~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/ia64/kvm/kvm-ia64.c

Version: ~ [ linux-5.4-rc7 ] ~ [ linux-5.3.11 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.84 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.154 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.201 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.201 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.77 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * kvm_ia64.c: Basic KVM support On Itanium series processors
  3  *
  4  *
  5  *      Copyright (C) 2007, Intel Corporation.
  6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
  7  *
  8  * This program is free software; you can redistribute it and/or modify it
  9  * under the terms and conditions of the GNU General Public License,
 10  * version 2, as published by the Free Software Foundation.
 11  *
 12  * This program is distributed in the hope it will be useful, but WITHOUT
 13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 15  * more details.
 16  *
 17  * You should have received a copy of the GNU General Public License along with
 18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 19  * Place - Suite 330, Boston, MA 02111-1307 USA.
 20  *
 21  */
 22 
 23 #include <linux/module.h>
 24 #include <linux/errno.h>
 25 #include <linux/percpu.h>
 26 #include <linux/fs.h>
 27 #include <linux/slab.h>
 28 #include <linux/smp.h>
 29 #include <linux/kvm_host.h>
 30 #include <linux/kvm.h>
 31 #include <linux/bitops.h>
 32 #include <linux/hrtimer.h>
 33 #include <linux/uaccess.h>
 34 #include <linux/iommu.h>
 35 #include <linux/intel-iommu.h>
 36 #include <linux/pci.h>
 37 
 38 #include <asm/pgtable.h>
 39 #include <asm/gcc_intrin.h>
 40 #include <asm/pal.h>
 41 #include <asm/cacheflush.h>
 42 #include <asm/div64.h>
 43 #include <asm/tlb.h>
 44 #include <asm/elf.h>
 45 #include <asm/sn/addrs.h>
 46 #include <asm/sn/clksupport.h>
 47 #include <asm/sn/shub_mmr.h>
 48 
 49 #include "misc.h"
 50 #include "vti.h"
 51 #include "iodev.h"
 52 #include "ioapic.h"
 53 #include "lapic.h"
 54 #include "irq.h"
 55 
 56 static unsigned long kvm_vmm_base;
 57 static unsigned long kvm_vsa_base;
 58 static unsigned long kvm_vm_buffer;
 59 static unsigned long kvm_vm_buffer_size;
 60 unsigned long kvm_vmm_gp;
 61 
 62 static long vp_env_info;
 63 
 64 static struct kvm_vmm_info *kvm_vmm_info;
 65 
 66 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
 67 
 68 struct kvm_stats_debugfs_item debugfs_entries[] = {
 69         { NULL }
 70 };
 71 
 72 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
 73 {
 74 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
 75         if (vcpu->kvm->arch.is_sn2)
 76                 return rtc_time();
 77         else
 78 #endif
 79                 return ia64_getreg(_IA64_REG_AR_ITC);
 80 }
 81 
 82 static void kvm_flush_icache(unsigned long start, unsigned long len)
 83 {
 84         int l;
 85 
 86         for (l = 0; l < (len + 32); l += 32)
 87                 ia64_fc((void *)(start + l));
 88 
 89         ia64_sync_i();
 90         ia64_srlz_i();
 91 }
 92 
 93 static void kvm_flush_tlb_all(void)
 94 {
 95         unsigned long i, j, count0, count1, stride0, stride1, addr;
 96         long flags;
 97 
 98         addr    = local_cpu_data->ptce_base;
 99         count0  = local_cpu_data->ptce_count[0];
100         count1  = local_cpu_data->ptce_count[1];
101         stride0 = local_cpu_data->ptce_stride[0];
102         stride1 = local_cpu_data->ptce_stride[1];
103 
104         local_irq_save(flags);
105         for (i = 0; i < count0; ++i) {
106                 for (j = 0; j < count1; ++j) {
107                         ia64_ptce(addr);
108                         addr += stride1;
109                 }
110                 addr += stride0;
111         }
112         local_irq_restore(flags);
113         ia64_srlz_i();                  /* srlz.i implies srlz.d */
114 }
115 
116 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
117 {
118         struct ia64_pal_retval iprv;
119 
120         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
121                         (u64)opt_handler);
122 
123         return iprv.status;
124 }
125 
126 static  DEFINE_SPINLOCK(vp_lock);
127 
128 int kvm_arch_hardware_enable(void *garbage)
129 {
130         long  status;
131         long  tmp_base;
132         unsigned long pte;
133         unsigned long saved_psr;
134         int slot;
135 
136         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
137         local_irq_save(saved_psr);
138         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
139         local_irq_restore(saved_psr);
140         if (slot < 0)
141                 return -EINVAL;
142 
143         spin_lock(&vp_lock);
144         status = ia64_pal_vp_init_env(kvm_vsa_base ?
145                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
146                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
147         if (status != 0) {
148                 spin_unlock(&vp_lock);
149                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
150                 return -EINVAL;
151         }
152 
153         if (!kvm_vsa_base) {
154                 kvm_vsa_base = tmp_base;
155                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
156         }
157         spin_unlock(&vp_lock);
158         ia64_ptr_entry(0x3, slot);
159 
160         return 0;
161 }
162 
163 void kvm_arch_hardware_disable(void *garbage)
164 {
165 
166         long status;
167         int slot;
168         unsigned long pte;
169         unsigned long saved_psr;
170         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
171 
172         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
173                                 PAGE_KERNEL));
174 
175         local_irq_save(saved_psr);
176         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
177         local_irq_restore(saved_psr);
178         if (slot < 0)
179                 return;
180 
181         status = ia64_pal_vp_exit_env(host_iva);
182         if (status)
183                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
184                                 status);
185         ia64_ptr_entry(0x3, slot);
186 }
187 
188 void kvm_arch_check_processor_compat(void *rtn)
189 {
190         *(int *)rtn = 0;
191 }
192 
193 int kvm_dev_ioctl_check_extension(long ext)
194 {
195 
196         int r;
197 
198         switch (ext) {
199         case KVM_CAP_IRQCHIP:
200         case KVM_CAP_MP_STATE:
201         case KVM_CAP_IRQ_INJECT_STATUS:
202                 r = 1;
203                 break;
204         case KVM_CAP_COALESCED_MMIO:
205                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
206                 break;
207 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
208         case KVM_CAP_IOMMU:
209                 r = iommu_present(&pci_bus_type);
210                 break;
211 #endif
212         default:
213                 r = 0;
214         }
215         return r;
216 
217 }
218 
219 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
220 {
221         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
222         kvm_run->hw.hardware_exit_reason = 1;
223         return 0;
224 }
225 
226 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
227 {
228         struct kvm_mmio_req *p;
229         struct kvm_io_device *mmio_dev;
230         int r;
231 
232         p = kvm_get_vcpu_ioreq(vcpu);
233 
234         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
235                 goto mmio;
236         vcpu->mmio_needed = 1;
237         vcpu->mmio_fragments[0].gpa = kvm_run->mmio.phys_addr = p->addr;
238         vcpu->mmio_fragments[0].len = kvm_run->mmio.len = p->size;
239         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
240 
241         if (vcpu->mmio_is_write)
242                 memcpy(vcpu->arch.mmio_data, &p->data, p->size);
243         memcpy(kvm_run->mmio.data, &p->data, p->size);
244         kvm_run->exit_reason = KVM_EXIT_MMIO;
245         return 0;
246 mmio:
247         if (p->dir)
248                 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
249                                     p->size, &p->data);
250         else
251                 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
252                                      p->size, &p->data);
253         if (r)
254                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
255         p->state = STATE_IORESP_READY;
256 
257         return 1;
258 }
259 
260 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
261 {
262         struct exit_ctl_data *p;
263 
264         p = kvm_get_exit_data(vcpu);
265 
266         if (p->exit_reason == EXIT_REASON_PAL_CALL)
267                 return kvm_pal_emul(vcpu, kvm_run);
268         else {
269                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
270                 kvm_run->hw.hardware_exit_reason = 2;
271                 return 0;
272         }
273 }
274 
275 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
276 {
277         struct exit_ctl_data *p;
278 
279         p = kvm_get_exit_data(vcpu);
280 
281         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
282                 kvm_sal_emul(vcpu);
283                 return 1;
284         } else {
285                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
286                 kvm_run->hw.hardware_exit_reason = 3;
287                 return 0;
288         }
289 
290 }
291 
292 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
293 {
294         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
295 
296         if (!test_and_set_bit(vector, &vpd->irr[0])) {
297                 vcpu->arch.irq_new_pending = 1;
298                 kvm_vcpu_kick(vcpu);
299                 return 1;
300         }
301         return 0;
302 }
303 
304 /*
305  *  offset: address offset to IPI space.
306  *  value:  deliver value.
307  */
308 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
309                                 uint64_t vector)
310 {
311         switch (dm) {
312         case SAPIC_FIXED:
313                 break;
314         case SAPIC_NMI:
315                 vector = 2;
316                 break;
317         case SAPIC_EXTINT:
318                 vector = 0;
319                 break;
320         case SAPIC_INIT:
321         case SAPIC_PMI:
322         default:
323                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
324                 return;
325         }
326         __apic_accept_irq(vcpu, vector);
327 }
328 
329 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
330                         unsigned long eid)
331 {
332         union ia64_lid lid;
333         int i;
334         struct kvm_vcpu *vcpu;
335 
336         kvm_for_each_vcpu(i, vcpu, kvm) {
337                 lid.val = VCPU_LID(vcpu);
338                 if (lid.id == id && lid.eid == eid)
339                         return vcpu;
340         }
341 
342         return NULL;
343 }
344 
345 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
346 {
347         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
348         struct kvm_vcpu *target_vcpu;
349         struct kvm_pt_regs *regs;
350         union ia64_ipi_a addr = p->u.ipi_data.addr;
351         union ia64_ipi_d data = p->u.ipi_data.data;
352 
353         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
354         if (!target_vcpu)
355                 return handle_vm_error(vcpu, kvm_run);
356 
357         if (!target_vcpu->arch.launched) {
358                 regs = vcpu_regs(target_vcpu);
359 
360                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
361                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
362 
363                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
364                 if (waitqueue_active(&target_vcpu->wq))
365                         wake_up_interruptible(&target_vcpu->wq);
366         } else {
367                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
368                 if (target_vcpu != vcpu)
369                         kvm_vcpu_kick(target_vcpu);
370         }
371 
372         return 1;
373 }
374 
375 struct call_data {
376         struct kvm_ptc_g ptc_g_data;
377         struct kvm_vcpu *vcpu;
378 };
379 
380 static void vcpu_global_purge(void *info)
381 {
382         struct call_data *p = (struct call_data *)info;
383         struct kvm_vcpu *vcpu = p->vcpu;
384 
385         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
386                 return;
387 
388         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
389         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
390                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
391                                                         p->ptc_g_data;
392         } else {
393                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
394                 vcpu->arch.ptc_g_count = 0;
395                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
396         }
397 }
398 
399 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
400 {
401         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
402         struct kvm *kvm = vcpu->kvm;
403         struct call_data call_data;
404         int i;
405         struct kvm_vcpu *vcpui;
406 
407         call_data.ptc_g_data = p->u.ptc_g_data;
408 
409         kvm_for_each_vcpu(i, vcpui, kvm) {
410                 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
411                                 vcpu == vcpui)
412                         continue;
413 
414                 if (waitqueue_active(&vcpui->wq))
415                         wake_up_interruptible(&vcpui->wq);
416 
417                 if (vcpui->cpu != -1) {
418                         call_data.vcpu = vcpui;
419                         smp_call_function_single(vcpui->cpu,
420                                         vcpu_global_purge, &call_data, 1);
421                 } else
422                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
423 
424         }
425         return 1;
426 }
427 
428 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
429 {
430         return 1;
431 }
432 
433 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
434 {
435         unsigned long pte, rtc_phys_addr, map_addr;
436         int slot;
437 
438         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
439         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
440         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
441         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
442         vcpu->arch.sn_rtc_tr_slot = slot;
443         if (slot < 0) {
444                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
445                 slot = 0;
446         }
447         return slot;
448 }
449 
450 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
451 {
452 
453         ktime_t kt;
454         long itc_diff;
455         unsigned long vcpu_now_itc;
456         unsigned long expires;
457         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
458         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
459         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
460 
461         if (irqchip_in_kernel(vcpu->kvm)) {
462 
463                 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
464 
465                 if (time_after(vcpu_now_itc, vpd->itm)) {
466                         vcpu->arch.timer_check = 1;
467                         return 1;
468                 }
469                 itc_diff = vpd->itm - vcpu_now_itc;
470                 if (itc_diff < 0)
471                         itc_diff = -itc_diff;
472 
473                 expires = div64_u64(itc_diff, cyc_per_usec);
474                 kt = ktime_set(0, 1000 * expires);
475 
476                 vcpu->arch.ht_active = 1;
477                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
478 
479                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
480                 kvm_vcpu_block(vcpu);
481                 hrtimer_cancel(p_ht);
482                 vcpu->arch.ht_active = 0;
483 
484                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
485                                 kvm_cpu_has_pending_timer(vcpu))
486                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
487                                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
488 
489                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
490                         return -EINTR;
491                 return 1;
492         } else {
493                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
494                 return 0;
495         }
496 }
497 
498 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
499                 struct kvm_run *kvm_run)
500 {
501         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
502         return 0;
503 }
504 
505 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
506                 struct kvm_run *kvm_run)
507 {
508         return 1;
509 }
510 
511 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
512                                 struct kvm_run *kvm_run)
513 {
514         printk("VMM: %s", vcpu->arch.log_buf);
515         return 1;
516 }
517 
518 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
519                 struct kvm_run *kvm_run) = {
520         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
521         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
522         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
523         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
524         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
525         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
526         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
527         [EXIT_REASON_IPI]                   = handle_ipi,
528         [EXIT_REASON_PTC_G]                 = handle_global_purge,
529         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
530 
531 };
532 
533 static const int kvm_vti_max_exit_handlers =
534                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
535 
536 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
537 {
538         struct exit_ctl_data *p_exit_data;
539 
540         p_exit_data = kvm_get_exit_data(vcpu);
541         return p_exit_data->exit_reason;
542 }
543 
544 /*
545  * The guest has exited.  See if we can fix it or if we need userspace
546  * assistance.
547  */
548 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
549 {
550         u32 exit_reason = kvm_get_exit_reason(vcpu);
551         vcpu->arch.last_exit = exit_reason;
552 
553         if (exit_reason < kvm_vti_max_exit_handlers
554                         && kvm_vti_exit_handlers[exit_reason])
555                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
556         else {
557                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
558                 kvm_run->hw.hardware_exit_reason = exit_reason;
559         }
560         return 0;
561 }
562 
563 static inline void vti_set_rr6(unsigned long rr6)
564 {
565         ia64_set_rr(RR6, rr6);
566         ia64_srlz_i();
567 }
568 
569 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
570 {
571         unsigned long pte;
572         struct kvm *kvm = vcpu->kvm;
573         int r;
574 
575         /*Insert a pair of tr to map vmm*/
576         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
577         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
578         if (r < 0)
579                 goto out;
580         vcpu->arch.vmm_tr_slot = r;
581         /*Insert a pairt of tr to map data of vm*/
582         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
583         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
584                                         pte, KVM_VM_DATA_SHIFT);
585         if (r < 0)
586                 goto out;
587         vcpu->arch.vm_tr_slot = r;
588 
589 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
590         if (kvm->arch.is_sn2) {
591                 r = kvm_sn2_setup_mappings(vcpu);
592                 if (r < 0)
593                         goto out;
594         }
595 #endif
596 
597         r = 0;
598 out:
599         return r;
600 }
601 
602 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
603 {
604         struct kvm *kvm = vcpu->kvm;
605         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
606         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
607 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
608         if (kvm->arch.is_sn2)
609                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
610 #endif
611 }
612 
613 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
614 {
615         unsigned long psr;
616         int r;
617         int cpu = smp_processor_id();
618 
619         if (vcpu->arch.last_run_cpu != cpu ||
620                         per_cpu(last_vcpu, cpu) != vcpu) {
621                 per_cpu(last_vcpu, cpu) = vcpu;
622                 vcpu->arch.last_run_cpu = cpu;
623                 kvm_flush_tlb_all();
624         }
625 
626         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
627         vti_set_rr6(vcpu->arch.vmm_rr);
628         local_irq_save(psr);
629         r = kvm_insert_vmm_mapping(vcpu);
630         local_irq_restore(psr);
631         return r;
632 }
633 
634 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
635 {
636         kvm_purge_vmm_mapping(vcpu);
637         vti_set_rr6(vcpu->arch.host_rr6);
638 }
639 
640 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
641 {
642         union context *host_ctx, *guest_ctx;
643         int r, idx;
644 
645         idx = srcu_read_lock(&vcpu->kvm->srcu);
646 
647 again:
648         if (signal_pending(current)) {
649                 r = -EINTR;
650                 kvm_run->exit_reason = KVM_EXIT_INTR;
651                 goto out;
652         }
653 
654         preempt_disable();
655         local_irq_disable();
656 
657         /*Get host and guest context with guest address space.*/
658         host_ctx = kvm_get_host_context(vcpu);
659         guest_ctx = kvm_get_guest_context(vcpu);
660 
661         clear_bit(KVM_REQ_KICK, &vcpu->requests);
662 
663         r = kvm_vcpu_pre_transition(vcpu);
664         if (r < 0)
665                 goto vcpu_run_fail;
666 
667         srcu_read_unlock(&vcpu->kvm->srcu, idx);
668         vcpu->mode = IN_GUEST_MODE;
669         kvm_guest_enter();
670 
671         /*
672          * Transition to the guest
673          */
674         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
675 
676         kvm_vcpu_post_transition(vcpu);
677 
678         vcpu->arch.launched = 1;
679         set_bit(KVM_REQ_KICK, &vcpu->requests);
680         local_irq_enable();
681 
682         /*
683          * We must have an instruction between local_irq_enable() and
684          * kvm_guest_exit(), so the timer interrupt isn't delayed by
685          * the interrupt shadow.  The stat.exits increment will do nicely.
686          * But we need to prevent reordering, hence this barrier():
687          */
688         barrier();
689         kvm_guest_exit();
690         vcpu->mode = OUTSIDE_GUEST_MODE;
691         preempt_enable();
692 
693         idx = srcu_read_lock(&vcpu->kvm->srcu);
694 
695         r = kvm_handle_exit(kvm_run, vcpu);
696 
697         if (r > 0) {
698                 if (!need_resched())
699                         goto again;
700         }
701 
702 out:
703         srcu_read_unlock(&vcpu->kvm->srcu, idx);
704         if (r > 0) {
705                 kvm_resched(vcpu);
706                 idx = srcu_read_lock(&vcpu->kvm->srcu);
707                 goto again;
708         }
709 
710         return r;
711 
712 vcpu_run_fail:
713         local_irq_enable();
714         preempt_enable();
715         kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
716         goto out;
717 }
718 
719 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
720 {
721         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
722 
723         if (!vcpu->mmio_is_write)
724                 memcpy(&p->data, vcpu->arch.mmio_data, 8);
725         p->state = STATE_IORESP_READY;
726 }
727 
728 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
729 {
730         int r;
731         sigset_t sigsaved;
732 
733         if (vcpu->sigset_active)
734                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
735 
736         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
737                 kvm_vcpu_block(vcpu);
738                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
739                 r = -EAGAIN;
740                 goto out;
741         }
742 
743         if (vcpu->mmio_needed) {
744                 memcpy(vcpu->arch.mmio_data, kvm_run->mmio.data, 8);
745                 kvm_set_mmio_data(vcpu);
746                 vcpu->mmio_read_completed = 1;
747                 vcpu->mmio_needed = 0;
748         }
749         r = __vcpu_run(vcpu, kvm_run);
750 out:
751         if (vcpu->sigset_active)
752                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
753 
754         return r;
755 }
756 
757 struct kvm *kvm_arch_alloc_vm(void)
758 {
759 
760         struct kvm *kvm;
761         uint64_t  vm_base;
762 
763         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
764 
765         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
766 
767         if (!vm_base)
768                 return NULL;
769 
770         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
771         kvm = (struct kvm *)(vm_base +
772                         offsetof(struct kvm_vm_data, kvm_vm_struct));
773         kvm->arch.vm_base = vm_base;
774         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
775 
776         return kvm;
777 }
778 
779 struct kvm_ia64_io_range {
780         unsigned long start;
781         unsigned long size;
782         unsigned long type;
783 };
784 
785 static const struct kvm_ia64_io_range io_ranges[] = {
786         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
787         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
788         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
789         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
790         {PIB_START, PIB_SIZE, GPFN_PIB},
791 };
792 
793 static void kvm_build_io_pmt(struct kvm *kvm)
794 {
795         unsigned long i, j;
796 
797         /* Mark I/O ranges */
798         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
799                                                         i++) {
800                 for (j = io_ranges[i].start;
801                                 j < io_ranges[i].start + io_ranges[i].size;
802                                 j += PAGE_SIZE)
803                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
804                                         io_ranges[i].type, 0);
805         }
806 
807 }
808 
809 /*Use unused rids to virtualize guest rid.*/
810 #define GUEST_PHYSICAL_RR0      0x1739
811 #define GUEST_PHYSICAL_RR4      0x2739
812 #define VMM_INIT_RR             0x1660
813 
814 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
815 {
816         BUG_ON(!kvm);
817 
818         if (type)
819                 return -EINVAL;
820 
821         kvm->arch.is_sn2 = ia64_platform_is("sn2");
822 
823         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
824         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
825         kvm->arch.vmm_init_rr = VMM_INIT_RR;
826 
827         /*
828          *Fill P2M entries for MMIO/IO ranges
829          */
830         kvm_build_io_pmt(kvm);
831 
832         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
833 
834         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
835         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
836 
837         return 0;
838 }
839 
840 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
841                                         struct kvm_irqchip *chip)
842 {
843         int r;
844 
845         r = 0;
846         switch (chip->chip_id) {
847         case KVM_IRQCHIP_IOAPIC:
848                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
849                 break;
850         default:
851                 r = -EINVAL;
852                 break;
853         }
854         return r;
855 }
856 
857 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
858 {
859         int r;
860 
861         r = 0;
862         switch (chip->chip_id) {
863         case KVM_IRQCHIP_IOAPIC:
864                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
865                 break;
866         default:
867                 r = -EINVAL;
868                 break;
869         }
870         return r;
871 }
872 
873 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
874 
875 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
876 {
877         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
878         int i;
879 
880         for (i = 0; i < 16; i++) {
881                 vpd->vgr[i] = regs->vpd.vgr[i];
882                 vpd->vbgr[i] = regs->vpd.vbgr[i];
883         }
884         for (i = 0; i < 128; i++)
885                 vpd->vcr[i] = regs->vpd.vcr[i];
886         vpd->vhpi = regs->vpd.vhpi;
887         vpd->vnat = regs->vpd.vnat;
888         vpd->vbnat = regs->vpd.vbnat;
889         vpd->vpsr = regs->vpd.vpsr;
890 
891         vpd->vpr = regs->vpd.vpr;
892 
893         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
894 
895         RESTORE_REGS(mp_state);
896         RESTORE_REGS(vmm_rr);
897         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
898         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
899         RESTORE_REGS(itr_regions);
900         RESTORE_REGS(dtr_regions);
901         RESTORE_REGS(tc_regions);
902         RESTORE_REGS(irq_check);
903         RESTORE_REGS(itc_check);
904         RESTORE_REGS(timer_check);
905         RESTORE_REGS(timer_pending);
906         RESTORE_REGS(last_itc);
907         for (i = 0; i < 8; i++) {
908                 vcpu->arch.vrr[i] = regs->vrr[i];
909                 vcpu->arch.ibr[i] = regs->ibr[i];
910                 vcpu->arch.dbr[i] = regs->dbr[i];
911         }
912         for (i = 0; i < 4; i++)
913                 vcpu->arch.insvc[i] = regs->insvc[i];
914         RESTORE_REGS(xtp);
915         RESTORE_REGS(metaphysical_rr0);
916         RESTORE_REGS(metaphysical_rr4);
917         RESTORE_REGS(metaphysical_saved_rr0);
918         RESTORE_REGS(metaphysical_saved_rr4);
919         RESTORE_REGS(fp_psr);
920         RESTORE_REGS(saved_gp);
921 
922         vcpu->arch.irq_new_pending = 1;
923         vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
924         set_bit(KVM_REQ_RESUME, &vcpu->requests);
925 
926         return 0;
927 }
928 
929 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
930                 bool line_status)
931 {
932         if (!irqchip_in_kernel(kvm))
933                 return -ENXIO;
934 
935         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
936                                         irq_event->irq, irq_event->level,
937                                         line_status);
938         return 0;
939 }
940 
941 long kvm_arch_vm_ioctl(struct file *filp,
942                 unsigned int ioctl, unsigned long arg)
943 {
944         struct kvm *kvm = filp->private_data;
945         void __user *argp = (void __user *)arg;
946         int r = -ENOTTY;
947 
948         switch (ioctl) {
949         case KVM_CREATE_IRQCHIP:
950                 r = -EFAULT;
951                 r = kvm_ioapic_init(kvm);
952                 if (r)
953                         goto out;
954                 r = kvm_setup_default_irq_routing(kvm);
955                 if (r) {
956                         mutex_lock(&kvm->slots_lock);
957                         kvm_ioapic_destroy(kvm);
958                         mutex_unlock(&kvm->slots_lock);
959                         goto out;
960                 }
961                 break;
962         case KVM_GET_IRQCHIP: {
963                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
964                 struct kvm_irqchip chip;
965 
966                 r = -EFAULT;
967                 if (copy_from_user(&chip, argp, sizeof chip))
968                                 goto out;
969                 r = -ENXIO;
970                 if (!irqchip_in_kernel(kvm))
971                         goto out;
972                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
973                 if (r)
974                         goto out;
975                 r = -EFAULT;
976                 if (copy_to_user(argp, &chip, sizeof chip))
977                                 goto out;
978                 r = 0;
979                 break;
980                 }
981         case KVM_SET_IRQCHIP: {
982                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
983                 struct kvm_irqchip chip;
984 
985                 r = -EFAULT;
986                 if (copy_from_user(&chip, argp, sizeof chip))
987                                 goto out;
988                 r = -ENXIO;
989                 if (!irqchip_in_kernel(kvm))
990                         goto out;
991                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
992                 if (r)
993                         goto out;
994                 r = 0;
995                 break;
996                 }
997         default:
998                 ;
999         }
1000 out:
1001         return r;
1002 }
1003 
1004 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1005                 struct kvm_sregs *sregs)
1006 {
1007         return -EINVAL;
1008 }
1009 
1010 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1011                 struct kvm_sregs *sregs)
1012 {
1013         return -EINVAL;
1014 
1015 }
1016 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1017                 struct kvm_translation *tr)
1018 {
1019 
1020         return -EINVAL;
1021 }
1022 
1023 static int kvm_alloc_vmm_area(void)
1024 {
1025         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1026                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1027                                 get_order(KVM_VMM_SIZE));
1028                 if (!kvm_vmm_base)
1029                         return -ENOMEM;
1030 
1031                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1032                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1033 
1034                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1035                                 kvm_vmm_base, kvm_vm_buffer);
1036         }
1037 
1038         return 0;
1039 }
1040 
1041 static void kvm_free_vmm_area(void)
1042 {
1043         if (kvm_vmm_base) {
1044                 /*Zero this area before free to avoid bits leak!!*/
1045                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1046                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1047                 kvm_vmm_base  = 0;
1048                 kvm_vm_buffer = 0;
1049                 kvm_vsa_base = 0;
1050         }
1051 }
1052 
1053 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1054 {
1055         int i;
1056         union cpuid3_t cpuid3;
1057         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1058 
1059         if (IS_ERR(vpd))
1060                 return PTR_ERR(vpd);
1061 
1062         /* CPUID init */
1063         for (i = 0; i < 5; i++)
1064                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1065 
1066         /* Limit the CPUID number to 5 */
1067         cpuid3.value = vpd->vcpuid[3];
1068         cpuid3.number = 4;      /* 5 - 1 */
1069         vpd->vcpuid[3] = cpuid3.value;
1070 
1071         /*Set vac and vdc fields*/
1072         vpd->vac.a_from_int_cr = 1;
1073         vpd->vac.a_to_int_cr = 1;
1074         vpd->vac.a_from_psr = 1;
1075         vpd->vac.a_from_cpuid = 1;
1076         vpd->vac.a_cover = 1;
1077         vpd->vac.a_bsw = 1;
1078         vpd->vac.a_int = 1;
1079         vpd->vdc.d_vmsw = 1;
1080 
1081         /*Set virtual buffer*/
1082         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1083 
1084         return 0;
1085 }
1086 
1087 static int vti_create_vp(struct kvm_vcpu *vcpu)
1088 {
1089         long ret;
1090         struct vpd *vpd = vcpu->arch.vpd;
1091         unsigned long  vmm_ivt;
1092 
1093         vmm_ivt = kvm_vmm_info->vmm_ivt;
1094 
1095         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1096 
1097         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1098 
1099         if (ret) {
1100                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1101                 return -EINVAL;
1102         }
1103         return 0;
1104 }
1105 
1106 static void init_ptce_info(struct kvm_vcpu *vcpu)
1107 {
1108         ia64_ptce_info_t ptce = {0};
1109 
1110         ia64_get_ptce(&ptce);
1111         vcpu->arch.ptce_base = ptce.base;
1112         vcpu->arch.ptce_count[0] = ptce.count[0];
1113         vcpu->arch.ptce_count[1] = ptce.count[1];
1114         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1115         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1116 }
1117 
1118 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1119 {
1120         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1121 
1122         if (hrtimer_cancel(p_ht))
1123                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1124 }
1125 
1126 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1127 {
1128         struct kvm_vcpu *vcpu;
1129         wait_queue_head_t *q;
1130 
1131         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1132         q = &vcpu->wq;
1133 
1134         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1135                 goto out;
1136 
1137         if (waitqueue_active(q))
1138                 wake_up_interruptible(q);
1139 
1140 out:
1141         vcpu->arch.timer_fired = 1;
1142         vcpu->arch.timer_check = 1;
1143         return HRTIMER_NORESTART;
1144 }
1145 
1146 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1147 
1148 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
1149 {
1150         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
1151 }
1152 
1153 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1154 {
1155         struct kvm_vcpu *v;
1156         int r;
1157         int i;
1158         long itc_offset;
1159         struct kvm *kvm = vcpu->kvm;
1160         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1161 
1162         union context *p_ctx = &vcpu->arch.guest;
1163         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1164 
1165         /*Init vcpu context for first run.*/
1166         if (IS_ERR(vmm_vcpu))
1167                 return PTR_ERR(vmm_vcpu);
1168 
1169         if (kvm_vcpu_is_bsp(vcpu)) {
1170                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1171 
1172                 /*Set entry address for first run.*/
1173                 regs->cr_iip = PALE_RESET_ENTRY;
1174 
1175                 /*Initialize itc offset for vcpus*/
1176                 itc_offset = 0UL - kvm_get_itc(vcpu);
1177                 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1178                         v = (struct kvm_vcpu *)((char *)vcpu +
1179                                         sizeof(struct kvm_vcpu_data) * i);
1180                         v->arch.itc_offset = itc_offset;
1181                         v->arch.last_itc = 0;
1182                 }
1183         } else
1184                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1185 
1186         r = -ENOMEM;
1187         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1188         if (!vcpu->arch.apic)
1189                 goto out;
1190         vcpu->arch.apic->vcpu = vcpu;
1191 
1192         p_ctx->gr[1] = 0;
1193         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1194         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1195         p_ctx->psr = 0x1008522000UL;
1196         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1197         p_ctx->caller_unat = 0;
1198         p_ctx->pr = 0x0;
1199         p_ctx->ar[36] = 0x0; /*unat*/
1200         p_ctx->ar[19] = 0x0; /*rnat*/
1201         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1202                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1203         p_ctx->ar[64] = 0x0; /*pfs*/
1204         p_ctx->cr[0] = 0x7e04UL;
1205         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1206         p_ctx->cr[8] = 0x3c;
1207 
1208         /*Initialize region register*/
1209         p_ctx->rr[0] = 0x30;
1210         p_ctx->rr[1] = 0x30;
1211         p_ctx->rr[2] = 0x30;
1212         p_ctx->rr[3] = 0x30;
1213         p_ctx->rr[4] = 0x30;
1214         p_ctx->rr[5] = 0x30;
1215         p_ctx->rr[7] = 0x30;
1216 
1217         /*Initialize branch register 0*/
1218         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1219 
1220         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1221         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1222         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1223 
1224         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1225         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1226 
1227         vcpu->arch.last_run_cpu = -1;
1228         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1229         vcpu->arch.vsa_base = kvm_vsa_base;
1230         vcpu->arch.__gp = kvm_vmm_gp;
1231         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1232         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1233         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1234         init_ptce_info(vcpu);
1235 
1236         r = 0;
1237 out:
1238         return r;
1239 }
1240 
1241 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1242 {
1243         unsigned long psr;
1244         int r;
1245 
1246         local_irq_save(psr);
1247         r = kvm_insert_vmm_mapping(vcpu);
1248         local_irq_restore(psr);
1249         if (r)
1250                 goto fail;
1251         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1252         if (r)
1253                 goto fail;
1254 
1255         r = vti_init_vpd(vcpu);
1256         if (r) {
1257                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1258                 goto uninit;
1259         }
1260 
1261         r = vti_create_vp(vcpu);
1262         if (r)
1263                 goto uninit;
1264 
1265         kvm_purge_vmm_mapping(vcpu);
1266 
1267         return 0;
1268 uninit:
1269         kvm_vcpu_uninit(vcpu);
1270 fail:
1271         return r;
1272 }
1273 
1274 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1275                 unsigned int id)
1276 {
1277         struct kvm_vcpu *vcpu;
1278         unsigned long vm_base = kvm->arch.vm_base;
1279         int r;
1280         int cpu;
1281 
1282         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1283 
1284         r = -EINVAL;
1285         if (id >= KVM_MAX_VCPUS) {
1286                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1287                                 KVM_MAX_VCPUS);
1288                 goto fail;
1289         }
1290 
1291         r = -ENOMEM;
1292         if (!vm_base) {
1293                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1294                 goto fail;
1295         }
1296         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1297                                         vcpu_data[id].vcpu_struct));
1298         vcpu->kvm = kvm;
1299 
1300         cpu = get_cpu();
1301         r = vti_vcpu_setup(vcpu, id);
1302         put_cpu();
1303 
1304         if (r) {
1305                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1306                 goto fail;
1307         }
1308 
1309         return vcpu;
1310 fail:
1311         return ERR_PTR(r);
1312 }
1313 
1314 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1315 {
1316         return 0;
1317 }
1318 
1319 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1320 {
1321         return 0;
1322 }
1323 
1324 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1325 {
1326         return -EINVAL;
1327 }
1328 
1329 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1330 {
1331         return -EINVAL;
1332 }
1333 
1334 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1335                                         struct kvm_guest_debug *dbg)
1336 {
1337         return -EINVAL;
1338 }
1339 
1340 void kvm_arch_free_vm(struct kvm *kvm)
1341 {
1342         unsigned long vm_base = kvm->arch.vm_base;
1343 
1344         if (vm_base) {
1345                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1346                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1347         }
1348 
1349 }
1350 
1351 static void kvm_release_vm_pages(struct kvm *kvm)
1352 {
1353         struct kvm_memslots *slots;
1354         struct kvm_memory_slot *memslot;
1355         int j;
1356 
1357         slots = kvm_memslots(kvm);
1358         kvm_for_each_memslot(memslot, slots) {
1359                 for (j = 0; j < memslot->npages; j++) {
1360                         if (memslot->rmap[j])
1361                                 put_page((struct page *)memslot->rmap[j]);
1362                 }
1363         }
1364 }
1365 
1366 void kvm_arch_sync_events(struct kvm *kvm)
1367 {
1368 }
1369 
1370 void kvm_arch_destroy_vm(struct kvm *kvm)
1371 {
1372         kvm_iommu_unmap_guest(kvm);
1373         kvm_free_all_assigned_devices(kvm);
1374         kfree(kvm->arch.vioapic);
1375         kvm_release_vm_pages(kvm);
1376 }
1377 
1378 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1379 {
1380 }
1381 
1382 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1383 {
1384         if (cpu != vcpu->cpu) {
1385                 vcpu->cpu = cpu;
1386                 if (vcpu->arch.ht_active)
1387                         kvm_migrate_hlt_timer(vcpu);
1388         }
1389 }
1390 
1391 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1392 
1393 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1394 {
1395         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1396         int i;
1397 
1398         vcpu_load(vcpu);
1399 
1400         for (i = 0; i < 16; i++) {
1401                 regs->vpd.vgr[i] = vpd->vgr[i];
1402                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1403         }
1404         for (i = 0; i < 128; i++)
1405                 regs->vpd.vcr[i] = vpd->vcr[i];
1406         regs->vpd.vhpi = vpd->vhpi;
1407         regs->vpd.vnat = vpd->vnat;
1408         regs->vpd.vbnat = vpd->vbnat;
1409         regs->vpd.vpsr = vpd->vpsr;
1410         regs->vpd.vpr = vpd->vpr;
1411 
1412         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1413 
1414         SAVE_REGS(mp_state);
1415         SAVE_REGS(vmm_rr);
1416         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1417         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1418         SAVE_REGS(itr_regions);
1419         SAVE_REGS(dtr_regions);
1420         SAVE_REGS(tc_regions);
1421         SAVE_REGS(irq_check);
1422         SAVE_REGS(itc_check);
1423         SAVE_REGS(timer_check);
1424         SAVE_REGS(timer_pending);
1425         SAVE_REGS(last_itc);
1426         for (i = 0; i < 8; i++) {
1427                 regs->vrr[i] = vcpu->arch.vrr[i];
1428                 regs->ibr[i] = vcpu->arch.ibr[i];
1429                 regs->dbr[i] = vcpu->arch.dbr[i];
1430         }
1431         for (i = 0; i < 4; i++)
1432                 regs->insvc[i] = vcpu->arch.insvc[i];
1433         regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1434         SAVE_REGS(xtp);
1435         SAVE_REGS(metaphysical_rr0);
1436         SAVE_REGS(metaphysical_rr4);
1437         SAVE_REGS(metaphysical_saved_rr0);
1438         SAVE_REGS(metaphysical_saved_rr4);
1439         SAVE_REGS(fp_psr);
1440         SAVE_REGS(saved_gp);
1441 
1442         vcpu_put(vcpu);
1443         return 0;
1444 }
1445 
1446 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1447                                   struct kvm_ia64_vcpu_stack *stack)
1448 {
1449         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1450         return 0;
1451 }
1452 
1453 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1454                                   struct kvm_ia64_vcpu_stack *stack)
1455 {
1456         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1457                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1458 
1459         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1460         return 0;
1461 }
1462 
1463 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1464 {
1465 
1466         hrtimer_cancel(&vcpu->arch.hlt_timer);
1467         kfree(vcpu->arch.apic);
1468 }
1469 
1470 
1471 long kvm_arch_vcpu_ioctl(struct file *filp,
1472                          unsigned int ioctl, unsigned long arg)
1473 {
1474         struct kvm_vcpu *vcpu = filp->private_data;
1475         void __user *argp = (void __user *)arg;
1476         struct kvm_ia64_vcpu_stack *stack = NULL;
1477         long r;
1478 
1479         switch (ioctl) {
1480         case KVM_IA64_VCPU_GET_STACK: {
1481                 struct kvm_ia64_vcpu_stack __user *user_stack;
1482                 void __user *first_p = argp;
1483 
1484                 r = -EFAULT;
1485                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1486                         goto out;
1487 
1488                 if (!access_ok(VERIFY_WRITE, user_stack,
1489                                sizeof(struct kvm_ia64_vcpu_stack))) {
1490                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1491                                "Illegal user destination address for stack\n");
1492                         goto out;
1493                 }
1494                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1495                 if (!stack) {
1496                         r = -ENOMEM;
1497                         goto out;
1498                 }
1499 
1500                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1501                 if (r)
1502                         goto out;
1503 
1504                 if (copy_to_user(user_stack, stack,
1505                                  sizeof(struct kvm_ia64_vcpu_stack))) {
1506                         r = -EFAULT;
1507                         goto out;
1508                 }
1509 
1510                 break;
1511         }
1512         case KVM_IA64_VCPU_SET_STACK: {
1513                 struct kvm_ia64_vcpu_stack __user *user_stack;
1514                 void __user *first_p = argp;
1515 
1516                 r = -EFAULT;
1517                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1518                         goto out;
1519 
1520                 if (!access_ok(VERIFY_READ, user_stack,
1521                             sizeof(struct kvm_ia64_vcpu_stack))) {
1522                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1523                                "Illegal user address for stack\n");
1524                         goto out;
1525                 }
1526                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1527                 if (!stack) {
1528                         r = -ENOMEM;
1529                         goto out;
1530                 }
1531                 if (copy_from_user(stack, user_stack,
1532                                    sizeof(struct kvm_ia64_vcpu_stack)))
1533                         goto out;
1534 
1535                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1536                 break;
1537         }
1538 
1539         default:
1540                 r = -EINVAL;
1541         }
1542 
1543 out:
1544         kfree(stack);
1545         return r;
1546 }
1547 
1548 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1549 {
1550         return VM_FAULT_SIGBUS;
1551 }
1552 
1553 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
1554                            struct kvm_memory_slot *dont)
1555 {
1556 }
1557 
1558 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
1559 {
1560         return 0;
1561 }
1562 
1563 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1564                 struct kvm_memory_slot *memslot,
1565                 struct kvm_userspace_memory_region *mem,
1566                 enum kvm_mr_change change)
1567 {
1568         unsigned long i;
1569         unsigned long pfn;
1570         int npages = memslot->npages;
1571         unsigned long base_gfn = memslot->base_gfn;
1572 
1573         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1574                 return -ENOMEM;
1575 
1576         for (i = 0; i < npages; i++) {
1577                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1578                 if (!kvm_is_mmio_pfn(pfn)) {
1579                         kvm_set_pmt_entry(kvm, base_gfn + i,
1580                                         pfn << PAGE_SHIFT,
1581                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1582                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1583                 } else {
1584                         kvm_set_pmt_entry(kvm, base_gfn + i,
1585                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1586                                         _PAGE_MA_UC);
1587                         memslot->rmap[i] = 0;
1588                         }
1589         }
1590 
1591         return 0;
1592 }
1593 
1594 void kvm_arch_commit_memory_region(struct kvm *kvm,
1595                 struct kvm_userspace_memory_region *mem,
1596                 const struct kvm_memory_slot *old,
1597                 enum kvm_mr_change change)
1598 {
1599         return;
1600 }
1601 
1602 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1603 {
1604         kvm_flush_remote_tlbs(kvm);
1605 }
1606 
1607 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1608                                    struct kvm_memory_slot *slot)
1609 {
1610         kvm_arch_flush_shadow_all();
1611 }
1612 
1613 long kvm_arch_dev_ioctl(struct file *filp,
1614                         unsigned int ioctl, unsigned long arg)
1615 {
1616         return -EINVAL;
1617 }
1618 
1619 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1620 {
1621         kvm_vcpu_uninit(vcpu);
1622 }
1623 
1624 static int vti_cpu_has_kvm_support(void)
1625 {
1626         long  avail = 1, status = 1, control = 1;
1627         long ret;
1628 
1629         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1630         if (ret)
1631                 goto out;
1632 
1633         if (!(avail & PAL_PROC_VM_BIT))
1634                 goto out;
1635 
1636         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1637 
1638         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1639         if (ret)
1640                 goto out;
1641         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1642 
1643         if (!(vp_env_info & VP_OPCODE)) {
1644                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1645                                 "vm_env_info:0x%lx\n", vp_env_info);
1646         }
1647 
1648         return 1;
1649 out:
1650         return 0;
1651 }
1652 
1653 
1654 /*
1655  * On SN2, the ITC isn't stable, so copy in fast path code to use the
1656  * SN2 RTC, replacing the ITC based default verion.
1657  */
1658 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1659                           struct module *module)
1660 {
1661         unsigned long new_ar, new_ar_sn2;
1662         unsigned long module_base;
1663 
1664         if (!ia64_platform_is("sn2"))
1665                 return;
1666 
1667         module_base = (unsigned long)module->module_core;
1668 
1669         new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1670         new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1671 
1672         printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1673                "as source\n");
1674 
1675         /*
1676          * Copy the SN2 version of mov_ar into place. They are both
1677          * the same size, so 6 bundles is sufficient (6 * 0x10).
1678          */
1679         memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1680 }
1681 
1682 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1683                             struct module *module)
1684 {
1685         unsigned long module_base;
1686         unsigned long vmm_size;
1687 
1688         unsigned long vmm_offset, func_offset, fdesc_offset;
1689         struct fdesc *p_fdesc;
1690 
1691         BUG_ON(!module);
1692 
1693         if (!kvm_vmm_base) {
1694                 printk("kvm: kvm area hasn't been initialized yet!!\n");
1695                 return -EFAULT;
1696         }
1697 
1698         /*Calculate new position of relocated vmm module.*/
1699         module_base = (unsigned long)module->module_core;
1700         vmm_size = module->core_size;
1701         if (unlikely(vmm_size > KVM_VMM_SIZE))
1702                 return -EFAULT;
1703 
1704         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1705         kvm_patch_vmm(vmm_info, module);
1706         kvm_flush_icache(kvm_vmm_base, vmm_size);
1707 
1708         /*Recalculate kvm_vmm_info based on new VMM*/
1709         vmm_offset = vmm_info->vmm_ivt - module_base;
1710         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1711         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1712                         kvm_vmm_info->vmm_ivt);
1713 
1714         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1715         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1716                                                         fdesc_offset);
1717         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1718         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1719         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1720         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1721 
1722         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1723                         KVM_VMM_BASE+func_offset);
1724 
1725         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1726         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1727                         fdesc_offset);
1728         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1729         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1730         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1731         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1732 
1733         kvm_vmm_gp = p_fdesc->gp;
1734 
1735         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1736                                                 kvm_vmm_info->vmm_entry);
1737         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1738                                                 KVM_VMM_BASE + func_offset);
1739 
1740         return 0;
1741 }
1742 
1743 int kvm_arch_init(void *opaque)
1744 {
1745         int r;
1746         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1747 
1748         if (!vti_cpu_has_kvm_support()) {
1749                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1750                 r = -EOPNOTSUPP;
1751                 goto out;
1752         }
1753 
1754         if (kvm_vmm_info) {
1755                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1756                 r = -EEXIST;
1757                 goto out;
1758         }
1759 
1760         r = -ENOMEM;
1761         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1762         if (!kvm_vmm_info)
1763                 goto out;
1764 
1765         if (kvm_alloc_vmm_area())
1766                 goto out_free0;
1767 
1768         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1769         if (r)
1770                 goto out_free1;
1771 
1772         return 0;
1773 
1774 out_free1:
1775         kvm_free_vmm_area();
1776 out_free0:
1777         kfree(kvm_vmm_info);
1778 out:
1779         return r;
1780 }
1781 
1782 void kvm_arch_exit(void)
1783 {
1784         kvm_free_vmm_area();
1785         kfree(kvm_vmm_info);
1786         kvm_vmm_info = NULL;
1787 }
1788 
1789 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1790                                     struct kvm_memory_slot *memslot)
1791 {
1792         int i;
1793         long base;
1794         unsigned long n;
1795         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1796                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1797 
1798         n = kvm_dirty_bitmap_bytes(memslot);
1799         base = memslot->base_gfn / BITS_PER_LONG;
1800 
1801         spin_lock(&kvm->arch.dirty_log_lock);
1802         for (i = 0; i < n/sizeof(long); ++i) {
1803                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1804                 dirty_bitmap[base + i] = 0;
1805         }
1806         spin_unlock(&kvm->arch.dirty_log_lock);
1807 }
1808 
1809 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1810                 struct kvm_dirty_log *log)
1811 {
1812         int r;
1813         unsigned long n;
1814         struct kvm_memory_slot *memslot;
1815         int is_dirty = 0;
1816 
1817         mutex_lock(&kvm->slots_lock);
1818 
1819         r = -EINVAL;
1820         if (log->slot >= KVM_USER_MEM_SLOTS)
1821                 goto out;
1822 
1823         memslot = id_to_memslot(kvm->memslots, log->slot);
1824         r = -ENOENT;
1825         if (!memslot->dirty_bitmap)
1826                 goto out;
1827 
1828         kvm_ia64_sync_dirty_log(kvm, memslot);
1829         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1830         if (r)
1831                 goto out;
1832 
1833         /* If nothing is dirty, don't bother messing with page tables. */
1834         if (is_dirty) {
1835                 kvm_flush_remote_tlbs(kvm);
1836                 n = kvm_dirty_bitmap_bytes(memslot);
1837                 memset(memslot->dirty_bitmap, 0, n);
1838         }
1839         r = 0;
1840 out:
1841         mutex_unlock(&kvm->slots_lock);
1842         return r;
1843 }
1844 
1845 int kvm_arch_hardware_setup(void)
1846 {
1847         return 0;
1848 }
1849 
1850 void kvm_arch_hardware_unsetup(void)
1851 {
1852 }
1853 
1854 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1855 {
1856         return __apic_accept_irq(vcpu, irq->vector);
1857 }
1858 
1859 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1860 {
1861         return apic->vcpu->vcpu_id == dest;
1862 }
1863 
1864 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1865 {
1866         return 0;
1867 }
1868 
1869 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1870 {
1871         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1872 }
1873 
1874 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1875                 int short_hand, int dest, int dest_mode)
1876 {
1877         struct kvm_lapic *target = vcpu->arch.apic;
1878         return (dest_mode == 0) ?
1879                 kvm_apic_match_physical_addr(target, dest) :
1880                 kvm_apic_match_logical_addr(target, dest);
1881 }
1882 
1883 static int find_highest_bits(int *dat)
1884 {
1885         u32  bits, bitnum;
1886         int i;
1887 
1888         /* loop for all 256 bits */
1889         for (i = 7; i >= 0 ; i--) {
1890                 bits = dat[i];
1891                 if (bits) {
1892                         bitnum = fls(bits);
1893                         return i * 32 + bitnum - 1;
1894                 }
1895         }
1896 
1897         return -1;
1898 }
1899 
1900 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1901 {
1902     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1903 
1904     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1905                 return NMI_VECTOR;
1906     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1907                 return ExtINT_VECTOR;
1908 
1909     return find_highest_bits((int *)&vpd->irr[0]);
1910 }
1911 
1912 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1913 {
1914         return vcpu->arch.timer_fired;
1915 }
1916 
1917 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1918 {
1919         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1920                 (kvm_highest_pending_irq(vcpu) != -1);
1921 }
1922 
1923 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1924 {
1925         return (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests));
1926 }
1927 
1928 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1929                                     struct kvm_mp_state *mp_state)
1930 {
1931         mp_state->mp_state = vcpu->arch.mp_state;
1932         return 0;
1933 }
1934 
1935 static int vcpu_reset(struct kvm_vcpu *vcpu)
1936 {
1937         int r;
1938         long psr;
1939         local_irq_save(psr);
1940         r = kvm_insert_vmm_mapping(vcpu);
1941         local_irq_restore(psr);
1942         if (r)
1943                 goto fail;
1944 
1945         vcpu->arch.launched = 0;
1946         kvm_arch_vcpu_uninit(vcpu);
1947         r = kvm_arch_vcpu_init(vcpu);
1948         if (r)
1949                 goto fail;
1950 
1951         kvm_purge_vmm_mapping(vcpu);
1952         r = 0;
1953 fail:
1954         return r;
1955 }
1956 
1957 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1958                                     struct kvm_mp_state *mp_state)
1959 {
1960         int r = 0;
1961 
1962         vcpu->arch.mp_state = mp_state->mp_state;
1963         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1964                 r = vcpu_reset(vcpu);
1965         return r;
1966 }
1967 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp