~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/ia64/mm/discontig.c

Version: ~ [ linux-5.1.2 ] ~ [ linux-5.0.16 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.43 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.119 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.176 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.179 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.139 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.67 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved.
  3  * Copyright (c) 2001 Intel Corp.
  4  * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  5  * Copyright (c) 2002 NEC Corp.
  6  * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  7  * Copyright (c) 2004 Silicon Graphics, Inc
  8  *      Russ Anderson <rja@sgi.com>
  9  *      Jesse Barnes <jbarnes@sgi.com>
 10  *      Jack Steiner <steiner@sgi.com>
 11  */
 12 
 13 /*
 14  * Platform initialization for Discontig Memory
 15  */
 16 
 17 #include <linux/kernel.h>
 18 #include <linux/mm.h>
 19 #include <linux/nmi.h>
 20 #include <linux/swap.h>
 21 #include <linux/bootmem.h>
 22 #include <linux/acpi.h>
 23 #include <linux/efi.h>
 24 #include <linux/nodemask.h>
 25 #include <linux/slab.h>
 26 #include <asm/pgalloc.h>
 27 #include <asm/tlb.h>
 28 #include <asm/meminit.h>
 29 #include <asm/numa.h>
 30 #include <asm/sections.h>
 31 
 32 /*
 33  * Track per-node information needed to setup the boot memory allocator, the
 34  * per-node areas, and the real VM.
 35  */
 36 struct early_node_data {
 37         struct ia64_node_data *node_data;
 38         unsigned long pernode_addr;
 39         unsigned long pernode_size;
 40 #ifdef CONFIG_ZONE_DMA
 41         unsigned long num_dma_physpages;
 42 #endif
 43         unsigned long min_pfn;
 44         unsigned long max_pfn;
 45 };
 46 
 47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
 48 static nodemask_t memory_less_mask __initdata;
 49 
 50 pg_data_t *pgdat_list[MAX_NUMNODES];
 51 
 52 /*
 53  * To prevent cache aliasing effects, align per-node structures so that they
 54  * start at addresses that are strided by node number.
 55  */
 56 #define MAX_NODE_ALIGN_OFFSET   (32 * 1024 * 1024)
 57 #define NODEDATA_ALIGN(addr, node)                                              \
 58         ((((addr) + 1024*1024-1) & ~(1024*1024-1)) +                            \
 59              (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
 60 
 61 /**
 62  * build_node_maps - callback to setup bootmem structs for each node
 63  * @start: physical start of range
 64  * @len: length of range
 65  * @node: node where this range resides
 66  *
 67  * We allocate a struct bootmem_data for each piece of memory that we wish to
 68  * treat as a virtually contiguous block (i.e. each node). Each such block
 69  * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
 70  * if necessary.  Any non-existent pages will simply be part of the virtual
 71  * memmap.  We also update min_low_pfn and max_low_pfn here as we receive
 72  * memory ranges from the caller.
 73  */
 74 static int __init build_node_maps(unsigned long start, unsigned long len,
 75                                   int node)
 76 {
 77         unsigned long spfn, epfn, end = start + len;
 78         struct bootmem_data *bdp = &bootmem_node_data[node];
 79 
 80         epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
 81         spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
 82 
 83         if (!bdp->node_low_pfn) {
 84                 bdp->node_min_pfn = spfn;
 85                 bdp->node_low_pfn = epfn;
 86         } else {
 87                 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
 88                 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
 89         }
 90 
 91         return 0;
 92 }
 93 
 94 /**
 95  * early_nr_cpus_node - return number of cpus on a given node
 96  * @node: node to check
 97  *
 98  * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because
 99  * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100  * called yet.  Note that node 0 will also count all non-existent cpus.
101  */
102 static int __meminit early_nr_cpus_node(int node)
103 {
104         int cpu, n = 0;
105 
106         for_each_possible_early_cpu(cpu)
107                 if (node == node_cpuid[cpu].nid)
108                         n++;
109 
110         return n;
111 }
112 
113 /**
114  * compute_pernodesize - compute size of pernode data
115  * @node: the node id.
116  */
117 static unsigned long __meminit compute_pernodesize(int node)
118 {
119         unsigned long pernodesize = 0, cpus;
120 
121         cpus = early_nr_cpus_node(node);
122         pernodesize += PERCPU_PAGE_SIZE * cpus;
123         pernodesize += node * L1_CACHE_BYTES;
124         pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
125         pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
126         pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
127         pernodesize = PAGE_ALIGN(pernodesize);
128         return pernodesize;
129 }
130 
131 /**
132  * per_cpu_node_setup - setup per-cpu areas on each node
133  * @cpu_data: per-cpu area on this node
134  * @node: node to setup
135  *
136  * Copy the static per-cpu data into the region we just set aside and then
137  * setup __per_cpu_offset for each CPU on this node.  Return a pointer to
138  * the end of the area.
139  */
140 static void *per_cpu_node_setup(void *cpu_data, int node)
141 {
142 #ifdef CONFIG_SMP
143         int cpu;
144 
145         for_each_possible_early_cpu(cpu) {
146                 void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
147 
148                 if (node != node_cpuid[cpu].nid)
149                         continue;
150 
151                 memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
152                 __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
153                         __per_cpu_start;
154 
155                 /*
156                  * percpu area for cpu0 is moved from the __init area
157                  * which is setup by head.S and used till this point.
158                  * Update ar.k3.  This move is ensures that percpu
159                  * area for cpu0 is on the correct node and its
160                  * virtual address isn't insanely far from other
161                  * percpu areas which is important for congruent
162                  * percpu allocator.
163                  */
164                 if (cpu == 0)
165                         ia64_set_kr(IA64_KR_PER_CPU_DATA,
166                                     (unsigned long)cpu_data -
167                                     (unsigned long)__per_cpu_start);
168 
169                 cpu_data += PERCPU_PAGE_SIZE;
170         }
171 #endif
172         return cpu_data;
173 }
174 
175 #ifdef CONFIG_SMP
176 /**
177  * setup_per_cpu_areas - setup percpu areas
178  *
179  * Arch code has already allocated and initialized percpu areas.  All
180  * this function has to do is to teach the determined layout to the
181  * dynamic percpu allocator, which happens to be more complex than
182  * creating whole new ones using helpers.
183  */
184 void __init setup_per_cpu_areas(void)
185 {
186         struct pcpu_alloc_info *ai;
187         struct pcpu_group_info *uninitialized_var(gi);
188         unsigned int *cpu_map;
189         void *base;
190         unsigned long base_offset;
191         unsigned int cpu;
192         ssize_t static_size, reserved_size, dyn_size;
193         int node, prev_node, unit, nr_units, rc;
194 
195         ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids);
196         if (!ai)
197                 panic("failed to allocate pcpu_alloc_info");
198         cpu_map = ai->groups[0].cpu_map;
199 
200         /* determine base */
201         base = (void *)ULONG_MAX;
202         for_each_possible_cpu(cpu)
203                 base = min(base,
204                            (void *)(__per_cpu_offset[cpu] + __per_cpu_start));
205         base_offset = (void *)__per_cpu_start - base;
206 
207         /* build cpu_map, units are grouped by node */
208         unit = 0;
209         for_each_node(node)
210                 for_each_possible_cpu(cpu)
211                         if (node == node_cpuid[cpu].nid)
212                                 cpu_map[unit++] = cpu;
213         nr_units = unit;
214 
215         /* set basic parameters */
216         static_size = __per_cpu_end - __per_cpu_start;
217         reserved_size = PERCPU_MODULE_RESERVE;
218         dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
219         if (dyn_size < 0)
220                 panic("percpu area overflow static=%zd reserved=%zd\n",
221                       static_size, reserved_size);
222 
223         ai->static_size         = static_size;
224         ai->reserved_size       = reserved_size;
225         ai->dyn_size            = dyn_size;
226         ai->unit_size           = PERCPU_PAGE_SIZE;
227         ai->atom_size           = PAGE_SIZE;
228         ai->alloc_size          = PERCPU_PAGE_SIZE;
229 
230         /*
231          * CPUs are put into groups according to node.  Walk cpu_map
232          * and create new groups at node boundaries.
233          */
234         prev_node = -1;
235         ai->nr_groups = 0;
236         for (unit = 0; unit < nr_units; unit++) {
237                 cpu = cpu_map[unit];
238                 node = node_cpuid[cpu].nid;
239 
240                 if (node == prev_node) {
241                         gi->nr_units++;
242                         continue;
243                 }
244                 prev_node = node;
245 
246                 gi = &ai->groups[ai->nr_groups++];
247                 gi->nr_units            = 1;
248                 gi->base_offset         = __per_cpu_offset[cpu] + base_offset;
249                 gi->cpu_map             = &cpu_map[unit];
250         }
251 
252         rc = pcpu_setup_first_chunk(ai, base);
253         if (rc)
254                 panic("failed to setup percpu area (err=%d)", rc);
255 
256         pcpu_free_alloc_info(ai);
257 }
258 #endif
259 
260 /**
261  * fill_pernode - initialize pernode data.
262  * @node: the node id.
263  * @pernode: physical address of pernode data
264  * @pernodesize: size of the pernode data
265  */
266 static void __init fill_pernode(int node, unsigned long pernode,
267         unsigned long pernodesize)
268 {
269         void *cpu_data;
270         int cpus = early_nr_cpus_node(node);
271         struct bootmem_data *bdp = &bootmem_node_data[node];
272 
273         mem_data[node].pernode_addr = pernode;
274         mem_data[node].pernode_size = pernodesize;
275         memset(__va(pernode), 0, pernodesize);
276 
277         cpu_data = (void *)pernode;
278         pernode += PERCPU_PAGE_SIZE * cpus;
279         pernode += node * L1_CACHE_BYTES;
280 
281         pgdat_list[node] = __va(pernode);
282         pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
283 
284         mem_data[node].node_data = __va(pernode);
285         pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
286 
287         pgdat_list[node]->bdata = bdp;
288         pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
289 
290         cpu_data = per_cpu_node_setup(cpu_data, node);
291 
292         return;
293 }
294 
295 /**
296  * find_pernode_space - allocate memory for memory map and per-node structures
297  * @start: physical start of range
298  * @len: length of range
299  * @node: node where this range resides
300  *
301  * This routine reserves space for the per-cpu data struct, the list of
302  * pg_data_ts and the per-node data struct.  Each node will have something like
303  * the following in the first chunk of addr. space large enough to hold it.
304  *
305  *    ________________________
306  *   |                        |
307  *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
308  *   |    PERCPU_PAGE_SIZE *  |     start and length big enough
309  *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus.
310  *   |------------------------|
311  *   |   local pg_data_t *    |
312  *   |------------------------|
313  *   |  local ia64_node_data  |
314  *   |------------------------|
315  *   |          ???           |
316  *   |________________________|
317  *
318  * Once this space has been set aside, the bootmem maps are initialized.  We
319  * could probably move the allocation of the per-cpu and ia64_node_data space
320  * outside of this function and use alloc_bootmem_node(), but doing it here
321  * is straightforward and we get the alignments we want so...
322  */
323 static int __init find_pernode_space(unsigned long start, unsigned long len,
324                                      int node)
325 {
326         unsigned long spfn, epfn;
327         unsigned long pernodesize = 0, pernode, pages, mapsize;
328         struct bootmem_data *bdp = &bootmem_node_data[node];
329 
330         spfn = start >> PAGE_SHIFT;
331         epfn = (start + len) >> PAGE_SHIFT;
332 
333         pages = bdp->node_low_pfn - bdp->node_min_pfn;
334         mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
335 
336         /*
337          * Make sure this memory falls within this node's usable memory
338          * since we may have thrown some away in build_maps().
339          */
340         if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
341                 return 0;
342 
343         /* Don't setup this node's local space twice... */
344         if (mem_data[node].pernode_addr)
345                 return 0;
346 
347         /*
348          * Calculate total size needed, incl. what's necessary
349          * for good alignment and alias prevention.
350          */
351         pernodesize = compute_pernodesize(node);
352         pernode = NODEDATA_ALIGN(start, node);
353 
354         /* Is this range big enough for what we want to store here? */
355         if (start + len > (pernode + pernodesize + mapsize))
356                 fill_pernode(node, pernode, pernodesize);
357 
358         return 0;
359 }
360 
361 /**
362  * free_node_bootmem - free bootmem allocator memory for use
363  * @start: physical start of range
364  * @len: length of range
365  * @node: node where this range resides
366  *
367  * Simply calls the bootmem allocator to free the specified ranged from
368  * the given pg_data_t's bdata struct.  After this function has been called
369  * for all the entries in the EFI memory map, the bootmem allocator will
370  * be ready to service allocation requests.
371  */
372 static int __init free_node_bootmem(unsigned long start, unsigned long len,
373                                     int node)
374 {
375         free_bootmem_node(pgdat_list[node], start, len);
376 
377         return 0;
378 }
379 
380 /**
381  * reserve_pernode_space - reserve memory for per-node space
382  *
383  * Reserve the space used by the bootmem maps & per-node space in the boot
384  * allocator so that when we actually create the real mem maps we don't
385  * use their memory.
386  */
387 static void __init reserve_pernode_space(void)
388 {
389         unsigned long base, size, pages;
390         struct bootmem_data *bdp;
391         int node;
392 
393         for_each_online_node(node) {
394                 pg_data_t *pdp = pgdat_list[node];
395 
396                 if (node_isset(node, memory_less_mask))
397                         continue;
398 
399                 bdp = pdp->bdata;
400 
401                 /* First the bootmem_map itself */
402                 pages = bdp->node_low_pfn - bdp->node_min_pfn;
403                 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
404                 base = __pa(bdp->node_bootmem_map);
405                 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
406 
407                 /* Now the per-node space */
408                 size = mem_data[node].pernode_size;
409                 base = __pa(mem_data[node].pernode_addr);
410                 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
411         }
412 }
413 
414 static void __meminit scatter_node_data(void)
415 {
416         pg_data_t **dst;
417         int node;
418 
419         /*
420          * for_each_online_node() can't be used at here.
421          * node_online_map is not set for hot-added nodes at this time,
422          * because we are halfway through initialization of the new node's
423          * structures.  If for_each_online_node() is used, a new node's
424          * pg_data_ptrs will be not initialized. Instead of using it,
425          * pgdat_list[] is checked.
426          */
427         for_each_node(node) {
428                 if (pgdat_list[node]) {
429                         dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
430                         memcpy(dst, pgdat_list, sizeof(pgdat_list));
431                 }
432         }
433 }
434 
435 /**
436  * initialize_pernode_data - fixup per-cpu & per-node pointers
437  *
438  * Each node's per-node area has a copy of the global pg_data_t list, so
439  * we copy that to each node here, as well as setting the per-cpu pointer
440  * to the local node data structure.  The active_cpus field of the per-node
441  * structure gets setup by the platform_cpu_init() function later.
442  */
443 static void __init initialize_pernode_data(void)
444 {
445         int cpu, node;
446 
447         scatter_node_data();
448 
449 #ifdef CONFIG_SMP
450         /* Set the node_data pointer for each per-cpu struct */
451         for_each_possible_early_cpu(cpu) {
452                 node = node_cpuid[cpu].nid;
453                 per_cpu(ia64_cpu_info, cpu).node_data =
454                         mem_data[node].node_data;
455         }
456 #else
457         {
458                 struct cpuinfo_ia64 *cpu0_cpu_info;
459                 cpu = 0;
460                 node = node_cpuid[cpu].nid;
461                 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
462                         ((char *)&ia64_cpu_info - __per_cpu_start));
463                 cpu0_cpu_info->node_data = mem_data[node].node_data;
464         }
465 #endif /* CONFIG_SMP */
466 }
467 
468 /**
469  * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
470  *      node but fall back to any other node when __alloc_bootmem_node fails
471  *      for best.
472  * @nid: node id
473  * @pernodesize: size of this node's pernode data
474  */
475 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
476 {
477         void *ptr = NULL;
478         u8 best = 0xff;
479         int bestnode = -1, node, anynode = 0;
480 
481         for_each_online_node(node) {
482                 if (node_isset(node, memory_less_mask))
483                         continue;
484                 else if (node_distance(nid, node) < best) {
485                         best = node_distance(nid, node);
486                         bestnode = node;
487                 }
488                 anynode = node;
489         }
490 
491         if (bestnode == -1)
492                 bestnode = anynode;
493 
494         ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
495                 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
496 
497         return ptr;
498 }
499 
500 /**
501  * memory_less_nodes - allocate and initialize CPU only nodes pernode
502  *      information.
503  */
504 static void __init memory_less_nodes(void)
505 {
506         unsigned long pernodesize;
507         void *pernode;
508         int node;
509 
510         for_each_node_mask(node, memory_less_mask) {
511                 pernodesize = compute_pernodesize(node);
512                 pernode = memory_less_node_alloc(node, pernodesize);
513                 fill_pernode(node, __pa(pernode), pernodesize);
514         }
515 
516         return;
517 }
518 
519 /**
520  * find_memory - walk the EFI memory map and setup the bootmem allocator
521  *
522  * Called early in boot to setup the bootmem allocator, and to
523  * allocate the per-cpu and per-node structures.
524  */
525 void __init find_memory(void)
526 {
527         int node;
528 
529         reserve_memory();
530 
531         if (num_online_nodes() == 0) {
532                 printk(KERN_ERR "node info missing!\n");
533                 node_set_online(0);
534         }
535 
536         nodes_or(memory_less_mask, memory_less_mask, node_online_map);
537         min_low_pfn = -1;
538         max_low_pfn = 0;
539 
540         /* These actually end up getting called by call_pernode_memory() */
541         efi_memmap_walk(filter_rsvd_memory, build_node_maps);
542         efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
543         efi_memmap_walk(find_max_min_low_pfn, NULL);
544 
545         for_each_online_node(node)
546                 if (bootmem_node_data[node].node_low_pfn) {
547                         node_clear(node, memory_less_mask);
548                         mem_data[node].min_pfn = ~0UL;
549                 }
550 
551         efi_memmap_walk(filter_memory, register_active_ranges);
552 
553         /*
554          * Initialize the boot memory maps in reverse order since that's
555          * what the bootmem allocator expects
556          */
557         for (node = MAX_NUMNODES - 1; node >= 0; node--) {
558                 unsigned long pernode, pernodesize, map;
559                 struct bootmem_data *bdp;
560 
561                 if (!node_online(node))
562                         continue;
563                 else if (node_isset(node, memory_less_mask))
564                         continue;
565 
566                 bdp = &bootmem_node_data[node];
567                 pernode = mem_data[node].pernode_addr;
568                 pernodesize = mem_data[node].pernode_size;
569                 map = pernode + pernodesize;
570 
571                 init_bootmem_node(pgdat_list[node],
572                                   map>>PAGE_SHIFT,
573                                   bdp->node_min_pfn,
574                                   bdp->node_low_pfn);
575         }
576 
577         efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
578 
579         reserve_pernode_space();
580         memory_less_nodes();
581         initialize_pernode_data();
582 
583         max_pfn = max_low_pfn;
584 
585         find_initrd();
586 }
587 
588 #ifdef CONFIG_SMP
589 /**
590  * per_cpu_init - setup per-cpu variables
591  *
592  * find_pernode_space() does most of this already, we just need to set
593  * local_per_cpu_offset
594  */
595 void *per_cpu_init(void)
596 {
597         int cpu;
598         static int first_time = 1;
599 
600         if (first_time) {
601                 first_time = 0;
602                 for_each_possible_early_cpu(cpu)
603                         per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
604         }
605 
606         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
607 }
608 #endif /* CONFIG_SMP */
609 
610 /**
611  * call_pernode_memory - use SRAT to call callback functions with node info
612  * @start: physical start of range
613  * @len: length of range
614  * @arg: function to call for each range
615  *
616  * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
617  * out to which node a block of memory belongs.  Ignore memory that we cannot
618  * identify, and split blocks that run across multiple nodes.
619  *
620  * Take this opportunity to round the start address up and the end address
621  * down to page boundaries.
622  */
623 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
624 {
625         unsigned long rs, re, end = start + len;
626         void (*func)(unsigned long, unsigned long, int);
627         int i;
628 
629         start = PAGE_ALIGN(start);
630         end &= PAGE_MASK;
631         if (start >= end)
632                 return;
633 
634         func = arg;
635 
636         if (!num_node_memblks) {
637                 /* No SRAT table, so assume one node (node 0) */
638                 if (start < end)
639                         (*func)(start, end - start, 0);
640                 return;
641         }
642 
643         for (i = 0; i < num_node_memblks; i++) {
644                 rs = max(start, node_memblk[i].start_paddr);
645                 re = min(end, node_memblk[i].start_paddr +
646                          node_memblk[i].size);
647 
648                 if (rs < re)
649                         (*func)(rs, re - rs, node_memblk[i].nid);
650 
651                 if (re == end)
652                         break;
653         }
654 }
655 
656 /**
657  * count_node_pages - callback to build per-node memory info structures
658  * @start: physical start of range
659  * @len: length of range
660  * @node: node where this range resides
661  *
662  * Each node has it's own number of physical pages, DMAable pages, start, and
663  * end page frame number.  This routine will be called by call_pernode_memory()
664  * for each piece of usable memory and will setup these values for each node.
665  * Very similar to build_maps().
666  */
667 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
668 {
669         unsigned long end = start + len;
670 
671 #ifdef CONFIG_ZONE_DMA
672         if (start <= __pa(MAX_DMA_ADDRESS))
673                 mem_data[node].num_dma_physpages +=
674                         (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
675 #endif
676         start = GRANULEROUNDDOWN(start);
677         end = GRANULEROUNDUP(end);
678         mem_data[node].max_pfn = max(mem_data[node].max_pfn,
679                                      end >> PAGE_SHIFT);
680         mem_data[node].min_pfn = min(mem_data[node].min_pfn,
681                                      start >> PAGE_SHIFT);
682 
683         return 0;
684 }
685 
686 /**
687  * paging_init - setup page tables
688  *
689  * paging_init() sets up the page tables for each node of the system and frees
690  * the bootmem allocator memory for general use.
691  */
692 void __init paging_init(void)
693 {
694         unsigned long max_dma;
695         unsigned long pfn_offset = 0;
696         unsigned long max_pfn = 0;
697         int node;
698         unsigned long max_zone_pfns[MAX_NR_ZONES];
699 
700         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
701 
702         efi_memmap_walk(filter_rsvd_memory, count_node_pages);
703 
704         sparse_memory_present_with_active_regions(MAX_NUMNODES);
705         sparse_init();
706 
707 #ifdef CONFIG_VIRTUAL_MEM_MAP
708         VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
709                 sizeof(struct page));
710         vmem_map = (struct page *) VMALLOC_END;
711         efi_memmap_walk(create_mem_map_page_table, NULL);
712         printk("Virtual mem_map starts at 0x%p\n", vmem_map);
713 #endif
714 
715         for_each_online_node(node) {
716                 pfn_offset = mem_data[node].min_pfn;
717 
718 #ifdef CONFIG_VIRTUAL_MEM_MAP
719                 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
720 #endif
721                 if (mem_data[node].max_pfn > max_pfn)
722                         max_pfn = mem_data[node].max_pfn;
723         }
724 
725         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
726 #ifdef CONFIG_ZONE_DMA
727         max_zone_pfns[ZONE_DMA] = max_dma;
728 #endif
729         max_zone_pfns[ZONE_NORMAL] = max_pfn;
730         free_area_init_nodes(max_zone_pfns);
731 
732         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
733 }
734 
735 #ifdef CONFIG_MEMORY_HOTPLUG
736 pg_data_t *arch_alloc_nodedata(int nid)
737 {
738         unsigned long size = compute_pernodesize(nid);
739 
740         return kzalloc(size, GFP_KERNEL);
741 }
742 
743 void arch_free_nodedata(pg_data_t *pgdat)
744 {
745         kfree(pgdat);
746 }
747 
748 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
749 {
750         pgdat_list[update_node] = update_pgdat;
751         scatter_node_data();
752 }
753 #endif
754 
755 #ifdef CONFIG_SPARSEMEM_VMEMMAP
756 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
757 {
758         return vmemmap_populate_basepages(start, end, node);
759 }
760 
761 void vmemmap_free(unsigned long start, unsigned long end)
762 {
763 }
764 #endif
765 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp