~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/avr32/include/asm/dma-mapping.h

Version: ~ [ linux-5.6 ] ~ [ linux-5.5.13 ] ~ [ linux-5.4.28 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.113 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.174 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.217 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.217 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.82 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 #ifndef __ASM_AVR32_DMA_MAPPING_H
  2 #define __ASM_AVR32_DMA_MAPPING_H
  3 
  4 #include <linux/mm.h>
  5 #include <linux/device.h>
  6 #include <linux/scatterlist.h>
  7 #include <asm/processor.h>
  8 #include <asm/cacheflush.h>
  9 #include <asm/io.h>
 10 
 11 extern void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 12         int direction);
 13 
 14 /*
 15  * Return whether the given device DMA address mask can be supported
 16  * properly.  For example, if your device can only drive the low 24-bits
 17  * during bus mastering, then you would pass 0x00ffffff as the mask
 18  * to this function.
 19  */
 20 static inline int dma_supported(struct device *dev, u64 mask)
 21 {
 22         /* Fix when needed. I really don't know of any limitations */
 23         return 1;
 24 }
 25 
 26 static inline int dma_set_mask(struct device *dev, u64 dma_mask)
 27 {
 28         if (!dev->dma_mask || !dma_supported(dev, dma_mask))
 29                 return -EIO;
 30 
 31         *dev->dma_mask = dma_mask;
 32         return 0;
 33 }
 34 
 35 /*
 36  * dma_map_single can't fail as it is implemented now.
 37  */
 38 static inline int dma_mapping_error(struct device *dev, dma_addr_t addr)
 39 {
 40         return 0;
 41 }
 42 
 43 /**
 44  * dma_alloc_coherent - allocate consistent memory for DMA
 45  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 46  * @size: required memory size
 47  * @handle: bus-specific DMA address
 48  *
 49  * Allocate some uncached, unbuffered memory for a device for
 50  * performing DMA.  This function allocates pages, and will
 51  * return the CPU-viewed address, and sets @handle to be the
 52  * device-viewed address.
 53  */
 54 extern void *dma_alloc_coherent(struct device *dev, size_t size,
 55                                 dma_addr_t *handle, gfp_t gfp);
 56 
 57 /**
 58  * dma_free_coherent - free memory allocated by dma_alloc_coherent
 59  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 60  * @size: size of memory originally requested in dma_alloc_coherent
 61  * @cpu_addr: CPU-view address returned from dma_alloc_coherent
 62  * @handle: device-view address returned from dma_alloc_coherent
 63  *
 64  * Free (and unmap) a DMA buffer previously allocated by
 65  * dma_alloc_coherent().
 66  *
 67  * References to memory and mappings associated with cpu_addr/handle
 68  * during and after this call executing are illegal.
 69  */
 70 extern void dma_free_coherent(struct device *dev, size_t size,
 71                               void *cpu_addr, dma_addr_t handle);
 72 
 73 /**
 74  * dma_alloc_writecombine - allocate write-combining memory for DMA
 75  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 76  * @size: required memory size
 77  * @handle: bus-specific DMA address
 78  *
 79  * Allocate some uncached, buffered memory for a device for
 80  * performing DMA.  This function allocates pages, and will
 81  * return the CPU-viewed address, and sets @handle to be the
 82  * device-viewed address.
 83  */
 84 extern void *dma_alloc_writecombine(struct device *dev, size_t size,
 85                                     dma_addr_t *handle, gfp_t gfp);
 86 
 87 /**
 88  * dma_free_coherent - free memory allocated by dma_alloc_writecombine
 89  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 90  * @size: size of memory originally requested in dma_alloc_writecombine
 91  * @cpu_addr: CPU-view address returned from dma_alloc_writecombine
 92  * @handle: device-view address returned from dma_alloc_writecombine
 93  *
 94  * Free (and unmap) a DMA buffer previously allocated by
 95  * dma_alloc_writecombine().
 96  *
 97  * References to memory and mappings associated with cpu_addr/handle
 98  * during and after this call executing are illegal.
 99  */
100 extern void dma_free_writecombine(struct device *dev, size_t size,
101                                   void *cpu_addr, dma_addr_t handle);
102 
103 /**
104  * dma_map_single - map a single buffer for streaming DMA
105  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
106  * @cpu_addr: CPU direct mapped address of buffer
107  * @size: size of buffer to map
108  * @dir: DMA transfer direction
109  *
110  * Ensure that any data held in the cache is appropriately discarded
111  * or written back.
112  *
113  * The device owns this memory once this call has completed.  The CPU
114  * can regain ownership by calling dma_unmap_single() or dma_sync_single().
115  */
116 static inline dma_addr_t
117 dma_map_single(struct device *dev, void *cpu_addr, size_t size,
118                enum dma_data_direction direction)
119 {
120         dma_cache_sync(dev, cpu_addr, size, direction);
121         return virt_to_bus(cpu_addr);
122 }
123 
124 /**
125  * dma_unmap_single - unmap a single buffer previously mapped
126  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
127  * @handle: DMA address of buffer
128  * @size: size of buffer to map
129  * @dir: DMA transfer direction
130  *
131  * Unmap a single streaming mode DMA translation.  The handle and size
132  * must match what was provided in the previous dma_map_single() call.
133  * All other usages are undefined.
134  *
135  * After this call, reads by the CPU to the buffer are guaranteed to see
136  * whatever the device wrote there.
137  */
138 static inline void
139 dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
140                  enum dma_data_direction direction)
141 {
142 
143 }
144 
145 /**
146  * dma_map_page - map a portion of a page for streaming DMA
147  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
148  * @page: page that buffer resides in
149  * @offset: offset into page for start of buffer
150  * @size: size of buffer to map
151  * @dir: DMA transfer direction
152  *
153  * Ensure that any data held in the cache is appropriately discarded
154  * or written back.
155  *
156  * The device owns this memory once this call has completed.  The CPU
157  * can regain ownership by calling dma_unmap_page() or dma_sync_single().
158  */
159 static inline dma_addr_t
160 dma_map_page(struct device *dev, struct page *page,
161              unsigned long offset, size_t size,
162              enum dma_data_direction direction)
163 {
164         return dma_map_single(dev, page_address(page) + offset,
165                               size, direction);
166 }
167 
168 /**
169  * dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
170  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
171  * @handle: DMA address of buffer
172  * @size: size of buffer to map
173  * @dir: DMA transfer direction
174  *
175  * Unmap a single streaming mode DMA translation.  The handle and size
176  * must match what was provided in the previous dma_map_single() call.
177  * All other usages are undefined.
178  *
179  * After this call, reads by the CPU to the buffer are guaranteed to see
180  * whatever the device wrote there.
181  */
182 static inline void
183 dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
184                enum dma_data_direction direction)
185 {
186         dma_unmap_single(dev, dma_address, size, direction);
187 }
188 
189 /**
190  * dma_map_sg - map a set of SG buffers for streaming mode DMA
191  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
192  * @sg: list of buffers
193  * @nents: number of buffers to map
194  * @dir: DMA transfer direction
195  *
196  * Map a set of buffers described by scatterlist in streaming
197  * mode for DMA.  This is the scatter-gather version of the
198  * above pci_map_single interface.  Here the scatter gather list
199  * elements are each tagged with the appropriate dma address
200  * and length.  They are obtained via sg_dma_{address,length}(SG).
201  *
202  * NOTE: An implementation may be able to use a smaller number of
203  *       DMA address/length pairs than there are SG table elements.
204  *       (for example via virtual mapping capabilities)
205  *       The routine returns the number of addr/length pairs actually
206  *       used, at most nents.
207  *
208  * Device ownership issues as mentioned above for pci_map_single are
209  * the same here.
210  */
211 static inline int
212 dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
213            enum dma_data_direction direction)
214 {
215         int i;
216 
217         for (i = 0; i < nents; i++) {
218                 char *virt;
219 
220                 sg[i].dma_address = page_to_bus(sg_page(&sg[i])) + sg[i].offset;
221                 virt = sg_virt(&sg[i]);
222                 dma_cache_sync(dev, virt, sg[i].length, direction);
223         }
224 
225         return nents;
226 }
227 
228 /**
229  * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
230  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
231  * @sg: list of buffers
232  * @nents: number of buffers to map
233  * @dir: DMA transfer direction
234  *
235  * Unmap a set of streaming mode DMA translations.
236  * Again, CPU read rules concerning calls here are the same as for
237  * pci_unmap_single() above.
238  */
239 static inline void
240 dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
241              enum dma_data_direction direction)
242 {
243 
244 }
245 
246 /**
247  * dma_sync_single_for_cpu
248  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
249  * @handle: DMA address of buffer
250  * @size: size of buffer to map
251  * @dir: DMA transfer direction
252  *
253  * Make physical memory consistent for a single streaming mode DMA
254  * translation after a transfer.
255  *
256  * If you perform a dma_map_single() but wish to interrogate the
257  * buffer using the cpu, yet do not wish to teardown the DMA mapping,
258  * you must call this function before doing so.  At the next point you
259  * give the DMA address back to the card, you must first perform a
260  * dma_sync_single_for_device, and then the device again owns the
261  * buffer.
262  */
263 static inline void
264 dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
265                         size_t size, enum dma_data_direction direction)
266 {
267         /*
268          * No need to do anything since the CPU isn't supposed to
269          * touch this memory after we flushed it at mapping- or
270          * sync-for-device time.
271          */
272 }
273 
274 static inline void
275 dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
276                            size_t size, enum dma_data_direction direction)
277 {
278         dma_cache_sync(dev, bus_to_virt(dma_handle), size, direction);
279 }
280 
281 static inline void
282 dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
283                               unsigned long offset, size_t size,
284                               enum dma_data_direction direction)
285 {
286         /* just sync everything, that's all the pci API can do */
287         dma_sync_single_for_cpu(dev, dma_handle, offset+size, direction);
288 }
289 
290 static inline void
291 dma_sync_single_range_for_device(struct device *dev, dma_addr_t dma_handle,
292                                  unsigned long offset, size_t size,
293                                  enum dma_data_direction direction)
294 {
295         /* just sync everything, that's all the pci API can do */
296         dma_sync_single_for_device(dev, dma_handle, offset+size, direction);
297 }
298 
299 /**
300  * dma_sync_sg_for_cpu
301  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
302  * @sg: list of buffers
303  * @nents: number of buffers to map
304  * @dir: DMA transfer direction
305  *
306  * Make physical memory consistent for a set of streaming
307  * mode DMA translations after a transfer.
308  *
309  * The same as dma_sync_single_for_* but for a scatter-gather list,
310  * same rules and usage.
311  */
312 static inline void
313 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
314                     int nents, enum dma_data_direction direction)
315 {
316         /*
317          * No need to do anything since the CPU isn't supposed to
318          * touch this memory after we flushed it at mapping- or
319          * sync-for-device time.
320          */
321 }
322 
323 static inline void
324 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
325                        int nents, enum dma_data_direction direction)
326 {
327         int i;
328 
329         for (i = 0; i < nents; i++) {
330                 dma_cache_sync(dev, sg_virt(&sg[i]), sg[i].length, direction);
331         }
332 }
333 
334 /* Now for the API extensions over the pci_ one */
335 
336 #define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
337 #define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
338 
339 /* drivers/base/dma-mapping.c */
340 extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
341                            void *cpu_addr, dma_addr_t dma_addr, size_t size);
342 extern int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
343                                   void *cpu_addr, dma_addr_t dma_addr,
344                                   size_t size);
345 
346 #define dma_mmap_coherent(d, v, c, h, s) dma_common_mmap(d, v, c, h, s)
347 #define dma_get_sgtable(d, t, v, h, s) dma_common_get_sgtable(d, t, v, h, s)
348 
349 #endif /* __ASM_AVR32_DMA_MAPPING_H */
350 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp