1 /* 2 * arch/ia64/kernel/cpufreq/acpi-cpufreq.c 3 * This file provides the ACPI based P-state support. This 4 * module works with generic cpufreq infrastructure. Most of 5 * the code is based on i386 version 6 * (arch/i386/kernel/cpu/cpufreq/acpi-cpufreq.c) 7 * 8 * Copyright (C) 2005 Intel Corp 9 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/module.h> 14 #include <linux/init.h> 15 #include <linux/cpufreq.h> 16 #include <linux/proc_fs.h> 17 #include <linux/seq_file.h> 18 #include <asm/io.h> 19 #include <asm/uaccess.h> 20 #include <asm/pal.h> 21 22 #include <linux/acpi.h> 23 #include <acpi/processor.h> 24 25 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg) 26 27 MODULE_AUTHOR("Venkatesh Pallipadi"); 28 MODULE_DESCRIPTION("ACPI Processor P-States Driver"); 29 MODULE_LICENSE("GPL"); 30 31 32 struct cpufreq_acpi_io { 33 struct acpi_processor_performance acpi_data; 34 struct cpufreq_frequency_table *freq_table; 35 unsigned int resume; 36 }; 37 38 static struct cpufreq_acpi_io *acpi_io_data[NR_CPUS]; 39 40 static struct cpufreq_driver acpi_cpufreq_driver; 41 42 43 static int 44 processor_set_pstate ( 45 u32 value) 46 { 47 s64 retval; 48 49 dprintk("processor_set_pstate\n"); 50 51 retval = ia64_pal_set_pstate((u64)value); 52 53 if (retval) { 54 dprintk("Failed to set freq to 0x%x, with error 0x%lx\n", 55 value, retval); 56 return -ENODEV; 57 } 58 return (int)retval; 59 } 60 61 62 static int 63 processor_get_pstate ( 64 u32 *value) 65 { 66 u64 pstate_index = 0; 67 s64 retval; 68 69 dprintk("processor_get_pstate\n"); 70 71 retval = ia64_pal_get_pstate(&pstate_index, 72 PAL_GET_PSTATE_TYPE_INSTANT); 73 *value = (u32) pstate_index; 74 75 if (retval) 76 dprintk("Failed to get current freq with " 77 "error 0x%lx, idx 0x%x\n", retval, *value); 78 79 return (int)retval; 80 } 81 82 83 /* To be used only after data->acpi_data is initialized */ 84 static unsigned 85 extract_clock ( 86 struct cpufreq_acpi_io *data, 87 unsigned value, 88 unsigned int cpu) 89 { 90 unsigned long i; 91 92 dprintk("extract_clock\n"); 93 94 for (i = 0; i < data->acpi_data.state_count; i++) { 95 if (value == data->acpi_data.states[i].status) 96 return data->acpi_data.states[i].core_frequency; 97 } 98 return data->acpi_data.states[i-1].core_frequency; 99 } 100 101 102 static unsigned int 103 processor_get_freq ( 104 struct cpufreq_acpi_io *data, 105 unsigned int cpu) 106 { 107 int ret = 0; 108 u32 value = 0; 109 cpumask_t saved_mask; 110 unsigned long clock_freq; 111 112 dprintk("processor_get_freq\n"); 113 114 saved_mask = current->cpus_allowed; 115 set_cpus_allowed(current, cpumask_of_cpu(cpu)); 116 if (smp_processor_id() != cpu) 117 goto migrate_end; 118 119 /* processor_get_pstate gets the instantaneous frequency */ 120 ret = processor_get_pstate(&value); 121 122 if (ret) { 123 set_cpus_allowed(current, saved_mask); 124 printk(KERN_WARNING "get performance failed with error %d\n", 125 ret); 126 ret = 0; 127 goto migrate_end; 128 } 129 clock_freq = extract_clock(data, value, cpu); 130 ret = (clock_freq*1000); 131 132 migrate_end: 133 set_cpus_allowed(current, saved_mask); 134 return ret; 135 } 136 137 138 static int 139 processor_set_freq ( 140 struct cpufreq_acpi_io *data, 141 unsigned int cpu, 142 int state) 143 { 144 int ret = 0; 145 u32 value = 0; 146 struct cpufreq_freqs cpufreq_freqs; 147 cpumask_t saved_mask; 148 int retval; 149 150 dprintk("processor_set_freq\n"); 151 152 saved_mask = current->cpus_allowed; 153 set_cpus_allowed(current, cpumask_of_cpu(cpu)); 154 if (smp_processor_id() != cpu) { 155 retval = -EAGAIN; 156 goto migrate_end; 157 } 158 159 if (state == data->acpi_data.state) { 160 if (unlikely(data->resume)) { 161 dprintk("Called after resume, resetting to P%d\n", state); 162 data->resume = 0; 163 } else { 164 dprintk("Already at target state (P%d)\n", state); 165 retval = 0; 166 goto migrate_end; 167 } 168 } 169 170 dprintk("Transitioning from P%d to P%d\n", 171 data->acpi_data.state, state); 172 173 /* cpufreq frequency struct */ 174 cpufreq_freqs.cpu = cpu; 175 cpufreq_freqs.old = data->freq_table[data->acpi_data.state].frequency; 176 cpufreq_freqs.new = data->freq_table[state].frequency; 177 178 /* notify cpufreq */ 179 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); 180 181 /* 182 * First we write the target state's 'control' value to the 183 * control_register. 184 */ 185 186 value = (u32) data->acpi_data.states[state].control; 187 188 dprintk("Transitioning to state: 0x%08x\n", value); 189 190 ret = processor_set_pstate(value); 191 if (ret) { 192 unsigned int tmp = cpufreq_freqs.new; 193 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); 194 cpufreq_freqs.new = cpufreq_freqs.old; 195 cpufreq_freqs.old = tmp; 196 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_PRECHANGE); 197 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); 198 printk(KERN_WARNING "Transition failed with error %d\n", ret); 199 retval = -ENODEV; 200 goto migrate_end; 201 } 202 203 cpufreq_notify_transition(&cpufreq_freqs, CPUFREQ_POSTCHANGE); 204 205 data->acpi_data.state = state; 206 207 retval = 0; 208 209 migrate_end: 210 set_cpus_allowed(current, saved_mask); 211 return (retval); 212 } 213 214 215 static unsigned int 216 acpi_cpufreq_get ( 217 unsigned int cpu) 218 { 219 struct cpufreq_acpi_io *data = acpi_io_data[cpu]; 220 221 dprintk("acpi_cpufreq_get\n"); 222 223 return processor_get_freq(data, cpu); 224 } 225 226 227 static int 228 acpi_cpufreq_target ( 229 struct cpufreq_policy *policy, 230 unsigned int target_freq, 231 unsigned int relation) 232 { 233 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; 234 unsigned int next_state = 0; 235 unsigned int result = 0; 236 237 dprintk("acpi_cpufreq_setpolicy\n"); 238 239 result = cpufreq_frequency_table_target(policy, 240 data->freq_table, target_freq, relation, &next_state); 241 if (result) 242 return (result); 243 244 result = processor_set_freq(data, policy->cpu, next_state); 245 246 return (result); 247 } 248 249 250 static int 251 acpi_cpufreq_verify ( 252 struct cpufreq_policy *policy) 253 { 254 unsigned int result = 0; 255 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; 256 257 dprintk("acpi_cpufreq_verify\n"); 258 259 result = cpufreq_frequency_table_verify(policy, 260 data->freq_table); 261 262 return (result); 263 } 264 265 266 static int 267 acpi_cpufreq_cpu_init ( 268 struct cpufreq_policy *policy) 269 { 270 unsigned int i; 271 unsigned int cpu = policy->cpu; 272 struct cpufreq_acpi_io *data; 273 unsigned int result = 0; 274 275 dprintk("acpi_cpufreq_cpu_init\n"); 276 277 data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL); 278 if (!data) 279 return (-ENOMEM); 280 281 acpi_io_data[cpu] = data; 282 283 result = acpi_processor_register_performance(&data->acpi_data, cpu); 284 285 if (result) 286 goto err_free; 287 288 /* capability check */ 289 if (data->acpi_data.state_count <= 1) { 290 dprintk("No P-States\n"); 291 result = -ENODEV; 292 goto err_unreg; 293 } 294 295 if ((data->acpi_data.control_register.space_id != 296 ACPI_ADR_SPACE_FIXED_HARDWARE) || 297 (data->acpi_data.status_register.space_id != 298 ACPI_ADR_SPACE_FIXED_HARDWARE)) { 299 dprintk("Unsupported address space [%d, %d]\n", 300 (u32) (data->acpi_data.control_register.space_id), 301 (u32) (data->acpi_data.status_register.space_id)); 302 result = -ENODEV; 303 goto err_unreg; 304 } 305 306 /* alloc freq_table */ 307 data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * 308 (data->acpi_data.state_count + 1), 309 GFP_KERNEL); 310 if (!data->freq_table) { 311 result = -ENOMEM; 312 goto err_unreg; 313 } 314 315 /* detect transition latency */ 316 policy->cpuinfo.transition_latency = 0; 317 for (i=0; i<data->acpi_data.state_count; i++) { 318 if ((data->acpi_data.states[i].transition_latency * 1000) > 319 policy->cpuinfo.transition_latency) { 320 policy->cpuinfo.transition_latency = 321 data->acpi_data.states[i].transition_latency * 1000; 322 } 323 } 324 policy->cur = processor_get_freq(data, policy->cpu); 325 326 /* table init */ 327 for (i = 0; i <= data->acpi_data.state_count; i++) 328 { 329 data->freq_table[i].index = i; 330 if (i < data->acpi_data.state_count) { 331 data->freq_table[i].frequency = 332 data->acpi_data.states[i].core_frequency * 1000; 333 } else { 334 data->freq_table[i].frequency = CPUFREQ_TABLE_END; 335 } 336 } 337 338 result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table); 339 if (result) { 340 goto err_freqfree; 341 } 342 343 /* notify BIOS that we exist */ 344 acpi_processor_notify_smm(THIS_MODULE); 345 346 printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management " 347 "activated.\n", cpu); 348 349 for (i = 0; i < data->acpi_data.state_count; i++) 350 dprintk(" %cP%d: %d MHz, %d mW, %d uS, %d uS, 0x%x 0x%x\n", 351 (i == data->acpi_data.state?'*':' '), i, 352 (u32) data->acpi_data.states[i].core_frequency, 353 (u32) data->acpi_data.states[i].power, 354 (u32) data->acpi_data.states[i].transition_latency, 355 (u32) data->acpi_data.states[i].bus_master_latency, 356 (u32) data->acpi_data.states[i].status, 357 (u32) data->acpi_data.states[i].control); 358 359 cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu); 360 361 /* the first call to ->target() should result in us actually 362 * writing something to the appropriate registers. */ 363 data->resume = 1; 364 365 return (result); 366 367 err_freqfree: 368 kfree(data->freq_table); 369 err_unreg: 370 acpi_processor_unregister_performance(&data->acpi_data, cpu); 371 err_free: 372 kfree(data); 373 acpi_io_data[cpu] = NULL; 374 375 return (result); 376 } 377 378 379 static int 380 acpi_cpufreq_cpu_exit ( 381 struct cpufreq_policy *policy) 382 { 383 struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu]; 384 385 dprintk("acpi_cpufreq_cpu_exit\n"); 386 387 if (data) { 388 cpufreq_frequency_table_put_attr(policy->cpu); 389 acpi_io_data[policy->cpu] = NULL; 390 acpi_processor_unregister_performance(&data->acpi_data, 391 policy->cpu); 392 kfree(data); 393 } 394 395 return (0); 396 } 397 398 399 static struct freq_attr* acpi_cpufreq_attr[] = { 400 &cpufreq_freq_attr_scaling_available_freqs, 401 NULL, 402 }; 403 404 405 static struct cpufreq_driver acpi_cpufreq_driver = { 406 .verify = acpi_cpufreq_verify, 407 .target = acpi_cpufreq_target, 408 .get = acpi_cpufreq_get, 409 .init = acpi_cpufreq_cpu_init, 410 .exit = acpi_cpufreq_cpu_exit, 411 .name = "acpi-cpufreq", 412 .owner = THIS_MODULE, 413 .attr = acpi_cpufreq_attr, 414 }; 415 416 417 static int __init 418 acpi_cpufreq_init (void) 419 { 420 dprintk("acpi_cpufreq_init\n"); 421 422 return cpufreq_register_driver(&acpi_cpufreq_driver); 423 } 424 425 426 static void __exit 427 acpi_cpufreq_exit (void) 428 { 429 dprintk("acpi_cpufreq_exit\n"); 430 431 cpufreq_unregister_driver(&acpi_cpufreq_driver); 432 return; 433 } 434 435 436 late_initcall(acpi_cpufreq_init); 437 module_exit(acpi_cpufreq_exit); 438 439
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.