1 /* pgtable.h: FR-V page table mangling 2 * 3 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * Derived from: 12 * include/asm-m68knommu/pgtable.h 13 * include/asm-i386/pgtable.h 14 */ 15 16 #ifndef _ASM_PGTABLE_H 17 #define _ASM_PGTABLE_H 18 19 #include <asm/mem-layout.h> 20 #include <asm/setup.h> 21 #include <asm/processor.h> 22 23 #ifndef __ASSEMBLY__ 24 #include <linux/threads.h> 25 #include <linux/slab.h> 26 #include <linux/list.h> 27 #include <linux/spinlock.h> 28 #include <linux/sched.h> 29 struct vm_area_struct; 30 #endif 31 32 #ifndef __ASSEMBLY__ 33 #if defined(CONFIG_HIGHPTE) 34 typedef unsigned long pte_addr_t; 35 #else 36 typedef pte_t *pte_addr_t; 37 #endif 38 #endif 39 40 /*****************************************************************************/ 41 /* 42 * MMU-less operation case first 43 */ 44 #ifndef CONFIG_MMU 45 46 #define pgd_present(pgd) (1) /* pages are always present on NO_MM */ 47 #define pgd_none(pgd) (0) 48 #define pgd_bad(pgd) (0) 49 #define pgd_clear(pgdp) 50 #define kern_addr_valid(addr) (1) 51 #define pmd_offset(a, b) ((void *) 0) 52 53 #define PAGE_NONE __pgprot(0) /* these mean nothing to NO_MM */ 54 #define PAGE_SHARED __pgprot(0) /* these mean nothing to NO_MM */ 55 #define PAGE_COPY __pgprot(0) /* these mean nothing to NO_MM */ 56 #define PAGE_READONLY __pgprot(0) /* these mean nothing to NO_MM */ 57 #define PAGE_KERNEL __pgprot(0) /* these mean nothing to NO_MM */ 58 59 #define __swp_type(x) (0) 60 #define __swp_offset(x) (0) 61 #define __swp_entry(typ,off) ((swp_entry_t) { ((typ) | ((off) << 7)) }) 62 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 63 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 64 65 #define ZERO_PAGE(vaddr) ({ BUG(); NULL; }) 66 67 #define swapper_pg_dir ((pgd_t *) NULL) 68 69 #define pgtable_cache_init() do {} while (0) 70 71 #include <asm-generic/pgtable.h> 72 73 #else /* !CONFIG_MMU */ 74 /*****************************************************************************/ 75 /* 76 * then MMU operation 77 */ 78 79 /* 80 * ZERO_PAGE is a global shared page that is always zero: used 81 * for zero-mapped memory areas etc.. 82 */ 83 #ifndef __ASSEMBLY__ 84 extern unsigned long empty_zero_page; 85 #define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page) 86 #endif 87 88 /* 89 * we use 2-level page tables, folding the PMD (mid-level table) into the PGE (top-level entry) 90 * [see Documentation/frv/mmu-layout.txt] 91 * 92 * Page Directory: 93 * - Size: 16KB 94 * - 64 PGEs per PGD 95 * - Each PGE holds 1 PUD and covers 64MB 96 * 97 * Page Upper Directory: 98 * - Size: 256B 99 * - 1 PUE per PUD 100 * - Each PUE holds 1 PMD and covers 64MB 101 * 102 * Page Mid-Level Directory 103 * - Size: 256B 104 * - 1 PME per PMD 105 * - Each PME holds 64 STEs, all of which point to separate chunks of the same Page Table 106 * - All STEs are instantiated at the same time 107 * 108 * Page Table 109 * - Size: 16KB 110 * - 4096 PTEs per PT 111 * - Each Linux PT is subdivided into 64 FR451 PT's, each of which holds 64 entries 112 * 113 * Pages 114 * - Size: 4KB 115 * 116 * total PTEs 117 * = 1 PML4E * 64 PGEs * 1 PUEs * 1 PMEs * 4096 PTEs 118 * = 1 PML4E * 64 PGEs * 64 STEs * 64 PTEs/FR451-PT 119 * = 262144 (or 256 * 1024) 120 */ 121 #define PGDIR_SHIFT 26 122 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 123 #define PGDIR_MASK (~(PGDIR_SIZE - 1)) 124 #define PTRS_PER_PGD 64 125 126 #define __PAGETABLE_PUD_FOLDED 127 #define PUD_SHIFT 26 128 #define PTRS_PER_PUD 1 129 #define PUD_SIZE (1UL << PUD_SHIFT) 130 #define PUD_MASK (~(PUD_SIZE - 1)) 131 #define PUE_SIZE 256 132 133 #define __PAGETABLE_PMD_FOLDED 134 #define PMD_SHIFT 26 135 #define PMD_SIZE (1UL << PMD_SHIFT) 136 #define PMD_MASK (~(PMD_SIZE - 1)) 137 #define PTRS_PER_PMD 1 138 #define PME_SIZE 256 139 140 #define __frv_PT_SIZE 256 141 142 #define PTRS_PER_PTE 4096 143 144 #define USER_PGDS_IN_LAST_PML4 (TASK_SIZE / PGDIR_SIZE) 145 #define FIRST_USER_ADDRESS 0UL 146 147 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 148 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - USER_PGD_PTRS) 149 150 #define TWOLEVEL_PGDIR_SHIFT 26 151 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT) 152 #define BOOT_KERNEL_PGD_PTRS (PTRS_PER_PGD - BOOT_USER_PGD_PTRS) 153 154 #ifndef __ASSEMBLY__ 155 156 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 157 158 #define pte_ERROR(e) \ 159 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, (e).pte) 160 #define pmd_ERROR(e) \ 161 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 162 #define pud_ERROR(e) \ 163 printk("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(e))) 164 #define pgd_ERROR(e) \ 165 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pmd_val(pud_val(pgd_val(e)))) 166 167 /* 168 * Certain architectures need to do special things when PTEs 169 * within a page table are directly modified. Thus, the following 170 * hook is made available. 171 */ 172 #define set_pte(pteptr, pteval) \ 173 do { \ 174 *(pteptr) = (pteval); \ 175 asm volatile("dcf %M0" :: "U"(*pteptr)); \ 176 } while(0) 177 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 178 179 /* 180 * pgd_offset() returns a (pgd_t *) 181 * pgd_index() is used get the offset into the pgd page's array of pgd_t's; 182 */ 183 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 184 185 /* 186 * a shortcut which implies the use of the kernel's pgd, instead 187 * of a process's 188 */ 189 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 190 191 /* 192 * The "pgd_xxx()" functions here are trivial for a folded two-level 193 * setup: the pud is never bad, and a pud always exists (as it's folded 194 * into the pgd entry) 195 */ 196 static inline int pgd_none(pgd_t pgd) { return 0; } 197 static inline int pgd_bad(pgd_t pgd) { return 0; } 198 static inline int pgd_present(pgd_t pgd) { return 1; } 199 static inline void pgd_clear(pgd_t *pgd) { } 200 201 #define pgd_populate(mm, pgd, pud) do { } while (0) 202 /* 203 * (puds are folded into pgds so this doesn't get actually called, 204 * but the define is needed for a generic inline function.) 205 */ 206 #define set_pgd(pgdptr, pgdval) \ 207 do { \ 208 memcpy((pgdptr), &(pgdval), sizeof(pgd_t)); \ 209 asm volatile("dcf %M0" :: "U"(*(pgdptr))); \ 210 } while(0) 211 212 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 213 { 214 return (pud_t *) pgd; 215 } 216 217 #define pgd_page(pgd) (pud_page((pud_t){ pgd })) 218 #define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd })) 219 220 /* 221 * allocating and freeing a pud is trivial: the 1-entry pud is 222 * inside the pgd, so has no extra memory associated with it. 223 */ 224 #define pud_alloc_one(mm, address) NULL 225 #define pud_free(mm, x) do { } while (0) 226 #define __pud_free_tlb(tlb, x, address) do { } while (0) 227 228 /* 229 * The "pud_xxx()" functions here are trivial for a folded two-level 230 * setup: the pmd is never bad, and a pmd always exists (as it's folded 231 * into the pud entry) 232 */ 233 static inline int pud_none(pud_t pud) { return 0; } 234 static inline int pud_bad(pud_t pud) { return 0; } 235 static inline int pud_present(pud_t pud) { return 1; } 236 static inline void pud_clear(pud_t *pud) { } 237 238 #define pud_populate(mm, pmd, pte) do { } while (0) 239 240 /* 241 * (pmds are folded into puds so this doesn't get actually called, 242 * but the define is needed for a generic inline function.) 243 */ 244 #define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval }) 245 246 #define pud_page(pud) (pmd_page((pmd_t){ pud })) 247 #define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud })) 248 249 /* 250 * (pmds are folded into pgds so this doesn't get actually called, 251 * but the define is needed for a generic inline function.) 252 */ 253 extern void __set_pmd(pmd_t *pmdptr, unsigned long __pmd); 254 255 #define set_pmd(pmdptr, pmdval) \ 256 do { \ 257 __set_pmd((pmdptr), (pmdval).ste[0]); \ 258 } while(0) 259 260 #define __pmd_index(address) 0 261 262 static inline pmd_t *pmd_offset(pud_t *dir, unsigned long address) 263 { 264 return (pmd_t *) dir + __pmd_index(address); 265 } 266 267 #define pte_same(a, b) ((a).pte == (b).pte) 268 #define pte_page(x) (mem_map + ((unsigned long)(((x).pte >> PAGE_SHIFT)))) 269 #define pte_none(x) (!(x).pte) 270 #define pte_pfn(x) ((unsigned long)(((x).pte >> PAGE_SHIFT))) 271 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 272 #define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 273 274 #define VMALLOC_VMADDR(x) ((unsigned long) (x)) 275 276 #endif /* !__ASSEMBLY__ */ 277 278 /* 279 * control flags in AMPR registers and TLB entries 280 */ 281 #define _PAGE_BIT_PRESENT xAMPRx_V_BIT 282 #define _PAGE_BIT_WP DAMPRx_WP_BIT 283 #define _PAGE_BIT_NOCACHE xAMPRx_C_BIT 284 #define _PAGE_BIT_SUPER xAMPRx_S_BIT 285 #define _PAGE_BIT_ACCESSED xAMPRx_RESERVED8_BIT 286 #define _PAGE_BIT_DIRTY xAMPRx_M_BIT 287 #define _PAGE_BIT_NOTGLOBAL xAMPRx_NG_BIT 288 289 #define _PAGE_PRESENT xAMPRx_V 290 #define _PAGE_WP DAMPRx_WP 291 #define _PAGE_NOCACHE xAMPRx_C 292 #define _PAGE_SUPER xAMPRx_S 293 #define _PAGE_ACCESSED xAMPRx_RESERVED8 /* accessed if set */ 294 #define _PAGE_DIRTY xAMPRx_M 295 #define _PAGE_NOTGLOBAL xAMPRx_NG 296 297 #define _PAGE_RESERVED_MASK (xAMPRx_RESERVED8 | xAMPRx_RESERVED13) 298 299 #define _PAGE_PROTNONE 0x000 /* If not present */ 300 301 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 302 303 #define __PGPROT_BASE \ 304 (_PAGE_PRESENT | xAMPRx_SS_16Kb | xAMPRx_D | _PAGE_NOTGLOBAL | _PAGE_ACCESSED) 305 306 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED) 307 #define PAGE_SHARED __pgprot(__PGPROT_BASE) 308 #define PAGE_COPY __pgprot(__PGPROT_BASE | _PAGE_WP) 309 #define PAGE_READONLY __pgprot(__PGPROT_BASE | _PAGE_WP) 310 311 #define __PAGE_KERNEL (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY) 312 #define __PAGE_KERNEL_NOCACHE (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_NOCACHE) 313 #define __PAGE_KERNEL_RO (__PGPROT_BASE | _PAGE_SUPER | _PAGE_DIRTY | _PAGE_WP) 314 315 #define MAKE_GLOBAL(x) __pgprot((x) & ~_PAGE_NOTGLOBAL) 316 317 #define PAGE_KERNEL MAKE_GLOBAL(__PAGE_KERNEL) 318 #define PAGE_KERNEL_RO MAKE_GLOBAL(__PAGE_KERNEL_RO) 319 #define PAGE_KERNEL_NOCACHE MAKE_GLOBAL(__PAGE_KERNEL_NOCACHE) 320 321 #define _PAGE_TABLE (_PAGE_PRESENT | xAMPRx_SS_16Kb) 322 323 #ifndef __ASSEMBLY__ 324 325 /* 326 * The FR451 can do execute protection by virtue of having separate TLB miss handlers for 327 * instruction access and for data access. However, we don't have enough reserved bits to say 328 * "execute only", so we don't bother. If you can read it, you can execute it and vice versa. 329 */ 330 #define __P000 PAGE_NONE 331 #define __P001 PAGE_READONLY 332 #define __P010 PAGE_COPY 333 #define __P011 PAGE_COPY 334 #define __P100 PAGE_READONLY 335 #define __P101 PAGE_READONLY 336 #define __P110 PAGE_COPY 337 #define __P111 PAGE_COPY 338 339 #define __S000 PAGE_NONE 340 #define __S001 PAGE_READONLY 341 #define __S010 PAGE_SHARED 342 #define __S011 PAGE_SHARED 343 #define __S100 PAGE_READONLY 344 #define __S101 PAGE_READONLY 345 #define __S110 PAGE_SHARED 346 #define __S111 PAGE_SHARED 347 348 /* 349 * Define this to warn about kernel memory accesses that are 350 * done without a 'access_ok(VERIFY_WRITE,..)' 351 */ 352 #undef TEST_ACCESS_OK 353 354 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 355 #define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0) 356 357 #define pmd_none(x) (!pmd_val(x)) 358 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 359 #define pmd_bad(x) (pmd_val(x) & xAMPRx_SS) 360 #define pmd_clear(xp) do { __set_pmd(xp, 0); } while(0) 361 362 #define pmd_page_vaddr(pmd) \ 363 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 364 365 #ifndef CONFIG_DISCONTIGMEM 366 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 367 #endif 368 369 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 370 371 /* 372 * The following only work if pte_present() is true. 373 * Undefined behaviour if not.. 374 */ 375 static inline int pte_dirty(pte_t pte) { return (pte).pte & _PAGE_DIRTY; } 376 static inline int pte_young(pte_t pte) { return (pte).pte & _PAGE_ACCESSED; } 377 static inline int pte_write(pte_t pte) { return !((pte).pte & _PAGE_WP); } 378 static inline int pte_special(pte_t pte) { return 0; } 379 380 static inline pte_t pte_mkclean(pte_t pte) { (pte).pte &= ~_PAGE_DIRTY; return pte; } 381 static inline pte_t pte_mkold(pte_t pte) { (pte).pte &= ~_PAGE_ACCESSED; return pte; } 382 static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte |= _PAGE_WP; return pte; } 383 static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte |= _PAGE_DIRTY; return pte; } 384 static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte |= _PAGE_ACCESSED; return pte; } 385 static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte &= ~_PAGE_WP; return pte; } 386 static inline pte_t pte_mkspecial(pte_t pte) { return pte; } 387 388 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 389 { 390 int i = test_and_clear_bit(_PAGE_BIT_ACCESSED, ptep); 391 asm volatile("dcf %M0" :: "U"(*ptep)); 392 return i; 393 } 394 395 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 396 { 397 unsigned long x = xchg(&ptep->pte, 0); 398 asm volatile("dcf %M0" :: "U"(*ptep)); 399 return __pte(x); 400 } 401 402 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 403 { 404 set_bit(_PAGE_BIT_WP, ptep); 405 asm volatile("dcf %M0" :: "U"(*ptep)); 406 } 407 408 /* 409 * Macro to mark a page protection value as "uncacheable" 410 */ 411 #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NOCACHE)) 412 413 /* 414 * Conversion functions: convert a page and protection to a page entry, 415 * and a page entry and page directory to the page they refer to. 416 */ 417 418 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 419 #define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE) 420 421 /* This takes a physical page address that is used by the remapping functions */ 422 #define mk_pte_phys(physpage, pgprot) pfn_pte((physpage) >> PAGE_SHIFT, pgprot) 423 424 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 425 { 426 pte.pte &= _PAGE_CHG_MASK; 427 pte.pte |= pgprot_val(newprot); 428 return pte; 429 } 430 431 /* to find an entry in a page-table-directory. */ 432 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 433 #define pgd_index_k(addr) pgd_index(addr) 434 435 /* Find an entry in the bottom-level page table.. */ 436 #define __pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 437 438 /* 439 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] 440 * 441 * this macro returns the index of the entry in the pte page which would 442 * control the given virtual address 443 */ 444 #define pte_index(address) \ 445 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 446 #define pte_offset_kernel(dir, address) \ 447 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address)) 448 449 #if defined(CONFIG_HIGHPTE) 450 #define pte_offset_map(dir, address) \ 451 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + pte_index(address)) 452 #define pte_unmap(pte) kunmap_atomic(pte) 453 #else 454 #define pte_offset_map(dir, address) \ 455 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address)) 456 #define pte_unmap(pte) do { } while (0) 457 #endif 458 459 /* 460 * Handle swap and file entries 461 * - the PTE is encoded in the following format: 462 * bit 0: Must be 0 (!_PAGE_PRESENT) 463 * bits 1-6: Swap type 464 * bits 7-31: Swap offset 465 */ 466 #define __swp_type(x) (((x).val >> 1) & 0x1f) 467 #define __swp_offset(x) ((x).val >> 7) 468 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 1) | ((offset) << 7) }) 469 #define __pte_to_swp_entry(_pte) ((swp_entry_t) { (_pte).pte }) 470 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 471 472 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 473 #define PageSkip(page) (0) 474 #define kern_addr_valid(addr) (1) 475 476 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 477 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 478 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 479 #define __HAVE_ARCH_PTE_SAME 480 #include <asm-generic/pgtable.h> 481 482 /* 483 * preload information about a newly instantiated PTE into the SCR0/SCR1 PGE cache 484 */ 485 static inline void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) 486 { 487 struct mm_struct *mm; 488 unsigned long ampr; 489 490 mm = current->mm; 491 if (mm) { 492 pgd_t *pge = pgd_offset(mm, address); 493 pud_t *pue = pud_offset(pge, address); 494 pmd_t *pme = pmd_offset(pue, address); 495 496 ampr = pme->ste[0] & 0xffffff00; 497 ampr |= xAMPRx_L | xAMPRx_SS_16Kb | xAMPRx_S | xAMPRx_C | 498 xAMPRx_V; 499 } else { 500 address = ULONG_MAX; 501 ampr = 0; 502 } 503 504 asm volatile("movgs %0,scr0\n" 505 "movgs %0,scr1\n" 506 "movgs %1,dampr4\n" 507 "movgs %1,dampr5\n" 508 : 509 : "r"(address), "r"(ampr) 510 ); 511 } 512 513 #ifdef CONFIG_PROC_FS 514 extern char *proc_pid_status_frv_cxnr(struct mm_struct *mm, char *buffer); 515 #endif 516 517 extern void __init pgtable_cache_init(void); 518 519 #endif /* !__ASSEMBLY__ */ 520 #endif /* !CONFIG_MMU */ 521 522 #ifndef __ASSEMBLY__ 523 extern void __init paging_init(void); 524 #endif /* !__ASSEMBLY__ */ 525 526 #endif /* _ASM_PGTABLE_H */ 527
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.