~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/ia64/kernel/efi.c

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Extensible Firmware Interface
  3  *
  4  * Based on Extensible Firmware Interface Specification version 0.9
  5  * April 30, 1999
  6  *
  7  * Copyright (C) 1999 VA Linux Systems
  8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
 10  *      David Mosberger-Tang <davidm@hpl.hp.com>
 11  *      Stephane Eranian <eranian@hpl.hp.com>
 12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
 13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
 14  *
 15  * All EFI Runtime Services are not implemented yet as EFI only
 16  * supports physical mode addressing on SoftSDV. This is to be fixed
 17  * in a future version.  --drummond 1999-07-20
 18  *
 19  * Implemented EFI runtime services and virtual mode calls.  --davidm
 20  *
 21  * Goutham Rao: <goutham.rao@intel.com>
 22  *      Skip non-WB memory and ignore empty memory ranges.
 23  */
 24 #include <linux/module.h>
 25 #include <linux/bootmem.h>
 26 #include <linux/crash_dump.h>
 27 #include <linux/kernel.h>
 28 #include <linux/init.h>
 29 #include <linux/types.h>
 30 #include <linux/slab.h>
 31 #include <linux/time.h>
 32 #include <linux/efi.h>
 33 #include <linux/kexec.h>
 34 #include <linux/mm.h>
 35 
 36 #include <asm/io.h>
 37 #include <asm/kregs.h>
 38 #include <asm/meminit.h>
 39 #include <asm/pgtable.h>
 40 #include <asm/processor.h>
 41 #include <asm/mca.h>
 42 #include <asm/setup.h>
 43 #include <asm/tlbflush.h>
 44 
 45 #define EFI_DEBUG       0
 46 
 47 extern efi_status_t efi_call_phys (void *, ...);
 48 
 49 struct efi efi;
 50 EXPORT_SYMBOL(efi);
 51 static efi_runtime_services_t *runtime;
 52 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
 53 
 54 #define efi_call_virt(f, args...)       (*(f))(args)
 55 
 56 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
 57 static efi_status_t                                                            \
 58 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
 59 {                                                                              \
 60         struct ia64_fpreg fr[6];                                               \
 61         efi_time_cap_t *atc = NULL;                                            \
 62         efi_status_t ret;                                                      \
 63                                                                                \
 64         if (tc)                                                                \
 65                 atc = adjust_arg(tc);                                          \
 66         ia64_save_scratch_fpregs(fr);                                          \
 67         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
 68                                 adjust_arg(tm), atc);                          \
 69         ia64_load_scratch_fpregs(fr);                                          \
 70         return ret;                                                            \
 71 }
 72 
 73 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
 74 static efi_status_t                                                            \
 75 prefix##_set_time (efi_time_t *tm)                                             \
 76 {                                                                              \
 77         struct ia64_fpreg fr[6];                                               \
 78         efi_status_t ret;                                                      \
 79                                                                                \
 80         ia64_save_scratch_fpregs(fr);                                          \
 81         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
 82                                 adjust_arg(tm));                               \
 83         ia64_load_scratch_fpregs(fr);                                          \
 84         return ret;                                                            \
 85 }
 86 
 87 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
 88 static efi_status_t                                                            \
 89 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
 90                           efi_time_t *tm)                                      \
 91 {                                                                              \
 92         struct ia64_fpreg fr[6];                                               \
 93         efi_status_t ret;                                                      \
 94                                                                                \
 95         ia64_save_scratch_fpregs(fr);                                          \
 96         ret = efi_call_##prefix(                                               \
 97                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 98                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 99         ia64_load_scratch_fpregs(fr);                                          \
100         return ret;                                                            \
101 }
102 
103 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
104 static efi_status_t                                                            \
105 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
106 {                                                                              \
107         struct ia64_fpreg fr[6];                                               \
108         efi_time_t *atm = NULL;                                                \
109         efi_status_t ret;                                                      \
110                                                                                \
111         if (tm)                                                                \
112                 atm = adjust_arg(tm);                                          \
113         ia64_save_scratch_fpregs(fr);                                          \
114         ret = efi_call_##prefix(                                               \
115                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
116                 enabled, atm);                                                 \
117         ia64_load_scratch_fpregs(fr);                                          \
118         return ret;                                                            \
119 }
120 
121 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
122 static efi_status_t                                                            \
123 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
124                        unsigned long *data_size, void *data)                   \
125 {                                                                              \
126         struct ia64_fpreg fr[6];                                               \
127         u32 *aattr = NULL;                                                     \
128         efi_status_t ret;                                                      \
129                                                                                \
130         if (attr)                                                              \
131                 aattr = adjust_arg(attr);                                      \
132         ia64_save_scratch_fpregs(fr);                                          \
133         ret = efi_call_##prefix(                                               \
134                 (efi_get_variable_t *) __va(runtime->get_variable),            \
135                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
136                 adjust_arg(data_size), adjust_arg(data));                      \
137         ia64_load_scratch_fpregs(fr);                                          \
138         return ret;                                                            \
139 }
140 
141 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
142 static efi_status_t                                                            \
143 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
144                             efi_guid_t *vendor)                                \
145 {                                                                              \
146         struct ia64_fpreg fr[6];                                               \
147         efi_status_t ret;                                                      \
148                                                                                \
149         ia64_save_scratch_fpregs(fr);                                          \
150         ret = efi_call_##prefix(                                               \
151                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
152                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
153         ia64_load_scratch_fpregs(fr);                                          \
154         return ret;                                                            \
155 }
156 
157 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
158 static efi_status_t                                                            \
159 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
160                        u32 attr, unsigned long data_size,                      \
161                        void *data)                                             \
162 {                                                                              \
163         struct ia64_fpreg fr[6];                                               \
164         efi_status_t ret;                                                      \
165                                                                                \
166         ia64_save_scratch_fpregs(fr);                                          \
167         ret = efi_call_##prefix(                                               \
168                 (efi_set_variable_t *) __va(runtime->set_variable),            \
169                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
170                 adjust_arg(data));                                             \
171         ia64_load_scratch_fpregs(fr);                                          \
172         return ret;                                                            \
173 }
174 
175 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
176 static efi_status_t                                                            \
177 prefix##_get_next_high_mono_count (u32 *count)                                 \
178 {                                                                              \
179         struct ia64_fpreg fr[6];                                               \
180         efi_status_t ret;                                                      \
181                                                                                \
182         ia64_save_scratch_fpregs(fr);                                          \
183         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
184                                 __va(runtime->get_next_high_mono_count),       \
185                                 adjust_arg(count));                            \
186         ia64_load_scratch_fpregs(fr);                                          \
187         return ret;                                                            \
188 }
189 
190 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
191 static void                                                                    \
192 prefix##_reset_system (int reset_type, efi_status_t status,                    \
193                        unsigned long data_size, efi_char16_t *data)            \
194 {                                                                              \
195         struct ia64_fpreg fr[6];                                               \
196         efi_char16_t *adata = NULL;                                            \
197                                                                                \
198         if (data)                                                              \
199                 adata = adjust_arg(data);                                      \
200                                                                                \
201         ia64_save_scratch_fpregs(fr);                                          \
202         efi_call_##prefix(                                                     \
203                 (efi_reset_system_t *) __va(runtime->reset_system),            \
204                 reset_type, status, data_size, adata);                         \
205         /* should not return, but just in case... */                           \
206         ia64_load_scratch_fpregs(fr);                                          \
207 }
208 
209 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
210 
211 STUB_GET_TIME(phys, phys_ptr)
212 STUB_SET_TIME(phys, phys_ptr)
213 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
214 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
215 STUB_GET_VARIABLE(phys, phys_ptr)
216 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
217 STUB_SET_VARIABLE(phys, phys_ptr)
218 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
219 STUB_RESET_SYSTEM(phys, phys_ptr)
220 
221 #define id(arg) arg
222 
223 STUB_GET_TIME(virt, id)
224 STUB_SET_TIME(virt, id)
225 STUB_GET_WAKEUP_TIME(virt, id)
226 STUB_SET_WAKEUP_TIME(virt, id)
227 STUB_GET_VARIABLE(virt, id)
228 STUB_GET_NEXT_VARIABLE(virt, id)
229 STUB_SET_VARIABLE(virt, id)
230 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
231 STUB_RESET_SYSTEM(virt, id)
232 
233 void
234 efi_gettimeofday (struct timespec *ts)
235 {
236         efi_time_t tm;
237 
238         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
239                 memset(ts, 0, sizeof(*ts));
240                 return;
241         }
242 
243         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
244                             tm.hour, tm.minute, tm.second);
245         ts->tv_nsec = tm.nanosecond;
246 }
247 
248 static int
249 is_memory_available (efi_memory_desc_t *md)
250 {
251         if (!(md->attribute & EFI_MEMORY_WB))
252                 return 0;
253 
254         switch (md->type) {
255               case EFI_LOADER_CODE:
256               case EFI_LOADER_DATA:
257               case EFI_BOOT_SERVICES_CODE:
258               case EFI_BOOT_SERVICES_DATA:
259               case EFI_CONVENTIONAL_MEMORY:
260                 return 1;
261         }
262         return 0;
263 }
264 
265 typedef struct kern_memdesc {
266         u64 attribute;
267         u64 start;
268         u64 num_pages;
269 } kern_memdesc_t;
270 
271 static kern_memdesc_t *kern_memmap;
272 
273 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
274 
275 static inline u64
276 kmd_end(kern_memdesc_t *kmd)
277 {
278         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
279 }
280 
281 static inline u64
282 efi_md_end(efi_memory_desc_t *md)
283 {
284         return (md->phys_addr + efi_md_size(md));
285 }
286 
287 static inline int
288 efi_wb(efi_memory_desc_t *md)
289 {
290         return (md->attribute & EFI_MEMORY_WB);
291 }
292 
293 static inline int
294 efi_uc(efi_memory_desc_t *md)
295 {
296         return (md->attribute & EFI_MEMORY_UC);
297 }
298 
299 static void
300 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
301 {
302         kern_memdesc_t *k;
303         u64 start, end, voff;
304 
305         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
306         for (k = kern_memmap; k->start != ~0UL; k++) {
307                 if (k->attribute != attr)
308                         continue;
309                 start = PAGE_ALIGN(k->start);
310                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
311                 if (start < end)
312                         if ((*callback)(start + voff, end + voff, arg) < 0)
313                                 return;
314         }
315 }
316 
317 /*
318  * Walk the EFI memory map and call CALLBACK once for each EFI memory
319  * descriptor that has memory that is available for OS use.
320  */
321 void
322 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
323 {
324         walk(callback, arg, EFI_MEMORY_WB);
325 }
326 
327 /*
328  * Walk the EFI memory map and call CALLBACK once for each EFI memory
329  * descriptor that has memory that is available for uncached allocator.
330  */
331 void
332 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
333 {
334         walk(callback, arg, EFI_MEMORY_UC);
335 }
336 
337 /*
338  * Look for the PAL_CODE region reported by EFI and map it using an
339  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
340  * Abstraction Layer chapter 11 in ADAG
341  */
342 void *
343 efi_get_pal_addr (void)
344 {
345         void *efi_map_start, *efi_map_end, *p;
346         efi_memory_desc_t *md;
347         u64 efi_desc_size;
348         int pal_code_count = 0;
349         u64 vaddr, mask;
350 
351         efi_map_start = __va(ia64_boot_param->efi_memmap);
352         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
353         efi_desc_size = ia64_boot_param->efi_memdesc_size;
354 
355         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
356                 md = p;
357                 if (md->type != EFI_PAL_CODE)
358                         continue;
359 
360                 if (++pal_code_count > 1) {
361                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
362                                "dropped @ %llx\n", md->phys_addr);
363                         continue;
364                 }
365                 /*
366                  * The only ITLB entry in region 7 that is used is the one
367                  * installed by __start().  That entry covers a 64MB range.
368                  */
369                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
370                 vaddr = PAGE_OFFSET + md->phys_addr;
371 
372                 /*
373                  * We must check that the PAL mapping won't overlap with the
374                  * kernel mapping.
375                  *
376                  * PAL code is guaranteed to be aligned on a power of 2 between
377                  * 4k and 256KB and that only one ITR is needed to map it. This
378                  * implies that the PAL code is always aligned on its size,
379                  * i.e., the closest matching page size supported by the TLB.
380                  * Therefore PAL code is guaranteed never to cross a 64MB unless
381                  * it is bigger than 64MB (very unlikely!).  So for now the
382                  * following test is enough to determine whether or not we need
383                  * a dedicated ITR for the PAL code.
384                  */
385                 if ((vaddr & mask) == (KERNEL_START & mask)) {
386                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
387                                __func__);
388                         continue;
389                 }
390 
391                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
392                         panic("Whoa!  PAL code size bigger than a granule!");
393 
394 #if EFI_DEBUG
395                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
396 
397                 printk(KERN_INFO "CPU %d: mapping PAL code "
398                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
399                        smp_processor_id(), md->phys_addr,
400                        md->phys_addr + efi_md_size(md),
401                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
402 #endif
403                 return __va(md->phys_addr);
404         }
405         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
406                __func__);
407         return NULL;
408 }
409 
410 
411 static u8 __init palo_checksum(u8 *buffer, u32 length)
412 {
413         u8 sum = 0;
414         u8 *end = buffer + length;
415 
416         while (buffer < end)
417                 sum = (u8) (sum + *(buffer++));
418 
419         return sum;
420 }
421 
422 /*
423  * Parse and handle PALO table which is published at:
424  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
425  */
426 static void __init handle_palo(unsigned long palo_phys)
427 {
428         struct palo_table *palo = __va(palo_phys);
429         u8  checksum;
430 
431         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
432                 printk(KERN_INFO "PALO signature incorrect.\n");
433                 return;
434         }
435 
436         checksum = palo_checksum((u8 *)palo, palo->length);
437         if (checksum) {
438                 printk(KERN_INFO "PALO checksum incorrect.\n");
439                 return;
440         }
441 
442         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
443 }
444 
445 void
446 efi_map_pal_code (void)
447 {
448         void *pal_vaddr = efi_get_pal_addr ();
449         u64 psr;
450 
451         if (!pal_vaddr)
452                 return;
453 
454         /*
455          * Cannot write to CRx with PSR.ic=1
456          */
457         psr = ia64_clear_ic();
458         ia64_itr(0x1, IA64_TR_PALCODE,
459                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
460                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
461                  IA64_GRANULE_SHIFT);
462         paravirt_dv_serialize_data();
463         ia64_set_psr(psr);              /* restore psr */
464 }
465 
466 void __init
467 efi_init (void)
468 {
469         void *efi_map_start, *efi_map_end;
470         efi_config_table_t *config_tables;
471         efi_char16_t *c16;
472         u64 efi_desc_size;
473         char *cp, vendor[100] = "unknown";
474         int i;
475         unsigned long palo_phys;
476 
477         /*
478          * It's too early to be able to use the standard kernel command line
479          * support...
480          */
481         for (cp = boot_command_line; *cp; ) {
482                 if (memcmp(cp, "mem=", 4) == 0) {
483                         mem_limit = memparse(cp + 4, &cp);
484                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
485                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
486                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
487                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
488                 } else {
489                         while (*cp != ' ' && *cp)
490                                 ++cp;
491                         while (*cp == ' ')
492                                 ++cp;
493                 }
494         }
495         if (min_addr != 0UL)
496                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
497                        min_addr >> 20);
498         if (max_addr != ~0UL)
499                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
500                        max_addr >> 20);
501 
502         efi.systab = __va(ia64_boot_param->efi_systab);
503 
504         /*
505          * Verify the EFI Table
506          */
507         if (efi.systab == NULL)
508                 panic("Whoa! Can't find EFI system table.\n");
509         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
510                 panic("Whoa! EFI system table signature incorrect\n");
511         if ((efi.systab->hdr.revision >> 16) == 0)
512                 printk(KERN_WARNING "Warning: EFI system table version "
513                        "%d.%02d, expected 1.00 or greater\n",
514                        efi.systab->hdr.revision >> 16,
515                        efi.systab->hdr.revision & 0xffff);
516 
517         config_tables = __va(efi.systab->tables);
518 
519         /* Show what we know for posterity */
520         c16 = __va(efi.systab->fw_vendor);
521         if (c16) {
522                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
523                         vendor[i] = *c16++;
524                 vendor[i] = '\0';
525         }
526 
527         printk(KERN_INFO "EFI v%u.%.02u by %s:",
528                efi.systab->hdr.revision >> 16,
529                efi.systab->hdr.revision & 0xffff, vendor);
530 
531         efi.mps        = EFI_INVALID_TABLE_ADDR;
532         efi.acpi       = EFI_INVALID_TABLE_ADDR;
533         efi.acpi20     = EFI_INVALID_TABLE_ADDR;
534         efi.smbios     = EFI_INVALID_TABLE_ADDR;
535         efi.sal_systab = EFI_INVALID_TABLE_ADDR;
536         efi.boot_info  = EFI_INVALID_TABLE_ADDR;
537         efi.hcdp       = EFI_INVALID_TABLE_ADDR;
538         efi.uga        = EFI_INVALID_TABLE_ADDR;
539 
540         palo_phys      = EFI_INVALID_TABLE_ADDR;
541 
542         for (i = 0; i < (int) efi.systab->nr_tables; i++) {
543                 if (efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID) == 0) {
544                         efi.mps = config_tables[i].table;
545                         printk(" MPS=0x%lx", config_tables[i].table);
546                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_20_TABLE_GUID) == 0) {
547                         efi.acpi20 = config_tables[i].table;
548                         printk(" ACPI 2.0=0x%lx", config_tables[i].table);
549                 } else if (efi_guidcmp(config_tables[i].guid, ACPI_TABLE_GUID) == 0) {
550                         efi.acpi = config_tables[i].table;
551                         printk(" ACPI=0x%lx", config_tables[i].table);
552                 } else if (efi_guidcmp(config_tables[i].guid, SMBIOS_TABLE_GUID) == 0) {
553                         efi.smbios = config_tables[i].table;
554                         printk(" SMBIOS=0x%lx", config_tables[i].table);
555                 } else if (efi_guidcmp(config_tables[i].guid, SAL_SYSTEM_TABLE_GUID) == 0) {
556                         efi.sal_systab = config_tables[i].table;
557                         printk(" SALsystab=0x%lx", config_tables[i].table);
558                 } else if (efi_guidcmp(config_tables[i].guid, HCDP_TABLE_GUID) == 0) {
559                         efi.hcdp = config_tables[i].table;
560                         printk(" HCDP=0x%lx", config_tables[i].table);
561                 } else if (efi_guidcmp(config_tables[i].guid,
562                          PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID) == 0) {
563                         palo_phys = config_tables[i].table;
564                         printk(" PALO=0x%lx", config_tables[i].table);
565                 }
566         }
567         printk("\n");
568 
569         if (palo_phys != EFI_INVALID_TABLE_ADDR)
570                 handle_palo(palo_phys);
571 
572         runtime = __va(efi.systab->runtime);
573         efi.get_time = phys_get_time;
574         efi.set_time = phys_set_time;
575         efi.get_wakeup_time = phys_get_wakeup_time;
576         efi.set_wakeup_time = phys_set_wakeup_time;
577         efi.get_variable = phys_get_variable;
578         efi.get_next_variable = phys_get_next_variable;
579         efi.set_variable = phys_set_variable;
580         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
581         efi.reset_system = phys_reset_system;
582 
583         efi_map_start = __va(ia64_boot_param->efi_memmap);
584         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
585         efi_desc_size = ia64_boot_param->efi_memdesc_size;
586 
587 #if EFI_DEBUG
588         /* print EFI memory map: */
589         {
590                 efi_memory_desc_t *md;
591                 void *p;
592 
593                 for (i = 0, p = efi_map_start; p < efi_map_end;
594                      ++i, p += efi_desc_size)
595                 {
596                         const char *unit;
597                         unsigned long size;
598 
599                         md = p;
600                         size = md->num_pages << EFI_PAGE_SHIFT;
601 
602                         if ((size >> 40) > 0) {
603                                 size >>= 40;
604                                 unit = "TB";
605                         } else if ((size >> 30) > 0) {
606                                 size >>= 30;
607                                 unit = "GB";
608                         } else if ((size >> 20) > 0) {
609                                 size >>= 20;
610                                 unit = "MB";
611                         } else {
612                                 size >>= 10;
613                                 unit = "KB";
614                         }
615 
616                         printk("mem%02d: type=%2u, attr=0x%016lx, "
617                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
618                                i, md->type, md->attribute, md->phys_addr,
619                                md->phys_addr + efi_md_size(md), size, unit);
620                 }
621         }
622 #endif
623 
624         efi_map_pal_code();
625         efi_enter_virtual_mode();
626 }
627 
628 void
629 efi_enter_virtual_mode (void)
630 {
631         void *efi_map_start, *efi_map_end, *p;
632         efi_memory_desc_t *md;
633         efi_status_t status;
634         u64 efi_desc_size;
635 
636         efi_map_start = __va(ia64_boot_param->efi_memmap);
637         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
638         efi_desc_size = ia64_boot_param->efi_memdesc_size;
639 
640         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
641                 md = p;
642                 if (md->attribute & EFI_MEMORY_RUNTIME) {
643                         /*
644                          * Some descriptors have multiple bits set, so the
645                          * order of the tests is relevant.
646                          */
647                         if (md->attribute & EFI_MEMORY_WB) {
648                                 md->virt_addr = (u64) __va(md->phys_addr);
649                         } else if (md->attribute & EFI_MEMORY_UC) {
650                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
651                         } else if (md->attribute & EFI_MEMORY_WC) {
652 #if 0
653                                 md->virt_addr = ia64_remap(md->phys_addr,
654                                                            (_PAGE_A |
655                                                             _PAGE_P |
656                                                             _PAGE_D |
657                                                             _PAGE_MA_WC |
658                                                             _PAGE_PL_0 |
659                                                             _PAGE_AR_RW));
660 #else
661                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
662                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
663 #endif
664                         } else if (md->attribute & EFI_MEMORY_WT) {
665 #if 0
666                                 md->virt_addr = ia64_remap(md->phys_addr,
667                                                            (_PAGE_A |
668                                                             _PAGE_P |
669                                                             _PAGE_D |
670                                                             _PAGE_MA_WT |
671                                                             _PAGE_PL_0 |
672                                                             _PAGE_AR_RW));
673 #else
674                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
675                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
676 #endif
677                         }
678                 }
679         }
680 
681         status = efi_call_phys(__va(runtime->set_virtual_address_map),
682                                ia64_boot_param->efi_memmap_size,
683                                efi_desc_size,
684                                ia64_boot_param->efi_memdesc_version,
685                                ia64_boot_param->efi_memmap);
686         if (status != EFI_SUCCESS) {
687                 printk(KERN_WARNING "warning: unable to switch EFI into "
688                        "virtual mode (status=%lu)\n", status);
689                 return;
690         }
691 
692         /*
693          * Now that EFI is in virtual mode, we call the EFI functions more
694          * efficiently:
695          */
696         efi.get_time = virt_get_time;
697         efi.set_time = virt_set_time;
698         efi.get_wakeup_time = virt_get_wakeup_time;
699         efi.set_wakeup_time = virt_set_wakeup_time;
700         efi.get_variable = virt_get_variable;
701         efi.get_next_variable = virt_get_next_variable;
702         efi.set_variable = virt_set_variable;
703         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
704         efi.reset_system = virt_reset_system;
705 }
706 
707 /*
708  * Walk the EFI memory map looking for the I/O port range.  There can only be
709  * one entry of this type, other I/O port ranges should be described via ACPI.
710  */
711 u64
712 efi_get_iobase (void)
713 {
714         void *efi_map_start, *efi_map_end, *p;
715         efi_memory_desc_t *md;
716         u64 efi_desc_size;
717 
718         efi_map_start = __va(ia64_boot_param->efi_memmap);
719         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
720         efi_desc_size = ia64_boot_param->efi_memdesc_size;
721 
722         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
723                 md = p;
724                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
725                         if (md->attribute & EFI_MEMORY_UC)
726                                 return md->phys_addr;
727                 }
728         }
729         return 0;
730 }
731 
732 static struct kern_memdesc *
733 kern_memory_descriptor (unsigned long phys_addr)
734 {
735         struct kern_memdesc *md;
736 
737         for (md = kern_memmap; md->start != ~0UL; md++) {
738                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
739                          return md;
740         }
741         return NULL;
742 }
743 
744 static efi_memory_desc_t *
745 efi_memory_descriptor (unsigned long phys_addr)
746 {
747         void *efi_map_start, *efi_map_end, *p;
748         efi_memory_desc_t *md;
749         u64 efi_desc_size;
750 
751         efi_map_start = __va(ia64_boot_param->efi_memmap);
752         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
753         efi_desc_size = ia64_boot_param->efi_memdesc_size;
754 
755         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
756                 md = p;
757 
758                 if (phys_addr - md->phys_addr < efi_md_size(md))
759                          return md;
760         }
761         return NULL;
762 }
763 
764 static int
765 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
766 {
767         void *efi_map_start, *efi_map_end, *p;
768         efi_memory_desc_t *md;
769         u64 efi_desc_size;
770         unsigned long end;
771 
772         efi_map_start = __va(ia64_boot_param->efi_memmap);
773         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
774         efi_desc_size = ia64_boot_param->efi_memdesc_size;
775 
776         end = phys_addr + size;
777 
778         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
779                 md = p;
780                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
781                         return 1;
782         }
783         return 0;
784 }
785 
786 u32
787 efi_mem_type (unsigned long phys_addr)
788 {
789         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
790 
791         if (md)
792                 return md->type;
793         return 0;
794 }
795 
796 u64
797 efi_mem_attributes (unsigned long phys_addr)
798 {
799         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
800 
801         if (md)
802                 return md->attribute;
803         return 0;
804 }
805 EXPORT_SYMBOL(efi_mem_attributes);
806 
807 u64
808 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
809 {
810         unsigned long end = phys_addr + size;
811         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
812         u64 attr;
813 
814         if (!md)
815                 return 0;
816 
817         /*
818          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
819          * the kernel that firmware needs this region mapped.
820          */
821         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
822         do {
823                 unsigned long md_end = efi_md_end(md);
824 
825                 if (end <= md_end)
826                         return attr;
827 
828                 md = efi_memory_descriptor(md_end);
829                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
830                         return 0;
831         } while (md);
832         return 0;       /* never reached */
833 }
834 
835 u64
836 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
837 {
838         unsigned long end = phys_addr + size;
839         struct kern_memdesc *md;
840         u64 attr;
841 
842         /*
843          * This is a hack for ioremap calls before we set up kern_memmap.
844          * Maybe we should do efi_memmap_init() earlier instead.
845          */
846         if (!kern_memmap) {
847                 attr = efi_mem_attribute(phys_addr, size);
848                 if (attr & EFI_MEMORY_WB)
849                         return EFI_MEMORY_WB;
850                 return 0;
851         }
852 
853         md = kern_memory_descriptor(phys_addr);
854         if (!md)
855                 return 0;
856 
857         attr = md->attribute;
858         do {
859                 unsigned long md_end = kmd_end(md);
860 
861                 if (end <= md_end)
862                         return attr;
863 
864                 md = kern_memory_descriptor(md_end);
865                 if (!md || md->attribute != attr)
866                         return 0;
867         } while (md);
868         return 0;       /* never reached */
869 }
870 EXPORT_SYMBOL(kern_mem_attribute);
871 
872 int
873 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
874 {
875         u64 attr;
876 
877         /*
878          * /dev/mem reads and writes use copy_to_user(), which implicitly
879          * uses a granule-sized kernel identity mapping.  It's really
880          * only safe to do this for regions in kern_memmap.  For more
881          * details, see Documentation/ia64/aliasing.txt.
882          */
883         attr = kern_mem_attribute(phys_addr, size);
884         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
885                 return 1;
886         return 0;
887 }
888 
889 int
890 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
891 {
892         unsigned long phys_addr = pfn << PAGE_SHIFT;
893         u64 attr;
894 
895         attr = efi_mem_attribute(phys_addr, size);
896 
897         /*
898          * /dev/mem mmap uses normal user pages, so we don't need the entire
899          * granule, but the entire region we're mapping must support the same
900          * attribute.
901          */
902         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
903                 return 1;
904 
905         /*
906          * Intel firmware doesn't tell us about all the MMIO regions, so
907          * in general we have to allow mmap requests.  But if EFI *does*
908          * tell us about anything inside this region, we should deny it.
909          * The user can always map a smaller region to avoid the overlap.
910          */
911         if (efi_memmap_intersects(phys_addr, size))
912                 return 0;
913 
914         return 1;
915 }
916 
917 pgprot_t
918 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
919                      pgprot_t vma_prot)
920 {
921         unsigned long phys_addr = pfn << PAGE_SHIFT;
922         u64 attr;
923 
924         /*
925          * For /dev/mem mmap, we use user mappings, but if the region is
926          * in kern_memmap (and hence may be covered by a kernel mapping),
927          * we must use the same attribute as the kernel mapping.
928          */
929         attr = kern_mem_attribute(phys_addr, size);
930         if (attr & EFI_MEMORY_WB)
931                 return pgprot_cacheable(vma_prot);
932         else if (attr & EFI_MEMORY_UC)
933                 return pgprot_noncached(vma_prot);
934 
935         /*
936          * Some chipsets don't support UC access to memory.  If
937          * WB is supported, we prefer that.
938          */
939         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
940                 return pgprot_cacheable(vma_prot);
941 
942         return pgprot_noncached(vma_prot);
943 }
944 
945 int __init
946 efi_uart_console_only(void)
947 {
948         efi_status_t status;
949         char *s, name[] = "ConOut";
950         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
951         efi_char16_t *utf16, name_utf16[32];
952         unsigned char data[1024];
953         unsigned long size = sizeof(data);
954         struct efi_generic_dev_path *hdr, *end_addr;
955         int uart = 0;
956 
957         /* Convert to UTF-16 */
958         utf16 = name_utf16;
959         s = name;
960         while (*s)
961                 *utf16++ = *s++ & 0x7f;
962         *utf16 = 0;
963 
964         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
965         if (status != EFI_SUCCESS) {
966                 printk(KERN_ERR "No EFI %s variable?\n", name);
967                 return 0;
968         }
969 
970         hdr = (struct efi_generic_dev_path *) data;
971         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
972         while (hdr < end_addr) {
973                 if (hdr->type == EFI_DEV_MSG &&
974                     hdr->sub_type == EFI_DEV_MSG_UART)
975                         uart = 1;
976                 else if (hdr->type == EFI_DEV_END_PATH ||
977                           hdr->type == EFI_DEV_END_PATH2) {
978                         if (!uart)
979                                 return 0;
980                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
981                                 return 1;
982                         uart = 0;
983                 }
984                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
985         }
986         printk(KERN_ERR "Malformed %s value\n", name);
987         return 0;
988 }
989 
990 /*
991  * Look for the first granule aligned memory descriptor memory
992  * that is big enough to hold EFI memory map. Make sure this
993  * descriptor is atleast granule sized so it does not get trimmed
994  */
995 struct kern_memdesc *
996 find_memmap_space (void)
997 {
998         u64     contig_low=0, contig_high=0;
999         u64     as = 0, ae;
1000         void *efi_map_start, *efi_map_end, *p, *q;
1001         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1002         u64     space_needed, efi_desc_size;
1003         unsigned long total_mem = 0;
1004 
1005         efi_map_start = __va(ia64_boot_param->efi_memmap);
1006         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1007         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1008 
1009         /*
1010          * Worst case: we need 3 kernel descriptors for each efi descriptor
1011          * (if every entry has a WB part in the middle, and UC head and tail),
1012          * plus one for the end marker.
1013          */
1014         space_needed = sizeof(kern_memdesc_t) *
1015                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
1016 
1017         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1018                 md = p;
1019                 if (!efi_wb(md)) {
1020                         continue;
1021                 }
1022                 if (pmd == NULL || !efi_wb(pmd) ||
1023                     efi_md_end(pmd) != md->phys_addr) {
1024                         contig_low = GRANULEROUNDUP(md->phys_addr);
1025                         contig_high = efi_md_end(md);
1026                         for (q = p + efi_desc_size; q < efi_map_end;
1027                              q += efi_desc_size) {
1028                                 check_md = q;
1029                                 if (!efi_wb(check_md))
1030                                         break;
1031                                 if (contig_high != check_md->phys_addr)
1032                                         break;
1033                                 contig_high = efi_md_end(check_md);
1034                         }
1035                         contig_high = GRANULEROUNDDOWN(contig_high);
1036                 }
1037                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1038                         continue;
1039 
1040                 /* Round ends inward to granule boundaries */
1041                 as = max(contig_low, md->phys_addr);
1042                 ae = min(contig_high, efi_md_end(md));
1043 
1044                 /* keep within max_addr= and min_addr= command line arg */
1045                 as = max(as, min_addr);
1046                 ae = min(ae, max_addr);
1047                 if (ae <= as)
1048                         continue;
1049 
1050                 /* avoid going over mem= command line arg */
1051                 if (total_mem + (ae - as) > mem_limit)
1052                         ae -= total_mem + (ae - as) - mem_limit;
1053 
1054                 if (ae <= as)
1055                         continue;
1056 
1057                 if (ae - as > space_needed)
1058                         break;
1059         }
1060         if (p >= efi_map_end)
1061                 panic("Can't allocate space for kernel memory descriptors");
1062 
1063         return __va(as);
1064 }
1065 
1066 /*
1067  * Walk the EFI memory map and gather all memory available for kernel
1068  * to use.  We can allocate partial granules only if the unavailable
1069  * parts exist, and are WB.
1070  */
1071 unsigned long
1072 efi_memmap_init(u64 *s, u64 *e)
1073 {
1074         struct kern_memdesc *k, *prev = NULL;
1075         u64     contig_low=0, contig_high=0;
1076         u64     as, ae, lim;
1077         void *efi_map_start, *efi_map_end, *p, *q;
1078         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1079         u64     efi_desc_size;
1080         unsigned long total_mem = 0;
1081 
1082         k = kern_memmap = find_memmap_space();
1083 
1084         efi_map_start = __va(ia64_boot_param->efi_memmap);
1085         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1086         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1087 
1088         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1089                 md = p;
1090                 if (!efi_wb(md)) {
1091                         if (efi_uc(md) &&
1092                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1093                              md->type == EFI_BOOT_SERVICES_DATA)) {
1094                                 k->attribute = EFI_MEMORY_UC;
1095                                 k->start = md->phys_addr;
1096                                 k->num_pages = md->num_pages;
1097                                 k++;
1098                         }
1099                         continue;
1100                 }
1101                 if (pmd == NULL || !efi_wb(pmd) ||
1102                     efi_md_end(pmd) != md->phys_addr) {
1103                         contig_low = GRANULEROUNDUP(md->phys_addr);
1104                         contig_high = efi_md_end(md);
1105                         for (q = p + efi_desc_size; q < efi_map_end;
1106                              q += efi_desc_size) {
1107                                 check_md = q;
1108                                 if (!efi_wb(check_md))
1109                                         break;
1110                                 if (contig_high != check_md->phys_addr)
1111                                         break;
1112                                 contig_high = efi_md_end(check_md);
1113                         }
1114                         contig_high = GRANULEROUNDDOWN(contig_high);
1115                 }
1116                 if (!is_memory_available(md))
1117                         continue;
1118 
1119                 /*
1120                  * Round ends inward to granule boundaries
1121                  * Give trimmings to uncached allocator
1122                  */
1123                 if (md->phys_addr < contig_low) {
1124                         lim = min(efi_md_end(md), contig_low);
1125                         if (efi_uc(md)) {
1126                                 if (k > kern_memmap &&
1127                                     (k-1)->attribute == EFI_MEMORY_UC &&
1128                                     kmd_end(k-1) == md->phys_addr) {
1129                                         (k-1)->num_pages +=
1130                                                 (lim - md->phys_addr)
1131                                                 >> EFI_PAGE_SHIFT;
1132                                 } else {
1133                                         k->attribute = EFI_MEMORY_UC;
1134                                         k->start = md->phys_addr;
1135                                         k->num_pages = (lim - md->phys_addr)
1136                                                 >> EFI_PAGE_SHIFT;
1137                                         k++;
1138                                 }
1139                         }
1140                         as = contig_low;
1141                 } else
1142                         as = md->phys_addr;
1143 
1144                 if (efi_md_end(md) > contig_high) {
1145                         lim = max(md->phys_addr, contig_high);
1146                         if (efi_uc(md)) {
1147                                 if (lim == md->phys_addr && k > kern_memmap &&
1148                                     (k-1)->attribute == EFI_MEMORY_UC &&
1149                                     kmd_end(k-1) == md->phys_addr) {
1150                                         (k-1)->num_pages += md->num_pages;
1151                                 } else {
1152                                         k->attribute = EFI_MEMORY_UC;
1153                                         k->start = lim;
1154                                         k->num_pages = (efi_md_end(md) - lim)
1155                                                 >> EFI_PAGE_SHIFT;
1156                                         k++;
1157                                 }
1158                         }
1159                         ae = contig_high;
1160                 } else
1161                         ae = efi_md_end(md);
1162 
1163                 /* keep within max_addr= and min_addr= command line arg */
1164                 as = max(as, min_addr);
1165                 ae = min(ae, max_addr);
1166                 if (ae <= as)
1167                         continue;
1168 
1169                 /* avoid going over mem= command line arg */
1170                 if (total_mem + (ae - as) > mem_limit)
1171                         ae -= total_mem + (ae - as) - mem_limit;
1172 
1173                 if (ae <= as)
1174                         continue;
1175                 if (prev && kmd_end(prev) == md->phys_addr) {
1176                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1177                         total_mem += ae - as;
1178                         continue;
1179                 }
1180                 k->attribute = EFI_MEMORY_WB;
1181                 k->start = as;
1182                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1183                 total_mem += ae - as;
1184                 prev = k++;
1185         }
1186         k->start = ~0L; /* end-marker */
1187 
1188         /* reserve the memory we are using for kern_memmap */
1189         *s = (u64)kern_memmap;
1190         *e = (u64)++k;
1191 
1192         return total_mem;
1193 }
1194 
1195 void
1196 efi_initialize_iomem_resources(struct resource *code_resource,
1197                                struct resource *data_resource,
1198                                struct resource *bss_resource)
1199 {
1200         struct resource *res;
1201         void *efi_map_start, *efi_map_end, *p;
1202         efi_memory_desc_t *md;
1203         u64 efi_desc_size;
1204         char *name;
1205         unsigned long flags;
1206 
1207         efi_map_start = __va(ia64_boot_param->efi_memmap);
1208         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1209         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1210 
1211         res = NULL;
1212 
1213         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1214                 md = p;
1215 
1216                 if (md->num_pages == 0) /* should not happen */
1217                         continue;
1218 
1219                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1220                 switch (md->type) {
1221 
1222                         case EFI_MEMORY_MAPPED_IO:
1223                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1224                                 continue;
1225 
1226                         case EFI_LOADER_CODE:
1227                         case EFI_LOADER_DATA:
1228                         case EFI_BOOT_SERVICES_DATA:
1229                         case EFI_BOOT_SERVICES_CODE:
1230                         case EFI_CONVENTIONAL_MEMORY:
1231                                 if (md->attribute & EFI_MEMORY_WP) {
1232                                         name = "System ROM";
1233                                         flags |= IORESOURCE_READONLY;
1234                                 } else if (md->attribute == EFI_MEMORY_UC)
1235                                         name = "Uncached RAM";
1236                                 else
1237                                         name = "System RAM";
1238                                 break;
1239 
1240                         case EFI_ACPI_MEMORY_NVS:
1241                                 name = "ACPI Non-volatile Storage";
1242                                 break;
1243 
1244                         case EFI_UNUSABLE_MEMORY:
1245                                 name = "reserved";
1246                                 flags |= IORESOURCE_DISABLED;
1247                                 break;
1248 
1249                         case EFI_RESERVED_TYPE:
1250                         case EFI_RUNTIME_SERVICES_CODE:
1251                         case EFI_RUNTIME_SERVICES_DATA:
1252                         case EFI_ACPI_RECLAIM_MEMORY:
1253                         default:
1254                                 name = "reserved";
1255                                 break;
1256                 }
1257 
1258                 if ((res = kzalloc(sizeof(struct resource),
1259                                    GFP_KERNEL)) == NULL) {
1260                         printk(KERN_ERR
1261                                "failed to allocate resource for iomem\n");
1262                         return;
1263                 }
1264 
1265                 res->name = name;
1266                 res->start = md->phys_addr;
1267                 res->end = md->phys_addr + efi_md_size(md) - 1;
1268                 res->flags = flags;
1269 
1270                 if (insert_resource(&iomem_resource, res) < 0)
1271                         kfree(res);
1272                 else {
1273                         /*
1274                          * We don't know which region contains
1275                          * kernel data so we try it repeatedly and
1276                          * let the resource manager test it.
1277                          */
1278                         insert_resource(res, code_resource);
1279                         insert_resource(res, data_resource);
1280                         insert_resource(res, bss_resource);
1281 #ifdef CONFIG_KEXEC
1282                         insert_resource(res, &efi_memmap_res);
1283                         insert_resource(res, &boot_param_res);
1284                         if (crashk_res.end > crashk_res.start)
1285                                 insert_resource(res, &crashk_res);
1286 #endif
1287                 }
1288         }
1289 }
1290 
1291 #ifdef CONFIG_KEXEC
1292 /* find a block of memory aligned to 64M exclude reserved regions
1293    rsvd_regions are sorted
1294  */
1295 unsigned long __init
1296 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1297 {
1298         int i;
1299         u64 start, end;
1300         u64 alignment = 1UL << _PAGE_SIZE_64M;
1301         void *efi_map_start, *efi_map_end, *p;
1302         efi_memory_desc_t *md;
1303         u64 efi_desc_size;
1304 
1305         efi_map_start = __va(ia64_boot_param->efi_memmap);
1306         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1307         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1308 
1309         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1310                 md = p;
1311                 if (!efi_wb(md))
1312                         continue;
1313                 start = ALIGN(md->phys_addr, alignment);
1314                 end = efi_md_end(md);
1315                 for (i = 0; i < n; i++) {
1316                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1317                                 if (__pa(r[i].start) > start + size)
1318                                         return start;
1319                                 start = ALIGN(__pa(r[i].end), alignment);
1320                                 if (i < n-1 &&
1321                                     __pa(r[i+1].start) < start + size)
1322                                         continue;
1323                                 else
1324                                         break;
1325                         }
1326                 }
1327                 if (end > start + size)
1328                         return start;
1329         }
1330 
1331         printk(KERN_WARNING
1332                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1333         return ~0UL;
1334 }
1335 #endif
1336 
1337 #ifdef CONFIG_CRASH_DUMP
1338 /* locate the size find a the descriptor at a certain address */
1339 unsigned long __init
1340 vmcore_find_descriptor_size (unsigned long address)
1341 {
1342         void *efi_map_start, *efi_map_end, *p;
1343         efi_memory_desc_t *md;
1344         u64 efi_desc_size;
1345         unsigned long ret = 0;
1346 
1347         efi_map_start = __va(ia64_boot_param->efi_memmap);
1348         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1349         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1350 
1351         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1352                 md = p;
1353                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1354                     && md->phys_addr == address) {
1355                         ret = efi_md_size(md);
1356                         break;
1357                 }
1358         }
1359 
1360         if (ret == 0)
1361                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1362 
1363         return ret;
1364 }
1365 #endif
1366 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp