~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/ia64/kernel/efi.c

Version: ~ [ linux-5.4-rc7 ] ~ [ linux-5.3.11 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.84 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.154 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.201 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.201 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.77 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Extensible Firmware Interface
  3  *
  4  * Based on Extensible Firmware Interface Specification version 0.9
  5  * April 30, 1999
  6  *
  7  * Copyright (C) 1999 VA Linux Systems
  8  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  9  * Copyright (C) 1999-2003 Hewlett-Packard Co.
 10  *      David Mosberger-Tang <davidm@hpl.hp.com>
 11  *      Stephane Eranian <eranian@hpl.hp.com>
 12  * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
 13  *      Bjorn Helgaas <bjorn.helgaas@hp.com>
 14  *
 15  * All EFI Runtime Services are not implemented yet as EFI only
 16  * supports physical mode addressing on SoftSDV. This is to be fixed
 17  * in a future version.  --drummond 1999-07-20
 18  *
 19  * Implemented EFI runtime services and virtual mode calls.  --davidm
 20  *
 21  * Goutham Rao: <goutham.rao@intel.com>
 22  *      Skip non-WB memory and ignore empty memory ranges.
 23  */
 24 #include <linux/module.h>
 25 #include <linux/bootmem.h>
 26 #include <linux/crash_dump.h>
 27 #include <linux/kernel.h>
 28 #include <linux/init.h>
 29 #include <linux/types.h>
 30 #include <linux/slab.h>
 31 #include <linux/time.h>
 32 #include <linux/efi.h>
 33 #include <linux/kexec.h>
 34 #include <linux/mm.h>
 35 
 36 #include <asm/io.h>
 37 #include <asm/kregs.h>
 38 #include <asm/meminit.h>
 39 #include <asm/pgtable.h>
 40 #include <asm/processor.h>
 41 #include <asm/mca.h>
 42 #include <asm/setup.h>
 43 #include <asm/tlbflush.h>
 44 
 45 #define EFI_DEBUG       0
 46 
 47 static __initdata unsigned long palo_phys;
 48 
 49 static __initdata efi_config_table_type_t arch_tables[] = {
 50         {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, "PALO", &palo_phys},
 51         {NULL_GUID, NULL, 0},
 52 };
 53 
 54 extern efi_status_t efi_call_phys (void *, ...);
 55 
 56 static efi_runtime_services_t *runtime;
 57 static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
 58 
 59 #define efi_call_virt(f, args...)       (*(f))(args)
 60 
 61 #define STUB_GET_TIME(prefix, adjust_arg)                                      \
 62 static efi_status_t                                                            \
 63 prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
 64 {                                                                              \
 65         struct ia64_fpreg fr[6];                                               \
 66         efi_time_cap_t *atc = NULL;                                            \
 67         efi_status_t ret;                                                      \
 68                                                                                \
 69         if (tc)                                                                \
 70                 atc = adjust_arg(tc);                                          \
 71         ia64_save_scratch_fpregs(fr);                                          \
 72         ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
 73                                 adjust_arg(tm), atc);                          \
 74         ia64_load_scratch_fpregs(fr);                                          \
 75         return ret;                                                            \
 76 }
 77 
 78 #define STUB_SET_TIME(prefix, adjust_arg)                                      \
 79 static efi_status_t                                                            \
 80 prefix##_set_time (efi_time_t *tm)                                             \
 81 {                                                                              \
 82         struct ia64_fpreg fr[6];                                               \
 83         efi_status_t ret;                                                      \
 84                                                                                \
 85         ia64_save_scratch_fpregs(fr);                                          \
 86         ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
 87                                 adjust_arg(tm));                               \
 88         ia64_load_scratch_fpregs(fr);                                          \
 89         return ret;                                                            \
 90 }
 91 
 92 #define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
 93 static efi_status_t                                                            \
 94 prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
 95                           efi_time_t *tm)                                      \
 96 {                                                                              \
 97         struct ia64_fpreg fr[6];                                               \
 98         efi_status_t ret;                                                      \
 99                                                                                \
100         ia64_save_scratch_fpregs(fr);                                          \
101         ret = efi_call_##prefix(                                               \
102                 (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
103                 adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
104         ia64_load_scratch_fpregs(fr);                                          \
105         return ret;                                                            \
106 }
107 
108 #define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
109 static efi_status_t                                                            \
110 prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
111 {                                                                              \
112         struct ia64_fpreg fr[6];                                               \
113         efi_time_t *atm = NULL;                                                \
114         efi_status_t ret;                                                      \
115                                                                                \
116         if (tm)                                                                \
117                 atm = adjust_arg(tm);                                          \
118         ia64_save_scratch_fpregs(fr);                                          \
119         ret = efi_call_##prefix(                                               \
120                 (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
121                 enabled, atm);                                                 \
122         ia64_load_scratch_fpregs(fr);                                          \
123         return ret;                                                            \
124 }
125 
126 #define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
127 static efi_status_t                                                            \
128 prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
129                        unsigned long *data_size, void *data)                   \
130 {                                                                              \
131         struct ia64_fpreg fr[6];                                               \
132         u32 *aattr = NULL;                                                     \
133         efi_status_t ret;                                                      \
134                                                                                \
135         if (attr)                                                              \
136                 aattr = adjust_arg(attr);                                      \
137         ia64_save_scratch_fpregs(fr);                                          \
138         ret = efi_call_##prefix(                                               \
139                 (efi_get_variable_t *) __va(runtime->get_variable),            \
140                 adjust_arg(name), adjust_arg(vendor), aattr,                   \
141                 adjust_arg(data_size), adjust_arg(data));                      \
142         ia64_load_scratch_fpregs(fr);                                          \
143         return ret;                                                            \
144 }
145 
146 #define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
147 static efi_status_t                                                            \
148 prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
149                             efi_guid_t *vendor)                                \
150 {                                                                              \
151         struct ia64_fpreg fr[6];                                               \
152         efi_status_t ret;                                                      \
153                                                                                \
154         ia64_save_scratch_fpregs(fr);                                          \
155         ret = efi_call_##prefix(                                               \
156                 (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
157                 adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
158         ia64_load_scratch_fpregs(fr);                                          \
159         return ret;                                                            \
160 }
161 
162 #define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
163 static efi_status_t                                                            \
164 prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
165                        u32 attr, unsigned long data_size,                      \
166                        void *data)                                             \
167 {                                                                              \
168         struct ia64_fpreg fr[6];                                               \
169         efi_status_t ret;                                                      \
170                                                                                \
171         ia64_save_scratch_fpregs(fr);                                          \
172         ret = efi_call_##prefix(                                               \
173                 (efi_set_variable_t *) __va(runtime->set_variable),            \
174                 adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
175                 adjust_arg(data));                                             \
176         ia64_load_scratch_fpregs(fr);                                          \
177         return ret;                                                            \
178 }
179 
180 #define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
181 static efi_status_t                                                            \
182 prefix##_get_next_high_mono_count (u32 *count)                                 \
183 {                                                                              \
184         struct ia64_fpreg fr[6];                                               \
185         efi_status_t ret;                                                      \
186                                                                                \
187         ia64_save_scratch_fpregs(fr);                                          \
188         ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
189                                 __va(runtime->get_next_high_mono_count),       \
190                                 adjust_arg(count));                            \
191         ia64_load_scratch_fpregs(fr);                                          \
192         return ret;                                                            \
193 }
194 
195 #define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
196 static void                                                                    \
197 prefix##_reset_system (int reset_type, efi_status_t status,                    \
198                        unsigned long data_size, efi_char16_t *data)            \
199 {                                                                              \
200         struct ia64_fpreg fr[6];                                               \
201         efi_char16_t *adata = NULL;                                            \
202                                                                                \
203         if (data)                                                              \
204                 adata = adjust_arg(data);                                      \
205                                                                                \
206         ia64_save_scratch_fpregs(fr);                                          \
207         efi_call_##prefix(                                                     \
208                 (efi_reset_system_t *) __va(runtime->reset_system),            \
209                 reset_type, status, data_size, adata);                         \
210         /* should not return, but just in case... */                           \
211         ia64_load_scratch_fpregs(fr);                                          \
212 }
213 
214 #define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
215 
216 STUB_GET_TIME(phys, phys_ptr)
217 STUB_SET_TIME(phys, phys_ptr)
218 STUB_GET_WAKEUP_TIME(phys, phys_ptr)
219 STUB_SET_WAKEUP_TIME(phys, phys_ptr)
220 STUB_GET_VARIABLE(phys, phys_ptr)
221 STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
222 STUB_SET_VARIABLE(phys, phys_ptr)
223 STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
224 STUB_RESET_SYSTEM(phys, phys_ptr)
225 
226 #define id(arg) arg
227 
228 STUB_GET_TIME(virt, id)
229 STUB_SET_TIME(virt, id)
230 STUB_GET_WAKEUP_TIME(virt, id)
231 STUB_SET_WAKEUP_TIME(virt, id)
232 STUB_GET_VARIABLE(virt, id)
233 STUB_GET_NEXT_VARIABLE(virt, id)
234 STUB_SET_VARIABLE(virt, id)
235 STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
236 STUB_RESET_SYSTEM(virt, id)
237 
238 void
239 efi_gettimeofday (struct timespec *ts)
240 {
241         efi_time_t tm;
242 
243         if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
244                 memset(ts, 0, sizeof(*ts));
245                 return;
246         }
247 
248         ts->tv_sec = mktime(tm.year, tm.month, tm.day,
249                             tm.hour, tm.minute, tm.second);
250         ts->tv_nsec = tm.nanosecond;
251 }
252 
253 static int
254 is_memory_available (efi_memory_desc_t *md)
255 {
256         if (!(md->attribute & EFI_MEMORY_WB))
257                 return 0;
258 
259         switch (md->type) {
260               case EFI_LOADER_CODE:
261               case EFI_LOADER_DATA:
262               case EFI_BOOT_SERVICES_CODE:
263               case EFI_BOOT_SERVICES_DATA:
264               case EFI_CONVENTIONAL_MEMORY:
265                 return 1;
266         }
267         return 0;
268 }
269 
270 typedef struct kern_memdesc {
271         u64 attribute;
272         u64 start;
273         u64 num_pages;
274 } kern_memdesc_t;
275 
276 static kern_memdesc_t *kern_memmap;
277 
278 #define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
279 
280 static inline u64
281 kmd_end(kern_memdesc_t *kmd)
282 {
283         return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
284 }
285 
286 static inline u64
287 efi_md_end(efi_memory_desc_t *md)
288 {
289         return (md->phys_addr + efi_md_size(md));
290 }
291 
292 static inline int
293 efi_wb(efi_memory_desc_t *md)
294 {
295         return (md->attribute & EFI_MEMORY_WB);
296 }
297 
298 static inline int
299 efi_uc(efi_memory_desc_t *md)
300 {
301         return (md->attribute & EFI_MEMORY_UC);
302 }
303 
304 static void
305 walk (efi_freemem_callback_t callback, void *arg, u64 attr)
306 {
307         kern_memdesc_t *k;
308         u64 start, end, voff;
309 
310         voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
311         for (k = kern_memmap; k->start != ~0UL; k++) {
312                 if (k->attribute != attr)
313                         continue;
314                 start = PAGE_ALIGN(k->start);
315                 end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
316                 if (start < end)
317                         if ((*callback)(start + voff, end + voff, arg) < 0)
318                                 return;
319         }
320 }
321 
322 /*
323  * Walk the EFI memory map and call CALLBACK once for each EFI memory
324  * descriptor that has memory that is available for OS use.
325  */
326 void
327 efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
328 {
329         walk(callback, arg, EFI_MEMORY_WB);
330 }
331 
332 /*
333  * Walk the EFI memory map and call CALLBACK once for each EFI memory
334  * descriptor that has memory that is available for uncached allocator.
335  */
336 void
337 efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
338 {
339         walk(callback, arg, EFI_MEMORY_UC);
340 }
341 
342 /*
343  * Look for the PAL_CODE region reported by EFI and map it using an
344  * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
345  * Abstraction Layer chapter 11 in ADAG
346  */
347 void *
348 efi_get_pal_addr (void)
349 {
350         void *efi_map_start, *efi_map_end, *p;
351         efi_memory_desc_t *md;
352         u64 efi_desc_size;
353         int pal_code_count = 0;
354         u64 vaddr, mask;
355 
356         efi_map_start = __va(ia64_boot_param->efi_memmap);
357         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
358         efi_desc_size = ia64_boot_param->efi_memdesc_size;
359 
360         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
361                 md = p;
362                 if (md->type != EFI_PAL_CODE)
363                         continue;
364 
365                 if (++pal_code_count > 1) {
366                         printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
367                                "dropped @ %llx\n", md->phys_addr);
368                         continue;
369                 }
370                 /*
371                  * The only ITLB entry in region 7 that is used is the one
372                  * installed by __start().  That entry covers a 64MB range.
373                  */
374                 mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
375                 vaddr = PAGE_OFFSET + md->phys_addr;
376 
377                 /*
378                  * We must check that the PAL mapping won't overlap with the
379                  * kernel mapping.
380                  *
381                  * PAL code is guaranteed to be aligned on a power of 2 between
382                  * 4k and 256KB and that only one ITR is needed to map it. This
383                  * implies that the PAL code is always aligned on its size,
384                  * i.e., the closest matching page size supported by the TLB.
385                  * Therefore PAL code is guaranteed never to cross a 64MB unless
386                  * it is bigger than 64MB (very unlikely!).  So for now the
387                  * following test is enough to determine whether or not we need
388                  * a dedicated ITR for the PAL code.
389                  */
390                 if ((vaddr & mask) == (KERNEL_START & mask)) {
391                         printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
392                                __func__);
393                         continue;
394                 }
395 
396                 if (efi_md_size(md) > IA64_GRANULE_SIZE)
397                         panic("Whoa!  PAL code size bigger than a granule!");
398 
399 #if EFI_DEBUG
400                 mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
401 
402                 printk(KERN_INFO "CPU %d: mapping PAL code "
403                        "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
404                        smp_processor_id(), md->phys_addr,
405                        md->phys_addr + efi_md_size(md),
406                        vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
407 #endif
408                 return __va(md->phys_addr);
409         }
410         printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
411                __func__);
412         return NULL;
413 }
414 
415 
416 static u8 __init palo_checksum(u8 *buffer, u32 length)
417 {
418         u8 sum = 0;
419         u8 *end = buffer + length;
420 
421         while (buffer < end)
422                 sum = (u8) (sum + *(buffer++));
423 
424         return sum;
425 }
426 
427 /*
428  * Parse and handle PALO table which is published at:
429  * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
430  */
431 static void __init handle_palo(unsigned long phys_addr)
432 {
433         struct palo_table *palo = __va(phys_addr);
434         u8  checksum;
435 
436         if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
437                 printk(KERN_INFO "PALO signature incorrect.\n");
438                 return;
439         }
440 
441         checksum = palo_checksum((u8 *)palo, palo->length);
442         if (checksum) {
443                 printk(KERN_INFO "PALO checksum incorrect.\n");
444                 return;
445         }
446 
447         setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
448 }
449 
450 void
451 efi_map_pal_code (void)
452 {
453         void *pal_vaddr = efi_get_pal_addr ();
454         u64 psr;
455 
456         if (!pal_vaddr)
457                 return;
458 
459         /*
460          * Cannot write to CRx with PSR.ic=1
461          */
462         psr = ia64_clear_ic();
463         ia64_itr(0x1, IA64_TR_PALCODE,
464                  GRANULEROUNDDOWN((unsigned long) pal_vaddr),
465                  pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
466                  IA64_GRANULE_SHIFT);
467         paravirt_dv_serialize_data();
468         ia64_set_psr(psr);              /* restore psr */
469 }
470 
471 void __init
472 efi_init (void)
473 {
474         void *efi_map_start, *efi_map_end;
475         efi_char16_t *c16;
476         u64 efi_desc_size;
477         char *cp, vendor[100] = "unknown";
478         int i;
479 
480         set_bit(EFI_BOOT, &efi.flags);
481         set_bit(EFI_64BIT, &efi.flags);
482 
483         /*
484          * It's too early to be able to use the standard kernel command line
485          * support...
486          */
487         for (cp = boot_command_line; *cp; ) {
488                 if (memcmp(cp, "mem=", 4) == 0) {
489                         mem_limit = memparse(cp + 4, &cp);
490                 } else if (memcmp(cp, "max_addr=", 9) == 0) {
491                         max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
492                 } else if (memcmp(cp, "min_addr=", 9) == 0) {
493                         min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
494                 } else {
495                         while (*cp != ' ' && *cp)
496                                 ++cp;
497                         while (*cp == ' ')
498                                 ++cp;
499                 }
500         }
501         if (min_addr != 0UL)
502                 printk(KERN_INFO "Ignoring memory below %lluMB\n",
503                        min_addr >> 20);
504         if (max_addr != ~0UL)
505                 printk(KERN_INFO "Ignoring memory above %lluMB\n",
506                        max_addr >> 20);
507 
508         efi.systab = __va(ia64_boot_param->efi_systab);
509 
510         /*
511          * Verify the EFI Table
512          */
513         if (efi.systab == NULL)
514                 panic("Whoa! Can't find EFI system table.\n");
515         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
516                 panic("Whoa! EFI system table signature incorrect\n");
517         if ((efi.systab->hdr.revision >> 16) == 0)
518                 printk(KERN_WARNING "Warning: EFI system table version "
519                        "%d.%02d, expected 1.00 or greater\n",
520                        efi.systab->hdr.revision >> 16,
521                        efi.systab->hdr.revision & 0xffff);
522 
523         /* Show what we know for posterity */
524         c16 = __va(efi.systab->fw_vendor);
525         if (c16) {
526                 for (i = 0;i < (int) sizeof(vendor) - 1 && *c16; ++i)
527                         vendor[i] = *c16++;
528                 vendor[i] = '\0';
529         }
530 
531         printk(KERN_INFO "EFI v%u.%.02u by %s:",
532                efi.systab->hdr.revision >> 16,
533                efi.systab->hdr.revision & 0xffff, vendor);
534 
535         set_bit(EFI_SYSTEM_TABLES, &efi.flags);
536 
537         palo_phys      = EFI_INVALID_TABLE_ADDR;
538 
539         if (efi_config_init(arch_tables) != 0)
540                 return;
541 
542         if (palo_phys != EFI_INVALID_TABLE_ADDR)
543                 handle_palo(palo_phys);
544 
545         runtime = __va(efi.systab->runtime);
546         efi.get_time = phys_get_time;
547         efi.set_time = phys_set_time;
548         efi.get_wakeup_time = phys_get_wakeup_time;
549         efi.set_wakeup_time = phys_set_wakeup_time;
550         efi.get_variable = phys_get_variable;
551         efi.get_next_variable = phys_get_next_variable;
552         efi.set_variable = phys_set_variable;
553         efi.get_next_high_mono_count = phys_get_next_high_mono_count;
554         efi.reset_system = phys_reset_system;
555 
556         efi_map_start = __va(ia64_boot_param->efi_memmap);
557         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
558         efi_desc_size = ia64_boot_param->efi_memdesc_size;
559 
560 #if EFI_DEBUG
561         /* print EFI memory map: */
562         {
563                 efi_memory_desc_t *md;
564                 void *p;
565 
566                 for (i = 0, p = efi_map_start; p < efi_map_end;
567                      ++i, p += efi_desc_size)
568                 {
569                         const char *unit;
570                         unsigned long size;
571                         char buf[64];
572 
573                         md = p;
574                         size = md->num_pages << EFI_PAGE_SHIFT;
575 
576                         if ((size >> 40) > 0) {
577                                 size >>= 40;
578                                 unit = "TB";
579                         } else if ((size >> 30) > 0) {
580                                 size >>= 30;
581                                 unit = "GB";
582                         } else if ((size >> 20) > 0) {
583                                 size >>= 20;
584                                 unit = "MB";
585                         } else {
586                                 size >>= 10;
587                                 unit = "KB";
588                         }
589 
590                         printk("mem%02d: %s "
591                                "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
592                                i, efi_md_typeattr_format(buf, sizeof(buf), md),
593                                md->phys_addr,
594                                md->phys_addr + efi_md_size(md), size, unit);
595                 }
596         }
597 #endif
598 
599         efi_map_pal_code();
600         efi_enter_virtual_mode();
601 }
602 
603 void
604 efi_enter_virtual_mode (void)
605 {
606         void *efi_map_start, *efi_map_end, *p;
607         efi_memory_desc_t *md;
608         efi_status_t status;
609         u64 efi_desc_size;
610 
611         efi_map_start = __va(ia64_boot_param->efi_memmap);
612         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
613         efi_desc_size = ia64_boot_param->efi_memdesc_size;
614 
615         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
616                 md = p;
617                 if (md->attribute & EFI_MEMORY_RUNTIME) {
618                         /*
619                          * Some descriptors have multiple bits set, so the
620                          * order of the tests is relevant.
621                          */
622                         if (md->attribute & EFI_MEMORY_WB) {
623                                 md->virt_addr = (u64) __va(md->phys_addr);
624                         } else if (md->attribute & EFI_MEMORY_UC) {
625                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
626                         } else if (md->attribute & EFI_MEMORY_WC) {
627 #if 0
628                                 md->virt_addr = ia64_remap(md->phys_addr,
629                                                            (_PAGE_A |
630                                                             _PAGE_P |
631                                                             _PAGE_D |
632                                                             _PAGE_MA_WC |
633                                                             _PAGE_PL_0 |
634                                                             _PAGE_AR_RW));
635 #else
636                                 printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
637                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
638 #endif
639                         } else if (md->attribute & EFI_MEMORY_WT) {
640 #if 0
641                                 md->virt_addr = ia64_remap(md->phys_addr,
642                                                            (_PAGE_A |
643                                                             _PAGE_P |
644                                                             _PAGE_D |
645                                                             _PAGE_MA_WT |
646                                                             _PAGE_PL_0 |
647                                                             _PAGE_AR_RW));
648 #else
649                                 printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
650                                 md->virt_addr = (u64) ioremap(md->phys_addr, 0);
651 #endif
652                         }
653                 }
654         }
655 
656         status = efi_call_phys(__va(runtime->set_virtual_address_map),
657                                ia64_boot_param->efi_memmap_size,
658                                efi_desc_size,
659                                ia64_boot_param->efi_memdesc_version,
660                                ia64_boot_param->efi_memmap);
661         if (status != EFI_SUCCESS) {
662                 printk(KERN_WARNING "warning: unable to switch EFI into "
663                        "virtual mode (status=%lu)\n", status);
664                 return;
665         }
666 
667         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
668 
669         /*
670          * Now that EFI is in virtual mode, we call the EFI functions more
671          * efficiently:
672          */
673         efi.get_time = virt_get_time;
674         efi.set_time = virt_set_time;
675         efi.get_wakeup_time = virt_get_wakeup_time;
676         efi.set_wakeup_time = virt_set_wakeup_time;
677         efi.get_variable = virt_get_variable;
678         efi.get_next_variable = virt_get_next_variable;
679         efi.set_variable = virt_set_variable;
680         efi.get_next_high_mono_count = virt_get_next_high_mono_count;
681         efi.reset_system = virt_reset_system;
682 }
683 
684 /*
685  * Walk the EFI memory map looking for the I/O port range.  There can only be
686  * one entry of this type, other I/O port ranges should be described via ACPI.
687  */
688 u64
689 efi_get_iobase (void)
690 {
691         void *efi_map_start, *efi_map_end, *p;
692         efi_memory_desc_t *md;
693         u64 efi_desc_size;
694 
695         efi_map_start = __va(ia64_boot_param->efi_memmap);
696         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
697         efi_desc_size = ia64_boot_param->efi_memdesc_size;
698 
699         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
700                 md = p;
701                 if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
702                         if (md->attribute & EFI_MEMORY_UC)
703                                 return md->phys_addr;
704                 }
705         }
706         return 0;
707 }
708 
709 static struct kern_memdesc *
710 kern_memory_descriptor (unsigned long phys_addr)
711 {
712         struct kern_memdesc *md;
713 
714         for (md = kern_memmap; md->start != ~0UL; md++) {
715                 if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
716                          return md;
717         }
718         return NULL;
719 }
720 
721 static efi_memory_desc_t *
722 efi_memory_descriptor (unsigned long phys_addr)
723 {
724         void *efi_map_start, *efi_map_end, *p;
725         efi_memory_desc_t *md;
726         u64 efi_desc_size;
727 
728         efi_map_start = __va(ia64_boot_param->efi_memmap);
729         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
730         efi_desc_size = ia64_boot_param->efi_memdesc_size;
731 
732         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
733                 md = p;
734 
735                 if (phys_addr - md->phys_addr < efi_md_size(md))
736                          return md;
737         }
738         return NULL;
739 }
740 
741 static int
742 efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
743 {
744         void *efi_map_start, *efi_map_end, *p;
745         efi_memory_desc_t *md;
746         u64 efi_desc_size;
747         unsigned long end;
748 
749         efi_map_start = __va(ia64_boot_param->efi_memmap);
750         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
751         efi_desc_size = ia64_boot_param->efi_memdesc_size;
752 
753         end = phys_addr + size;
754 
755         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
756                 md = p;
757                 if (md->phys_addr < end && efi_md_end(md) > phys_addr)
758                         return 1;
759         }
760         return 0;
761 }
762 
763 u32
764 efi_mem_type (unsigned long phys_addr)
765 {
766         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
767 
768         if (md)
769                 return md->type;
770         return 0;
771 }
772 
773 u64
774 efi_mem_attributes (unsigned long phys_addr)
775 {
776         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
777 
778         if (md)
779                 return md->attribute;
780         return 0;
781 }
782 EXPORT_SYMBOL(efi_mem_attributes);
783 
784 u64
785 efi_mem_attribute (unsigned long phys_addr, unsigned long size)
786 {
787         unsigned long end = phys_addr + size;
788         efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
789         u64 attr;
790 
791         if (!md)
792                 return 0;
793 
794         /*
795          * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
796          * the kernel that firmware needs this region mapped.
797          */
798         attr = md->attribute & ~EFI_MEMORY_RUNTIME;
799         do {
800                 unsigned long md_end = efi_md_end(md);
801 
802                 if (end <= md_end)
803                         return attr;
804 
805                 md = efi_memory_descriptor(md_end);
806                 if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
807                         return 0;
808         } while (md);
809         return 0;       /* never reached */
810 }
811 
812 u64
813 kern_mem_attribute (unsigned long phys_addr, unsigned long size)
814 {
815         unsigned long end = phys_addr + size;
816         struct kern_memdesc *md;
817         u64 attr;
818 
819         /*
820          * This is a hack for ioremap calls before we set up kern_memmap.
821          * Maybe we should do efi_memmap_init() earlier instead.
822          */
823         if (!kern_memmap) {
824                 attr = efi_mem_attribute(phys_addr, size);
825                 if (attr & EFI_MEMORY_WB)
826                         return EFI_MEMORY_WB;
827                 return 0;
828         }
829 
830         md = kern_memory_descriptor(phys_addr);
831         if (!md)
832                 return 0;
833 
834         attr = md->attribute;
835         do {
836                 unsigned long md_end = kmd_end(md);
837 
838                 if (end <= md_end)
839                         return attr;
840 
841                 md = kern_memory_descriptor(md_end);
842                 if (!md || md->attribute != attr)
843                         return 0;
844         } while (md);
845         return 0;       /* never reached */
846 }
847 EXPORT_SYMBOL(kern_mem_attribute);
848 
849 int
850 valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
851 {
852         u64 attr;
853 
854         /*
855          * /dev/mem reads and writes use copy_to_user(), which implicitly
856          * uses a granule-sized kernel identity mapping.  It's really
857          * only safe to do this for regions in kern_memmap.  For more
858          * details, see Documentation/ia64/aliasing.txt.
859          */
860         attr = kern_mem_attribute(phys_addr, size);
861         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
862                 return 1;
863         return 0;
864 }
865 
866 int
867 valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
868 {
869         unsigned long phys_addr = pfn << PAGE_SHIFT;
870         u64 attr;
871 
872         attr = efi_mem_attribute(phys_addr, size);
873 
874         /*
875          * /dev/mem mmap uses normal user pages, so we don't need the entire
876          * granule, but the entire region we're mapping must support the same
877          * attribute.
878          */
879         if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
880                 return 1;
881 
882         /*
883          * Intel firmware doesn't tell us about all the MMIO regions, so
884          * in general we have to allow mmap requests.  But if EFI *does*
885          * tell us about anything inside this region, we should deny it.
886          * The user can always map a smaller region to avoid the overlap.
887          */
888         if (efi_memmap_intersects(phys_addr, size))
889                 return 0;
890 
891         return 1;
892 }
893 
894 pgprot_t
895 phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
896                      pgprot_t vma_prot)
897 {
898         unsigned long phys_addr = pfn << PAGE_SHIFT;
899         u64 attr;
900 
901         /*
902          * For /dev/mem mmap, we use user mappings, but if the region is
903          * in kern_memmap (and hence may be covered by a kernel mapping),
904          * we must use the same attribute as the kernel mapping.
905          */
906         attr = kern_mem_attribute(phys_addr, size);
907         if (attr & EFI_MEMORY_WB)
908                 return pgprot_cacheable(vma_prot);
909         else if (attr & EFI_MEMORY_UC)
910                 return pgprot_noncached(vma_prot);
911 
912         /*
913          * Some chipsets don't support UC access to memory.  If
914          * WB is supported, we prefer that.
915          */
916         if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
917                 return pgprot_cacheable(vma_prot);
918 
919         return pgprot_noncached(vma_prot);
920 }
921 
922 int __init
923 efi_uart_console_only(void)
924 {
925         efi_status_t status;
926         char *s, name[] = "ConOut";
927         efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
928         efi_char16_t *utf16, name_utf16[32];
929         unsigned char data[1024];
930         unsigned long size = sizeof(data);
931         struct efi_generic_dev_path *hdr, *end_addr;
932         int uart = 0;
933 
934         /* Convert to UTF-16 */
935         utf16 = name_utf16;
936         s = name;
937         while (*s)
938                 *utf16++ = *s++ & 0x7f;
939         *utf16 = 0;
940 
941         status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
942         if (status != EFI_SUCCESS) {
943                 printk(KERN_ERR "No EFI %s variable?\n", name);
944                 return 0;
945         }
946 
947         hdr = (struct efi_generic_dev_path *) data;
948         end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
949         while (hdr < end_addr) {
950                 if (hdr->type == EFI_DEV_MSG &&
951                     hdr->sub_type == EFI_DEV_MSG_UART)
952                         uart = 1;
953                 else if (hdr->type == EFI_DEV_END_PATH ||
954                           hdr->type == EFI_DEV_END_PATH2) {
955                         if (!uart)
956                                 return 0;
957                         if (hdr->sub_type == EFI_DEV_END_ENTIRE)
958                                 return 1;
959                         uart = 0;
960                 }
961                 hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
962         }
963         printk(KERN_ERR "Malformed %s value\n", name);
964         return 0;
965 }
966 
967 /*
968  * Look for the first granule aligned memory descriptor memory
969  * that is big enough to hold EFI memory map. Make sure this
970  * descriptor is atleast granule sized so it does not get trimmed
971  */
972 struct kern_memdesc *
973 find_memmap_space (void)
974 {
975         u64     contig_low=0, contig_high=0;
976         u64     as = 0, ae;
977         void *efi_map_start, *efi_map_end, *p, *q;
978         efi_memory_desc_t *md, *pmd = NULL, *check_md;
979         u64     space_needed, efi_desc_size;
980         unsigned long total_mem = 0;
981 
982         efi_map_start = __va(ia64_boot_param->efi_memmap);
983         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
984         efi_desc_size = ia64_boot_param->efi_memdesc_size;
985 
986         /*
987          * Worst case: we need 3 kernel descriptors for each efi descriptor
988          * (if every entry has a WB part in the middle, and UC head and tail),
989          * plus one for the end marker.
990          */
991         space_needed = sizeof(kern_memdesc_t) *
992                 (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
993 
994         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
995                 md = p;
996                 if (!efi_wb(md)) {
997                         continue;
998                 }
999                 if (pmd == NULL || !efi_wb(pmd) ||
1000                     efi_md_end(pmd) != md->phys_addr) {
1001                         contig_low = GRANULEROUNDUP(md->phys_addr);
1002                         contig_high = efi_md_end(md);
1003                         for (q = p + efi_desc_size; q < efi_map_end;
1004                              q += efi_desc_size) {
1005                                 check_md = q;
1006                                 if (!efi_wb(check_md))
1007                                         break;
1008                                 if (contig_high != check_md->phys_addr)
1009                                         break;
1010                                 contig_high = efi_md_end(check_md);
1011                         }
1012                         contig_high = GRANULEROUNDDOWN(contig_high);
1013                 }
1014                 if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1015                         continue;
1016 
1017                 /* Round ends inward to granule boundaries */
1018                 as = max(contig_low, md->phys_addr);
1019                 ae = min(contig_high, efi_md_end(md));
1020 
1021                 /* keep within max_addr= and min_addr= command line arg */
1022                 as = max(as, min_addr);
1023                 ae = min(ae, max_addr);
1024                 if (ae <= as)
1025                         continue;
1026 
1027                 /* avoid going over mem= command line arg */
1028                 if (total_mem + (ae - as) > mem_limit)
1029                         ae -= total_mem + (ae - as) - mem_limit;
1030 
1031                 if (ae <= as)
1032                         continue;
1033 
1034                 if (ae - as > space_needed)
1035                         break;
1036         }
1037         if (p >= efi_map_end)
1038                 panic("Can't allocate space for kernel memory descriptors");
1039 
1040         return __va(as);
1041 }
1042 
1043 /*
1044  * Walk the EFI memory map and gather all memory available for kernel
1045  * to use.  We can allocate partial granules only if the unavailable
1046  * parts exist, and are WB.
1047  */
1048 unsigned long
1049 efi_memmap_init(u64 *s, u64 *e)
1050 {
1051         struct kern_memdesc *k, *prev = NULL;
1052         u64     contig_low=0, contig_high=0;
1053         u64     as, ae, lim;
1054         void *efi_map_start, *efi_map_end, *p, *q;
1055         efi_memory_desc_t *md, *pmd = NULL, *check_md;
1056         u64     efi_desc_size;
1057         unsigned long total_mem = 0;
1058 
1059         k = kern_memmap = find_memmap_space();
1060 
1061         efi_map_start = __va(ia64_boot_param->efi_memmap);
1062         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1063         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1064 
1065         for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1066                 md = p;
1067                 if (!efi_wb(md)) {
1068                         if (efi_uc(md) &&
1069                             (md->type == EFI_CONVENTIONAL_MEMORY ||
1070                              md->type == EFI_BOOT_SERVICES_DATA)) {
1071                                 k->attribute = EFI_MEMORY_UC;
1072                                 k->start = md->phys_addr;
1073                                 k->num_pages = md->num_pages;
1074                                 k++;
1075                         }
1076                         continue;
1077                 }
1078                 if (pmd == NULL || !efi_wb(pmd) ||
1079                     efi_md_end(pmd) != md->phys_addr) {
1080                         contig_low = GRANULEROUNDUP(md->phys_addr);
1081                         contig_high = efi_md_end(md);
1082                         for (q = p + efi_desc_size; q < efi_map_end;
1083                              q += efi_desc_size) {
1084                                 check_md = q;
1085                                 if (!efi_wb(check_md))
1086                                         break;
1087                                 if (contig_high != check_md->phys_addr)
1088                                         break;
1089                                 contig_high = efi_md_end(check_md);
1090                         }
1091                         contig_high = GRANULEROUNDDOWN(contig_high);
1092                 }
1093                 if (!is_memory_available(md))
1094                         continue;
1095 
1096                 /*
1097                  * Round ends inward to granule boundaries
1098                  * Give trimmings to uncached allocator
1099                  */
1100                 if (md->phys_addr < contig_low) {
1101                         lim = min(efi_md_end(md), contig_low);
1102                         if (efi_uc(md)) {
1103                                 if (k > kern_memmap &&
1104                                     (k-1)->attribute == EFI_MEMORY_UC &&
1105                                     kmd_end(k-1) == md->phys_addr) {
1106                                         (k-1)->num_pages +=
1107                                                 (lim - md->phys_addr)
1108                                                 >> EFI_PAGE_SHIFT;
1109                                 } else {
1110                                         k->attribute = EFI_MEMORY_UC;
1111                                         k->start = md->phys_addr;
1112                                         k->num_pages = (lim - md->phys_addr)
1113                                                 >> EFI_PAGE_SHIFT;
1114                                         k++;
1115                                 }
1116                         }
1117                         as = contig_low;
1118                 } else
1119                         as = md->phys_addr;
1120 
1121                 if (efi_md_end(md) > contig_high) {
1122                         lim = max(md->phys_addr, contig_high);
1123                         if (efi_uc(md)) {
1124                                 if (lim == md->phys_addr && k > kern_memmap &&
1125                                     (k-1)->attribute == EFI_MEMORY_UC &&
1126                                     kmd_end(k-1) == md->phys_addr) {
1127                                         (k-1)->num_pages += md->num_pages;
1128                                 } else {
1129                                         k->attribute = EFI_MEMORY_UC;
1130                                         k->start = lim;
1131                                         k->num_pages = (efi_md_end(md) - lim)
1132                                                 >> EFI_PAGE_SHIFT;
1133                                         k++;
1134                                 }
1135                         }
1136                         ae = contig_high;
1137                 } else
1138                         ae = efi_md_end(md);
1139 
1140                 /* keep within max_addr= and min_addr= command line arg */
1141                 as = max(as, min_addr);
1142                 ae = min(ae, max_addr);
1143                 if (ae <= as)
1144                         continue;
1145 
1146                 /* avoid going over mem= command line arg */
1147                 if (total_mem + (ae - as) > mem_limit)
1148                         ae -= total_mem + (ae - as) - mem_limit;
1149 
1150                 if (ae <= as)
1151                         continue;
1152                 if (prev && kmd_end(prev) == md->phys_addr) {
1153                         prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1154                         total_mem += ae - as;
1155                         continue;
1156                 }
1157                 k->attribute = EFI_MEMORY_WB;
1158                 k->start = as;
1159                 k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1160                 total_mem += ae - as;
1161                 prev = k++;
1162         }
1163         k->start = ~0L; /* end-marker */
1164 
1165         /* reserve the memory we are using for kern_memmap */
1166         *s = (u64)kern_memmap;
1167         *e = (u64)++k;
1168 
1169         return total_mem;
1170 }
1171 
1172 void
1173 efi_initialize_iomem_resources(struct resource *code_resource,
1174                                struct resource *data_resource,
1175                                struct resource *bss_resource)
1176 {
1177         struct resource *res;
1178         void *efi_map_start, *efi_map_end, *p;
1179         efi_memory_desc_t *md;
1180         u64 efi_desc_size;
1181         char *name;
1182         unsigned long flags;
1183 
1184         efi_map_start = __va(ia64_boot_param->efi_memmap);
1185         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1186         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1187 
1188         res = NULL;
1189 
1190         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1191                 md = p;
1192 
1193                 if (md->num_pages == 0) /* should not happen */
1194                         continue;
1195 
1196                 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1197                 switch (md->type) {
1198 
1199                         case EFI_MEMORY_MAPPED_IO:
1200                         case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1201                                 continue;
1202 
1203                         case EFI_LOADER_CODE:
1204                         case EFI_LOADER_DATA:
1205                         case EFI_BOOT_SERVICES_DATA:
1206                         case EFI_BOOT_SERVICES_CODE:
1207                         case EFI_CONVENTIONAL_MEMORY:
1208                                 if (md->attribute & EFI_MEMORY_WP) {
1209                                         name = "System ROM";
1210                                         flags |= IORESOURCE_READONLY;
1211                                 } else if (md->attribute == EFI_MEMORY_UC)
1212                                         name = "Uncached RAM";
1213                                 else
1214                                         name = "System RAM";
1215                                 break;
1216 
1217                         case EFI_ACPI_MEMORY_NVS:
1218                                 name = "ACPI Non-volatile Storage";
1219                                 break;
1220 
1221                         case EFI_UNUSABLE_MEMORY:
1222                                 name = "reserved";
1223                                 flags |= IORESOURCE_DISABLED;
1224                                 break;
1225 
1226                         case EFI_RESERVED_TYPE:
1227                         case EFI_RUNTIME_SERVICES_CODE:
1228                         case EFI_RUNTIME_SERVICES_DATA:
1229                         case EFI_ACPI_RECLAIM_MEMORY:
1230                         default:
1231                                 name = "reserved";
1232                                 break;
1233                 }
1234 
1235                 if ((res = kzalloc(sizeof(struct resource),
1236                                    GFP_KERNEL)) == NULL) {
1237                         printk(KERN_ERR
1238                                "failed to allocate resource for iomem\n");
1239                         return;
1240                 }
1241 
1242                 res->name = name;
1243                 res->start = md->phys_addr;
1244                 res->end = md->phys_addr + efi_md_size(md) - 1;
1245                 res->flags = flags;
1246 
1247                 if (insert_resource(&iomem_resource, res) < 0)
1248                         kfree(res);
1249                 else {
1250                         /*
1251                          * We don't know which region contains
1252                          * kernel data so we try it repeatedly and
1253                          * let the resource manager test it.
1254                          */
1255                         insert_resource(res, code_resource);
1256                         insert_resource(res, data_resource);
1257                         insert_resource(res, bss_resource);
1258 #ifdef CONFIG_KEXEC
1259                         insert_resource(res, &efi_memmap_res);
1260                         insert_resource(res, &boot_param_res);
1261                         if (crashk_res.end > crashk_res.start)
1262                                 insert_resource(res, &crashk_res);
1263 #endif
1264                 }
1265         }
1266 }
1267 
1268 #ifdef CONFIG_KEXEC
1269 /* find a block of memory aligned to 64M exclude reserved regions
1270    rsvd_regions are sorted
1271  */
1272 unsigned long __init
1273 kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1274 {
1275         int i;
1276         u64 start, end;
1277         u64 alignment = 1UL << _PAGE_SIZE_64M;
1278         void *efi_map_start, *efi_map_end, *p;
1279         efi_memory_desc_t *md;
1280         u64 efi_desc_size;
1281 
1282         efi_map_start = __va(ia64_boot_param->efi_memmap);
1283         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1284         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1285 
1286         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1287                 md = p;
1288                 if (!efi_wb(md))
1289                         continue;
1290                 start = ALIGN(md->phys_addr, alignment);
1291                 end = efi_md_end(md);
1292                 for (i = 0; i < n; i++) {
1293                         if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1294                                 if (__pa(r[i].start) > start + size)
1295                                         return start;
1296                                 start = ALIGN(__pa(r[i].end), alignment);
1297                                 if (i < n-1 &&
1298                                     __pa(r[i+1].start) < start + size)
1299                                         continue;
1300                                 else
1301                                         break;
1302                         }
1303                 }
1304                 if (end > start + size)
1305                         return start;
1306         }
1307 
1308         printk(KERN_WARNING
1309                "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1310         return ~0UL;
1311 }
1312 #endif
1313 
1314 #ifdef CONFIG_CRASH_DUMP
1315 /* locate the size find a the descriptor at a certain address */
1316 unsigned long __init
1317 vmcore_find_descriptor_size (unsigned long address)
1318 {
1319         void *efi_map_start, *efi_map_end, *p;
1320         efi_memory_desc_t *md;
1321         u64 efi_desc_size;
1322         unsigned long ret = 0;
1323 
1324         efi_map_start = __va(ia64_boot_param->efi_memmap);
1325         efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1326         efi_desc_size = ia64_boot_param->efi_memdesc_size;
1327 
1328         for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1329                 md = p;
1330                 if (efi_wb(md) && md->type == EFI_LOADER_DATA
1331                     && md->phys_addr == address) {
1332                         ret = efi_md_size(md);
1333                         break;
1334                 }
1335         }
1336 
1337         if (ret == 0)
1338                 printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1339 
1340         return ret;
1341 }
1342 #endif
1343 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp