~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/blackfin/mm/sram-alloc.c

Version: ~ [ linux-5.6-rc3 ] ~ [ linux-5.5.5 ] ~ [ linux-5.4.21 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.105 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.171 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.214 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.214 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.82 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * SRAM allocator for Blackfin on-chip memory
  3  *
  4  * Copyright 2004-2009 Analog Devices Inc.
  5  *
  6  * Licensed under the GPL-2 or later.
  7  */
  8 
  9 #include <linux/module.h>
 10 #include <linux/kernel.h>
 11 #include <linux/types.h>
 12 #include <linux/miscdevice.h>
 13 #include <linux/ioport.h>
 14 #include <linux/fcntl.h>
 15 #include <linux/init.h>
 16 #include <linux/poll.h>
 17 #include <linux/proc_fs.h>
 18 #include <linux/seq_file.h>
 19 #include <linux/spinlock.h>
 20 #include <linux/rtc.h>
 21 #include <linux/slab.h>
 22 #include <asm/blackfin.h>
 23 #include <asm/mem_map.h>
 24 #include "blackfin_sram.h"
 25 
 26 /* the data structure for L1 scratchpad and DATA SRAM */
 27 struct sram_piece {
 28         void *paddr;
 29         int size;
 30         pid_t pid;
 31         struct sram_piece *next;
 32 };
 33 
 34 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
 35 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
 36 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
 37 
 38 #if L1_DATA_A_LENGTH != 0
 39 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
 40 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
 41 #endif
 42 
 43 #if L1_DATA_B_LENGTH != 0
 44 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
 45 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
 46 #endif
 47 
 48 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
 49 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
 50 #endif
 51 
 52 #if L1_CODE_LENGTH != 0
 53 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
 54 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
 55 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
 56 #endif
 57 
 58 #if L2_LENGTH != 0
 59 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
 60 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
 61 #endif
 62 
 63 static struct kmem_cache *sram_piece_cache;
 64 
 65 /* L1 Scratchpad SRAM initialization function */
 66 static void __init l1sram_init(void)
 67 {
 68         unsigned int cpu;
 69         unsigned long reserve;
 70 
 71 #ifdef CONFIG_SMP
 72         reserve = 0;
 73 #else
 74         reserve = sizeof(struct l1_scratch_task_info);
 75 #endif
 76 
 77         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 78                 per_cpu(free_l1_ssram_head, cpu).next =
 79                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 80                 if (!per_cpu(free_l1_ssram_head, cpu).next) {
 81                         printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
 82                         return;
 83                 }
 84 
 85                 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
 86                 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
 87                 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
 88                 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
 89 
 90                 per_cpu(used_l1_ssram_head, cpu).next = NULL;
 91 
 92                 /* mutex initialize */
 93                 spin_lock_init(&per_cpu(l1sram_lock, cpu));
 94                 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
 95                         L1_SCRATCH_LENGTH >> 10);
 96         }
 97 }
 98 
 99 static void __init l1_data_sram_init(void)
100 {
101 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
102         unsigned int cpu;
103 #endif
104 #if L1_DATA_A_LENGTH != 0
105         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
106                 per_cpu(free_l1_data_A_sram_head, cpu).next =
107                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
108                 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
109                         printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
110                         return;
111                 }
112 
113                 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
114                         (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
115                 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
116                         L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
117                 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
118                 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
119 
120                 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
121 
122                 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
123                         L1_DATA_A_LENGTH >> 10,
124                         per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
125         }
126 #endif
127 #if L1_DATA_B_LENGTH != 0
128         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
129                 per_cpu(free_l1_data_B_sram_head, cpu).next =
130                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
131                 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
132                         printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
133                         return;
134                 }
135 
136                 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
137                         (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
138                 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
139                         L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
140                 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
141                 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
142 
143                 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
144 
145                 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
146                         L1_DATA_B_LENGTH >> 10,
147                         per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
148                 /* mutex initialize */
149         }
150 #endif
151 
152 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
153         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
154                 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
155 #endif
156 }
157 
158 static void __init l1_inst_sram_init(void)
159 {
160 #if L1_CODE_LENGTH != 0
161         unsigned int cpu;
162         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
163                 per_cpu(free_l1_inst_sram_head, cpu).next =
164                         kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
165                 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
166                         printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
167                         return;
168                 }
169 
170                 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
171                         (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
172                 per_cpu(free_l1_inst_sram_head, cpu).next->size =
173                         L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
174                 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
175                 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
176 
177                 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
178 
179                 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
180                         L1_CODE_LENGTH >> 10,
181                         per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
182 
183                 /* mutex initialize */
184                 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
185         }
186 #endif
187 }
188 
189 #ifdef __ADSPBF60x__
190 static irqreturn_t l2_ecc_err(int irq, void *dev_id)
191 {
192         int status;
193 
194         printk(KERN_ERR "L2 ecc error happened\n");
195         status = bfin_read32(L2CTL0_STAT);
196         if (status & 0x1)
197                 printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
198                         bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
199         if (status & 0x2)
200                 printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
201                         bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
202 
203         status = status >> 8;
204         if (status)
205                 printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
206                         status, bfin_read32(L2CTL0_ERRADDR0 + status));
207 
208         panic("L2 Ecc error");
209         return IRQ_HANDLED;
210 }
211 #endif
212 
213 static void __init l2_sram_init(void)
214 {
215 #if L2_LENGTH != 0
216 
217 #ifdef __ADSPBF60x__
218         int ret;
219 
220         ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
221                         NULL);
222         if (unlikely(ret < 0)) {
223                 printk(KERN_INFO "Fail to request l2 ecc error interrupt");
224                 return;
225         }
226 #endif
227 
228         free_l2_sram_head.next =
229                 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
230         if (!free_l2_sram_head.next) {
231                 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
232                 return;
233         }
234 
235         free_l2_sram_head.next->paddr =
236                 (void *)L2_START + (_ebss_l2 - _stext_l2);
237         free_l2_sram_head.next->size =
238                 L2_LENGTH - (_ebss_l2 - _stext_l2);
239         free_l2_sram_head.next->pid = 0;
240         free_l2_sram_head.next->next = NULL;
241 
242         used_l2_sram_head.next = NULL;
243 
244         printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
245                 L2_LENGTH >> 10,
246                 free_l2_sram_head.next->size >> 10);
247 
248         /* mutex initialize */
249         spin_lock_init(&l2_sram_lock);
250 #endif
251 }
252 
253 static int __init bfin_sram_init(void)
254 {
255         sram_piece_cache = kmem_cache_create("sram_piece_cache",
256                                 sizeof(struct sram_piece),
257                                 0, SLAB_PANIC, NULL);
258 
259         l1sram_init();
260         l1_data_sram_init();
261         l1_inst_sram_init();
262         l2_sram_init();
263 
264         return 0;
265 }
266 pure_initcall(bfin_sram_init);
267 
268 /* SRAM allocate function */
269 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
270                 struct sram_piece *pused_head)
271 {
272         struct sram_piece *pslot, *plast, *pavail;
273 
274         if (size <= 0 || !pfree_head || !pused_head)
275                 return NULL;
276 
277         /* Align the size */
278         size = (size + 3) & ~3;
279 
280         pslot = pfree_head->next;
281         plast = pfree_head;
282 
283         /* search an available piece slot */
284         while (pslot != NULL && size > pslot->size) {
285                 plast = pslot;
286                 pslot = pslot->next;
287         }
288 
289         if (!pslot)
290                 return NULL;
291 
292         if (pslot->size == size) {
293                 plast->next = pslot->next;
294                 pavail = pslot;
295         } else {
296                 /* use atomic so our L1 allocator can be used atomically */
297                 pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
298 
299                 if (!pavail)
300                         return NULL;
301 
302                 pavail->paddr = pslot->paddr;
303                 pavail->size = size;
304                 pslot->paddr += size;
305                 pslot->size -= size;
306         }
307 
308         pavail->pid = current->pid;
309 
310         pslot = pused_head->next;
311         plast = pused_head;
312 
313         /* insert new piece into used piece list !!! */
314         while (pslot != NULL && pavail->paddr < pslot->paddr) {
315                 plast = pslot;
316                 pslot = pslot->next;
317         }
318 
319         pavail->next = pslot;
320         plast->next = pavail;
321 
322         return pavail->paddr;
323 }
324 
325 /* Allocate the largest available block.  */
326 static void *_sram_alloc_max(struct sram_piece *pfree_head,
327                                 struct sram_piece *pused_head,
328                                 unsigned long *psize)
329 {
330         struct sram_piece *pslot, *pmax;
331 
332         if (!pfree_head || !pused_head)
333                 return NULL;
334 
335         pmax = pslot = pfree_head->next;
336 
337         /* search an available piece slot */
338         while (pslot != NULL) {
339                 if (pslot->size > pmax->size)
340                         pmax = pslot;
341                 pslot = pslot->next;
342         }
343 
344         if (!pmax)
345                 return NULL;
346 
347         *psize = pmax->size;
348 
349         return _sram_alloc(*psize, pfree_head, pused_head);
350 }
351 
352 /* SRAM free function */
353 static int _sram_free(const void *addr,
354                         struct sram_piece *pfree_head,
355                         struct sram_piece *pused_head)
356 {
357         struct sram_piece *pslot, *plast, *pavail;
358 
359         if (!pfree_head || !pused_head)
360                 return -1;
361 
362         /* search the relevant memory slot */
363         pslot = pused_head->next;
364         plast = pused_head;
365 
366         /* search an available piece slot */
367         while (pslot != NULL && pslot->paddr != addr) {
368                 plast = pslot;
369                 pslot = pslot->next;
370         }
371 
372         if (!pslot)
373                 return -1;
374 
375         plast->next = pslot->next;
376         pavail = pslot;
377         pavail->pid = 0;
378 
379         /* insert free pieces back to the free list */
380         pslot = pfree_head->next;
381         plast = pfree_head;
382 
383         while (pslot != NULL && addr > pslot->paddr) {
384                 plast = pslot;
385                 pslot = pslot->next;
386         }
387 
388         if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
389                 plast->size += pavail->size;
390                 kmem_cache_free(sram_piece_cache, pavail);
391         } else {
392                 pavail->next = plast->next;
393                 plast->next = pavail;
394                 plast = pavail;
395         }
396 
397         if (pslot && plast->paddr + plast->size == pslot->paddr) {
398                 plast->size += pslot->size;
399                 plast->next = pslot->next;
400                 kmem_cache_free(sram_piece_cache, pslot);
401         }
402 
403         return 0;
404 }
405 
406 int sram_free(const void *addr)
407 {
408 
409 #if L1_CODE_LENGTH != 0
410         if (addr >= (void *)get_l1_code_start()
411                  && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
412                 return l1_inst_sram_free(addr);
413         else
414 #endif
415 #if L1_DATA_A_LENGTH != 0
416         if (addr >= (void *)get_l1_data_a_start()
417                  && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
418                 return l1_data_A_sram_free(addr);
419         else
420 #endif
421 #if L1_DATA_B_LENGTH != 0
422         if (addr >= (void *)get_l1_data_b_start()
423                  && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
424                 return l1_data_B_sram_free(addr);
425         else
426 #endif
427 #if L2_LENGTH != 0
428         if (addr >= (void *)L2_START
429                  && addr < (void *)(L2_START + L2_LENGTH))
430                 return l2_sram_free(addr);
431         else
432 #endif
433                 return -1;
434 }
435 EXPORT_SYMBOL(sram_free);
436 
437 void *l1_data_A_sram_alloc(size_t size)
438 {
439 #if L1_DATA_A_LENGTH != 0
440         unsigned long flags;
441         void *addr;
442         unsigned int cpu;
443 
444         cpu = smp_processor_id();
445         /* add mutex operation */
446         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
447 
448         addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
449                         &per_cpu(used_l1_data_A_sram_head, cpu));
450 
451         /* add mutex operation */
452         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
453 
454         pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
455                  (long unsigned int)addr, size);
456 
457         return addr;
458 #else
459         return NULL;
460 #endif
461 }
462 EXPORT_SYMBOL(l1_data_A_sram_alloc);
463 
464 int l1_data_A_sram_free(const void *addr)
465 {
466 #if L1_DATA_A_LENGTH != 0
467         unsigned long flags;
468         int ret;
469         unsigned int cpu;
470 
471         cpu = smp_processor_id();
472         /* add mutex operation */
473         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
474 
475         ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
476                         &per_cpu(used_l1_data_A_sram_head, cpu));
477 
478         /* add mutex operation */
479         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
480 
481         return ret;
482 #else
483         return -1;
484 #endif
485 }
486 EXPORT_SYMBOL(l1_data_A_sram_free);
487 
488 void *l1_data_B_sram_alloc(size_t size)
489 {
490 #if L1_DATA_B_LENGTH != 0
491         unsigned long flags;
492         void *addr;
493         unsigned int cpu;
494 
495         cpu = smp_processor_id();
496         /* add mutex operation */
497         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
498 
499         addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
500                         &per_cpu(used_l1_data_B_sram_head, cpu));
501 
502         /* add mutex operation */
503         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
504 
505         pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
506                  (long unsigned int)addr, size);
507 
508         return addr;
509 #else
510         return NULL;
511 #endif
512 }
513 EXPORT_SYMBOL(l1_data_B_sram_alloc);
514 
515 int l1_data_B_sram_free(const void *addr)
516 {
517 #if L1_DATA_B_LENGTH != 0
518         unsigned long flags;
519         int ret;
520         unsigned int cpu;
521 
522         cpu = smp_processor_id();
523         /* add mutex operation */
524         spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
525 
526         ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
527                         &per_cpu(used_l1_data_B_sram_head, cpu));
528 
529         /* add mutex operation */
530         spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
531 
532         return ret;
533 #else
534         return -1;
535 #endif
536 }
537 EXPORT_SYMBOL(l1_data_B_sram_free);
538 
539 void *l1_data_sram_alloc(size_t size)
540 {
541         void *addr = l1_data_A_sram_alloc(size);
542 
543         if (!addr)
544                 addr = l1_data_B_sram_alloc(size);
545 
546         return addr;
547 }
548 EXPORT_SYMBOL(l1_data_sram_alloc);
549 
550 void *l1_data_sram_zalloc(size_t size)
551 {
552         void *addr = l1_data_sram_alloc(size);
553 
554         if (addr)
555                 memset(addr, 0x00, size);
556 
557         return addr;
558 }
559 EXPORT_SYMBOL(l1_data_sram_zalloc);
560 
561 int l1_data_sram_free(const void *addr)
562 {
563         int ret;
564         ret = l1_data_A_sram_free(addr);
565         if (ret == -1)
566                 ret = l1_data_B_sram_free(addr);
567         return ret;
568 }
569 EXPORT_SYMBOL(l1_data_sram_free);
570 
571 void *l1_inst_sram_alloc(size_t size)
572 {
573 #if L1_CODE_LENGTH != 0
574         unsigned long flags;
575         void *addr;
576         unsigned int cpu;
577 
578         cpu = smp_processor_id();
579         /* add mutex operation */
580         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
581 
582         addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
583                         &per_cpu(used_l1_inst_sram_head, cpu));
584 
585         /* add mutex operation */
586         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
587 
588         pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
589                  (long unsigned int)addr, size);
590 
591         return addr;
592 #else
593         return NULL;
594 #endif
595 }
596 EXPORT_SYMBOL(l1_inst_sram_alloc);
597 
598 int l1_inst_sram_free(const void *addr)
599 {
600 #if L1_CODE_LENGTH != 0
601         unsigned long flags;
602         int ret;
603         unsigned int cpu;
604 
605         cpu = smp_processor_id();
606         /* add mutex operation */
607         spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
608 
609         ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
610                         &per_cpu(used_l1_inst_sram_head, cpu));
611 
612         /* add mutex operation */
613         spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
614 
615         return ret;
616 #else
617         return -1;
618 #endif
619 }
620 EXPORT_SYMBOL(l1_inst_sram_free);
621 
622 /* L1 Scratchpad memory allocate function */
623 void *l1sram_alloc(size_t size)
624 {
625         unsigned long flags;
626         void *addr;
627         unsigned int cpu;
628 
629         cpu = smp_processor_id();
630         /* add mutex operation */
631         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
632 
633         addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
634                         &per_cpu(used_l1_ssram_head, cpu));
635 
636         /* add mutex operation */
637         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
638 
639         return addr;
640 }
641 
642 /* L1 Scratchpad memory allocate function */
643 void *l1sram_alloc_max(size_t *psize)
644 {
645         unsigned long flags;
646         void *addr;
647         unsigned int cpu;
648 
649         cpu = smp_processor_id();
650         /* add mutex operation */
651         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
652 
653         addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
654                         &per_cpu(used_l1_ssram_head, cpu), psize);
655 
656         /* add mutex operation */
657         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
658 
659         return addr;
660 }
661 
662 /* L1 Scratchpad memory free function */
663 int l1sram_free(const void *addr)
664 {
665         unsigned long flags;
666         int ret;
667         unsigned int cpu;
668 
669         cpu = smp_processor_id();
670         /* add mutex operation */
671         spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
672 
673         ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
674                         &per_cpu(used_l1_ssram_head, cpu));
675 
676         /* add mutex operation */
677         spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
678 
679         return ret;
680 }
681 
682 void *l2_sram_alloc(size_t size)
683 {
684 #if L2_LENGTH != 0
685         unsigned long flags;
686         void *addr;
687 
688         /* add mutex operation */
689         spin_lock_irqsave(&l2_sram_lock, flags);
690 
691         addr = _sram_alloc(size, &free_l2_sram_head,
692                         &used_l2_sram_head);
693 
694         /* add mutex operation */
695         spin_unlock_irqrestore(&l2_sram_lock, flags);
696 
697         pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
698                  (long unsigned int)addr, size);
699 
700         return addr;
701 #else
702         return NULL;
703 #endif
704 }
705 EXPORT_SYMBOL(l2_sram_alloc);
706 
707 void *l2_sram_zalloc(size_t size)
708 {
709         void *addr = l2_sram_alloc(size);
710 
711         if (addr)
712                 memset(addr, 0x00, size);
713 
714         return addr;
715 }
716 EXPORT_SYMBOL(l2_sram_zalloc);
717 
718 int l2_sram_free(const void *addr)
719 {
720 #if L2_LENGTH != 0
721         unsigned long flags;
722         int ret;
723 
724         /* add mutex operation */
725         spin_lock_irqsave(&l2_sram_lock, flags);
726 
727         ret = _sram_free(addr, &free_l2_sram_head,
728                         &used_l2_sram_head);
729 
730         /* add mutex operation */
731         spin_unlock_irqrestore(&l2_sram_lock, flags);
732 
733         return ret;
734 #else
735         return -1;
736 #endif
737 }
738 EXPORT_SYMBOL(l2_sram_free);
739 
740 int sram_free_with_lsl(const void *addr)
741 {
742         struct sram_list_struct *lsl, **tmp;
743         struct mm_struct *mm = current->mm;
744         int ret = -1;
745 
746         for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
747                 if ((*tmp)->addr == addr) {
748                         lsl = *tmp;
749                         ret = sram_free(addr);
750                         *tmp = lsl->next;
751                         kfree(lsl);
752                         break;
753                 }
754 
755         return ret;
756 }
757 EXPORT_SYMBOL(sram_free_with_lsl);
758 
759 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
760  * tracked.  These are designed for userspace so that when a process exits,
761  * we can safely reap their resources.
762  */
763 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
764 {
765         void *addr = NULL;
766         struct sram_list_struct *lsl = NULL;
767         struct mm_struct *mm = current->mm;
768 
769         lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
770         if (!lsl)
771                 return NULL;
772 
773         if (flags & L1_INST_SRAM)
774                 addr = l1_inst_sram_alloc(size);
775 
776         if (addr == NULL && (flags & L1_DATA_A_SRAM))
777                 addr = l1_data_A_sram_alloc(size);
778 
779         if (addr == NULL && (flags & L1_DATA_B_SRAM))
780                 addr = l1_data_B_sram_alloc(size);
781 
782         if (addr == NULL && (flags & L2_SRAM))
783                 addr = l2_sram_alloc(size);
784 
785         if (addr == NULL) {
786                 kfree(lsl);
787                 return NULL;
788         }
789         lsl->addr = addr;
790         lsl->length = size;
791         lsl->next = mm->context.sram_list;
792         mm->context.sram_list = lsl;
793         return addr;
794 }
795 EXPORT_SYMBOL(sram_alloc_with_lsl);
796 
797 #ifdef CONFIG_PROC_FS
798 /* Once we get a real allocator, we'll throw all of this away.
799  * Until then, we need some sort of visibility into the L1 alloc.
800  */
801 /* Need to keep line of output the same.  Currently, that is 44 bytes
802  * (including newline).
803  */
804 static int _sram_proc_show(struct seq_file *m, const char *desc,
805                 struct sram_piece *pfree_head,
806                 struct sram_piece *pused_head)
807 {
808         struct sram_piece *pslot;
809 
810         if (!pfree_head || !pused_head)
811                 return -1;
812 
813         seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
814 
815         /* search the relevant memory slot */
816         pslot = pused_head->next;
817 
818         while (pslot != NULL) {
819                 seq_printf(m, "%p-%p %10i %5i %-10s\n",
820                         pslot->paddr, pslot->paddr + pslot->size,
821                         pslot->size, pslot->pid, "ALLOCATED");
822 
823                 pslot = pslot->next;
824         }
825 
826         pslot = pfree_head->next;
827 
828         while (pslot != NULL) {
829                 seq_printf(m, "%p-%p %10i %5i %-10s\n",
830                         pslot->paddr, pslot->paddr + pslot->size,
831                         pslot->size, pslot->pid, "FREE");
832 
833                 pslot = pslot->next;
834         }
835 
836         return 0;
837 }
838 static int sram_proc_show(struct seq_file *m, void *v)
839 {
840         unsigned int cpu;
841 
842         for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
843                 if (_sram_proc_show(m, "Scratchpad",
844                         &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
845                         goto not_done;
846 #if L1_DATA_A_LENGTH != 0
847                 if (_sram_proc_show(m, "L1 Data A",
848                         &per_cpu(free_l1_data_A_sram_head, cpu),
849                         &per_cpu(used_l1_data_A_sram_head, cpu)))
850                         goto not_done;
851 #endif
852 #if L1_DATA_B_LENGTH != 0
853                 if (_sram_proc_show(m, "L1 Data B",
854                         &per_cpu(free_l1_data_B_sram_head, cpu),
855                         &per_cpu(used_l1_data_B_sram_head, cpu)))
856                         goto not_done;
857 #endif
858 #if L1_CODE_LENGTH != 0
859                 if (_sram_proc_show(m, "L1 Instruction",
860                         &per_cpu(free_l1_inst_sram_head, cpu),
861                         &per_cpu(used_l1_inst_sram_head, cpu)))
862                         goto not_done;
863 #endif
864         }
865 #if L2_LENGTH != 0
866         if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
867                 goto not_done;
868 #endif
869  not_done:
870         return 0;
871 }
872 
873 static int sram_proc_open(struct inode *inode, struct file *file)
874 {
875         return single_open(file, sram_proc_show, NULL);
876 }
877 
878 static const struct file_operations sram_proc_ops = {
879         .open           = sram_proc_open,
880         .read           = seq_read,
881         .llseek         = seq_lseek,
882         .release        = single_release,
883 };
884 
885 static int __init sram_proc_init(void)
886 {
887         struct proc_dir_entry *ptr;
888 
889         ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
890         if (!ptr) {
891                 printk(KERN_WARNING "unable to create /proc/sram\n");
892                 return -1;
893         }
894         return 0;
895 }
896 late_initcall(sram_proc_init);
897 #endif
898 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp