~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/frv/include/asm/pgtable.h

Version: ~ [ linux-6.1-rc7 ] ~ [ linux-6.0.10 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.80 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.156 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.225 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.267 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.300 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.334 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* pgtable.h: FR-V page table mangling
  2  *
  3  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
  4  * Written by David Howells (dhowells@redhat.com)
  5  *
  6  * This program is free software; you can redistribute it and/or
  7  * modify it under the terms of the GNU General Public License
  8  * as published by the Free Software Foundation; either version
  9  * 2 of the License, or (at your option) any later version.
 10  *
 11  * Derived from:
 12  *      include/asm-m68knommu/pgtable.h
 13  *      include/asm-i386/pgtable.h
 14  */
 15 
 16 #ifndef _ASM_PGTABLE_H
 17 #define _ASM_PGTABLE_H
 18 
 19 #include <asm/mem-layout.h>
 20 #include <asm/setup.h>
 21 #include <asm/processor.h>
 22 
 23 #ifndef __ASSEMBLY__
 24 #include <linux/threads.h>
 25 #include <linux/slab.h>
 26 #include <linux/list.h>
 27 #include <linux/spinlock.h>
 28 #include <linux/sched.h>
 29 struct vm_area_struct;
 30 #endif
 31 
 32 #ifndef __ASSEMBLY__
 33 #if defined(CONFIG_HIGHPTE)
 34 typedef unsigned long pte_addr_t;
 35 #else
 36 typedef pte_t *pte_addr_t;
 37 #endif
 38 #endif
 39 
 40 /*****************************************************************************/
 41 /*
 42  * MMU-less operation case first
 43  */
 44 #ifndef CONFIG_MMU
 45 
 46 #define pgd_present(pgd)        (1)             /* pages are always present on NO_MM */
 47 #define pgd_none(pgd)           (0)
 48 #define pgd_bad(pgd)            (0)
 49 #define pgd_clear(pgdp)
 50 #define kern_addr_valid(addr)   (1)
 51 #define pmd_offset(a, b)        ((void *) 0)
 52 
 53 #define PAGE_NONE               __pgprot(0)     /* these mean nothing to NO_MM */
 54 #define PAGE_SHARED             __pgprot(0)     /* these mean nothing to NO_MM */
 55 #define PAGE_COPY               __pgprot(0)     /* these mean nothing to NO_MM */
 56 #define PAGE_READONLY           __pgprot(0)     /* these mean nothing to NO_MM */
 57 #define PAGE_KERNEL             __pgprot(0)     /* these mean nothing to NO_MM */
 58 
 59 #define __swp_type(x)           (0)
 60 #define __swp_offset(x)         (0)
 61 #define __swp_entry(typ,off)    ((swp_entry_t) { ((typ) | ((off) << 7)) })
 62 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 63 #define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
 64 
 65 #ifndef __ASSEMBLY__
 66 static inline int pte_file(pte_t pte) { return 0; }
 67 #endif
 68 
 69 #define ZERO_PAGE(vaddr)        ({ BUG(); NULL; })
 70 
 71 #define swapper_pg_dir          ((pgd_t *) NULL)
 72 
 73 #define pgtable_cache_init()            do {} while (0)
 74 
 75 #include <asm-generic/pgtable.h>
 76 
 77 #else /* !CONFIG_MMU */
 78 /*****************************************************************************/
 79 /*
 80  * then MMU operation
 81  */
 82 
 83 /*
 84  * ZERO_PAGE is a global shared page that is always zero: used
 85  * for zero-mapped memory areas etc..
 86  */
 87 #ifndef __ASSEMBLY__
 88 extern unsigned long empty_zero_page;
 89 #define ZERO_PAGE(vaddr)        virt_to_page(empty_zero_page)
 90 #endif
 91 
 92 /*
 93  * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry)
 94  * [see Documentation/frv/mmu-layout.txt]
 95  *
 96  * Page Directory:
 97  *  - Size: 16KB
 98  *  - 64 PGEs per PGD
 99  *  - Each PGE holds 1 PUD and covers 64MB
100  *
101  * Page Upper Directory:
102  *  - Size: 256B
103  *  - 1 PUE per PUD
104  *  - Each PUE holds 1 PMD and covers 64MB
105  *
106  * Page Mid-Level Directory
107  *  - Size: 256B
108  *  - 1 PME per PMD
109  *  - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table
110  *  - All STEs are instantiated at the same time
111  *
112  * Page Table
113  *  - Size: 16KB
114  *  - 4096 PTEs per PT
115  *  - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries
116  *
117  * Pages
118  *  - Size: 4KB
119  *
120  * total PTEs
121  *      = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs
122  *      = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT
123  *      = 262144 (or 256 * 1024)
124  */
125 #define PGDIR_SHIFT             26
126 #define PGDIR_SIZE              (1UL << PGDIR_SHIFT)
127 #define PGDIR_MASK              (~(PGDIR_SIZE - 1))
128 #define PTRS_PER_PGD            64
129 
130 #define PUD_SHIFT               26
131 #define PTRS_PER_PUD            1
132 #define PUD_SIZE                (1UL << PUD_SHIFT)
133 #define PUD_MASK                (~(PUD_SIZE - 1))
134 #define PUE_SIZE                256
135 
136 #define PMD_SHIFT               26
137 #define PMD_SIZE                (1UL << PMD_SHIFT)
138 #define PMD_MASK                (~(PMD_SIZE - 1))
139 #define PTRS_PER_PMD            1
140 #define PME_SIZE                256
141 
142 #define __frv_PT_SIZE           256
143 
144 #define PTRS_PER_PTE            4096
145 
146 #define USER_PGDS_IN_LAST_PML4  (TASK_SIZE / PGDIR_SIZE)
147 #define FIRST_USER_ADDRESS      0
148 
149 #define USER_PGD_PTRS           (PAGE_OFFSET >> PGDIR_SHIFT)
150 #define KERNEL_PGD_PTRS         (PTRS_PER_PGD - USER_PGD_PTRS)
151 
152 #define TWOLEVEL_PGDIR_SHIFT    26
153 #define BOOT_USER_PGD_PTRS      (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
154 #define BOOT_KERNEL_PGD_PTRS    (PTRS_PER_PGD - BOOT_USER_PGD_PTRS)
155 
156 #ifndef __ASSEMBLY__
157 
158 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
159 
160 #define pte_ERROR(e) \
161         printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte)
162 #define pmd_ERROR(e) \
163         printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
164 #define pud_ERROR(e) \
165         printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e)))
166 #define pgd_ERROR(e) \
167         printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e))))
168 
169 /*
170  * Certain architectures need to do special things when PTEs
171  * within a page table are directly modified.  Thus, the following
172  * hook is made available.
173  */
174 #define set_pte(pteptr, pteval)                         \
175 do {                                                    \
176         *(pteptr) = (pteval);                           \
177         asm volatile("dcf %M0" :: "U"(*pteptr));        \
178 } while(0)
179 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
180 
181 /*
182  * pgd_offset() returns a (pgd_t *)
183  * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
184  */
185 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
186 
187 /*
188  * a shortcut which implies the use of the kernel's pgd, instead
189  * of a process's
190  */
191 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
192 
193 /*
194  * The "pgd_xxx()" functions here are trivial for a folded two-level
195  * setup: the pud is never bad, and a pud always exists (as it's folded
196  * into the pgd entry)
197  */
198 static inline int pgd_none(pgd_t pgd)           { return 0; }
199 static inline int pgd_bad(pgd_t pgd)            { return 0; }
200 static inline int pgd_present(pgd_t pgd)        { return 1; }
201 static inline void pgd_clear(pgd_t *pgd)        { }
202 
203 #define pgd_populate(mm, pgd, pud)              do { } while (0)
204 /*
205  * (puds are folded into pgds so this doesn't get actually called,
206  * but the define is needed for a generic inline function.)
207  */
208 #define set_pgd(pgdptr, pgdval)                         \
209 do {                                                    \
210         memcpy((pgdptr), &(pgdval), sizeof(pgd_t));     \
211         asm volatile("dcf %M0" :: "U"(*(pgdptr)));      \
212 } while(0)
213 
214 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
215 {
216         return (pud_t *) pgd;
217 }
218 
219 #define pgd_page(pgd)                           (pud_page((pud_t){ pgd }))
220 #define pgd_page_vaddr(pgd)                     (pud_page_vaddr((pud_t){ pgd }))
221 
222 /*
223  * allocating and freeing a pud is trivial: the 1-entry pud is
224  * inside the pgd, so has no extra memory associated with it.
225  */
226 #define pud_alloc_one(mm, address)              NULL
227 #define pud_free(mm, x)                         do { } while (0)
228 #define __pud_free_tlb(tlb, x, address)         do { } while (0)
229 
230 /*
231  * The "pud_xxx()" functions here are trivial for a folded two-level
232  * setup: the pmd is never bad, and a pmd always exists (as it's folded
233  * into the pud entry)
234  */
235 static inline int pud_none(pud_t pud)           { return 0; }
236 static inline int pud_bad(pud_t pud)            { return 0; }
237 static inline int pud_present(pud_t pud)        { return 1; }
238 static inline void pud_clear(pud_t *pud)        { }
239 
240 #define pud_populate(mm, pmd, pte)              do { } while (0)
241 
242 /*
243  * (pmds are folded into puds so this doesn't get actually called,
244  * but the define is needed for a generic inline function.)
245  */
246 #define set_pud(pudptr, pudval)                 set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval })
247 
248 #define pud_page(pud)                           (pmd_page((pmd_t){ pud }))
249 #define pud_page_vaddr(pud)                     (pmd_page_vaddr((pmd_t){ pud }))
250 
251 /*
252  * (pmds are folded into pgds so this doesn't get actually called,
253  * but the define is needed for a generic inline function.)
254  */
255 extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd);
256 
257 #define set_pmd(pmdptr, pmdval)                 \
258 do {                                            \
259         __set_pmd((pmdptr), (pmdval).ste[0]);   \
260 } while(0)
261 
262 #define __pmd_index(address)                    0
263 
264 static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address)
265 {
266         return (pmd_t *) dir + __pmd_index(address);
267 }
268 
269 #define pte_same(a, b)          ((a).pte == (b).pte)
270 #define pte_page(x)             (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT))))
271 #define pte_none(x)             (!(x).pte)
272 #define pte_pfn(x)              ((unsigned long)(((x).pte >> PAGE_SHIFT)))
273 #define pfn_pte(pfn, prot)      __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
274 #define pfn_pmd(pfn, prot)      __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
275 
276 #define VMALLOC_VMADDR(x)       ((unsigned long) (x))
277 
278 #endif /* !__ASSEMBLY__ */
279 
280 /*
281  * control flags in AMPR registers and TLB entries
282  */
283 #define _PAGE_BIT_PRESENT       xAMPRx_V_BIT
284 #define _PAGE_BIT_WP            DAMPRx_WP_BIT
285 #define _PAGE_BIT_NOCACHE       xAMPRx_C_BIT
286 #define _PAGE_BIT_SUPER         xAMPRx_S_BIT
287 #define _PAGE_BIT_ACCESSED      xAMPRx_RESERVED8_BIT
288 #define _PAGE_BIT_DIRTY         xAMPRx_M_BIT
289 #define _PAGE_BIT_NOTGLOBAL     xAMPRx_NG_BIT
290 
291 #define _PAGE_PRESENT           xAMPRx_V
292 #define _PAGE_WP                DAMPRx_WP
293 #define _PAGE_NOCACHE           xAMPRx_C
294 #define _PAGE_SUPER             xAMPRx_S
295 #define _PAGE_ACCESSED          xAMPRx_RESERVED8        /* accessed if set */
296 #define _PAGE_DIRTY             xAMPRx_M
297 #define _PAGE_NOTGLOBAL         xAMPRx_NG
298 
299 #define _PAGE_RESERVED_MASK     (xAMPRx_RESERVED8 | xAMPRx_RESERVED13)
300 
301 #define _PAGE_FILE              0x002   /* set:pagecache unset:swap */
302 #define _PAGE_PROTNONE          0x000   /* If not present */
303 
304 #define _PAGE_CHG_MASK          (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
305 
306 #define __PGPROT_BASE \
307         (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED)
308 
309 #define PAGE_NONE       __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
310 #define PAGE_SHARED     __pgprot(__PGPROT_BASE)
311 #define PAGE_COPY       __pgprot(__PGPROT_BASE | _PAGE_WP)
312 #define PAGE_READONLY   __pgprot(__PGPROT_BASE | _PAGE_WP)
313 
314 #define __PAGE_KERNEL           (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY)
315 #define __PAGE_KERNEL_NOCACHE   (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE)
316 #define __PAGE_KERNEL_RO        (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP)
317 
318 #define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL)
319 
320 #define PAGE_KERNEL             MAKE_GLOBAL(__PAGE_KERNEL)
321 #define PAGE_KERNEL_RO          MAKE_GLOBAL(__PAGE_KERNEL_RO)
322 #define PAGE_KERNEL_NOCACHE     MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE)
323 
324 #define _PAGE_TABLE             (_PAGE_PRESENT | xAMPRx_SS_16Kb)
325 
326 #ifndef __ASSEMBLY__
327 
328 /*
329  * The FR451 can do execute protection by virtue of having separate TLB miss handlers for
330  * instruction access and for data access. However, we don't have enough reserved bits to say
331  * "execute only", so we don't bother. If you can read it, you can execute it and vice versa.
332  */
333 #define __P000  PAGE_NONE
334 #define __P001  PAGE_READONLY
335 #define __P010  PAGE_COPY
336 #define __P011  PAGE_COPY
337 #define __P100  PAGE_READONLY
338 #define __P101  PAGE_READONLY
339 #define __P110  PAGE_COPY
340 #define __P111  PAGE_COPY
341 
342 #define __S000  PAGE_NONE
343 #define __S001  PAGE_READONLY
344 #define __S010  PAGE_SHARED
345 #define __S011  PAGE_SHARED
346 #define __S100  PAGE_READONLY
347 #define __S101  PAGE_READONLY
348 #define __S110  PAGE_SHARED
349 #define __S111  PAGE_SHARED
350 
351 /*
352  * Define this to warn about kernel memory accesses that are
353  * done without a 'access_ok(VERIFY_WRITE,..)'
354  */
355 #undef TEST_ACCESS_OK
356 
357 #define pte_present(x)  (pte_val(x) & _PAGE_PRESENT)
358 #define pte_clear(mm,addr,xp)   do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
359 
360 #define pmd_none(x)     (!pmd_val(x))
361 #define pmd_present(x)  (pmd_val(x) & _PAGE_PRESENT)
362 #define pmd_bad(x)      (pmd_val(x) & xAMPRx_SS)
363 #define pmd_clear(xp)   do { __set_pmd(xp, 0); } while(0)
364 
365 #define pmd_page_vaddr(pmd) \
366         ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
367 
368 #ifndef CONFIG_DISCONTIGMEM
369 #define pmd_page(pmd)   (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
370 #endif
371 
372 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
373 
374 /*
375  * The following only work if pte_present() is true.
376  * Undefined behaviour if not..
377  */
378 static inline int pte_dirty(pte_t pte)          { return (pte).pte & _PAGE_DIRTY; }
379 static inline int pte_young(pte_t pte)          { return (pte).pte & _PAGE_ACCESSED; }
380 static inline int pte_write(pte_t pte)          { return !((pte).pte & _PAGE_WP); }
381 static inline int pte_special(pte_t pte)        { return 0; }
382 
383 static inline pte_t pte_mkclean(pte_t pte)      { (pte).pte &= ~_PAGE_DIRTY; return pte; }
384 static inline pte_t pte_mkold(pte_t pte)        { (pte).pte &= ~_PAGE_ACCESSED; return pte; }
385 static inline pte_t pte_wrprotect(pte_t pte)    { (pte).pte |= _PAGE_WP; return pte; }
386 static inline pte_t pte_mkdirty(pte_t pte)      { (pte).pte |= _PAGE_DIRTY; return pte; }
387 static inline pte_t pte_mkyoung(pte_t pte)      { (pte).pte |= _PAGE_ACCESSED; return pte; }
388 static inline pte_t pte_mkwrite(pte_t pte)      { (pte).pte &= ~_PAGE_WP; return pte; }
389 static inline pte_t pte_mkspecial(pte_t pte)    { return pte; }
390 
391 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
392 {
393         int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep);
394         asm volatile("dcf %M0" :: "U"(*ptep));
395         return i;
396 }
397 
398 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
399 {
400         unsigned long x = xchg(&ptep->pte, 0);
401         asm volatile("dcf %M0" :: "U"(*ptep));
402         return __pte(x);
403 }
404 
405 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
406 {
407         set_bit(_PAGE_BIT_WP, ptep);
408         asm volatile("dcf %M0" :: "U"(*ptep));
409 }
410 
411 /*
412  * Macro to mark a page protection value as "uncacheable"
413  */
414 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE))
415 
416 /*
417  * Conversion functions: convert a page and protection to a page entry,
418  * and a page entry and page directory to the page they refer to.
419  */
420 
421 #define mk_pte(page, pgprot)    pfn_pte(page_to_pfn(page), (pgprot))
422 #define mk_pte_huge(entry)      ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
423 
424 /* This takes a physical page address that is used by the remapping functions */
425 #define mk_pte_phys(physpage, pgprot)   pfn_pte((physpage) >> PAGE_SHIFT, pgprot)
426 
427 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
428 {
429         pte.pte &= _PAGE_CHG_MASK;
430         pte.pte |= pgprot_val(newprot);
431         return pte;
432 }
433 
434 /* to find an entry in a page-table-directory. */
435 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
436 #define pgd_index_k(addr) pgd_index(addr)
437 
438 /* Find an entry in the bottom-level page table.. */
439 #define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
440 
441 /*
442  * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
443  *
444  * this macro returns the index of the entry in the pte page which would
445  * control the given virtual address
446  */
447 #define pte_index(address) \
448                 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
449 #define pte_offset_kernel(dir, address) \
450         ((pte_t *) pmd_page_vaddr(*(dir)) +  pte_index(address))
451 
452 #if defined(CONFIG_HIGHPTE)
453 #define pte_offset_map(dir, address) \
454         ((pte_t *)kmap_atomic(pmd_page(*(dir))) + pte_index(address))
455 #define pte_unmap(pte) kunmap_atomic(pte)
456 #else
457 #define pte_offset_map(dir, address) \
458         ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
459 #define pte_unmap(pte) do { } while (0)
460 #endif
461 
462 /*
463  * Handle swap and file entries
464  * - the PTE is encoded in the following format:
465  *      bit 0:          Must be 0 (!_PAGE_PRESENT)
466  *      bit 1:          Type: 0 for swap, 1 for file (_PAGE_FILE)
467  *      bits 2-7:       Swap type
468  *      bits 8-31:      Swap offset
469  *      bits 2-31:      File pgoff
470  */
471 #define __swp_type(x)                   (((x).val >> 2) & 0x1f)
472 #define __swp_offset(x)                 ((x).val >> 8)
473 #define __swp_entry(type, offset)       ((swp_entry_t) { ((type) << 2) | ((offset) << 8) })
474 #define __pte_to_swp_entry(_pte)        ((swp_entry_t) { (_pte).pte })
475 #define __swp_entry_to_pte(x)           ((pte_t) { (x).val })
476 
477 static inline int pte_file(pte_t pte)
478 {
479         return pte.pte & _PAGE_FILE;
480 }
481 
482 #define PTE_FILE_MAX_BITS       29
483 
484 #define pte_to_pgoff(PTE)       ((PTE).pte >> 2)
485 #define pgoff_to_pte(off)       __pte((off) << 2 | _PAGE_FILE)
486 
487 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
488 #define PageSkip(page)          (0)
489 #define kern_addr_valid(addr)   (1)
490 
491 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)         \
492                 remap_pfn_range(vma, vaddr, pfn, size, prot)
493 
494 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
495 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
496 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
497 #define __HAVE_ARCH_PTE_SAME
498 #include <asm-generic/pgtable.h>
499 
500 /*
501  * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache
502  */
503 static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
504 {
505         struct mm_struct *mm;
506         unsigned long ampr;
507 
508         mm = current->mm;
509         if (mm) {
510                 pgd_t *pge = pgd_offset(mm, address);
511                 pud_t *pue = pud_offset(pge, address);
512                 pmd_t *pme = pmd_offset(pue, address);
513 
514                 ampr = pme->ste[0] & 0xffffff00;
515                 ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C |
516                         xAMPRx_V;
517         } else {
518                 address = ULONG_MAX;
519                 ampr = 0;
520         }
521 
522         asm volatile("movgs %0,scr0\n"
523                      "movgs %0,scr1\n"
524                      "movgs %1,dampr4\n"
525                      "movgs %1,dampr5\n"
526                      :
527                      : "r"(address), "r"(ampr)
528                      );
529 }
530 
531 #ifdef CONFIG_PROC_FS
532 extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer);
533 #endif
534 
535 extern void __init pgtable_cache_init(void);
536 
537 #endif /* !__ASSEMBLY__ */
538 #endif /* !CONFIG_MMU */
539 
540 #ifndef __ASSEMBLY__
541 extern void __init paging_init(void);
542 #endif /* !__ASSEMBLY__ */
543 
544 #endif /* _ASM_PGTABLE_H */
545 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp