~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/mips/kernel/perf_event_mipsxx.c

Version: ~ [ linux-5.5-rc1 ] ~ [ linux-5.4.2 ] ~ [ linux-5.3.15 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.88 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.158 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.206 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.206 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.78 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Linux performance counter support for MIPS.
  3  *
  4  * Copyright (C) 2010 MIPS Technologies, Inc.
  5  * Copyright (C) 2011 Cavium Networks, Inc.
  6  * Author: Deng-Cheng Zhu
  7  *
  8  * This code is based on the implementation for ARM, which is in turn
  9  * based on the sparc64 perf event code and the x86 code. Performance
 10  * counter access is based on the MIPS Oprofile code. And the callchain
 11  * support references the code of MIPS stacktrace.c.
 12  *
 13  * This program is free software; you can redistribute it and/or modify
 14  * it under the terms of the GNU General Public License version 2 as
 15  * published by the Free Software Foundation.
 16  */
 17 
 18 #include <linux/cpumask.h>
 19 #include <linux/interrupt.h>
 20 #include <linux/smp.h>
 21 #include <linux/kernel.h>
 22 #include <linux/perf_event.h>
 23 #include <linux/uaccess.h>
 24 
 25 #include <asm/irq.h>
 26 #include <asm/irq_regs.h>
 27 #include <asm/stacktrace.h>
 28 #include <asm/time.h> /* For perf_irq */
 29 
 30 #define MIPS_MAX_HWEVENTS 4
 31 #define MIPS_TCS_PER_COUNTER 2
 32 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
 33 
 34 struct cpu_hw_events {
 35         /* Array of events on this cpu. */
 36         struct perf_event       *events[MIPS_MAX_HWEVENTS];
 37 
 38         /*
 39          * Set the bit (indexed by the counter number) when the counter
 40          * is used for an event.
 41          */
 42         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
 43 
 44         /*
 45          * Software copy of the control register for each performance counter.
 46          * MIPS CPUs vary in performance counters. They use this differently,
 47          * and even may not use it.
 48          */
 49         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
 50 };
 51 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
 52         .saved_ctrl = {0},
 53 };
 54 
 55 /* The description of MIPS performance events. */
 56 struct mips_perf_event {
 57         unsigned int event_id;
 58         /*
 59          * MIPS performance counters are indexed starting from 0.
 60          * CNTR_EVEN indicates the indexes of the counters to be used are
 61          * even numbers.
 62          */
 63         unsigned int cntr_mask;
 64         #define CNTR_EVEN       0x55555555
 65         #define CNTR_ODD        0xaaaaaaaa
 66         #define CNTR_ALL        0xffffffff
 67 #ifdef CONFIG_MIPS_MT_SMP
 68         enum {
 69                 T  = 0,
 70                 V  = 1,
 71                 P  = 2,
 72         } range;
 73 #else
 74         #define T
 75         #define V
 76         #define P
 77 #endif
 78 };
 79 
 80 static struct mips_perf_event raw_event;
 81 static DEFINE_MUTEX(raw_event_mutex);
 82 
 83 #define C(x) PERF_COUNT_HW_CACHE_##x
 84 
 85 struct mips_pmu {
 86         u64             max_period;
 87         u64             valid_count;
 88         u64             overflow;
 89         const char      *name;
 90         int             irq;
 91         u64             (*read_counter)(unsigned int idx);
 92         void            (*write_counter)(unsigned int idx, u64 val);
 93         const struct mips_perf_event *(*map_raw_event)(u64 config);
 94         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
 95         const struct mips_perf_event (*cache_event_map)
 96                                 [PERF_COUNT_HW_CACHE_MAX]
 97                                 [PERF_COUNT_HW_CACHE_OP_MAX]
 98                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
 99         unsigned int    num_counters;
100 };
101 
102 static struct mips_pmu mipspmu;
103 
104 #define M_PERFCTL_EVENT(event)          (((event) << MIPS_PERFCTRL_EVENT_S) & \
105                                          MIPS_PERFCTRL_EVENT)
106 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << MIPS_PERFCTRL_VPEID_S)
107 
108 #ifdef CONFIG_CPU_BMIPS5000
109 #define M_PERFCTL_MT_EN(filter)         0
110 #else /* !CONFIG_CPU_BMIPS5000 */
111 #define M_PERFCTL_MT_EN(filter)         (filter)
112 #endif /* CONFIG_CPU_BMIPS5000 */
113 
114 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
115 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
116 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
117 
118 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (MIPS_PERFCTRL_EXL |            \
119                                          MIPS_PERFCTRL_K |              \
120                                          MIPS_PERFCTRL_U |              \
121                                          MIPS_PERFCTRL_S |              \
122                                          MIPS_PERFCTRL_IE)
123 
124 #ifdef CONFIG_MIPS_MT_SMP
125 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
126 #else
127 #define M_PERFCTL_CONFIG_MASK           0x1f
128 #endif
129 
130 
131 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
132 static DEFINE_RWLOCK(pmuint_rwlock);
133 
134 #if defined(CONFIG_CPU_BMIPS5000)
135 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
136                          0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
137 #else
138 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
139                          0 : cpu_vpe_id(&current_cpu_data))
140 #endif
141 
142 /* Copied from op_model_mipsxx.c */
143 static unsigned int vpe_shift(void)
144 {
145         if (num_possible_cpus() > 1)
146                 return 1;
147 
148         return 0;
149 }
150 
151 static unsigned int counters_total_to_per_cpu(unsigned int counters)
152 {
153         return counters >> vpe_shift();
154 }
155 
156 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
157 #define vpe_id()        0
158 
159 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
160 
161 static void resume_local_counters(void);
162 static void pause_local_counters(void);
163 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
164 static int mipsxx_pmu_handle_shared_irq(void);
165 
166 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
167 {
168         if (vpe_id() == 1)
169                 idx = (idx + 2) & 3;
170         return idx;
171 }
172 
173 static u64 mipsxx_pmu_read_counter(unsigned int idx)
174 {
175         idx = mipsxx_pmu_swizzle_perf_idx(idx);
176 
177         switch (idx) {
178         case 0:
179                 /*
180                  * The counters are unsigned, we must cast to truncate
181                  * off the high bits.
182                  */
183                 return (u32)read_c0_perfcntr0();
184         case 1:
185                 return (u32)read_c0_perfcntr1();
186         case 2:
187                 return (u32)read_c0_perfcntr2();
188         case 3:
189                 return (u32)read_c0_perfcntr3();
190         default:
191                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
192                 return 0;
193         }
194 }
195 
196 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
197 {
198         idx = mipsxx_pmu_swizzle_perf_idx(idx);
199 
200         switch (idx) {
201         case 0:
202                 return read_c0_perfcntr0_64();
203         case 1:
204                 return read_c0_perfcntr1_64();
205         case 2:
206                 return read_c0_perfcntr2_64();
207         case 3:
208                 return read_c0_perfcntr3_64();
209         default:
210                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
211                 return 0;
212         }
213 }
214 
215 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
216 {
217         idx = mipsxx_pmu_swizzle_perf_idx(idx);
218 
219         switch (idx) {
220         case 0:
221                 write_c0_perfcntr0(val);
222                 return;
223         case 1:
224                 write_c0_perfcntr1(val);
225                 return;
226         case 2:
227                 write_c0_perfcntr2(val);
228                 return;
229         case 3:
230                 write_c0_perfcntr3(val);
231                 return;
232         }
233 }
234 
235 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
236 {
237         idx = mipsxx_pmu_swizzle_perf_idx(idx);
238 
239         switch (idx) {
240         case 0:
241                 write_c0_perfcntr0_64(val);
242                 return;
243         case 1:
244                 write_c0_perfcntr1_64(val);
245                 return;
246         case 2:
247                 write_c0_perfcntr2_64(val);
248                 return;
249         case 3:
250                 write_c0_perfcntr3_64(val);
251                 return;
252         }
253 }
254 
255 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
256 {
257         idx = mipsxx_pmu_swizzle_perf_idx(idx);
258 
259         switch (idx) {
260         case 0:
261                 return read_c0_perfctrl0();
262         case 1:
263                 return read_c0_perfctrl1();
264         case 2:
265                 return read_c0_perfctrl2();
266         case 3:
267                 return read_c0_perfctrl3();
268         default:
269                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
270                 return 0;
271         }
272 }
273 
274 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
275 {
276         idx = mipsxx_pmu_swizzle_perf_idx(idx);
277 
278         switch (idx) {
279         case 0:
280                 write_c0_perfctrl0(val);
281                 return;
282         case 1:
283                 write_c0_perfctrl1(val);
284                 return;
285         case 2:
286                 write_c0_perfctrl2(val);
287                 return;
288         case 3:
289                 write_c0_perfctrl3(val);
290                 return;
291         }
292 }
293 
294 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
295                                     struct hw_perf_event *hwc)
296 {
297         int i;
298 
299         /*
300          * We only need to care the counter mask. The range has been
301          * checked definitely.
302          */
303         unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
304 
305         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
306                 /*
307                  * Note that some MIPS perf events can be counted by both
308                  * even and odd counters, wheresas many other are only by
309                  * even _or_ odd counters. This introduces an issue that
310                  * when the former kind of event takes the counter the
311                  * latter kind of event wants to use, then the "counter
312                  * allocation" for the latter event will fail. In fact if
313                  * they can be dynamically swapped, they both feel happy.
314                  * But here we leave this issue alone for now.
315                  */
316                 if (test_bit(i, &cntr_mask) &&
317                         !test_and_set_bit(i, cpuc->used_mask))
318                         return i;
319         }
320 
321         return -EAGAIN;
322 }
323 
324 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
325 {
326         struct perf_event *event = container_of(evt, struct perf_event, hw);
327         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
328 #ifdef CONFIG_MIPS_MT_SMP
329         unsigned int range = evt->event_base >> 24;
330 #endif /* CONFIG_MIPS_MT_SMP */
331 
332         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
333 
334         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
335                 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
336                 /* Make sure interrupt enabled. */
337                 MIPS_PERFCTRL_IE;
338 
339 #ifdef CONFIG_CPU_BMIPS5000
340         {
341                 /* enable the counter for the calling thread */
342                 cpuc->saved_ctrl[idx] |=
343                         (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
344         }
345 #else
346 #ifdef CONFIG_MIPS_MT_SMP
347         if (range > V) {
348                 /* The counter is processor wide. Set it up to count all TCs. */
349                 pr_debug("Enabling perf counter for all TCs\n");
350                 cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
351         } else
352 #endif /* CONFIG_MIPS_MT_SMP */
353         {
354                 unsigned int cpu, ctrl;
355 
356                 /*
357                  * Set up the counter for a particular CPU when event->cpu is
358                  * a valid CPU number. Otherwise set up the counter for the CPU
359                  * scheduling this thread.
360                  */
361                 cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
362 
363                 ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
364                 ctrl |= M_TC_EN_VPE;
365                 cpuc->saved_ctrl[idx] |= ctrl;
366                 pr_debug("Enabling perf counter for CPU%d\n", cpu);
367         }
368 #endif /* CONFIG_CPU_BMIPS5000 */
369         /*
370          * We do not actually let the counter run. Leave it until start().
371          */
372 }
373 
374 static void mipsxx_pmu_disable_event(int idx)
375 {
376         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
377         unsigned long flags;
378 
379         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
380 
381         local_irq_save(flags);
382         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
383                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
384         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
385         local_irq_restore(flags);
386 }
387 
388 static int mipspmu_event_set_period(struct perf_event *event,
389                                     struct hw_perf_event *hwc,
390                                     int idx)
391 {
392         u64 left = local64_read(&hwc->period_left);
393         u64 period = hwc->sample_period;
394         int ret = 0;
395 
396         if (unlikely((left + period) & (1ULL << 63))) {
397                 /* left underflowed by more than period. */
398                 left = period;
399                 local64_set(&hwc->period_left, left);
400                 hwc->last_period = period;
401                 ret = 1;
402         } else  if (unlikely((left + period) <= period)) {
403                 /* left underflowed by less than period. */
404                 left += period;
405                 local64_set(&hwc->period_left, left);
406                 hwc->last_period = period;
407                 ret = 1;
408         }
409 
410         if (left > mipspmu.max_period) {
411                 left = mipspmu.max_period;
412                 local64_set(&hwc->period_left, left);
413         }
414 
415         local64_set(&hwc->prev_count, mipspmu.overflow - left);
416 
417         mipspmu.write_counter(idx, mipspmu.overflow - left);
418 
419         perf_event_update_userpage(event);
420 
421         return ret;
422 }
423 
424 static void mipspmu_event_update(struct perf_event *event,
425                                  struct hw_perf_event *hwc,
426                                  int idx)
427 {
428         u64 prev_raw_count, new_raw_count;
429         u64 delta;
430 
431 again:
432         prev_raw_count = local64_read(&hwc->prev_count);
433         new_raw_count = mipspmu.read_counter(idx);
434 
435         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
436                                 new_raw_count) != prev_raw_count)
437                 goto again;
438 
439         delta = new_raw_count - prev_raw_count;
440 
441         local64_add(delta, &event->count);
442         local64_sub(delta, &hwc->period_left);
443 }
444 
445 static void mipspmu_start(struct perf_event *event, int flags)
446 {
447         struct hw_perf_event *hwc = &event->hw;
448 
449         if (flags & PERF_EF_RELOAD)
450                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
451 
452         hwc->state = 0;
453 
454         /* Set the period for the event. */
455         mipspmu_event_set_period(event, hwc, hwc->idx);
456 
457         /* Enable the event. */
458         mipsxx_pmu_enable_event(hwc, hwc->idx);
459 }
460 
461 static void mipspmu_stop(struct perf_event *event, int flags)
462 {
463         struct hw_perf_event *hwc = &event->hw;
464 
465         if (!(hwc->state & PERF_HES_STOPPED)) {
466                 /* We are working on a local event. */
467                 mipsxx_pmu_disable_event(hwc->idx);
468                 barrier();
469                 mipspmu_event_update(event, hwc, hwc->idx);
470                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
471         }
472 }
473 
474 static int mipspmu_add(struct perf_event *event, int flags)
475 {
476         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
477         struct hw_perf_event *hwc = &event->hw;
478         int idx;
479         int err = 0;
480 
481         perf_pmu_disable(event->pmu);
482 
483         /* To look for a free counter for this event. */
484         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
485         if (idx < 0) {
486                 err = idx;
487                 goto out;
488         }
489 
490         /*
491          * If there is an event in the counter we are going to use then
492          * make sure it is disabled.
493          */
494         event->hw.idx = idx;
495         mipsxx_pmu_disable_event(idx);
496         cpuc->events[idx] = event;
497 
498         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
499         if (flags & PERF_EF_START)
500                 mipspmu_start(event, PERF_EF_RELOAD);
501 
502         /* Propagate our changes to the userspace mapping. */
503         perf_event_update_userpage(event);
504 
505 out:
506         perf_pmu_enable(event->pmu);
507         return err;
508 }
509 
510 static void mipspmu_del(struct perf_event *event, int flags)
511 {
512         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
513         struct hw_perf_event *hwc = &event->hw;
514         int idx = hwc->idx;
515 
516         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
517 
518         mipspmu_stop(event, PERF_EF_UPDATE);
519         cpuc->events[idx] = NULL;
520         clear_bit(idx, cpuc->used_mask);
521 
522         perf_event_update_userpage(event);
523 }
524 
525 static void mipspmu_read(struct perf_event *event)
526 {
527         struct hw_perf_event *hwc = &event->hw;
528 
529         /* Don't read disabled counters! */
530         if (hwc->idx < 0)
531                 return;
532 
533         mipspmu_event_update(event, hwc, hwc->idx);
534 }
535 
536 static void mipspmu_enable(struct pmu *pmu)
537 {
538 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
539         write_unlock(&pmuint_rwlock);
540 #endif
541         resume_local_counters();
542 }
543 
544 /*
545  * MIPS performance counters can be per-TC. The control registers can
546  * not be directly accessed across CPUs. Hence if we want to do global
547  * control, we need cross CPU calls. on_each_cpu() can help us, but we
548  * can not make sure this function is called with interrupts enabled. So
549  * here we pause local counters and then grab a rwlock and leave the
550  * counters on other CPUs alone. If any counter interrupt raises while
551  * we own the write lock, simply pause local counters on that CPU and
552  * spin in the handler. Also we know we won't be switched to another
553  * CPU after pausing local counters and before grabbing the lock.
554  */
555 static void mipspmu_disable(struct pmu *pmu)
556 {
557         pause_local_counters();
558 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
559         write_lock(&pmuint_rwlock);
560 #endif
561 }
562 
563 static atomic_t active_events = ATOMIC_INIT(0);
564 static DEFINE_MUTEX(pmu_reserve_mutex);
565 static int (*save_perf_irq)(void);
566 
567 static int mipspmu_get_irq(void)
568 {
569         int err;
570 
571         if (mipspmu.irq >= 0) {
572                 /* Request my own irq handler. */
573                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
574                                   IRQF_PERCPU | IRQF_NOBALANCING |
575                                   IRQF_NO_THREAD | IRQF_NO_SUSPEND |
576                                   IRQF_SHARED,
577                                   "mips_perf_pmu", &mipspmu);
578                 if (err) {
579                         pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
580                                 mipspmu.irq);
581                 }
582         } else if (cp0_perfcount_irq < 0) {
583                 /*
584                  * We are sharing the irq number with the timer interrupt.
585                  */
586                 save_perf_irq = perf_irq;
587                 perf_irq = mipsxx_pmu_handle_shared_irq;
588                 err = 0;
589         } else {
590                 pr_warn("The platform hasn't properly defined its interrupt controller\n");
591                 err = -ENOENT;
592         }
593 
594         return err;
595 }
596 
597 static void mipspmu_free_irq(void)
598 {
599         if (mipspmu.irq >= 0)
600                 free_irq(mipspmu.irq, &mipspmu);
601         else if (cp0_perfcount_irq < 0)
602                 perf_irq = save_perf_irq;
603 }
604 
605 /*
606  * mipsxx/rm9000/loongson2 have different performance counters, they have
607  * specific low-level init routines.
608  */
609 static void reset_counters(void *arg);
610 static int __hw_perf_event_init(struct perf_event *event);
611 
612 static void hw_perf_event_destroy(struct perf_event *event)
613 {
614         if (atomic_dec_and_mutex_lock(&active_events,
615                                 &pmu_reserve_mutex)) {
616                 /*
617                  * We must not call the destroy function with interrupts
618                  * disabled.
619                  */
620                 on_each_cpu(reset_counters,
621                         (void *)(long)mipspmu.num_counters, 1);
622                 mipspmu_free_irq();
623                 mutex_unlock(&pmu_reserve_mutex);
624         }
625 }
626 
627 static int mipspmu_event_init(struct perf_event *event)
628 {
629         int err = 0;
630 
631         /* does not support taken branch sampling */
632         if (has_branch_stack(event))
633                 return -EOPNOTSUPP;
634 
635         switch (event->attr.type) {
636         case PERF_TYPE_RAW:
637         case PERF_TYPE_HARDWARE:
638         case PERF_TYPE_HW_CACHE:
639                 break;
640 
641         default:
642                 return -ENOENT;
643         }
644 
645         if (event->cpu >= 0 && !cpu_online(event->cpu))
646                 return -ENODEV;
647 
648         if (!atomic_inc_not_zero(&active_events)) {
649                 mutex_lock(&pmu_reserve_mutex);
650                 if (atomic_read(&active_events) == 0)
651                         err = mipspmu_get_irq();
652 
653                 if (!err)
654                         atomic_inc(&active_events);
655                 mutex_unlock(&pmu_reserve_mutex);
656         }
657 
658         if (err)
659                 return err;
660 
661         return __hw_perf_event_init(event);
662 }
663 
664 static struct pmu pmu = {
665         .pmu_enable     = mipspmu_enable,
666         .pmu_disable    = mipspmu_disable,
667         .event_init     = mipspmu_event_init,
668         .add            = mipspmu_add,
669         .del            = mipspmu_del,
670         .start          = mipspmu_start,
671         .stop           = mipspmu_stop,
672         .read           = mipspmu_read,
673 };
674 
675 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
676 {
677 /*
678  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
679  * event_id.
680  */
681 #ifdef CONFIG_MIPS_MT_SMP
682         if (num_possible_cpus() > 1)
683                 return ((unsigned int)pev->range << 24) |
684                         (pev->cntr_mask & 0xffff00) |
685                         (pev->event_id & 0xff);
686         else
687 #endif /* CONFIG_MIPS_MT_SMP */
688                 return ((pev->cntr_mask & 0xffff00) |
689                         (pev->event_id & 0xff));
690 }
691 
692 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
693 {
694 
695         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
696                 return ERR_PTR(-EOPNOTSUPP);
697         return &(*mipspmu.general_event_map)[idx];
698 }
699 
700 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
701 {
702         unsigned int cache_type, cache_op, cache_result;
703         const struct mips_perf_event *pev;
704 
705         cache_type = (config >> 0) & 0xff;
706         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
707                 return ERR_PTR(-EINVAL);
708 
709         cache_op = (config >> 8) & 0xff;
710         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
711                 return ERR_PTR(-EINVAL);
712 
713         cache_result = (config >> 16) & 0xff;
714         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
715                 return ERR_PTR(-EINVAL);
716 
717         pev = &((*mipspmu.cache_event_map)
718                                         [cache_type]
719                                         [cache_op]
720                                         [cache_result]);
721 
722         if (pev->cntr_mask == 0)
723                 return ERR_PTR(-EOPNOTSUPP);
724 
725         return pev;
726 
727 }
728 
729 static int validate_group(struct perf_event *event)
730 {
731         struct perf_event *sibling, *leader = event->group_leader;
732         struct cpu_hw_events fake_cpuc;
733 
734         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
735 
736         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
737                 return -EINVAL;
738 
739         for_each_sibling_event(sibling, leader) {
740                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
741                         return -EINVAL;
742         }
743 
744         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
745                 return -EINVAL;
746 
747         return 0;
748 }
749 
750 /* This is needed by specific irq handlers in perf_event_*.c */
751 static void handle_associated_event(struct cpu_hw_events *cpuc,
752                                     int idx, struct perf_sample_data *data,
753                                     struct pt_regs *regs)
754 {
755         struct perf_event *event = cpuc->events[idx];
756         struct hw_perf_event *hwc = &event->hw;
757 
758         mipspmu_event_update(event, hwc, idx);
759         data->period = event->hw.last_period;
760         if (!mipspmu_event_set_period(event, hwc, idx))
761                 return;
762 
763         if (perf_event_overflow(event, data, regs))
764                 mipsxx_pmu_disable_event(idx);
765 }
766 
767 
768 static int __n_counters(void)
769 {
770         if (!cpu_has_perf)
771                 return 0;
772         if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
773                 return 1;
774         if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
775                 return 2;
776         if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
777                 return 3;
778 
779         return 4;
780 }
781 
782 static int n_counters(void)
783 {
784         int counters;
785 
786         switch (current_cpu_type()) {
787         case CPU_R10000:
788                 counters = 2;
789                 break;
790 
791         case CPU_R12000:
792         case CPU_R14000:
793         case CPU_R16000:
794                 counters = 4;
795                 break;
796 
797         default:
798                 counters = __n_counters();
799         }
800 
801         return counters;
802 }
803 
804 static void reset_counters(void *arg)
805 {
806         int counters = (int)(long)arg;
807         switch (counters) {
808         case 4:
809                 mipsxx_pmu_write_control(3, 0);
810                 mipspmu.write_counter(3, 0);
811         case 3:
812                 mipsxx_pmu_write_control(2, 0);
813                 mipspmu.write_counter(2, 0);
814         case 2:
815                 mipsxx_pmu_write_control(1, 0);
816                 mipspmu.write_counter(1, 0);
817         case 1:
818                 mipsxx_pmu_write_control(0, 0);
819                 mipspmu.write_counter(0, 0);
820         }
821 }
822 
823 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
824 static const struct mips_perf_event mipsxxcore_event_map
825                                 [PERF_COUNT_HW_MAX] = {
826         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
827         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
828         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
829         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
830 };
831 
832 /* 74K/proAptiv core has different branch event code. */
833 static const struct mips_perf_event mipsxxcore_event_map2
834                                 [PERF_COUNT_HW_MAX] = {
835         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
836         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
837         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
838         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
839 };
840 
841 static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
842         [PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
843         [PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
844         /* These only count dcache, not icache */
845         [PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
846         [PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
847         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
848         [PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
849 };
850 
851 static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
852         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
853         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
854         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
855         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
856 };
857 
858 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
859         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
860         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
861         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
862         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
863         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
864         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
865         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
866 };
867 
868 static const struct mips_perf_event bmips5000_event_map
869                                 [PERF_COUNT_HW_MAX] = {
870         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
871         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
872         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
873 };
874 
875 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
876         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
877         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
878         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
879         [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
880         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
881         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
882 };
883 
884 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
885 static const struct mips_perf_event mipsxxcore_cache_map
886                                 [PERF_COUNT_HW_CACHE_MAX]
887                                 [PERF_COUNT_HW_CACHE_OP_MAX]
888                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
889 [C(L1D)] = {
890         /*
891          * Like some other architectures (e.g. ARM), the performance
892          * counters don't differentiate between read and write
893          * accesses/misses, so this isn't strictly correct, but it's the
894          * best we can do. Writes and reads get combined.
895          */
896         [C(OP_READ)] = {
897                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
898                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
899         },
900         [C(OP_WRITE)] = {
901                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
902                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
903         },
904 },
905 [C(L1I)] = {
906         [C(OP_READ)] = {
907                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
908                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
909         },
910         [C(OP_WRITE)] = {
911                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
912                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
913         },
914         [C(OP_PREFETCH)] = {
915                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
916                 /*
917                  * Note that MIPS has only "hit" events countable for
918                  * the prefetch operation.
919                  */
920         },
921 },
922 [C(LL)] = {
923         [C(OP_READ)] = {
924                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
925                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
926         },
927         [C(OP_WRITE)] = {
928                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
929                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
930         },
931 },
932 [C(DTLB)] = {
933         [C(OP_READ)] = {
934                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
935                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
936         },
937         [C(OP_WRITE)] = {
938                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
939                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
940         },
941 },
942 [C(ITLB)] = {
943         [C(OP_READ)] = {
944                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
945                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
946         },
947         [C(OP_WRITE)] = {
948                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
949                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
950         },
951 },
952 [C(BPU)] = {
953         /* Using the same code for *HW_BRANCH* */
954         [C(OP_READ)] = {
955                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
956                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
957         },
958         [C(OP_WRITE)] = {
959                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
960                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
961         },
962 },
963 };
964 
965 /* 74K/proAptiv core has completely different cache event map. */
966 static const struct mips_perf_event mipsxxcore_cache_map2
967                                 [PERF_COUNT_HW_CACHE_MAX]
968                                 [PERF_COUNT_HW_CACHE_OP_MAX]
969                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
970 [C(L1D)] = {
971         /*
972          * Like some other architectures (e.g. ARM), the performance
973          * counters don't differentiate between read and write
974          * accesses/misses, so this isn't strictly correct, but it's the
975          * best we can do. Writes and reads get combined.
976          */
977         [C(OP_READ)] = {
978                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
979                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
980         },
981         [C(OP_WRITE)] = {
982                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
983                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
984         },
985 },
986 [C(L1I)] = {
987         [C(OP_READ)] = {
988                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
989                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
990         },
991         [C(OP_WRITE)] = {
992                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
993                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
994         },
995         [C(OP_PREFETCH)] = {
996                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
997                 /*
998                  * Note that MIPS has only "hit" events countable for
999                  * the prefetch operation.
1000                  */
1001         },
1002 },
1003 [C(LL)] = {
1004         [C(OP_READ)] = {
1005                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1006                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
1007         },
1008         [C(OP_WRITE)] = {
1009                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
1010                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
1011         },
1012 },
1013 /*
1014  * 74K core does not have specific DTLB events. proAptiv core has
1015  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1016  * not included here. One can use raw events if really needed.
1017  */
1018 [C(ITLB)] = {
1019         [C(OP_READ)] = {
1020                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1021                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1022         },
1023         [C(OP_WRITE)] = {
1024                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1025                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1026         },
1027 },
1028 [C(BPU)] = {
1029         /* Using the same code for *HW_BRANCH* */
1030         [C(OP_READ)] = {
1031                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1032                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1033         },
1034         [C(OP_WRITE)] = {
1035                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1036                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1037         },
1038 },
1039 };
1040 
1041 static const struct mips_perf_event i6x00_cache_map
1042                                 [PERF_COUNT_HW_CACHE_MAX]
1043                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1044                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1045 [C(L1D)] = {
1046         [C(OP_READ)] = {
1047                 [C(RESULT_ACCESS)]      = { 0x46, CNTR_EVEN | CNTR_ODD },
1048                 [C(RESULT_MISS)]        = { 0x49, CNTR_EVEN | CNTR_ODD },
1049         },
1050         [C(OP_WRITE)] = {
1051                 [C(RESULT_ACCESS)]      = { 0x47, CNTR_EVEN | CNTR_ODD },
1052                 [C(RESULT_MISS)]        = { 0x4a, CNTR_EVEN | CNTR_ODD },
1053         },
1054 },
1055 [C(L1I)] = {
1056         [C(OP_READ)] = {
1057                 [C(RESULT_ACCESS)]      = { 0x84, CNTR_EVEN | CNTR_ODD },
1058                 [C(RESULT_MISS)]        = { 0x85, CNTR_EVEN | CNTR_ODD },
1059         },
1060 },
1061 [C(DTLB)] = {
1062         /* Can't distinguish read & write */
1063         [C(OP_READ)] = {
1064                 [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1065                 [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1066         },
1067         [C(OP_WRITE)] = {
1068                 [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1069                 [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1070         },
1071 },
1072 [C(BPU)] = {
1073         /* Conditional branches / mispredicted */
1074         [C(OP_READ)] = {
1075                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_EVEN | CNTR_ODD },
1076                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN | CNTR_ODD },
1077         },
1078 },
1079 };
1080 
1081 static const struct mips_perf_event loongson3_cache_map
1082                                 [PERF_COUNT_HW_CACHE_MAX]
1083                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1084                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1085 [C(L1D)] = {
1086         /*
1087          * Like some other architectures (e.g. ARM), the performance
1088          * counters don't differentiate between read and write
1089          * accesses/misses, so this isn't strictly correct, but it's the
1090          * best we can do. Writes and reads get combined.
1091          */
1092         [C(OP_READ)] = {
1093                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1094         },
1095         [C(OP_WRITE)] = {
1096                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1097         },
1098 },
1099 [C(L1I)] = {
1100         [C(OP_READ)] = {
1101                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1102         },
1103         [C(OP_WRITE)] = {
1104                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1105         },
1106 },
1107 [C(DTLB)] = {
1108         [C(OP_READ)] = {
1109                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1110         },
1111         [C(OP_WRITE)] = {
1112                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1113         },
1114 },
1115 [C(ITLB)] = {
1116         [C(OP_READ)] = {
1117                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1118         },
1119         [C(OP_WRITE)] = {
1120                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1121         },
1122 },
1123 [C(BPU)] = {
1124         /* Using the same code for *HW_BRANCH* */
1125         [C(OP_READ)] = {
1126                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1127                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1128         },
1129         [C(OP_WRITE)] = {
1130                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1131                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1132         },
1133 },
1134 };
1135 
1136 /* BMIPS5000 */
1137 static const struct mips_perf_event bmips5000_cache_map
1138                                 [PERF_COUNT_HW_CACHE_MAX]
1139                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1140                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1141 [C(L1D)] = {
1142         /*
1143          * Like some other architectures (e.g. ARM), the performance
1144          * counters don't differentiate between read and write
1145          * accesses/misses, so this isn't strictly correct, but it's the
1146          * best we can do. Writes and reads get combined.
1147          */
1148         [C(OP_READ)] = {
1149                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1150                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1151         },
1152         [C(OP_WRITE)] = {
1153                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1154                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1155         },
1156 },
1157 [C(L1I)] = {
1158         [C(OP_READ)] = {
1159                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1160                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1161         },
1162         [C(OP_WRITE)] = {
1163                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1164                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1165         },
1166         [C(OP_PREFETCH)] = {
1167                 [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1168                 /*
1169                  * Note that MIPS has only "hit" events countable for
1170                  * the prefetch operation.
1171                  */
1172         },
1173 },
1174 [C(LL)] = {
1175         [C(OP_READ)] = {
1176                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1177                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1178         },
1179         [C(OP_WRITE)] = {
1180                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1181                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1182         },
1183 },
1184 [C(BPU)] = {
1185         /* Using the same code for *HW_BRANCH* */
1186         [C(OP_READ)] = {
1187                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1188         },
1189         [C(OP_WRITE)] = {
1190                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1191         },
1192 },
1193 };
1194 
1195 
1196 static const struct mips_perf_event octeon_cache_map
1197                                 [PERF_COUNT_HW_CACHE_MAX]
1198                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1199                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1200 [C(L1D)] = {
1201         [C(OP_READ)] = {
1202                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1203                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1204         },
1205         [C(OP_WRITE)] = {
1206                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1207         },
1208 },
1209 [C(L1I)] = {
1210         [C(OP_READ)] = {
1211                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1212         },
1213         [C(OP_PREFETCH)] = {
1214                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1215         },
1216 },
1217 [C(DTLB)] = {
1218         /*
1219          * Only general DTLB misses are counted use the same event for
1220          * read and write.
1221          */
1222         [C(OP_READ)] = {
1223                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1224         },
1225         [C(OP_WRITE)] = {
1226                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1227         },
1228 },
1229 [C(ITLB)] = {
1230         [C(OP_READ)] = {
1231                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1232         },
1233 },
1234 };
1235 
1236 static const struct mips_perf_event xlp_cache_map
1237                                 [PERF_COUNT_HW_CACHE_MAX]
1238                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1239                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1240 [C(L1D)] = {
1241         [C(OP_READ)] = {
1242                 [C(RESULT_ACCESS)]      = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1243                 [C(RESULT_MISS)]        = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1244         },
1245         [C(OP_WRITE)] = {
1246                 [C(RESULT_ACCESS)]      = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1247                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1248         },
1249 },
1250 [C(L1I)] = {
1251         [C(OP_READ)] = {
1252                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1253                 [C(RESULT_MISS)]        = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1254         },
1255 },
1256 [C(LL)] = {
1257         [C(OP_READ)] = {
1258                 [C(RESULT_ACCESS)]      = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1259                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1260         },
1261         [C(OP_WRITE)] = {
1262                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1263                 [C(RESULT_MISS)]        = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1264         },
1265 },
1266 [C(DTLB)] = {
1267         /*
1268          * Only general DTLB misses are counted use the same event for
1269          * read and write.
1270          */
1271         [C(OP_READ)] = {
1272                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1273         },
1274         [C(OP_WRITE)] = {
1275                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1276         },
1277 },
1278 [C(ITLB)] = {
1279         [C(OP_READ)] = {
1280                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1281         },
1282         [C(OP_WRITE)] = {
1283                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1284         },
1285 },
1286 [C(BPU)] = {
1287         [C(OP_READ)] = {
1288                 [C(RESULT_MISS)]        = { 0x25, CNTR_ALL },
1289         },
1290 },
1291 };
1292 
1293 static int __hw_perf_event_init(struct perf_event *event)
1294 {
1295         struct perf_event_attr *attr = &event->attr;
1296         struct hw_perf_event *hwc = &event->hw;
1297         const struct mips_perf_event *pev;
1298         int err;
1299 
1300         /* Returning MIPS event descriptor for generic perf event. */
1301         if (PERF_TYPE_HARDWARE == event->attr.type) {
1302                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1303                         return -EINVAL;
1304                 pev = mipspmu_map_general_event(event->attr.config);
1305         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1306                 pev = mipspmu_map_cache_event(event->attr.config);
1307         } else if (PERF_TYPE_RAW == event->attr.type) {
1308                 /* We are working on the global raw event. */
1309                 mutex_lock(&raw_event_mutex);
1310                 pev = mipspmu.map_raw_event(event->attr.config);
1311         } else {
1312                 /* The event type is not (yet) supported. */
1313                 return -EOPNOTSUPP;
1314         }
1315 
1316         if (IS_ERR(pev)) {
1317                 if (PERF_TYPE_RAW == event->attr.type)
1318                         mutex_unlock(&raw_event_mutex);
1319                 return PTR_ERR(pev);
1320         }
1321 
1322         /*
1323          * We allow max flexibility on how each individual counter shared
1324          * by the single CPU operates (the mode exclusion and the range).
1325          */
1326         hwc->config_base = MIPS_PERFCTRL_IE;
1327 
1328         hwc->event_base = mipspmu_perf_event_encode(pev);
1329         if (PERF_TYPE_RAW == event->attr.type)
1330                 mutex_unlock(&raw_event_mutex);
1331 
1332         if (!attr->exclude_user)
1333                 hwc->config_base |= MIPS_PERFCTRL_U;
1334         if (!attr->exclude_kernel) {
1335                 hwc->config_base |= MIPS_PERFCTRL_K;
1336                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1337                 hwc->config_base |= MIPS_PERFCTRL_EXL;
1338         }
1339         if (!attr->exclude_hv)
1340                 hwc->config_base |= MIPS_PERFCTRL_S;
1341 
1342         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1343         /*
1344          * The event can belong to another cpu. We do not assign a local
1345          * counter for it for now.
1346          */
1347         hwc->idx = -1;
1348         hwc->config = 0;
1349 
1350         if (!hwc->sample_period) {
1351                 hwc->sample_period  = mipspmu.max_period;
1352                 hwc->last_period    = hwc->sample_period;
1353                 local64_set(&hwc->period_left, hwc->sample_period);
1354         }
1355 
1356         err = 0;
1357         if (event->group_leader != event)
1358                 err = validate_group(event);
1359 
1360         event->destroy = hw_perf_event_destroy;
1361 
1362         if (err)
1363                 event->destroy(event);
1364 
1365         return err;
1366 }
1367 
1368 static void pause_local_counters(void)
1369 {
1370         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1371         int ctr = mipspmu.num_counters;
1372         unsigned long flags;
1373 
1374         local_irq_save(flags);
1375         do {
1376                 ctr--;
1377                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1378                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1379                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1380         } while (ctr > 0);
1381         local_irq_restore(flags);
1382 }
1383 
1384 static void resume_local_counters(void)
1385 {
1386         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1387         int ctr = mipspmu.num_counters;
1388 
1389         do {
1390                 ctr--;
1391                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1392         } while (ctr > 0);
1393 }
1394 
1395 static int mipsxx_pmu_handle_shared_irq(void)
1396 {
1397         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1398         struct perf_sample_data data;
1399         unsigned int counters = mipspmu.num_counters;
1400         u64 counter;
1401         int handled = IRQ_NONE;
1402         struct pt_regs *regs;
1403 
1404         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1405                 return handled;
1406         /*
1407          * First we pause the local counters, so that when we are locked
1408          * here, the counters are all paused. When it gets locked due to
1409          * perf_disable(), the timer interrupt handler will be delayed.
1410          *
1411          * See also mipsxx_pmu_start().
1412          */
1413         pause_local_counters();
1414 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1415         read_lock(&pmuint_rwlock);
1416 #endif
1417 
1418         regs = get_irq_regs();
1419 
1420         perf_sample_data_init(&data, 0, 0);
1421 
1422         switch (counters) {
1423 #define HANDLE_COUNTER(n)                                               \
1424         case n + 1:                                                     \
1425                 if (test_bit(n, cpuc->used_mask)) {                     \
1426                         counter = mipspmu.read_counter(n);              \
1427                         if (counter & mipspmu.overflow) {               \
1428                                 handle_associated_event(cpuc, n, &data, regs); \
1429                                 handled = IRQ_HANDLED;                  \
1430                         }                                               \
1431                 }
1432         HANDLE_COUNTER(3)
1433         HANDLE_COUNTER(2)
1434         HANDLE_COUNTER(1)
1435         HANDLE_COUNTER(0)
1436         }
1437 
1438 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1439         read_unlock(&pmuint_rwlock);
1440 #endif
1441         resume_local_counters();
1442 
1443         /*
1444          * Do all the work for the pending perf events. We can do this
1445          * in here because the performance counter interrupt is a regular
1446          * interrupt, not NMI.
1447          */
1448         if (handled == IRQ_HANDLED)
1449                 irq_work_run();
1450 
1451         return handled;
1452 }
1453 
1454 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1455 {
1456         return mipsxx_pmu_handle_shared_irq();
1457 }
1458 
1459 /* 24K */
1460 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1461         ((b) == 0 || (b) == 1 || (b) == 11)
1462 
1463 /* 34K */
1464 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1465         ((b) == 0 || (b) == 1 || (b) == 11)
1466 #ifdef CONFIG_MIPS_MT_SMP
1467 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1468         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1469          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1470          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1471          ((b) >= 64 && (b) <= 67))
1472 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1473 #endif
1474 
1475 /* 74K */
1476 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1477         ((b) == 0 || (b) == 1)
1478 
1479 /* proAptiv */
1480 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1481         ((b) == 0 || (b) == 1)
1482 /* P5600 */
1483 #define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1484         ((b) == 0 || (b) == 1)
1485 
1486 /* 1004K */
1487 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1488         ((b) == 0 || (b) == 1 || (b) == 11)
1489 #ifdef CONFIG_MIPS_MT_SMP
1490 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1491         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1492          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1493          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1494          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1495          ((b) >= 64 && (b) <= 67))
1496 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1497 #endif
1498 
1499 /* interAptiv */
1500 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1501         ((b) == 0 || (b) == 1 || (b) == 11)
1502 #ifdef CONFIG_MIPS_MT_SMP
1503 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1504 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1505         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1506          (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1507          (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1508          (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1509          ((b) >= 64 && (b) <= 67))
1510 #define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1511 #endif
1512 
1513 /* BMIPS5000 */
1514 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1515         ((b) == 0 || (b) == 1)
1516 
1517 
1518 /*
1519  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1520  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1521  * indicate the even/odd bank selector. So, for example, when user wants to take
1522  * the Event Num of 15 for odd counters (by referring to the user manual), then
1523  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1524  * to be used.
1525  *
1526  * Some newer cores have even more events, in which case the user can use raw
1527  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1528  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1529  */
1530 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1531 {
1532         /* currently most cores have 7-bit event numbers */
1533         unsigned int raw_id = config & 0xff;
1534         unsigned int base_id = raw_id & 0x7f;
1535 
1536         switch (current_cpu_type()) {
1537         case CPU_24K:
1538                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1539                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1540                 else
1541                         raw_event.cntr_mask =
1542                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1543 #ifdef CONFIG_MIPS_MT_SMP
1544                 /*
1545                  * This is actually doing nothing. Non-multithreading
1546                  * CPUs will not check and calculate the range.
1547                  */
1548                 raw_event.range = P;
1549 #endif
1550                 break;
1551         case CPU_34K:
1552                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1553                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1554                 else
1555                         raw_event.cntr_mask =
1556                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1557 #ifdef CONFIG_MIPS_MT_SMP
1558                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1559                         raw_event.range = P;
1560                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1561                         raw_event.range = V;
1562                 else
1563                         raw_event.range = T;
1564 #endif
1565                 break;
1566         case CPU_74K:
1567         case CPU_1074K:
1568                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1569                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1570                 else
1571                         raw_event.cntr_mask =
1572                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1573 #ifdef CONFIG_MIPS_MT_SMP
1574                 raw_event.range = P;
1575 #endif
1576                 break;
1577         case CPU_PROAPTIV:
1578                 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1579                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1580                 else
1581                         raw_event.cntr_mask =
1582                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1583 #ifdef CONFIG_MIPS_MT_SMP
1584                 raw_event.range = P;
1585 #endif
1586                 break;
1587         case CPU_P5600:
1588         case CPU_P6600:
1589                 /* 8-bit event numbers */
1590                 raw_id = config & 0x1ff;
1591                 base_id = raw_id & 0xff;
1592                 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1593                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1594                 else
1595                         raw_event.cntr_mask =
1596                                 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1597 #ifdef CONFIG_MIPS_MT_SMP
1598                 raw_event.range = P;
1599 #endif
1600                 break;
1601         case CPU_I6400:
1602         case CPU_I6500:
1603                 /* 8-bit event numbers */
1604                 base_id = config & 0xff;
1605                 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1606                 break;
1607         case CPU_1004K:
1608                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1609                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1610                 else
1611                         raw_event.cntr_mask =
1612                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1613 #ifdef CONFIG_MIPS_MT_SMP
1614                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1615                         raw_event.range = P;
1616                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1617                         raw_event.range = V;
1618                 else
1619                         raw_event.range = T;
1620 #endif
1621                 break;
1622         case CPU_INTERAPTIV:
1623                 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1624                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1625                 else
1626                         raw_event.cntr_mask =
1627                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1628 #ifdef CONFIG_MIPS_MT_SMP
1629                 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1630                         raw_event.range = P;
1631                 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1632                         raw_event.range = V;
1633                 else
1634                         raw_event.range = T;
1635 #endif
1636                 break;
1637         case CPU_BMIPS5000:
1638                 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1639                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1640                 else
1641                         raw_event.cntr_mask =
1642                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1643                 break;
1644         case CPU_LOONGSON3:
1645                 raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1646         break;
1647         }
1648 
1649         raw_event.event_id = base_id;
1650 
1651         return &raw_event;
1652 }
1653 
1654 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1655 {
1656         unsigned int raw_id = config & 0xff;
1657         unsigned int base_id = raw_id & 0x7f;
1658 
1659 
1660         raw_event.cntr_mask = CNTR_ALL;
1661         raw_event.event_id = base_id;
1662 
1663         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1664                 if (base_id > 0x42)
1665                         return ERR_PTR(-EOPNOTSUPP);
1666         } else {
1667                 if (base_id > 0x3a)
1668                         return ERR_PTR(-EOPNOTSUPP);
1669         }
1670 
1671         switch (base_id) {
1672         case 0x00:
1673         case 0x0f:
1674         case 0x1e:
1675         case 0x1f:
1676         case 0x2f:
1677         case 0x34:
1678         case 0x3b ... 0x3f:
1679                 return ERR_PTR(-EOPNOTSUPP);
1680         default:
1681                 break;
1682         }
1683 
1684         return &raw_event;
1685 }
1686 
1687 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1688 {
1689         unsigned int raw_id = config & 0xff;
1690 
1691         /* Only 1-63 are defined */
1692         if ((raw_id < 0x01) || (raw_id > 0x3f))
1693                 return ERR_PTR(-EOPNOTSUPP);
1694 
1695         raw_event.cntr_mask = CNTR_ALL;
1696         raw_event.event_id = raw_id;
1697 
1698         return &raw_event;
1699 }
1700 
1701 static int __init
1702 init_hw_perf_events(void)
1703 {
1704         int counters, irq;
1705         int counter_bits;
1706 
1707         pr_info("Performance counters: ");
1708 
1709         counters = n_counters();
1710         if (counters == 0) {
1711                 pr_cont("No available PMU.\n");
1712                 return -ENODEV;
1713         }
1714 
1715 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1716         if (!cpu_has_mipsmt_pertccounters)
1717                 counters = counters_total_to_per_cpu(counters);
1718 #endif
1719 
1720         if (get_c0_perfcount_int)
1721                 irq = get_c0_perfcount_int();
1722         else if (cp0_perfcount_irq >= 0)
1723                 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1724         else
1725                 irq = -1;
1726 
1727         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1728 
1729         switch (current_cpu_type()) {
1730         case CPU_24K:
1731                 mipspmu.name = "mips/24K";
1732                 mipspmu.general_event_map = &mipsxxcore_event_map;
1733                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1734                 break;
1735         case CPU_34K:
1736                 mipspmu.name = "mips/34K";
1737                 mipspmu.general_event_map = &mipsxxcore_event_map;
1738                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1739                 break;
1740         case CPU_74K:
1741                 mipspmu.name = "mips/74K";
1742                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1743                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1744                 break;
1745         case CPU_PROAPTIV:
1746                 mipspmu.name = "mips/proAptiv";
1747                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1748                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1749                 break;
1750         case CPU_P5600:
1751                 mipspmu.name = "mips/P5600";
1752                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1753                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1754                 break;
1755         case CPU_P6600:
1756                 mipspmu.name = "mips/P6600";
1757                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1758                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1759                 break;
1760         case CPU_I6400:
1761                 mipspmu.name = "mips/I6400";
1762                 mipspmu.general_event_map = &i6x00_event_map;
1763                 mipspmu.cache_event_map = &i6x00_cache_map;
1764                 break;
1765         case CPU_I6500:
1766                 mipspmu.name = "mips/I6500";
1767                 mipspmu.general_event_map = &i6x00_event_map;
1768                 mipspmu.cache_event_map = &i6x00_cache_map;
1769                 break;
1770         case CPU_1004K:
1771                 mipspmu.name = "mips/1004K";
1772                 mipspmu.general_event_map = &mipsxxcore_event_map;
1773                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1774                 break;
1775         case CPU_1074K:
1776                 mipspmu.name = "mips/1074K";
1777                 mipspmu.general_event_map = &mipsxxcore_event_map;
1778                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1779                 break;
1780         case CPU_INTERAPTIV:
1781                 mipspmu.name = "mips/interAptiv";
1782                 mipspmu.general_event_map = &mipsxxcore_event_map;
1783                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1784                 break;
1785         case CPU_LOONGSON1:
1786                 mipspmu.name = "mips/loongson1";
1787                 mipspmu.general_event_map = &mipsxxcore_event_map;
1788                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1789                 break;
1790         case CPU_LOONGSON3:
1791                 mipspmu.name = "mips/loongson3";
1792                 mipspmu.general_event_map = &loongson3_event_map;
1793                 mipspmu.cache_event_map = &loongson3_cache_map;
1794                 break;
1795         case CPU_CAVIUM_OCTEON:
1796         case CPU_CAVIUM_OCTEON_PLUS:
1797         case CPU_CAVIUM_OCTEON2:
1798                 mipspmu.name = "octeon";
1799                 mipspmu.general_event_map = &octeon_event_map;
1800                 mipspmu.cache_event_map = &octeon_cache_map;
1801                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1802                 break;
1803         case CPU_BMIPS5000:
1804                 mipspmu.name = "BMIPS5000";
1805                 mipspmu.general_event_map = &bmips5000_event_map;
1806                 mipspmu.cache_event_map = &bmips5000_cache_map;
1807                 break;
1808         case CPU_XLP:
1809                 mipspmu.name = "xlp";
1810                 mipspmu.general_event_map = &xlp_event_map;
1811                 mipspmu.cache_event_map = &xlp_cache_map;
1812                 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1813                 break;
1814         default:
1815                 pr_cont("Either hardware does not support performance "
1816                         "counters, or not yet implemented.\n");
1817                 return -ENODEV;
1818         }
1819 
1820         mipspmu.num_counters = counters;
1821         mipspmu.irq = irq;
1822 
1823         if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
1824                 mipspmu.max_period = (1ULL << 63) - 1;
1825                 mipspmu.valid_count = (1ULL << 63) - 1;
1826                 mipspmu.overflow = 1ULL << 63;
1827                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1828                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1829                 counter_bits = 64;
1830         } else {
1831                 mipspmu.max_period = (1ULL << 31) - 1;
1832                 mipspmu.valid_count = (1ULL << 31) - 1;
1833                 mipspmu.overflow = 1ULL << 31;
1834                 mipspmu.read_counter = mipsxx_pmu_read_counter;
1835                 mipspmu.write_counter = mipsxx_pmu_write_counter;
1836                 counter_bits = 32;
1837         }
1838 
1839         on_each_cpu(reset_counters, (void *)(long)counters, 1);
1840 
1841         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1842                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1843                 irq < 0 ? " (share with timer interrupt)" : "");
1844 
1845         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1846 
1847         return 0;
1848 }
1849 early_initcall(init_hw_perf_events);
1850 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp