~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/ia64/sn/kernel/bte.c

Version: ~ [ linux-5.4-rc3 ] ~ [ linux-5.3.6 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.79 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.149 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.196 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.196 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.75 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * This file is subject to the terms and conditions of the GNU General Public
  3  * License.  See the file "COPYING" in the main directory of this archive
  4  * for more details.
  5  *
  6  * Copyright (c) 2000-2007 Silicon Graphics, Inc.  All Rights Reserved.
  7  */
  8 
  9 #include <linux/module.h>
 10 #include <asm/sn/nodepda.h>
 11 #include <asm/sn/addrs.h>
 12 #include <asm/sn/arch.h>
 13 #include <asm/sn/sn_cpuid.h>
 14 #include <asm/sn/pda.h>
 15 #include <asm/sn/shubio.h>
 16 #include <asm/nodedata.h>
 17 #include <asm/delay.h>
 18 
 19 #include <linux/bootmem.h>
 20 #include <linux/string.h>
 21 #include <linux/sched.h>
 22 #include <linux/slab.h>
 23 
 24 #include <asm/sn/bte.h>
 25 
 26 #ifndef L1_CACHE_MASK
 27 #define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
 28 #endif
 29 
 30 /* two interfaces on two btes */
 31 #define MAX_INTERFACES_TO_TRY           4
 32 #define MAX_NODES_TO_TRY                2
 33 
 34 static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
 35 {
 36         nodepda_t *tmp_nodepda;
 37 
 38         if (nasid_to_cnodeid(nasid) == -1)
 39                 return (struct bteinfo_s *)NULL;
 40 
 41         tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
 42         return &tmp_nodepda->bte_if[interface];
 43 
 44 }
 45 
 46 static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
 47 {
 48         if (is_shub2()) {
 49                 BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
 50         } else {
 51                 BTE_LNSTAT_STORE(bte, len);
 52                 BTE_CTRL_STORE(bte, mode);
 53         }
 54 }
 55 
 56 /************************************************************************
 57  * Block Transfer Engine copy related functions.
 58  *
 59  ***********************************************************************/
 60 
 61 /*
 62  * bte_copy(src, dest, len, mode, notification)
 63  *
 64  * Use the block transfer engine to move kernel memory from src to dest
 65  * using the assigned mode.
 66  *
 67  * Parameters:
 68  *   src - physical address of the transfer source.
 69  *   dest - physical address of the transfer destination.
 70  *   len - number of bytes to transfer from source to dest.
 71  *   mode - hardware defined.  See reference information
 72  *          for IBCT0/1 in the SHUB Programmers Reference
 73  *   notification - kernel virtual address of the notification cache
 74  *                  line.  If NULL, the default is used and
 75  *                  the bte_copy is synchronous.
 76  *
 77  * NOTE:  This function requires src, dest, and len to
 78  * be cacheline aligned.
 79  */
 80 bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
 81 {
 82         u64 transfer_size;
 83         u64 transfer_stat;
 84         u64 notif_phys_addr;
 85         struct bteinfo_s *bte;
 86         bte_result_t bte_status;
 87         unsigned long irq_flags;
 88         unsigned long itc_end = 0;
 89         int nasid_to_try[MAX_NODES_TO_TRY];
 90         int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
 91         int bte_if_index, nasid_index;
 92         int bte_first, btes_per_node = BTES_PER_NODE;
 93 
 94         BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
 95                     src, dest, len, mode, notification));
 96 
 97         if (len == 0) {
 98                 return BTE_SUCCESS;
 99         }
100 
101         BUG_ON(len & L1_CACHE_MASK);
102         BUG_ON(src & L1_CACHE_MASK);
103         BUG_ON(dest & L1_CACHE_MASK);
104         BUG_ON(len > BTE_MAX_XFER);
105 
106         /*
107          * Start with interface corresponding to cpu number
108          */
109         bte_first = raw_smp_processor_id() % btes_per_node;
110 
111         if (mode & BTE_USE_DEST) {
112                 /* try remote then local */
113                 nasid_to_try[0] = NASID_GET(dest);
114                 if (mode & BTE_USE_ANY) {
115                         nasid_to_try[1] = my_nasid;
116                 } else {
117                         nasid_to_try[1] = 0;
118                 }
119         } else {
120                 /* try local then remote */
121                 nasid_to_try[0] = my_nasid;
122                 if (mode & BTE_USE_ANY) {
123                         nasid_to_try[1] = NASID_GET(dest);
124                 } else {
125                         nasid_to_try[1] = 0;
126                 }
127         }
128 
129 retry_bteop:
130         do {
131                 local_irq_save(irq_flags);
132 
133                 bte_if_index = bte_first;
134                 nasid_index = 0;
135 
136                 /* Attempt to lock one of the BTE interfaces. */
137                 while (nasid_index < MAX_NODES_TO_TRY) {
138                         bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
139 
140                         if (bte == NULL) {
141                                 nasid_index++;
142                                 continue;
143                         }
144 
145                         if (spin_trylock(&bte->spinlock)) {
146                                 if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
147                                     (BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
148                                         /* Got the lock but BTE still busy */
149                                         spin_unlock(&bte->spinlock);
150                                 } else {
151                                         /* we got the lock and it's not busy */
152                                         break;
153                                 }
154                         }
155 
156                         bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
157                         if (bte_if_index == bte_first) {
158                                 /*
159                                  * We've tried all interfaces on this node
160                                  */
161                                 nasid_index++;
162                         }
163 
164                         bte = NULL;
165                 }
166 
167                 if (bte != NULL) {
168                         break;
169                 }
170 
171                 local_irq_restore(irq_flags);
172 
173                 if (!(mode & BTE_WACQUIRE)) {
174                         return BTEFAIL_NOTAVAIL;
175                 }
176         } while (1);
177 
178         if (notification == NULL) {
179                 /* User does not want to be notified. */
180                 bte->most_rcnt_na = &bte->notify;
181         } else {
182                 bte->most_rcnt_na = notification;
183         }
184 
185         /* Calculate the number of cache lines to transfer. */
186         transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
187 
188         /* Initialize the notification to a known value. */
189         *bte->most_rcnt_na = BTE_WORD_BUSY;
190         notif_phys_addr = (u64)bte->most_rcnt_na;
191 
192         /* Set the source and destination registers */
193         BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
194         BTE_SRC_STORE(bte, src);
195         BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
196         BTE_DEST_STORE(bte, dest);
197 
198         /* Set the notification register */
199         BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
200         BTE_NOTIF_STORE(bte, notif_phys_addr);
201 
202         /* Initiate the transfer */
203         BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
204         bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
205 
206         itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
207 
208         spin_unlock_irqrestore(&bte->spinlock, irq_flags);
209 
210         if (notification != NULL) {
211                 return BTE_SUCCESS;
212         }
213 
214         while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
215                 cpu_relax();
216                 if (ia64_get_itc() > itc_end) {
217                         BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
218                                 NASID_GET(bte->bte_base_addr), bte->bte_num,
219                                 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
220                         bte->bte_error_count++;
221                         bte->bh_error = IBLS_ERROR;
222                         bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
223                         *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
224                         goto retry_bteop;
225                 }
226         }
227 
228         BTE_PRINTKV((" Delay Done.  IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
229                      BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
230 
231         if (transfer_stat & IBLS_ERROR) {
232                 bte_status = BTE_GET_ERROR_STATUS(transfer_stat);
233         } else {
234                 bte_status = BTE_SUCCESS;
235         }
236         *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
237 
238         BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
239                     BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
240 
241         return bte_status;
242 }
243 
244 EXPORT_SYMBOL(bte_copy);
245 
246 /*
247  * bte_unaligned_copy(src, dest, len, mode)
248  *
249  * use the block transfer engine to move kernel
250  * memory from src to dest using the assigned mode.
251  *
252  * Parameters:
253  *   src - physical address of the transfer source.
254  *   dest - physical address of the transfer destination.
255  *   len - number of bytes to transfer from source to dest.
256  *   mode - hardware defined.  See reference information
257  *          for IBCT0/1 in the SGI documentation.
258  *
259  * NOTE: If the source, dest, and len are all cache line aligned,
260  * then it would be _FAR_ preferable to use bte_copy instead.
261  */
262 bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
263 {
264         int destFirstCacheOffset;
265         u64 headBteSource;
266         u64 headBteLen;
267         u64 headBcopySrcOffset;
268         u64 headBcopyDest;
269         u64 headBcopyLen;
270         u64 footBteSource;
271         u64 footBteLen;
272         u64 footBcopyDest;
273         u64 footBcopyLen;
274         bte_result_t rv;
275         char *bteBlock, *bteBlock_unaligned;
276 
277         if (len == 0) {
278                 return BTE_SUCCESS;
279         }
280 
281         /* temporary buffer used during unaligned transfers */
282         bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES, GFP_KERNEL);
283         if (bteBlock_unaligned == NULL) {
284                 return BTEFAIL_NOTAVAIL;
285         }
286         bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
287 
288         headBcopySrcOffset = src & L1_CACHE_MASK;
289         destFirstCacheOffset = dest & L1_CACHE_MASK;
290 
291         /*
292          * At this point, the transfer is broken into
293          * (up to) three sections.  The first section is
294          * from the start address to the first physical
295          * cache line, the second is from the first physical
296          * cache line to the last complete cache line,
297          * and the third is from the last cache line to the
298          * end of the buffer.  The first and third sections
299          * are handled by bte copying into a temporary buffer
300          * and then bcopy'ing the necessary section into the
301          * final location.  The middle section is handled with
302          * a standard bte copy.
303          *
304          * One nasty exception to the above rule is when the
305          * source and destination are not symmetrically
306          * mis-aligned.  If the source offset from the first
307          * cache line is different from the destination offset,
308          * we make the first section be the entire transfer
309          * and the bcopy the entire block into place.
310          */
311         if (headBcopySrcOffset == destFirstCacheOffset) {
312 
313                 /*
314                  * Both the source and destination are the same
315                  * distance from a cache line boundary so we can
316                  * use the bte to transfer the bulk of the
317                  * data.
318                  */
319                 headBteSource = src & ~L1_CACHE_MASK;
320                 headBcopyDest = dest;
321                 if (headBcopySrcOffset) {
322                         headBcopyLen =
323                             (len >
324                              (L1_CACHE_BYTES -
325                               headBcopySrcOffset) ? L1_CACHE_BYTES
326                              - headBcopySrcOffset : len);
327                         headBteLen = L1_CACHE_BYTES;
328                 } else {
329                         headBcopyLen = 0;
330                         headBteLen = 0;
331                 }
332 
333                 if (len > headBcopyLen) {
334                         footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
335                         footBteLen = L1_CACHE_BYTES;
336 
337                         footBteSource = src + len - footBcopyLen;
338                         footBcopyDest = dest + len - footBcopyLen;
339 
340                         if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
341                                 /*
342                                  * We have two contiguous bcopy
343                                  * blocks.  Merge them.
344                                  */
345                                 headBcopyLen += footBcopyLen;
346                                 headBteLen += footBteLen;
347                         } else if (footBcopyLen > 0) {
348                                 rv = bte_copy(footBteSource,
349                                               ia64_tpa((unsigned long)bteBlock),
350                                               footBteLen, mode, NULL);
351                                 if (rv != BTE_SUCCESS) {
352                                         kfree(bteBlock_unaligned);
353                                         return rv;
354                                 }
355 
356                                 memcpy(__va(footBcopyDest),
357                                        (char *)bteBlock, footBcopyLen);
358                         }
359                 } else {
360                         footBcopyLen = 0;
361                         footBteLen = 0;
362                 }
363 
364                 if (len > (headBcopyLen + footBcopyLen)) {
365                         /* now transfer the middle. */
366                         rv = bte_copy((src + headBcopyLen),
367                                       (dest +
368                                        headBcopyLen),
369                                       (len - headBcopyLen -
370                                        footBcopyLen), mode, NULL);
371                         if (rv != BTE_SUCCESS) {
372                                 kfree(bteBlock_unaligned);
373                                 return rv;
374                         }
375 
376                 }
377         } else {
378 
379                 /*
380                  * The transfer is not symmetric, we will
381                  * allocate a buffer large enough for all the
382                  * data, bte_copy into that buffer and then
383                  * bcopy to the destination.
384                  */
385 
386                 headBcopySrcOffset = src & L1_CACHE_MASK;
387                 headBcopyDest = dest;
388                 headBcopyLen = len;
389 
390                 headBteSource = src - headBcopySrcOffset;
391                 /* Add the leading and trailing bytes from source */
392                 headBteLen = L1_CACHE_ALIGN(len + headBcopySrcOffset);
393         }
394 
395         if (headBcopyLen > 0) {
396                 rv = bte_copy(headBteSource,
397                               ia64_tpa((unsigned long)bteBlock), headBteLen,
398                               mode, NULL);
399                 if (rv != BTE_SUCCESS) {
400                         kfree(bteBlock_unaligned);
401                         return rv;
402                 }
403 
404                 memcpy(__va(headBcopyDest), ((char *)bteBlock +
405                                              headBcopySrcOffset), headBcopyLen);
406         }
407         kfree(bteBlock_unaligned);
408         return BTE_SUCCESS;
409 }
410 
411 EXPORT_SYMBOL(bte_unaligned_copy);
412 
413 /************************************************************************
414  * Block Transfer Engine initialization functions.
415  *
416  ***********************************************************************/
417 
418 /*
419  * bte_init_node(nodepda, cnode)
420  *
421  * Initialize the nodepda structure with BTE base addresses and
422  * spinlocks.
423  */
424 void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
425 {
426         int i;
427 
428         /*
429          * Indicate that all the block transfer engines on this node
430          * are available.
431          */
432 
433         /*
434          * Allocate one bte_recover_t structure per node.  It holds
435          * the recovery lock for node.  All the bte interface structures
436          * will point at this one bte_recover structure to get the lock.
437          */
438         spin_lock_init(&mynodepda->bte_recovery_lock);
439         init_timer(&mynodepda->bte_recovery_timer);
440         mynodepda->bte_recovery_timer.function = bte_error_handler;
441         mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
442 
443         for (i = 0; i < BTES_PER_NODE; i++) {
444                 u64 *base_addr;
445 
446                 /* Which link status register should we use? */
447                 base_addr = (u64 *)
448                     REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
449                 mynodepda->bte_if[i].bte_base_addr = base_addr;
450                 mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
451                 mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
452                 mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
453                 mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
454 
455                 /*
456                  * Initialize the notification and spinlock
457                  * so the first transfer can occur.
458                  */
459                 mynodepda->bte_if[i].most_rcnt_na =
460                     &(mynodepda->bte_if[i].notify);
461                 mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
462                 spin_lock_init(&mynodepda->bte_if[i].spinlock);
463 
464                 mynodepda->bte_if[i].bte_cnode = cnode;
465                 mynodepda->bte_if[i].bte_error_count = 0;
466                 mynodepda->bte_if[i].bte_num = i;
467                 mynodepda->bte_if[i].cleanup_active = 0;
468                 mynodepda->bte_if[i].bh_error = 0;
469         }
470 
471 }
472 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp