~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/ia64/mm/discontig.c

Version: ~ [ linux-4.17-rc6 ] ~ [ linux-4.16.10 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.42 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.101 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.132 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.51 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.109 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.56 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.101 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.27.62 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
  4  * Copyright (c) 2001 Intel Corp.
  5  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  6  * Copyright (c) 2002 NEC Corp.
  7  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  8  * Copyright (c) 2004 Silicon Graphics, Inc
  9  *      Russ Anderson <rja@sgi.com>
 10  *      Jesse Barnes <jbarnes@sgi.com>
 11  *      Jack Steiner <steiner@sgi.com>
 12  */
 13 
 14 /*
 15  * Platform initialization for Discontig Memory
 16  */
 17 
 18 #include <linux/kernel.h>
 19 #include <linux/mm.h>
 20 #include <linux/nmi.h>
 21 #include <linux/swap.h>
 22 #include <linux/bootmem.h>
 23 #include <linux/acpi.h>
 24 #include <linux/efi.h>
 25 #include <linux/nodemask.h>
 26 #include <linux/slab.h>
 27 #include <asm/pgalloc.h>
 28 #include <asm/tlb.h>
 29 #include <asm/meminit.h>
 30 #include <asm/numa.h>
 31 #include <asm/sections.h>
 32 
 33 /*
 34  * Track per-node information needed to setup the boot memory allocator, the
 35  * per-node areas, and the real VM.
 36  */
 37 struct early_node_data {
 38         struct ia64_node_data *node_data;
 39         unsigned long pernode_addr;
 40         unsigned long pernode_size;
 41 #ifdef CONFIG_ZONE_DMA32
 42         unsigned long num_dma_physpages;
 43 #endif
 44         unsigned long min_pfn;
 45         unsigned long max_pfn;
 46 };
 47 
 48 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
 49 static nodemask_t memory_less_mask __initdata;
 50 
 51 pg_data_t *pgdat_list[MAX_NUMNODES];
 52 
 53 /*
 54  * To prevent cache aliasing effects, align per-node structures so that they
 55  * start at addresses that are strided by node number.
 56  */
 57 #define MAX_NODE_ALIGN_OFFSET   (32 * 1024 * 1024)
 58 #define NODEDATA_ALIGN(addr, node)                                              \
 59         ((((addr) + 1024*1024-1) & ~(1024*1024-1)) +                            \
 60              (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
 61 
 62 /**
 63  * build_node_maps - callback to setup bootmem structs for each node
 64  * @start: physical start of range
 65  * @len: length of range
 66  * @node: node where this range resides
 67  *
 68  * We allocate a struct bootmem_data for each piece of memory that we wish to
 69  * treat as a virtually contiguous block (i.e. each node). Each such block
 70  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
 71  * if necessary.  Any non-existent pages will simply be part of the virtual
 72  * memmap.  We also update min_low_pfn and max_low_pfn here as we receive
 73  * memory ranges from the caller.
 74  */
 75 static int __init build_node_maps(unsigned long start, unsigned long len,
 76                                   int node)
 77 {
 78         unsigned long spfn, epfn, end = start + len;
 79         struct bootmem_data *bdp = &bootmem_node_data[node];
 80 
 81         epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
 82         spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
 83 
 84         if (!bdp->node_low_pfn) {
 85                 bdp->node_min_pfn = spfn;
 86                 bdp->node_low_pfn = epfn;
 87         } else {
 88                 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
 89                 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
 90         }
 91 
 92         return 0;
 93 }
 94 
 95 /**
 96  * early_nr_cpus_node - return number of cpus on a given node
 97  * @node: node to check
 98  *
 99  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
100  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
101  * called yet.  Note that node 0 will also count all non-existent cpus.
102  */
103 static int __meminit early_nr_cpus_node(int node)
104 {
105         int cpu, n = 0;
106 
107         for_each_possible_early_cpu(cpu)
108                 if (node == node_cpuid[cpu].nid)
109                         n++;
110 
111         return n;
112 }
113 
114 /**
115  * compute_pernodesize - compute size of pernode data
116  * @node: the node id.
117  */
118 static unsigned long __meminit compute_pernodesize(int node)
119 {
120         unsigned long pernodesize = 0, cpus;
121 
122         cpus = early_nr_cpus_node(node);
123         pernodesize += PERCPU_PAGE_SIZE * cpus;
124         pernodesize += node * L1_CACHE_BYTES;
125         pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
126         pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
127         pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
128         pernodesize = PAGE_ALIGN(pernodesize);
129         return pernodesize;
130 }
131 
132 /**
133  * per_cpu_node_setup - setup per-cpu areas on each node
134  * @cpu_data: per-cpu area on this node
135  * @node: node to setup
136  *
137  * Copy the static per-cpu data into the region we just set aside and then
138  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
139  * the end of the area.
140  */
141 static void *per_cpu_node_setup(void *cpu_data, int node)
142 {
143 #ifdef CONFIG_SMP
144         int cpu;
145 
146         for_each_possible_early_cpu(cpu) {
147                 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
148 
149                 if (node != node_cpuid[cpu].nid)
150                         continue;
151 
152                 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
153                 __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
154                         __per_cpu_start;
155 
156                 /*
157                  * percpu area for cpu0 is moved from the __init area
158                  * which is setup by head.S and used till this point.
159                  * Update ar.k3.  This move is ensures that percpu
160                  * area for cpu0 is on the correct node and its
161                  * virtual address isn't insanely far from other
162                  * percpu areas which is important for congruent
163                  * percpu allocator.
164                  */
165                 if (cpu == 0)
166                         ia64_set_kr(IA64_KR_PER_CPU_DATA,
167                                     (unsigned long)cpu_data -
168                                     (unsigned long)__per_cpu_start);
169 
170                 cpu_data += PERCPU_PAGE_SIZE;
171         }
172 #endif
173         return cpu_data;
174 }
175 
176 #ifdef CONFIG_SMP
177 /**
178  * setup_per_cpu_areas - setup percpu areas
179  *
180  * Arch code has already allocated and initialized percpu areas.  All
181  * this function has to do is to teach the determined layout to the
182  * dynamic percpu allocator, which happens to be more complex than
183  * creating whole new ones using helpers.
184  */
185 void __init setup_per_cpu_areas(void)
186 {
187         struct pcpu_alloc_info *ai;
188         struct pcpu_group_info *uninitialized_var(gi);
189         unsigned int *cpu_map;
190         void *base;
191         unsigned long base_offset;
192         unsigned int cpu;
193         ssize_t static_size, reserved_size, dyn_size;
194         int node, prev_node, unit, nr_units, rc;
195 
196         ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
197         if (!ai)
198                 panic("failed to allocate pcpu_alloc_info");
199         cpu_map = ai->groups[0].cpu_map;
200 
201         /* determine base */
202         base = (void *)ULONG_MAX;
203         for_each_possible_cpu(cpu)
204                 base = min(base,
205                            (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
206         base_offset = (void *)__per_cpu_start - base;
207 
208         /* build cpu_map, units are grouped by node */
209         unit = 0;
210         for_each_node(node)
211                 for_each_possible_cpu(cpu)
212                         if (node == node_cpuid[cpu].nid)
213                                 cpu_map[unit++] = cpu;
214         nr_units = unit;
215 
216         /* set basic parameters */
217         static_size = __per_cpu_end - __per_cpu_start;
218         reserved_size = PERCPU_MODULE_RESERVE;
219         dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
220         if (dyn_size < 0)
221                 panic("percpu area overflow static=%zd reserved=%zd\n",
222                       static_size, reserved_size);
223 
224         ai->static_size         = static_size;
225         ai->reserved_size       = reserved_size;
226         ai->dyn_size            = dyn_size;
227         ai->unit_size           = PERCPU_PAGE_SIZE;
228         ai->atom_size           = PAGE_SIZE;
229         ai->alloc_size          = PERCPU_PAGE_SIZE;
230 
231         /*
232          * CPUs are put into groups according to node.  Walk cpu_map
233          * and create new groups at node boundaries.
234          */
235         prev_node = -1;
236         ai->nr_groups = 0;
237         for (unit = 0; unit < nr_units; unit++) {
238                 cpu = cpu_map[unit];
239                 node = node_cpuid[cpu].nid;
240 
241                 if (node == prev_node) {
242                         gi->nr_units++;
243                         continue;
244                 }
245                 prev_node = node;
246 
247                 gi = &ai->groups[ai->nr_groups++];
248                 gi->nr_units            = 1;
249                 gi->base_offset         = __per_cpu_offset[cpu] + base_offset;
250                 gi->cpu_map             = &cpu_map[unit];
251         }
252 
253         rc = pcpu_setup_first_chunk(ai, base);
254         if (rc)
255                 panic("failed to setup percpu area (err=%d)", rc);
256 
257         pcpu_free_alloc_info(ai);
258 }
259 #endif
260 
261 /**
262  * fill_pernode - initialize pernode data.
263  * @node: the node id.
264  * @pernode: physical address of pernode data
265  * @pernodesize: size of the pernode data
266  */
267 static void __init fill_pernode(int node, unsigned long pernode,
268         unsigned long pernodesize)
269 {
270         void *cpu_data;
271         int cpus = early_nr_cpus_node(node);
272         struct bootmem_data *bdp = &bootmem_node_data[node];
273 
274         mem_data[node].pernode_addr = pernode;
275         mem_data[node].pernode_size = pernodesize;
276         memset(__va(pernode), 0, pernodesize);
277 
278         cpu_data = (void *)pernode;
279         pernode += PERCPU_PAGE_SIZE * cpus;
280         pernode += node * L1_CACHE_BYTES;
281 
282         pgdat_list[node] = __va(pernode);
283         pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
284 
285         mem_data[node].node_data = __va(pernode);
286         pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
287 
288         pgdat_list[node]->bdata = bdp;
289         pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
290 
291         cpu_data = per_cpu_node_setup(cpu_data, node);
292 
293         return;
294 }
295 
296 /**
297  * find_pernode_space - allocate memory for memory map and per-node structures
298  * @start: physical start of range
299  * @len: length of range
300  * @node: node where this range resides
301  *
302  * This routine reserves space for the per-cpu data struct, the list of
303  * pg_data_ts and the per-node data struct.  Each node will have something like
304  * the following in the first chunk of addr. space large enough to hold it.
305  *
306  *    ________________________
307  *   |                        |
308  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
309  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
310  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
311  *   |------------------------|
312  *   |   local pg_data_t *    |
313  *   |------------------------|
314  *   |  local ia64_node_data  |
315  *   |------------------------|
316  *   |          ???           |
317  *   |________________________|
318  *
319  * Once this space has been set aside, the bootmem maps are initialized.  We
320  * could probably move the allocation of the per-cpu and ia64_node_data space
321  * outside of this function and use alloc_bootmem_node(), but doing it here
322  * is straightforward and we get the alignments we want so...
323  */
324 static int __init find_pernode_space(unsigned long start, unsigned long len,
325                                      int node)
326 {
327         unsigned long spfn, epfn;
328         unsigned long pernodesize = 0, pernode, pages, mapsize;
329         struct bootmem_data *bdp = &bootmem_node_data[node];
330 
331         spfn = start >> PAGE_SHIFT;
332         epfn = (start + len) >> PAGE_SHIFT;
333 
334         pages = bdp->node_low_pfn - bdp->node_min_pfn;
335         mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
336 
337         /*
338          * Make sure this memory falls within this node's usable memory
339          * since we may have thrown some away in build_maps().
340          */
341         if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
342                 return 0;
343 
344         /* Don't setup this node's local space twice... */
345         if (mem_data[node].pernode_addr)
346                 return 0;
347 
348         /*
349          * Calculate total size needed, incl. what's necessary
350          * for good alignment and alias prevention.
351          */
352         pernodesize = compute_pernodesize(node);
353         pernode = NODEDATA_ALIGN(start, node);
354 
355         /* Is this range big enough for what we want to store here? */
356         if (start + len > (pernode + pernodesize + mapsize))
357                 fill_pernode(node, pernode, pernodesize);
358 
359         return 0;
360 }
361 
362 /**
363  * free_node_bootmem - free bootmem allocator memory for use
364  * @start: physical start of range
365  * @len: length of range
366  * @node: node where this range resides
367  *
368  * Simply calls the bootmem allocator to free the specified ranged from
369  * the given pg_data_t's bdata struct.  After this function has been called
370  * for all the entries in the EFI memory map, the bootmem allocator will
371  * be ready to service allocation requests.
372  */
373 static int __init free_node_bootmem(unsigned long start, unsigned long len,
374                                     int node)
375 {
376         free_bootmem_node(pgdat_list[node], start, len);
377 
378         return 0;
379 }
380 
381 /**
382  * reserve_pernode_space - reserve memory for per-node space
383  *
384  * Reserve the space used by the bootmem maps & per-node space in the boot
385  * allocator so that when we actually create the real mem maps we don't
386  * use their memory.
387  */
388 static void __init reserve_pernode_space(void)
389 {
390         unsigned long base, size, pages;
391         struct bootmem_data *bdp;
392         int node;
393 
394         for_each_online_node(node) {
395                 pg_data_t *pdp = pgdat_list[node];
396 
397                 if (node_isset(node, memory_less_mask))
398                         continue;
399 
400                 bdp = pdp->bdata;
401 
402                 /* First the bootmem_map itself */
403                 pages = bdp->node_low_pfn - bdp->node_min_pfn;
404                 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
405                 base = __pa(bdp->node_bootmem_map);
406                 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
407 
408                 /* Now the per-node space */
409                 size = mem_data[node].pernode_size;
410                 base = __pa(mem_data[node].pernode_addr);
411                 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
412         }
413 }
414 
415 static void __meminit scatter_node_data(void)
416 {
417         pg_data_t **dst;
418         int node;
419 
420         /*
421          * for_each_online_node() can't be used at here.
422          * node_online_map is not set for hot-added nodes at this time,
423          * because we are halfway through initialization of the new node's
424          * structures.  If for_each_online_node() is used, a new node's
425          * pg_data_ptrs will be not initialized. Instead of using it,
426          * pgdat_list[] is checked.
427          */
428         for_each_node(node) {
429                 if (pgdat_list[node]) {
430                         dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
431                         memcpy(dst, pgdat_list, sizeof(pgdat_list));
432                 }
433         }
434 }
435 
436 /**
437  * initialize_pernode_data - fixup per-cpu & per-node pointers
438  *
439  * Each node's per-node area has a copy of the global pg_data_t list, so
440  * we copy that to each node here, as well as setting the per-cpu pointer
441  * to the local node data structure.  The active_cpus field of the per-node
442  * structure gets setup by the platform_cpu_init() function later.
443  */
444 static void __init initialize_pernode_data(void)
445 {
446         int cpu, node;
447 
448         scatter_node_data();
449 
450 #ifdef CONFIG_SMP
451         /* Set the node_data pointer for each per-cpu struct */
452         for_each_possible_early_cpu(cpu) {
453                 node = node_cpuid[cpu].nid;
454                 per_cpu(ia64_cpu_info, cpu).node_data =
455                         mem_data[node].node_data;
456         }
457 #else
458         {
459                 struct cpuinfo_ia64 *cpu0_cpu_info;
460                 cpu = 0;
461                 node = node_cpuid[cpu].nid;
462                 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
463                         ((char *)&ia64_cpu_info - __per_cpu_start));
464                 cpu0_cpu_info->node_data = mem_data[node].node_data;
465         }
466 #endif /* CONFIG_SMP */
467 }
468 
469 /**
470  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
471  *      node but fall back to any other node when __alloc_bootmem_node fails
472  *      for best.
473  * @nid: node id
474  * @pernodesize: size of this node's pernode data
475  */
476 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
477 {
478         void *ptr = NULL;
479         u8 best = 0xff;
480         int bestnode = -1, node, anynode = 0;
481 
482         for_each_online_node(node) {
483                 if (node_isset(node, memory_less_mask))
484                         continue;
485                 else if (node_distance(nid, node) < best) {
486                         best = node_distance(nid, node);
487                         bestnode = node;
488                 }
489                 anynode = node;
490         }
491 
492         if (bestnode == -1)
493                 bestnode = anynode;
494 
495         ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
496                 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
497 
498         return ptr;
499 }
500 
501 /**
502  * memory_less_nodes - allocate and initialize CPU only nodes pernode
503  *      information.
504  */
505 static void __init memory_less_nodes(void)
506 {
507         unsigned long pernodesize;
508         void *pernode;
509         int node;
510 
511         for_each_node_mask(node, memory_less_mask) {
512                 pernodesize = compute_pernodesize(node);
513                 pernode = memory_less_node_alloc(node, pernodesize);
514                 fill_pernode(node, __pa(pernode), pernodesize);
515         }
516 
517         return;
518 }
519 
520 /**
521  * find_memory - walk the EFI memory map and setup the bootmem allocator
522  *
523  * Called early in boot to setup the bootmem allocator, and to
524  * allocate the per-cpu and per-node structures.
525  */
526 void __init find_memory(void)
527 {
528         int node;
529 
530         reserve_memory();
531 
532         if (num_online_nodes() == 0) {
533                 printk(KERN_ERR "node info missing!\n");
534                 node_set_online(0);
535         }
536 
537         nodes_or(memory_less_mask, memory_less_mask, node_online_map);
538         min_low_pfn = -1;
539         max_low_pfn = 0;
540 
541         /* These actually end up getting called by call_pernode_memory() */
542         efi_memmap_walk(filter_rsvd_memory, build_node_maps);
543         efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
544         efi_memmap_walk(find_max_min_low_pfn, NULL);
545 
546         for_each_online_node(node)
547                 if (bootmem_node_data[node].node_low_pfn) {
548                         node_clear(node, memory_less_mask);
549                         mem_data[node].min_pfn = ~0UL;
550                 }
551 
552         efi_memmap_walk(filter_memory, register_active_ranges);
553 
554         /*
555          * Initialize the boot memory maps in reverse order since that's
556          * what the bootmem allocator expects
557          */
558         for (node = MAX_NUMNODES - 1; node >= 0; node--) {
559                 unsigned long pernode, pernodesize, map;
560                 struct bootmem_data *bdp;
561 
562                 if (!node_online(node))
563                         continue;
564                 else if (node_isset(node, memory_less_mask))
565                         continue;
566 
567                 bdp = &bootmem_node_data[node];
568                 pernode = mem_data[node].pernode_addr;
569                 pernodesize = mem_data[node].pernode_size;
570                 map = pernode + pernodesize;
571 
572                 init_bootmem_node(pgdat_list[node],
573                                   map>>PAGE_SHIFT,
574                                   bdp->node_min_pfn,
575                                   bdp->node_low_pfn);
576         }
577 
578         efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
579 
580         reserve_pernode_space();
581         memory_less_nodes();
582         initialize_pernode_data();
583 
584         max_pfn = max_low_pfn;
585 
586         find_initrd();
587 }
588 
589 #ifdef CONFIG_SMP
590 /**
591  * per_cpu_init - setup per-cpu variables
592  *
593  * find_pernode_space() does most of this already, we just need to set
594  * local_per_cpu_offset
595  */
596 void *per_cpu_init(void)
597 {
598         int cpu;
599         static int first_time = 1;
600 
601         if (first_time) {
602                 first_time = 0;
603                 for_each_possible_early_cpu(cpu)
604                         per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
605         }
606 
607         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
608 }
609 #endif /* CONFIG_SMP */
610 
611 /**
612  * call_pernode_memory - use SRAT to call callback functions with node info
613  * @start: physical start of range
614  * @len: length of range
615  * @arg: function to call for each range
616  *
617  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
618  * out to which node a block of memory belongs.  Ignore memory that we cannot
619  * identify, and split blocks that run across multiple nodes.
620  *
621  * Take this opportunity to round the start address up and the end address
622  * down to page boundaries.
623  */
624 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
625 {
626         unsigned long rs, re, end = start + len;
627         void (*func)(unsigned long, unsigned long, int);
628         int i;
629 
630         start = PAGE_ALIGN(start);
631         end &= PAGE_MASK;
632         if (start >= end)
633                 return;
634 
635         func = arg;
636 
637         if (!num_node_memblks) {
638                 /* No SRAT table, so assume one node (node 0) */
639                 if (start < end)
640                         (*func)(start, end - start, 0);
641                 return;
642         }
643 
644         for (i = 0; i < num_node_memblks; i++) {
645                 rs = max(start, node_memblk[i].start_paddr);
646                 re = min(end, node_memblk[i].start_paddr +
647                          node_memblk[i].size);
648 
649                 if (rs < re)
650                         (*func)(rs, re - rs, node_memblk[i].nid);
651 
652                 if (re == end)
653                         break;
654         }
655 }
656 
657 /**
658  * count_node_pages - callback to build per-node memory info structures
659  * @start: physical start of range
660  * @len: length of range
661  * @node: node where this range resides
662  *
663  * Each node has it's own number of physical pages, DMAable pages, start, and
664  * end page frame number.  This routine will be called by call_pernode_memory()
665  * for each piece of usable memory and will setup these values for each node.
666  * Very similar to build_maps().
667  */
668 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
669 {
670         unsigned long end = start + len;
671 
672 #ifdef CONFIG_ZONE_DMA32
673         if (start <= __pa(MAX_DMA_ADDRESS))
674                 mem_data[node].num_dma_physpages +=
675                         (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
676 #endif
677         start = GRANULEROUNDDOWN(start);
678         end = GRANULEROUNDUP(end);
679         mem_data[node].max_pfn = max(mem_data[node].max_pfn,
680                                      end >> PAGE_SHIFT);
681         mem_data[node].min_pfn = min(mem_data[node].min_pfn,
682                                      start >> PAGE_SHIFT);
683 
684         return 0;
685 }
686 
687 /**
688  * paging_init - setup page tables
689  *
690  * paging_init() sets up the page tables for each node of the system and frees
691  * the bootmem allocator memory for general use.
692  */
693 void __init paging_init(void)
694 {
695         unsigned long max_dma;
696         unsigned long pfn_offset = 0;
697         unsigned long max_pfn = 0;
698         int node;
699         unsigned long max_zone_pfns[MAX_NR_ZONES];
700 
701         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
702 
703         efi_memmap_walk(filter_rsvd_memory, count_node_pages);
704 
705         sparse_memory_present_with_active_regions(MAX_NUMNODES);
706         sparse_init();
707 
708 #ifdef CONFIG_VIRTUAL_MEM_MAP
709         VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
710                 sizeof(struct page));
711         vmem_map = (struct page *) VMALLOC_END;
712         efi_memmap_walk(create_mem_map_page_table, NULL);
713         printk("Virtual mem_map starts at 0x%p\n", vmem_map);
714 #endif
715 
716         for_each_online_node(node) {
717                 pfn_offset = mem_data[node].min_pfn;
718 
719 #ifdef CONFIG_VIRTUAL_MEM_MAP
720                 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
721 #endif
722                 if (mem_data[node].max_pfn > max_pfn)
723                         max_pfn = mem_data[node].max_pfn;
724         }
725 
726         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
727 #ifdef CONFIG_ZONE_DMA32
728         max_zone_pfns[ZONE_DMA32] = max_dma;
729 #endif
730         max_zone_pfns[ZONE_NORMAL] = max_pfn;
731         free_area_init_nodes(max_zone_pfns);
732 
733         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
734 }
735 
736 #ifdef CONFIG_MEMORY_HOTPLUG
737 pg_data_t *arch_alloc_nodedata(int nid)
738 {
739         unsigned long size = compute_pernodesize(nid);
740 
741         return kzalloc(size, GFP_KERNEL);
742 }
743 
744 void arch_free_nodedata(pg_data_t *pgdat)
745 {
746         kfree(pgdat);
747 }
748 
749 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
750 {
751         pgdat_list[update_node] = update_pgdat;
752         scatter_node_data();
753 }
754 #endif
755 
756 #ifdef CONFIG_SPARSEMEM_VMEMMAP
757 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
758                 struct vmem_altmap *altmap)
759 {
760         return vmemmap_populate_basepages(start, end, node);
761 }
762 
763 void vmemmap_free(unsigned long start, unsigned long end,
764                 struct vmem_altmap *altmap)
765 {
766 }
767 #endif
768 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp