */
254 #ifdef CONFIG_ZONE_DMA
255         max_dma = PFN_DOWN(arm64_dma_phys_limit);
256         zone_size[ZONE_DMA] = max_dma - min;
257 #endif
258         zone_size[ZONE_NORMAL] = max - max_dma;
259 
260         memcpy(zhole_size, zone_size, sizeof(zhole_size));
261 
262         for_each_memblock(memory, reg) {
263                 unsigned long start = memblock_region_memory_base_pfn(reg);
264                 unsigned long end = memblock_region_memory_end_pfn(reg);
265 
266                 if (start >= max)
267                         continue;
268 
269 #ifdef CONFIG_ZONE_DMA
270                 if (start < max_dma) {
271                         unsigned long dma_end = min(end, max_dma);
272                         zhole_size[ZONE_DMA] -= dma_end - start;
273                 }
274 #endif
275                 if (end > max_dma) {
276                         unsigned long normal_end = min(end, max);
277                         unsigned long normal_start = max(start, max_dma);
278                         zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
279                 }
280         }
281 
282         free_area_init_node(0, zone_size, min, zhole_size);
283 }
284 
285 #endif /* CONFIG_NUMA */
286 
287 #ifdef CONFIG_HAVE_ARCH_PFN_VALID
288 int pfn_valid(unsigned long pfn)
289 {
290         return memblock_is_map_memory(pfn << PAGE_SHIFT);
291 }
292 EXPORT_SYMBOL(pfn_valid);
293 #endif
294 
295 #ifndef CONFIG_SPARSEMEM
296 static void __init arm64_memory_present(void)
297 {
298 }
299 #else
300 static void __init arm64_memory_present(void)
301 {
302         struct memblock_region *reg;
303 
304         for_each_memblock(memory, reg) {
305                 int nid = memblock_get_region_node(reg);
306 
307                 memory_present(nid, memblock_region_memory_base_pfn(reg),
308                                 memblock_region_memory_end_pfn(reg));
309         }
310 }
311 #endif
312 
313 static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX;
314 
315 /*
316  * Limit the memory size that was specified via FDT.
317  */
318 static int __init early_mem(char *p)
319 {
320         if (!p)
321                 return 1;
322 
323         memory_limit = memparse(p, &p) & PAGE_MASK;
324         pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
325 
326         return 0;
327 }
328 early_param("mem", early_mem);
329 
330 static int __init early_init_dt_scan_usablemem(unsigned long node,
331                 const char *uname, int depth, void *data)
332 {
333         struct memblock_region *usablemem = data;
334         const __be32 *reg;
335         int len;
336 
337         if (depth != 1 || strcmp(uname, "chosen") != 0)
338                 return 0;
339 
340         reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
341         if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
342                 return 1;
343 
344         usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
345         usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
346 
347         return 1;
348 }
349 
350 static void __init fdt_enforce_memory_region(void)
351 {
352         struct memblock_region reg = {
353                 .size = 0,
354         };
355 
356         of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
357 
358         if (reg.size)
359                 memblock_cap_memory_range(reg.base, reg.size);
360 }
361 
362 void __init arm64_memblock_init(void)
363 {
364         const s64 linear_region_size = -(s64)PAGE_OFFSET;
365 
366         /* Handle linux,usable-memory-range property */
367         fdt_enforce_memory_region();
368 
369         /*
370          * Ensure that the linear region takes up exactly half of the kernel
371          * virtual address space. This way, we can distinguish a linear address
372          * from a kernel/module/vmalloc address by testing a single bit.
373          */
374         BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
375 
376         /*
377          * Select a suitable value for the base of physical memory.
378          */
379         memstart_addr = round_down(memblock_start_of_DRAM(),
380                                    ARM64_MEMSTART_ALIGN);
381 
382         /*
383          * Remove the memory that we will not be able to cover with the
384          * linear mapping. Take care not to clip the kernel which may be
385          * high in memory.
386          */
387         memblock_remove(max_t(u64, memstart_addr + linear_region_size,
388                         __pa_symbol(_end)), ULLONG_MAX);
389         if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
390                 /* ensure that memstart_addr remains sufficiently aligned */
391                 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
392                                          ARM64_MEMSTART_ALIGN);
393                 memblock_remove(0, memstart_addr);
394         }
395 
396         /*
397          * Apply the memory limit if it was set. Since the kernel may be loaded
398          * high up in memory, add back the kernel region that must be accessible
399          * via the linear mapping.
400          */
401         if (memory_limit != (phys_addr_t)ULLONG_MAX) {
402                 memblock_mem_limit_remove_map(memory_limit);
403                 memblock_add(__pa_symbol(_text), (u64)(_end - _text));
404         }
405 
406         if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
407                 /*
408                  * Add back the memory we just removed if it results in the
409                  * initrd to become inaccessible via the linear mapping.
410                  * Otherwise, this is a no-op
411                  */
412                 u64 base = initrd_start & PAGE_MASK;
413                 u64 size = PAGE_ALIGN(initrd_end) - base;
414 
415                 /*
416                  * We can only add back the initrd memory if we don't end up
417                  * with more memory than we can address via the linear mapping.
418                  * It is up to the bootloader to position the kernel and the
419                  * initrd reasonably close to each other (i.e., within 32 GB of
420                  * each other) so that all granule/#levels combinations can
421                  * always access both.
422                  */
423                 if (WARN(base < memblock_start_of_DRAM() ||
424                          base + size > memblock_start_of_DRAM() +
425                                        linear_region_size,
426                         "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
427                         initrd_start = 0;
428                 } else {
429                         memblock_remove(base, size); /* clear MEMBLOCK_ flags */
430                         memblock_add(base, size);
431                         memblock_reserve(base, size);
432                 }
433         }
434 
435         if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
436                 extern u16 memstart_offset_seed;
437                 u64 range = linear_region_size -
438                             (memblock_end_of_DRAM() - memblock_start_of_DRAM());
439 
440                 /*
441                  * If the size of the linear region exceeds, by a sufficient
442                  * margin, the size of the region that the available physical
443                  * memory spans, randomize the linear region as well.
444                  */
445                 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
446                         range = range / ARM64_MEMSTART_ALIGN + 1;
447                         memstart_addr -= ARM64_MEMSTART_ALIGN *
448                                          ((range * memstart_offset_seed) >> 16);
449                 }
450         }
451 
452         /*
453          * Register the kernel text, kernel data, initrd, and initial
454          * pagetables with memblock.
455          */
456         memblock_reserve(__pa_symbol(_text), _end - _text);
457 #ifdef CONFIG_BLK_DEV_INITRD
458         if (initrd_start) {
459                 memblock_reserve(initrd_start, initrd_end - initrd_start);
460 
461                 /* the generic initrd code expects virtual addresses */
462                 initrd_start = __phys_to_virt(initrd_start);
463                 initrd_end = __phys_to_virt(initrd_end);
464         }
465 #endif
466 
467         early_init_fdt_scan_reserved_mem();
468 
469         /* 4GB maximum for 32-bit only capable devices */
470         if (IS_ENABLED(CONFIG_ZONE_DMA))
471                 arm64_dma_phys_limit = max_zone_dma_phys();
472         else
473                 arm64_dma_phys_limit = PHYS_MASK + 1;
474 
475         reserve_crashkernel();
476 
477         reserve_elfcorehdr();
478 
479         dma_contiguous_reserve(arm64_dma_phys_limit);
480 
481         memblock_allow_resize();
482 }
483 
484 void __init bootmem_init(void)
485 {
486         unsigned long min, max;
487 
488         min = PFN_UP(memblock_start_of_DRAM());
489         max = PFN_DOWN(memblock_end_of_DRAM());
490 
491         early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
492 
493         max_pfn = max_low_pfn = max;
494 
495         arm64_numa_init();
496         /*
497          * Sparsemem tries to allocate bootmem in memory_present(), so must be
498          * done after the fixed reservations.
499          */
500         arm64_memory_present();
501 
502         sparse_init();
503         zone_sizes_init(min, max);
504 
505         high_memory = __va((max << PAGE_SHIFT) - 1) + 1;
506         memblock_dump_all();
507 }
508 
509 #ifndef CONFIG_SPARSEMEM_VMEMMAP
510 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
511 {
512         struct page *start_pg, *end_pg;
513         unsigned long pg, pgend;
514 
515         /*
516          * Convert start_pfn/end_pfn to a struct page pointer.
517          */
518         start_pg = pfn_to_page(start_pfn - 1) + 1;
519         end_pg = pfn_to_page(end_pfn - 1) + 1;
520 
521         /*
522          * Convert to physical addresses, and round start upwards and end
523          * downwards.
524          */
525         pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
526         pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
527 
528         /*
529          * If there are free pages between these, free the section of the
530          * memmap array.
531          */
532         if (pg < pgend)
533                 free_bootmem(pg, pgend - pg);
534 }
535 
536 /*
537  * The mem_map array can get very big. Free the unused area of the memory map.
538  */
539 static void __init free_unused_memmap(void)
540 {
541         unsigned long start, prev_end = 0;
542         struct memblock_region *reg;
543 
544         for_each_memblock(memory, reg) {
545                 start = __phys_to_pfn(reg->base);
546 
547 #ifdef CONFIG_SPARSEMEM
548                 /*
549                  * Take care not to free memmap entries that don't exist due
550                  * to SPARSEMEM sections which aren't present.
551                  */
552                 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
553 #endif
554                 /*
555                  * If we had a previous bank, and there is a space between the
556                  * current bank and the previous, free it.
557                  */
558                 if (prev_end && prev_end < start)
559                         free_memmap(prev_end, start);
560 
561                 /*
562                  * Align up here since the VM subsystem insists that the
563                  * memmap entries are valid from the bank end aligned to
564                  * MAX_ORDER_NR_PAGES.
565                  */
566                 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
567                                  MAX_ORDER_NR_PAGES);
568         }
569 
570 #ifdef CONFIG_SPARSEMEM
571         if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
572                 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
573 #endif
574 }
575 #endif  /* !CONFIG_SPARSEMEM_VMEMMAP */
576 
577 /*
578  * mem_init() marks the free areas in the mem_map and tells us how much memory
579  * is free.  This is done after various parts of the system have claimed their
580  * memory after the kernel image.
581  */
582 void __init mem_init(void)
583 {
584         if (swiotlb_force == SWIOTLB_FORCE ||
585             max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
586                 swiotlb_init(1);
587         else
588                 swiotlb_force = SWIOTLB_NO_FORCE;
589 
590         set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
591 
592 #ifndef CONFIG_SPARSEMEM_VMEMMAP
593         free_unused_memmap();
594 #endif
595         /* this will put all unused low memory onto the freelists */
596         free_all_bootmem();
597 
598         kexec_reserve_crashkres_pages();
599 
600         mem_init_print_info(NULL);
601 
602 #define MLK(b, t) b, t, ((t) - (b)) >> 10
603 #define MLM(b, t) b, t, ((t) - (b)) >> 20
604 #define MLG(b, t) b, t, ((t) - (b)) >> 30
605 #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K)
606 
607         pr_notice("Virtual kernel memory layout:\n");
608 #ifdef CONFIG_KASAN
609         pr_notice("    kasan   : 0x%16lx - 0x%16lx   (%6ld GB)\n",
610                 MLG(KASAN_SHADOW_START, KASAN_SHADOW_END));
611 #endif
612         pr_notice("    modules : 0x%16lx - 0x%16lx   (%6ld MB)\n",
613                 MLM(MODULES_VADDR, MODULES_END));
614         pr_notice("    vmalloc : 0x%16lx - 0x%16lx   (%6ld GB)\n",
615                 MLG(VMALLOC_START, VMALLOC_END));
616         pr_notice("      .text : 0x%p" " - 0x%p" "   (%6ld KB)\n",
617                 MLK_ROUNDUP(_text, _etext));
618         pr_notice("    .rodata : 0x%p" " - 0x%p" "   (%6ld KB)\n",
619                 MLK_ROUNDUP(__start_rodata, __init_begin));
620         pr_notice("      .init : 0x%p" " - 0x%p" "   (%6ld KB)\n",
621                 MLK_ROUNDUP(__init_begin, __init_end));
622         pr_notice("      .data : 0x%p" " - 0x%p" "   (%6ld KB)\n",
623                 MLK_ROUNDUP(_sdata, _edata));
624         pr_notice("       .bss : 0x%p" " - 0x%p" "   (%6ld KB)\n",
625                 MLK_ROUNDUP(__bss_start, __bss_stop));
626         pr_notice("    fixed   : 0x%16lx - 0x%16lx   (%6ld KB)\n",
627                 MLK(FIXADDR_START, FIXADDR_TOP));
628         pr_notice("    PCI I/O : 0x%16lx - 0x%16lx   (%6ld MB)\n",
629                 MLM(PCI_IO_START, PCI_IO_END));
630 #ifdef CONFIG_SPARSEMEM_VMEMMAP
631         pr_notice("    vmemmap : 0x%16lx - 0x%16lx   (%6ld GB maximum)\n",
632                 MLG(VMEMMAP_START, VMEMMAP_START + VMEMMAP_SIZE));
633         pr_notice("              0x%16lx - 0x%16lx   (%6ld MB actual)\n",
634                 MLM((unsigned long)phys_to_page(memblock_start_of_DRAM()),
635                     (unsigned long)virt_to_page(high_memory)));
636 #endif
637         pr_notice("    memory  : 0x%16lx - 0x%16lx   (%6ld MB)\n",
638                 MLM(__phys_to_virt(memblock_start_of_DRAM()),
639                     (unsigned long)high_memory));
640 
641 #undef MLK
642 #undef MLM
643 #undef MLK_ROUNDUP
644 
645         /*
646          * Check boundaries twice: Some fundamental inconsistencies can be
647          * detected at build time already.
648          */
649 #ifdef CONFIG_COMPAT
650         BUILD_BUG_ON(TASK_SIZE_32                       > TASK_SIZE_64);
651 #endif
652 
653         /*
654          * Make sure we chose the upper bound of sizeof(struct page)
655          * correctly.
656          */
657         BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
658 
659         if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
660                 extern int sysctl_overcommit_memory;
661                 /*
662                  * On a machine this small we won't get anywhere without
663                  * overcommit, so turn it on by default.
664                  */
665                 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
666         }
667 }
668 
669 void free_initmem(void)
670 {
671         free_reserved_area(lm_alias(__init_begin),
672                            lm_alias(__init_end),
673                            0, "unused kernel");
674         /*
675          * Unmap the __init region but leave the VM area in place. This
676          * prevents the region from being reused for kernel modules, which
677          * is not supported by kallsyms.
678          */
679         unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
680 }
681 
682 #ifdef CONFIG_BLK_DEV_INITRD
683 
684 static int keep_initrd __initdata;
685 
686 void __init free_initrd_mem(unsigned long start, unsigned long end)
687 {
688         if (!keep_initrd)
689                 free_reserved_area((void *)start, (void *)end, 0, "initrd");
690 }
691 
692 static int __init keepinitrd_setup(char *__unused)
693 {
694         keep_initrd = 1;
695         return 1;
696 }
697 
698 __setup("keepinitrd", keepinitrd_setup);
699 #endif
700 
701 /*
702  * Dump out memory limit information on panic.
703  */
704 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
705 {
706         if (memory_limit != (phys_addr_t)ULLONG_MAX) {
707                 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
708         } else {
709                 pr_emerg("Memory Limit: none\n");
710         }
711         return 0;
712 }
713 
714 static struct notifier_block mem_limit_notifier = {
715         .notifier_call = dump_mem_limit,
716 };
717 
718 static int __init register_mem_limit_dumper(void)
719 {
720         atomic_notifier_chain_register(&panic_notifier_list,
721                                        &mem_limit_notifier);
722         return 0;
723 }
724 __initcall(register_mem_limit_dumper);
725 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp