1 /* 2 * This file is subject to the terms and conditions of the GNU General Public 3 * License. See the file "COPYING" in the main directory of this archive 4 * for more details. 5 * 6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle 7 * Copyright (C) 1995, 1996 Paul M. Antoine 8 * Copyright (C) 1998 Ulf Carlsson 9 * Copyright (C) 1999 Silicon Graphics, Inc. 10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com 11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki 12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved. 13 * Copyright (C) 2014, Imagination Technologies Ltd. 14 */ 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/compiler.h> 18 #include <linux/context_tracking.h> 19 #include <linux/cpu_pm.h> 20 #include <linux/kexec.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/smp.h> 27 #include <linux/spinlock.h> 28 #include <linux/kallsyms.h> 29 #include <linux/bootmem.h> 30 #include <linux/interrupt.h> 31 #include <linux/ptrace.h> 32 #include <linux/kgdb.h> 33 #include <linux/kdebug.h> 34 #include <linux/kprobes.h> 35 #include <linux/notifier.h> 36 #include <linux/kdb.h> 37 #include <linux/irq.h> 38 #include <linux/perf_event.h> 39 40 #include <asm/addrspace.h> 41 #include <asm/bootinfo.h> 42 #include <asm/branch.h> 43 #include <asm/break.h> 44 #include <asm/cop2.h> 45 #include <asm/cpu.h> 46 #include <asm/cpu-type.h> 47 #include <asm/dsp.h> 48 #include <asm/fpu.h> 49 #include <asm/fpu_emulator.h> 50 #include <asm/idle.h> 51 #include <asm/mips-r2-to-r6-emul.h> 52 #include <asm/mipsregs.h> 53 #include <asm/mipsmtregs.h> 54 #include <asm/module.h> 55 #include <asm/msa.h> 56 #include <asm/pgtable.h> 57 #include <asm/ptrace.h> 58 #include <asm/sections.h> 59 #include <asm/tlbdebug.h> 60 #include <asm/traps.h> 61 #include <asm/uaccess.h> 62 #include <asm/watch.h> 63 #include <asm/mmu_context.h> 64 #include <asm/types.h> 65 #include <asm/stacktrace.h> 66 #include <asm/uasm.h> 67 68 extern void check_wait(void); 69 extern asmlinkage void rollback_handle_int(void); 70 extern asmlinkage void handle_int(void); 71 extern u32 handle_tlbl[]; 72 extern u32 handle_tlbs[]; 73 extern u32 handle_tlbm[]; 74 extern asmlinkage void handle_adel(void); 75 extern asmlinkage void handle_ades(void); 76 extern asmlinkage void handle_ibe(void); 77 extern asmlinkage void handle_dbe(void); 78 extern asmlinkage void handle_sys(void); 79 extern asmlinkage void handle_bp(void); 80 extern asmlinkage void handle_ri(void); 81 extern asmlinkage void handle_ri_rdhwr_vivt(void); 82 extern asmlinkage void handle_ri_rdhwr(void); 83 extern asmlinkage void handle_cpu(void); 84 extern asmlinkage void handle_ov(void); 85 extern asmlinkage void handle_tr(void); 86 extern asmlinkage void handle_msa_fpe(void); 87 extern asmlinkage void handle_fpe(void); 88 extern asmlinkage void handle_ftlb(void); 89 extern asmlinkage void handle_msa(void); 90 extern asmlinkage void handle_mdmx(void); 91 extern asmlinkage void handle_watch(void); 92 extern asmlinkage void handle_mt(void); 93 extern asmlinkage void handle_dsp(void); 94 extern asmlinkage void handle_mcheck(void); 95 extern asmlinkage void handle_reserved(void); 96 extern void tlb_do_page_fault_0(void); 97 98 void (*board_be_init)(void); 99 int (*board_be_handler)(struct pt_regs *regs, int is_fixup); 100 void (*board_nmi_handler_setup)(void); 101 void (*board_ejtag_handler_setup)(void); 102 void (*board_bind_eic_interrupt)(int irq, int regset); 103 void (*board_ebase_setup)(void); 104 void(*board_cache_error_setup)(void); 105 106 static void show_raw_backtrace(unsigned long reg29) 107 { 108 unsigned long *sp = (unsigned long *)(reg29 & ~3); 109 unsigned long addr; 110 111 printk("Call Trace:"); 112 #ifdef CONFIG_KALLSYMS 113 printk("\n"); 114 #endif 115 while (!kstack_end(sp)) { 116 unsigned long __user *p = 117 (unsigned long __user *)(unsigned long)sp++; 118 if (__get_user(addr, p)) { 119 printk(" (Bad stack address)"); 120 break; 121 } 122 if (__kernel_text_address(addr)) 123 print_ip_sym(addr); 124 } 125 printk("\n"); 126 } 127 128 #ifdef CONFIG_KALLSYMS 129 int raw_show_trace; 130 static int __init set_raw_show_trace(char *str) 131 { 132 raw_show_trace = 1; 133 return 1; 134 } 135 __setup("raw_show_trace", set_raw_show_trace); 136 #endif 137 138 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs) 139 { 140 unsigned long sp = regs->regs[29]; 141 unsigned long ra = regs->regs[31]; 142 unsigned long pc = regs->cp0_epc; 143 144 if (!task) 145 task = current; 146 147 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) { 148 show_raw_backtrace(sp); 149 return; 150 } 151 printk("Call Trace:\n"); 152 do { 153 print_ip_sym(pc); 154 pc = unwind_stack(task, &sp, pc, &ra); 155 } while (pc); 156 printk("\n"); 157 } 158 159 /* 160 * This routine abuses get_user()/put_user() to reference pointers 161 * with at least a bit of error checking ... 162 */ 163 static void show_stacktrace(struct task_struct *task, 164 const struct pt_regs *regs) 165 { 166 const int field = 2 * sizeof(unsigned long); 167 long stackdata; 168 int i; 169 unsigned long __user *sp = (unsigned long __user *)regs->regs[29]; 170 171 printk("Stack :"); 172 i = 0; 173 while ((unsigned long) sp & (PAGE_SIZE - 1)) { 174 if (i && ((i % (64 / field)) == 0)) 175 printk("\n "); 176 if (i > 39) { 177 printk(" ..."); 178 break; 179 } 180 181 if (__get_user(stackdata, sp++)) { 182 printk(" (Bad stack address)"); 183 break; 184 } 185 186 printk(" %0*lx", field, stackdata); 187 i++; 188 } 189 printk("\n"); 190 show_backtrace(task, regs); 191 } 192 193 void show_stack(struct task_struct *task, unsigned long *sp) 194 { 195 struct pt_regs regs; 196 mm_segment_t old_fs = get_fs(); 197 198 regs.cp0_status = KSU_KERNEL; 199 if (sp) { 200 regs.regs[29] = (unsigned long)sp; 201 regs.regs[31] = 0; 202 regs.cp0_epc = 0; 203 } else { 204 if (task && task != current) { 205 regs.regs[29] = task->thread.reg29; 206 regs.regs[31] = 0; 207 regs.cp0_epc = task->thread.reg31; 208 #ifdef CONFIG_KGDB_KDB 209 } else if (atomic_read(&kgdb_active) != -1 && 210 kdb_current_regs) { 211 memcpy(®s, kdb_current_regs, sizeof(regs)); 212 #endif /* CONFIG_KGDB_KDB */ 213 } else { 214 prepare_frametrace(®s); 215 } 216 } 217 /* 218 * show_stack() deals exclusively with kernel mode, so be sure to access 219 * the stack in the kernel (not user) address space. 220 */ 221 set_fs(KERNEL_DS); 222 show_stacktrace(task, ®s); 223 set_fs(old_fs); 224 } 225 226 static void show_code(unsigned int __user *pc) 227 { 228 long i; 229 unsigned short __user *pc16 = NULL; 230 231 printk("\nCode:"); 232 233 if ((unsigned long)pc & 1) 234 pc16 = (unsigned short __user *)((unsigned long)pc & ~1); 235 for(i = -3 ; i < 6 ; i++) { 236 unsigned int insn; 237 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) { 238 printk(" (Bad address in epc)\n"); 239 break; 240 } 241 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>')); 242 } 243 } 244 245 static void __show_regs(const struct pt_regs *regs) 246 { 247 const int field = 2 * sizeof(unsigned long); 248 unsigned int cause = regs->cp0_cause; 249 unsigned int exccode; 250 int i; 251 252 show_regs_print_info(KERN_DEFAULT); 253 254 /* 255 * Saved main processor registers 256 */ 257 for (i = 0; i < 32; ) { 258 if ((i % 4) == 0) 259 printk("$%2d :", i); 260 if (i == 0) 261 printk(" %0*lx", field, 0UL); 262 else if (i == 26 || i == 27) 263 printk(" %*s", field, ""); 264 else 265 printk(" %0*lx", field, regs->regs[i]); 266 267 i++; 268 if ((i % 4) == 0) 269 printk("\n"); 270 } 271 272 #ifdef CONFIG_CPU_HAS_SMARTMIPS 273 printk("Acx : %0*lx\n", field, regs->acx); 274 #endif 275 printk("Hi : %0*lx\n", field, regs->hi); 276 printk("Lo : %0*lx\n", field, regs->lo); 277 278 /* 279 * Saved cp0 registers 280 */ 281 printk("epc : %0*lx %pS\n", field, regs->cp0_epc, 282 (void *) regs->cp0_epc); 283 printk("ra : %0*lx %pS\n", field, regs->regs[31], 284 (void *) regs->regs[31]); 285 286 printk("Status: %08x ", (uint32_t) regs->cp0_status); 287 288 if (cpu_has_3kex) { 289 if (regs->cp0_status & ST0_KUO) 290 printk("KUo "); 291 if (regs->cp0_status & ST0_IEO) 292 printk("IEo "); 293 if (regs->cp0_status & ST0_KUP) 294 printk("KUp "); 295 if (regs->cp0_status & ST0_IEP) 296 printk("IEp "); 297 if (regs->cp0_status & ST0_KUC) 298 printk("KUc "); 299 if (regs->cp0_status & ST0_IEC) 300 printk("IEc "); 301 } else if (cpu_has_4kex) { 302 if (regs->cp0_status & ST0_KX) 303 printk("KX "); 304 if (regs->cp0_status & ST0_SX) 305 printk("SX "); 306 if (regs->cp0_status & ST0_UX) 307 printk("UX "); 308 switch (regs->cp0_status & ST0_KSU) { 309 case KSU_USER: 310 printk("USER "); 311 break; 312 case KSU_SUPERVISOR: 313 printk("SUPERVISOR "); 314 break; 315 case KSU_KERNEL: 316 printk("KERNEL "); 317 break; 318 default: 319 printk("BAD_MODE "); 320 break; 321 } 322 if (regs->cp0_status & ST0_ERL) 323 printk("ERL "); 324 if (regs->cp0_status & ST0_EXL) 325 printk("EXL "); 326 if (regs->cp0_status & ST0_IE) 327 printk("IE "); 328 } 329 printk("\n"); 330 331 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE; 332 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode); 333 334 if (1 <= exccode && exccode <= 5) 335 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr); 336 337 printk("PrId : %08x (%s)\n", read_c0_prid(), 338 cpu_name_string()); 339 } 340 341 /* 342 * FIXME: really the generic show_regs should take a const pointer argument. 343 */ 344 void show_regs(struct pt_regs *regs) 345 { 346 __show_regs((struct pt_regs *)regs); 347 dump_stack(); 348 } 349 350 void show_registers(struct pt_regs *regs) 351 { 352 const int field = 2 * sizeof(unsigned long); 353 mm_segment_t old_fs = get_fs(); 354 355 __show_regs(regs); 356 print_modules(); 357 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n", 358 current->comm, current->pid, current_thread_info(), current, 359 field, current_thread_info()->tp_value); 360 if (cpu_has_userlocal) { 361 unsigned long tls; 362 363 tls = read_c0_userlocal(); 364 if (tls != current_thread_info()->tp_value) 365 printk("*HwTLS: %0*lx\n", field, tls); 366 } 367 368 if (!user_mode(regs)) 369 /* Necessary for getting the correct stack content */ 370 set_fs(KERNEL_DS); 371 show_stacktrace(current, regs); 372 show_code((unsigned int __user *) regs->cp0_epc); 373 printk("\n"); 374 set_fs(old_fs); 375 } 376 377 static DEFINE_RAW_SPINLOCK(die_lock); 378 379 void __noreturn die(const char *str, struct pt_regs *regs) 380 { 381 static int die_counter; 382 int sig = SIGSEGV; 383 384 oops_enter(); 385 386 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr, 387 SIGSEGV) == NOTIFY_STOP) 388 sig = 0; 389 390 console_verbose(); 391 raw_spin_lock_irq(&die_lock); 392 bust_spinlocks(1); 393 394 printk("%s[#%d]:\n", str, ++die_counter); 395 show_registers(regs); 396 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE); 397 raw_spin_unlock_irq(&die_lock); 398 399 oops_exit(); 400 401 if (in_interrupt()) 402 panic("Fatal exception in interrupt"); 403 404 if (panic_on_oops) { 405 printk(KERN_EMERG "Fatal exception: panic in 5 seconds"); 406 ssleep(5); 407 panic("Fatal exception"); 408 } 409 410 if (regs && kexec_should_crash(current)) 411 crash_kexec(regs); 412 413 do_exit(sig); 414 } 415 416 extern struct exception_table_entry __start___dbe_table[]; 417 extern struct exception_table_entry __stop___dbe_table[]; 418 419 __asm__( 420 " .section __dbe_table, \"a\"\n" 421 " .previous \n"); 422 423 /* Given an address, look for it in the exception tables. */ 424 static const struct exception_table_entry *search_dbe_tables(unsigned long addr) 425 { 426 const struct exception_table_entry *e; 427 428 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr); 429 if (!e) 430 e = search_module_dbetables(addr); 431 return e; 432 } 433 434 asmlinkage void do_be(struct pt_regs *regs) 435 { 436 const int field = 2 * sizeof(unsigned long); 437 const struct exception_table_entry *fixup = NULL; 438 int data = regs->cp0_cause & 4; 439 int action = MIPS_BE_FATAL; 440 enum ctx_state prev_state; 441 442 prev_state = exception_enter(); 443 /* XXX For now. Fixme, this searches the wrong table ... */ 444 if (data && !user_mode(regs)) 445 fixup = search_dbe_tables(exception_epc(regs)); 446 447 if (fixup) 448 action = MIPS_BE_FIXUP; 449 450 if (board_be_handler) 451 action = board_be_handler(regs, fixup != NULL); 452 453 switch (action) { 454 case MIPS_BE_DISCARD: 455 goto out; 456 case MIPS_BE_FIXUP: 457 if (fixup) { 458 regs->cp0_epc = fixup->nextinsn; 459 goto out; 460 } 461 break; 462 default: 463 break; 464 } 465 466 /* 467 * Assume it would be too dangerous to continue ... 468 */ 469 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n", 470 data ? "Data" : "Instruction", 471 field, regs->cp0_epc, field, regs->regs[31]); 472 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr, 473 SIGBUS) == NOTIFY_STOP) 474 goto out; 475 476 die_if_kernel("Oops", regs); 477 force_sig(SIGBUS, current); 478 479 out: 480 exception_exit(prev_state); 481 } 482 483 /* 484 * ll/sc, rdhwr, sync emulation 485 */ 486 487 #define OPCODE 0xfc000000 488 #define BASE 0x03e00000 489 #define RT 0x001f0000 490 #define OFFSET 0x0000ffff 491 #define LL 0xc0000000 492 #define SC 0xe0000000 493 #define SPEC0 0x00000000 494 #define SPEC3 0x7c000000 495 #define RD 0x0000f800 496 #define FUNC 0x0000003f 497 #define SYNC 0x0000000f 498 #define RDHWR 0x0000003b 499 500 /* microMIPS definitions */ 501 #define MM_POOL32A_FUNC 0xfc00ffff 502 #define MM_RDHWR 0x00006b3c 503 #define MM_RS 0x001f0000 504 #define MM_RT 0x03e00000 505 506 /* 507 * The ll_bit is cleared by r*_switch.S 508 */ 509 510 unsigned int ll_bit; 511 struct task_struct *ll_task; 512 513 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode) 514 { 515 unsigned long value, __user *vaddr; 516 long offset; 517 518 /* 519 * analyse the ll instruction that just caused a ri exception 520 * and put the referenced address to addr. 521 */ 522 523 /* sign extend offset */ 524 offset = opcode & OFFSET; 525 offset <<= 16; 526 offset >>= 16; 527 528 vaddr = (unsigned long __user *) 529 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 530 531 if ((unsigned long)vaddr & 3) 532 return SIGBUS; 533 if (get_user(value, vaddr)) 534 return SIGSEGV; 535 536 preempt_disable(); 537 538 if (ll_task == NULL || ll_task == current) { 539 ll_bit = 1; 540 } else { 541 ll_bit = 0; 542 } 543 ll_task = current; 544 545 preempt_enable(); 546 547 regs->regs[(opcode & RT) >> 16] = value; 548 549 return 0; 550 } 551 552 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode) 553 { 554 unsigned long __user *vaddr; 555 unsigned long reg; 556 long offset; 557 558 /* 559 * analyse the sc instruction that just caused a ri exception 560 * and put the referenced address to addr. 561 */ 562 563 /* sign extend offset */ 564 offset = opcode & OFFSET; 565 offset <<= 16; 566 offset >>= 16; 567 568 vaddr = (unsigned long __user *) 569 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset); 570 reg = (opcode & RT) >> 16; 571 572 if ((unsigned long)vaddr & 3) 573 return SIGBUS; 574 575 preempt_disable(); 576 577 if (ll_bit == 0 || ll_task != current) { 578 regs->regs[reg] = 0; 579 preempt_enable(); 580 return 0; 581 } 582 583 preempt_enable(); 584 585 if (put_user(regs->regs[reg], vaddr)) 586 return SIGSEGV; 587 588 regs->regs[reg] = 1; 589 590 return 0; 591 } 592 593 /* 594 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both 595 * opcodes are supposed to result in coprocessor unusable exceptions if 596 * executed on ll/sc-less processors. That's the theory. In practice a 597 * few processors such as NEC's VR4100 throw reserved instruction exceptions 598 * instead, so we're doing the emulation thing in both exception handlers. 599 */ 600 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode) 601 { 602 if ((opcode & OPCODE) == LL) { 603 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 604 1, regs, 0); 605 return simulate_ll(regs, opcode); 606 } 607 if ((opcode & OPCODE) == SC) { 608 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 609 1, regs, 0); 610 return simulate_sc(regs, opcode); 611 } 612 613 return -1; /* Must be something else ... */ 614 } 615 616 /* 617 * Simulate trapping 'rdhwr' instructions to provide user accessible 618 * registers not implemented in hardware. 619 */ 620 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt) 621 { 622 struct thread_info *ti = task_thread_info(current); 623 624 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 625 1, regs, 0); 626 switch (rd) { 627 case 0: /* CPU number */ 628 regs->regs[rt] = smp_processor_id(); 629 return 0; 630 case 1: /* SYNCI length */ 631 regs->regs[rt] = min(current_cpu_data.dcache.linesz, 632 current_cpu_data.icache.linesz); 633 return 0; 634 case 2: /* Read count register */ 635 regs->regs[rt] = read_c0_count(); 636 return 0; 637 case 3: /* Count register resolution */ 638 switch (current_cpu_type()) { 639 case CPU_20KC: 640 case CPU_25KF: 641 regs->regs[rt] = 1; 642 break; 643 default: 644 regs->regs[rt] = 2; 645 } 646 return 0; 647 case 29: 648 regs->regs[rt] = ti->tp_value; 649 return 0; 650 default: 651 return -1; 652 } 653 } 654 655 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode) 656 { 657 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) { 658 int rd = (opcode & RD) >> 11; 659 int rt = (opcode & RT) >> 16; 660 661 simulate_rdhwr(regs, rd, rt); 662 return 0; 663 } 664 665 /* Not ours. */ 666 return -1; 667 } 668 669 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode) 670 { 671 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) { 672 int rd = (opcode & MM_RS) >> 16; 673 int rt = (opcode & MM_RT) >> 21; 674 simulate_rdhwr(regs, rd, rt); 675 return 0; 676 } 677 678 /* Not ours. */ 679 return -1; 680 } 681 682 static int simulate_sync(struct pt_regs *regs, unsigned int opcode) 683 { 684 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) { 685 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 686 1, regs, 0); 687 return 0; 688 } 689 690 return -1; /* Must be something else ... */ 691 } 692 693 asmlinkage void do_ov(struct pt_regs *regs) 694 { 695 enum ctx_state prev_state; 696 siginfo_t info = { 697 .si_signo = SIGFPE, 698 .si_code = FPE_INTOVF, 699 .si_addr = (void __user *)regs->cp0_epc, 700 }; 701 702 prev_state = exception_enter(); 703 die_if_kernel("Integer overflow", regs); 704 705 force_sig_info(SIGFPE, &info, current); 706 exception_exit(prev_state); 707 } 708 709 /* 710 * Send SIGFPE according to FCSR Cause bits, which must have already 711 * been masked against Enable bits. This is impotant as Inexact can 712 * happen together with Overflow or Underflow, and `ptrace' can set 713 * any bits. 714 */ 715 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr, 716 struct task_struct *tsk) 717 { 718 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE }; 719 720 if (fcr31 & FPU_CSR_INV_X) 721 si.si_code = FPE_FLTINV; 722 else if (fcr31 & FPU_CSR_DIV_X) 723 si.si_code = FPE_FLTDIV; 724 else if (fcr31 & FPU_CSR_OVF_X) 725 si.si_code = FPE_FLTOVF; 726 else if (fcr31 & FPU_CSR_UDF_X) 727 si.si_code = FPE_FLTUND; 728 else if (fcr31 & FPU_CSR_INE_X) 729 si.si_code = FPE_FLTRES; 730 else 731 si.si_code = __SI_FAULT; 732 force_sig_info(SIGFPE, &si, tsk); 733 } 734 735 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31) 736 { 737 struct siginfo si = { 0 }; 738 739 switch (sig) { 740 case 0: 741 return 0; 742 743 case SIGFPE: 744 force_fcr31_sig(fcr31, fault_addr, current); 745 return 1; 746 747 case SIGBUS: 748 si.si_addr = fault_addr; 749 si.si_signo = sig; 750 si.si_code = BUS_ADRERR; 751 force_sig_info(sig, &si, current); 752 return 1; 753 754 case SIGSEGV: 755 si.si_addr = fault_addr; 756 si.si_signo = sig; 757 down_read(¤t->mm->mmap_sem); 758 if (find_vma(current->mm, (unsigned long)fault_addr)) 759 si.si_code = SEGV_ACCERR; 760 else 761 si.si_code = SEGV_MAPERR; 762 up_read(¤t->mm->mmap_sem); 763 force_sig_info(sig, &si, current); 764 return 1; 765 766 default: 767 force_sig(sig, current); 768 return 1; 769 } 770 } 771 772 static int simulate_fp(struct pt_regs *regs, unsigned int opcode, 773 unsigned long old_epc, unsigned long old_ra) 774 { 775 union mips_instruction inst = { .word = opcode }; 776 void __user *fault_addr; 777 unsigned long fcr31; 778 int sig; 779 780 /* If it's obviously not an FP instruction, skip it */ 781 switch (inst.i_format.opcode) { 782 case cop1_op: 783 case cop1x_op: 784 case lwc1_op: 785 case ldc1_op: 786 case swc1_op: 787 case sdc1_op: 788 break; 789 790 default: 791 return -1; 792 } 793 794 /* 795 * do_ri skipped over the instruction via compute_return_epc, undo 796 * that for the FPU emulator. 797 */ 798 regs->cp0_epc = old_epc; 799 regs->regs[31] = old_ra; 800 801 /* Save the FP context to struct thread_struct */ 802 lose_fpu(1); 803 804 /* Run the emulator */ 805 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 806 &fault_addr); 807 808 /* 809 * We can't allow the emulated instruction to leave any 810 * enabled Cause bits set in $fcr31. 811 */ 812 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 813 current->thread.fpu.fcr31 &= ~fcr31; 814 815 /* Restore the hardware register state */ 816 own_fpu(1); 817 818 /* Send a signal if required. */ 819 process_fpemu_return(sig, fault_addr, fcr31); 820 821 return 0; 822 } 823 824 /* 825 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX 826 */ 827 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31) 828 { 829 enum ctx_state prev_state; 830 void __user *fault_addr; 831 int sig; 832 833 prev_state = exception_enter(); 834 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr, 835 SIGFPE) == NOTIFY_STOP) 836 goto out; 837 838 /* Clear FCSR.Cause before enabling interrupts */ 839 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31)); 840 local_irq_enable(); 841 842 die_if_kernel("FP exception in kernel code", regs); 843 844 if (fcr31 & FPU_CSR_UNI_X) { 845 /* 846 * Unimplemented operation exception. If we've got the full 847 * software emulator on-board, let's use it... 848 * 849 * Force FPU to dump state into task/thread context. We're 850 * moving a lot of data here for what is probably a single 851 * instruction, but the alternative is to pre-decode the FP 852 * register operands before invoking the emulator, which seems 853 * a bit extreme for what should be an infrequent event. 854 */ 855 /* Ensure 'resume' not overwrite saved fp context again. */ 856 lose_fpu(1); 857 858 /* Run the emulator */ 859 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1, 860 &fault_addr); 861 862 /* 863 * We can't allow the emulated instruction to leave any 864 * enabled Cause bits set in $fcr31. 865 */ 866 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 867 current->thread.fpu.fcr31 &= ~fcr31; 868 869 /* Restore the hardware register state */ 870 own_fpu(1); /* Using the FPU again. */ 871 } else { 872 sig = SIGFPE; 873 fault_addr = (void __user *) regs->cp0_epc; 874 } 875 876 /* Send a signal if required. */ 877 process_fpemu_return(sig, fault_addr, fcr31); 878 879 out: 880 exception_exit(prev_state); 881 } 882 883 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, 884 const char *str) 885 { 886 siginfo_t info = { 0 }; 887 char b[40]; 888 889 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP 890 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr, 891 SIGTRAP) == NOTIFY_STOP) 892 return; 893 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */ 894 895 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr, 896 SIGTRAP) == NOTIFY_STOP) 897 return; 898 899 /* 900 * A short test says that IRIX 5.3 sends SIGTRAP for all trap 901 * insns, even for trap and break codes that indicate arithmetic 902 * failures. Weird ... 903 * But should we continue the brokenness??? --macro 904 */ 905 switch (code) { 906 case BRK_OVERFLOW: 907 case BRK_DIVZERO: 908 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 909 die_if_kernel(b, regs); 910 if (code == BRK_DIVZERO) 911 info.si_code = FPE_INTDIV; 912 else 913 info.si_code = FPE_INTOVF; 914 info.si_signo = SIGFPE; 915 info.si_addr = (void __user *) regs->cp0_epc; 916 force_sig_info(SIGFPE, &info, current); 917 break; 918 case BRK_BUG: 919 die_if_kernel("Kernel bug detected", regs); 920 force_sig(SIGTRAP, current); 921 break; 922 case BRK_MEMU: 923 /* 924 * This breakpoint code is used by the FPU emulator to retake 925 * control of the CPU after executing the instruction from the 926 * delay slot of an emulated branch. 927 * 928 * Terminate if exception was recognized as a delay slot return 929 * otherwise handle as normal. 930 */ 931 if (do_dsemulret(regs)) 932 return; 933 934 die_if_kernel("Math emu break/trap", regs); 935 force_sig(SIGTRAP, current); 936 break; 937 default: 938 scnprintf(b, sizeof(b), "%s instruction in kernel code", str); 939 die_if_kernel(b, regs); 940 force_sig(SIGTRAP, current); 941 } 942 } 943 944 asmlinkage void do_bp(struct pt_regs *regs) 945 { 946 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 947 unsigned int opcode, bcode; 948 enum ctx_state prev_state; 949 mm_segment_t seg; 950 951 seg = get_fs(); 952 if (!user_mode(regs)) 953 set_fs(KERNEL_DS); 954 955 prev_state = exception_enter(); 956 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 957 if (get_isa16_mode(regs->cp0_epc)) { 958 u16 instr[2]; 959 960 if (__get_user(instr[0], (u16 __user *)epc)) 961 goto out_sigsegv; 962 963 if (!cpu_has_mmips) { 964 /* MIPS16e mode */ 965 bcode = (instr[0] >> 5) & 0x3f; 966 } else if (mm_insn_16bit(instr[0])) { 967 /* 16-bit microMIPS BREAK */ 968 bcode = instr[0] & 0xf; 969 } else { 970 /* 32-bit microMIPS BREAK */ 971 if (__get_user(instr[1], (u16 __user *)(epc + 2))) 972 goto out_sigsegv; 973 opcode = (instr[0] << 16) | instr[1]; 974 bcode = (opcode >> 6) & ((1 << 20) - 1); 975 } 976 } else { 977 if (__get_user(opcode, (unsigned int __user *)epc)) 978 goto out_sigsegv; 979 bcode = (opcode >> 6) & ((1 << 20) - 1); 980 } 981 982 /* 983 * There is the ancient bug in the MIPS assemblers that the break 984 * code starts left to bit 16 instead to bit 6 in the opcode. 985 * Gas is bug-compatible, but not always, grrr... 986 * We handle both cases with a simple heuristics. --macro 987 */ 988 if (bcode >= (1 << 10)) 989 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10); 990 991 /* 992 * notify the kprobe handlers, if instruction is likely to 993 * pertain to them. 994 */ 995 switch (bcode) { 996 case BRK_UPROBE: 997 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode, 998 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 999 goto out; 1000 else 1001 break; 1002 case BRK_UPROBE_XOL: 1003 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode, 1004 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1005 goto out; 1006 else 1007 break; 1008 case BRK_KPROBE_BP: 1009 if (notify_die(DIE_BREAK, "debug", regs, bcode, 1010 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1011 goto out; 1012 else 1013 break; 1014 case BRK_KPROBE_SSTEPBP: 1015 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, 1016 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP) 1017 goto out; 1018 else 1019 break; 1020 default: 1021 break; 1022 } 1023 1024 do_trap_or_bp(regs, bcode, "Break"); 1025 1026 out: 1027 set_fs(seg); 1028 exception_exit(prev_state); 1029 return; 1030 1031 out_sigsegv: 1032 force_sig(SIGSEGV, current); 1033 goto out; 1034 } 1035 1036 asmlinkage void do_tr(struct pt_regs *regs) 1037 { 1038 u32 opcode, tcode = 0; 1039 enum ctx_state prev_state; 1040 u16 instr[2]; 1041 mm_segment_t seg; 1042 unsigned long epc = msk_isa16_mode(exception_epc(regs)); 1043 1044 seg = get_fs(); 1045 if (!user_mode(regs)) 1046 set_fs(get_ds()); 1047 1048 prev_state = exception_enter(); 1049 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1050 if (get_isa16_mode(regs->cp0_epc)) { 1051 if (__get_user(instr[0], (u16 __user *)(epc + 0)) || 1052 __get_user(instr[1], (u16 __user *)(epc + 2))) 1053 goto out_sigsegv; 1054 opcode = (instr[0] << 16) | instr[1]; 1055 /* Immediate versions don't provide a code. */ 1056 if (!(opcode & OPCODE)) 1057 tcode = (opcode >> 12) & ((1 << 4) - 1); 1058 } else { 1059 if (__get_user(opcode, (u32 __user *)epc)) 1060 goto out_sigsegv; 1061 /* Immediate versions don't provide a code. */ 1062 if (!(opcode & OPCODE)) 1063 tcode = (opcode >> 6) & ((1 << 10) - 1); 1064 } 1065 1066 do_trap_or_bp(regs, tcode, "Trap"); 1067 1068 out: 1069 set_fs(seg); 1070 exception_exit(prev_state); 1071 return; 1072 1073 out_sigsegv: 1074 force_sig(SIGSEGV, current); 1075 goto out; 1076 } 1077 1078 asmlinkage void do_ri(struct pt_regs *regs) 1079 { 1080 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs); 1081 unsigned long old_epc = regs->cp0_epc; 1082 unsigned long old31 = regs->regs[31]; 1083 enum ctx_state prev_state; 1084 unsigned int opcode = 0; 1085 int status = -1; 1086 1087 /* 1088 * Avoid any kernel code. Just emulate the R2 instruction 1089 * as quickly as possible. 1090 */ 1091 if (mipsr2_emulation && cpu_has_mips_r6 && 1092 likely(user_mode(regs)) && 1093 likely(get_user(opcode, epc) >= 0)) { 1094 unsigned long fcr31 = 0; 1095 1096 status = mipsr2_decoder(regs, opcode, &fcr31); 1097 switch (status) { 1098 case 0: 1099 case SIGEMT: 1100 task_thread_info(current)->r2_emul_return = 1; 1101 return; 1102 case SIGILL: 1103 goto no_r2_instr; 1104 default: 1105 process_fpemu_return(status, 1106 ¤t->thread.cp0_baduaddr, 1107 fcr31); 1108 task_thread_info(current)->r2_emul_return = 1; 1109 return; 1110 } 1111 } 1112 1113 no_r2_instr: 1114 1115 prev_state = exception_enter(); 1116 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1117 1118 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr, 1119 SIGILL) == NOTIFY_STOP) 1120 goto out; 1121 1122 die_if_kernel("Reserved instruction in kernel code", regs); 1123 1124 if (unlikely(compute_return_epc(regs) < 0)) 1125 goto out; 1126 1127 if (get_isa16_mode(regs->cp0_epc)) { 1128 unsigned short mmop[2] = { 0 }; 1129 1130 if (unlikely(get_user(mmop[0], epc) < 0)) 1131 status = SIGSEGV; 1132 if (unlikely(get_user(mmop[1], epc) < 0)) 1133 status = SIGSEGV; 1134 opcode = (mmop[0] << 16) | mmop[1]; 1135 1136 if (status < 0) 1137 status = simulate_rdhwr_mm(regs, opcode); 1138 } else { 1139 if (unlikely(get_user(opcode, epc) < 0)) 1140 status = SIGSEGV; 1141 1142 if (!cpu_has_llsc && status < 0) 1143 status = simulate_llsc(regs, opcode); 1144 1145 if (status < 0) 1146 status = simulate_rdhwr_normal(regs, opcode); 1147 1148 if (status < 0) 1149 status = simulate_sync(regs, opcode); 1150 1151 if (status < 0) 1152 status = simulate_fp(regs, opcode, old_epc, old31); 1153 } 1154 1155 if (status < 0) 1156 status = SIGILL; 1157 1158 if (unlikely(status > 0)) { 1159 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1160 regs->regs[31] = old31; 1161 force_sig(status, current); 1162 } 1163 1164 out: 1165 exception_exit(prev_state); 1166 } 1167 1168 /* 1169 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've 1170 * emulated more than some threshold number of instructions, force migration to 1171 * a "CPU" that has FP support. 1172 */ 1173 static void mt_ase_fp_affinity(void) 1174 { 1175 #ifdef CONFIG_MIPS_MT_FPAFF 1176 if (mt_fpemul_threshold > 0 && 1177 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) { 1178 /* 1179 * If there's no FPU present, or if the application has already 1180 * restricted the allowed set to exclude any CPUs with FPUs, 1181 * we'll skip the procedure. 1182 */ 1183 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) { 1184 cpumask_t tmask; 1185 1186 current->thread.user_cpus_allowed 1187 = current->cpus_allowed; 1188 cpumask_and(&tmask, ¤t->cpus_allowed, 1189 &mt_fpu_cpumask); 1190 set_cpus_allowed_ptr(current, &tmask); 1191 set_thread_flag(TIF_FPUBOUND); 1192 } 1193 } 1194 #endif /* CONFIG_MIPS_MT_FPAFF */ 1195 } 1196 1197 /* 1198 * No lock; only written during early bootup by CPU 0. 1199 */ 1200 static RAW_NOTIFIER_HEAD(cu2_chain); 1201 1202 int __ref register_cu2_notifier(struct notifier_block *nb) 1203 { 1204 return raw_notifier_chain_register(&cu2_chain, nb); 1205 } 1206 1207 int cu2_notifier_call_chain(unsigned long val, void *v) 1208 { 1209 return raw_notifier_call_chain(&cu2_chain, val, v); 1210 } 1211 1212 static int default_cu2_call(struct notifier_block *nfb, unsigned long action, 1213 void *data) 1214 { 1215 struct pt_regs *regs = data; 1216 1217 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid " 1218 "instruction", regs); 1219 force_sig(SIGILL, current); 1220 1221 return NOTIFY_OK; 1222 } 1223 1224 static int wait_on_fp_mode_switch(atomic_t *p) 1225 { 1226 /* 1227 * The FP mode for this task is currently being switched. That may 1228 * involve modifications to the format of this tasks FP context which 1229 * make it unsafe to proceed with execution for the moment. Instead, 1230 * schedule some other task. 1231 */ 1232 schedule(); 1233 return 0; 1234 } 1235 1236 static int enable_restore_fp_context(int msa) 1237 { 1238 int err, was_fpu_owner, prior_msa; 1239 1240 /* 1241 * If an FP mode switch is currently underway, wait for it to 1242 * complete before proceeding. 1243 */ 1244 wait_on_atomic_t(¤t->mm->context.fp_mode_switching, 1245 wait_on_fp_mode_switch, TASK_KILLABLE); 1246 1247 if (!used_math()) { 1248 /* First time FP context user. */ 1249 preempt_disable(); 1250 err = init_fpu(); 1251 if (msa && !err) { 1252 enable_msa(); 1253 init_msa_upper(); 1254 set_thread_flag(TIF_USEDMSA); 1255 set_thread_flag(TIF_MSA_CTX_LIVE); 1256 } 1257 preempt_enable(); 1258 if (!err) 1259 set_used_math(); 1260 return err; 1261 } 1262 1263 /* 1264 * This task has formerly used the FP context. 1265 * 1266 * If this thread has no live MSA vector context then we can simply 1267 * restore the scalar FP context. If it has live MSA vector context 1268 * (that is, it has or may have used MSA since last performing a 1269 * function call) then we'll need to restore the vector context. This 1270 * applies even if we're currently only executing a scalar FP 1271 * instruction. This is because if we were to later execute an MSA 1272 * instruction then we'd either have to: 1273 * 1274 * - Restore the vector context & clobber any registers modified by 1275 * scalar FP instructions between now & then. 1276 * 1277 * or 1278 * 1279 * - Not restore the vector context & lose the most significant bits 1280 * of all vector registers. 1281 * 1282 * Neither of those options is acceptable. We cannot restore the least 1283 * significant bits of the registers now & only restore the most 1284 * significant bits later because the most significant bits of any 1285 * vector registers whose aliased FP register is modified now will have 1286 * been zeroed. We'd have no way to know that when restoring the vector 1287 * context & thus may load an outdated value for the most significant 1288 * bits of a vector register. 1289 */ 1290 if (!msa && !thread_msa_context_live()) 1291 return own_fpu(1); 1292 1293 /* 1294 * This task is using or has previously used MSA. Thus we require 1295 * that Status.FR == 1. 1296 */ 1297 preempt_disable(); 1298 was_fpu_owner = is_fpu_owner(); 1299 err = own_fpu_inatomic(0); 1300 if (err) 1301 goto out; 1302 1303 enable_msa(); 1304 write_msa_csr(current->thread.fpu.msacsr); 1305 set_thread_flag(TIF_USEDMSA); 1306 1307 /* 1308 * If this is the first time that the task is using MSA and it has 1309 * previously used scalar FP in this time slice then we already nave 1310 * FP context which we shouldn't clobber. We do however need to clear 1311 * the upper 64b of each vector register so that this task has no 1312 * opportunity to see data left behind by another. 1313 */ 1314 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE); 1315 if (!prior_msa && was_fpu_owner) { 1316 init_msa_upper(); 1317 1318 goto out; 1319 } 1320 1321 if (!prior_msa) { 1322 /* 1323 * Restore the least significant 64b of each vector register 1324 * from the existing scalar FP context. 1325 */ 1326 _restore_fp(current); 1327 1328 /* 1329 * The task has not formerly used MSA, so clear the upper 64b 1330 * of each vector register such that it cannot see data left 1331 * behind by another task. 1332 */ 1333 init_msa_upper(); 1334 } else { 1335 /* We need to restore the vector context. */ 1336 restore_msa(current); 1337 1338 /* Restore the scalar FP control & status register */ 1339 if (!was_fpu_owner) 1340 write_32bit_cp1_register(CP1_STATUS, 1341 current->thread.fpu.fcr31); 1342 } 1343 1344 out: 1345 preempt_enable(); 1346 1347 return 0; 1348 } 1349 1350 asmlinkage void do_cpu(struct pt_regs *regs) 1351 { 1352 enum ctx_state prev_state; 1353 unsigned int __user *epc; 1354 unsigned long old_epc, old31; 1355 void __user *fault_addr; 1356 unsigned int opcode; 1357 unsigned long fcr31; 1358 unsigned int cpid; 1359 int status, err; 1360 unsigned long __maybe_unused flags; 1361 int sig; 1362 1363 prev_state = exception_enter(); 1364 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3; 1365 1366 if (cpid != 2) 1367 die_if_kernel("do_cpu invoked from kernel context!", regs); 1368 1369 switch (cpid) { 1370 case 0: 1371 epc = (unsigned int __user *)exception_epc(regs); 1372 old_epc = regs->cp0_epc; 1373 old31 = regs->regs[31]; 1374 opcode = 0; 1375 status = -1; 1376 1377 if (unlikely(compute_return_epc(regs) < 0)) 1378 break; 1379 1380 if (get_isa16_mode(regs->cp0_epc)) { 1381 unsigned short mmop[2] = { 0 }; 1382 1383 if (unlikely(get_user(mmop[0], epc) < 0)) 1384 status = SIGSEGV; 1385 if (unlikely(get_user(mmop[1], epc) < 0)) 1386 status = SIGSEGV; 1387 opcode = (mmop[0] << 16) | mmop[1]; 1388 1389 if (status < 0) 1390 status = simulate_rdhwr_mm(regs, opcode); 1391 } else { 1392 if (unlikely(get_user(opcode, epc) < 0)) 1393 status = SIGSEGV; 1394 1395 if (!cpu_has_llsc && status < 0) 1396 status = simulate_llsc(regs, opcode); 1397 1398 if (status < 0) 1399 status = simulate_rdhwr_normal(regs, opcode); 1400 } 1401 1402 if (status < 0) 1403 status = SIGILL; 1404 1405 if (unlikely(status > 0)) { 1406 regs->cp0_epc = old_epc; /* Undo skip-over. */ 1407 regs->regs[31] = old31; 1408 force_sig(status, current); 1409 } 1410 1411 break; 1412 1413 case 3: 1414 /* 1415 * The COP3 opcode space and consequently the CP0.Status.CU3 1416 * bit and the CP0.Cause.CE=3 encoding have been removed as 1417 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs 1418 * up the space has been reused for COP1X instructions, that 1419 * are enabled by the CP0.Status.CU1 bit and consequently 1420 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable 1421 * exceptions. Some FPU-less processors that implement one 1422 * of these ISAs however use this code erroneously for COP1X 1423 * instructions. Therefore we redirect this trap to the FP 1424 * emulator too. 1425 */ 1426 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) { 1427 force_sig(SIGILL, current); 1428 break; 1429 } 1430 /* Fall through. */ 1431 1432 case 1: 1433 err = enable_restore_fp_context(0); 1434 1435 if (raw_cpu_has_fpu && !err) 1436 break; 1437 1438 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0, 1439 &fault_addr); 1440 1441 /* 1442 * We can't allow the emulated instruction to leave 1443 * any enabled Cause bits set in $fcr31. 1444 */ 1445 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31); 1446 current->thread.fpu.fcr31 &= ~fcr31; 1447 1448 /* Send a signal if required. */ 1449 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err) 1450 mt_ase_fp_affinity(); 1451 1452 break; 1453 1454 case 2: 1455 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs); 1456 break; 1457 } 1458 1459 exception_exit(prev_state); 1460 } 1461 1462 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr) 1463 { 1464 enum ctx_state prev_state; 1465 1466 prev_state = exception_enter(); 1467 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f; 1468 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0, 1469 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP) 1470 goto out; 1471 1472 /* Clear MSACSR.Cause before enabling interrupts */ 1473 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF); 1474 local_irq_enable(); 1475 1476 die_if_kernel("do_msa_fpe invoked from kernel context!", regs); 1477 force_sig(SIGFPE, current); 1478 out: 1479 exception_exit(prev_state); 1480 } 1481 1482 asmlinkage void do_msa(struct pt_regs *regs) 1483 { 1484 enum ctx_state prev_state; 1485 int err; 1486 1487 prev_state = exception_enter(); 1488 1489 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) { 1490 force_sig(SIGILL, current); 1491 goto out; 1492 } 1493 1494 die_if_kernel("do_msa invoked from kernel context!", regs); 1495 1496 err = enable_restore_fp_context(1); 1497 if (err) 1498 force_sig(SIGILL, current); 1499 out: 1500 exception_exit(prev_state); 1501 } 1502 1503 asmlinkage void do_mdmx(struct pt_regs *regs) 1504 { 1505 enum ctx_state prev_state; 1506 1507 prev_state = exception_enter(); 1508 force_sig(SIGILL, current); 1509 exception_exit(prev_state); 1510 } 1511 1512 /* 1513 * Called with interrupts disabled. 1514 */ 1515 asmlinkage void do_watch(struct pt_regs *regs) 1516 { 1517 enum ctx_state prev_state; 1518 u32 cause; 1519 1520 prev_state = exception_enter(); 1521 /* 1522 * Clear WP (bit 22) bit of cause register so we don't loop 1523 * forever. 1524 */ 1525 cause = read_c0_cause(); 1526 cause &= ~(1 << 22); 1527 write_c0_cause(cause); 1528 1529 /* 1530 * If the current thread has the watch registers loaded, save 1531 * their values and send SIGTRAP. Otherwise another thread 1532 * left the registers set, clear them and continue. 1533 */ 1534 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) { 1535 mips_read_watch_registers(); 1536 local_irq_enable(); 1537 force_sig(SIGTRAP, current); 1538 } else { 1539 mips_clear_watch_registers(); 1540 local_irq_enable(); 1541 } 1542 exception_exit(prev_state); 1543 } 1544 1545 asmlinkage void do_mcheck(struct pt_regs *regs) 1546 { 1547 int multi_match = regs->cp0_status & ST0_TS; 1548 enum ctx_state prev_state; 1549 mm_segment_t old_fs = get_fs(); 1550 1551 prev_state = exception_enter(); 1552 show_regs(regs); 1553 1554 if (multi_match) { 1555 dump_tlb_regs(); 1556 pr_info("\n"); 1557 dump_tlb_all(); 1558 } 1559 1560 if (!user_mode(regs)) 1561 set_fs(KERNEL_DS); 1562 1563 show_code((unsigned int __user *) regs->cp0_epc); 1564 1565 set_fs(old_fs); 1566 1567 /* 1568 * Some chips may have other causes of machine check (e.g. SB1 1569 * graduation timer) 1570 */ 1571 panic("Caught Machine Check exception - %scaused by multiple " 1572 "matching entries in the TLB.", 1573 (multi_match) ? "" : "not "); 1574 } 1575 1576 asmlinkage void do_mt(struct pt_regs *regs) 1577 { 1578 int subcode; 1579 1580 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT) 1581 >> VPECONTROL_EXCPT_SHIFT; 1582 switch (subcode) { 1583 case 0: 1584 printk(KERN_DEBUG "Thread Underflow\n"); 1585 break; 1586 case 1: 1587 printk(KERN_DEBUG "Thread Overflow\n"); 1588 break; 1589 case 2: 1590 printk(KERN_DEBUG "Invalid YIELD Qualifier\n"); 1591 break; 1592 case 3: 1593 printk(KERN_DEBUG "Gating Storage Exception\n"); 1594 break; 1595 case 4: 1596 printk(KERN_DEBUG "YIELD Scheduler Exception\n"); 1597 break; 1598 case 5: 1599 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n"); 1600 break; 1601 default: 1602 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n", 1603 subcode); 1604 break; 1605 } 1606 die_if_kernel("MIPS MT Thread exception in kernel", regs); 1607 1608 force_sig(SIGILL, current); 1609 } 1610 1611 1612 asmlinkage void do_dsp(struct pt_regs *regs) 1613 { 1614 if (cpu_has_dsp) 1615 panic("Unexpected DSP exception"); 1616 1617 force_sig(SIGILL, current); 1618 } 1619 1620 asmlinkage void do_reserved(struct pt_regs *regs) 1621 { 1622 /* 1623 * Game over - no way to handle this if it ever occurs. Most probably 1624 * caused by a new unknown cpu type or after another deadly 1625 * hard/software error. 1626 */ 1627 show_regs(regs); 1628 panic("Caught reserved exception %ld - should not happen.", 1629 (regs->cp0_cause & 0x7f) >> 2); 1630 } 1631 1632 static int __initdata l1parity = 1; 1633 static int __init nol1parity(char *s) 1634 { 1635 l1parity = 0; 1636 return 1; 1637 } 1638 __setup("nol1par", nol1parity); 1639 static int __initdata l2parity = 1; 1640 static int __init nol2parity(char *s) 1641 { 1642 l2parity = 0; 1643 return 1; 1644 } 1645 __setup("nol2par", nol2parity); 1646 1647 /* 1648 * Some MIPS CPUs can enable/disable for cache parity detection, but do 1649 * it different ways. 1650 */ 1651 static inline void parity_protection_init(void) 1652 { 1653 switch (current_cpu_type()) { 1654 case CPU_24K: 1655 case CPU_34K: 1656 case CPU_74K: 1657 case CPU_1004K: 1658 case CPU_1074K: 1659 case CPU_INTERAPTIV: 1660 case CPU_PROAPTIV: 1661 case CPU_P5600: 1662 case CPU_QEMU_GENERIC: 1663 case CPU_I6400: 1664 { 1665 #define ERRCTL_PE 0x80000000 1666 #define ERRCTL_L2P 0x00800000 1667 unsigned long errctl; 1668 unsigned int l1parity_present, l2parity_present; 1669 1670 errctl = read_c0_ecc(); 1671 errctl &= ~(ERRCTL_PE|ERRCTL_L2P); 1672 1673 /* probe L1 parity support */ 1674 write_c0_ecc(errctl | ERRCTL_PE); 1675 back_to_back_c0_hazard(); 1676 l1parity_present = (read_c0_ecc() & ERRCTL_PE); 1677 1678 /* probe L2 parity support */ 1679 write_c0_ecc(errctl|ERRCTL_L2P); 1680 back_to_back_c0_hazard(); 1681 l2parity_present = (read_c0_ecc() & ERRCTL_L2P); 1682 1683 if (l1parity_present && l2parity_present) { 1684 if (l1parity) 1685 errctl |= ERRCTL_PE; 1686 if (l1parity ^ l2parity) 1687 errctl |= ERRCTL_L2P; 1688 } else if (l1parity_present) { 1689 if (l1parity) 1690 errctl |= ERRCTL_PE; 1691 } else if (l2parity_present) { 1692 if (l2parity) 1693 errctl |= ERRCTL_L2P; 1694 } else { 1695 /* No parity available */ 1696 } 1697 1698 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl); 1699 1700 write_c0_ecc(errctl); 1701 back_to_back_c0_hazard(); 1702 errctl = read_c0_ecc(); 1703 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl); 1704 1705 if (l1parity_present) 1706 printk(KERN_INFO "Cache parity protection %sabled\n", 1707 (errctl & ERRCTL_PE) ? "en" : "dis"); 1708 1709 if (l2parity_present) { 1710 if (l1parity_present && l1parity) 1711 errctl ^= ERRCTL_L2P; 1712 printk(KERN_INFO "L2 cache parity protection %sabled\n", 1713 (errctl & ERRCTL_L2P) ? "en" : "dis"); 1714 } 1715 } 1716 break; 1717 1718 case CPU_5KC: 1719 case CPU_5KE: 1720 case CPU_LOONGSON1: 1721 write_c0_ecc(0x80000000); 1722 back_to_back_c0_hazard(); 1723 /* Set the PE bit (bit 31) in the c0_errctl register. */ 1724 printk(KERN_INFO "Cache parity protection %sabled\n", 1725 (read_c0_ecc() & 0x80000000) ? "en" : "dis"); 1726 break; 1727 case CPU_20KC: 1728 case CPU_25KF: 1729 /* Clear the DE bit (bit 16) in the c0_status register. */ 1730 printk(KERN_INFO "Enable cache parity protection for " 1731 "MIPS 20KC/25KF CPUs.\n"); 1732 clear_c0_status(ST0_DE); 1733 break; 1734 default: 1735 break; 1736 } 1737 } 1738 1739 asmlinkage void cache_parity_error(void) 1740 { 1741 const int field = 2 * sizeof(unsigned long); 1742 unsigned int reg_val; 1743 1744 /* For the moment, report the problem and hang. */ 1745 printk("Cache error exception:\n"); 1746 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1747 reg_val = read_c0_cacheerr(); 1748 printk("c0_cacheerr == %08x\n", reg_val); 1749 1750 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1751 reg_val & (1<<30) ? "secondary" : "primary", 1752 reg_val & (1<<31) ? "data" : "insn"); 1753 if ((cpu_has_mips_r2_r6) && 1754 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1755 pr_err("Error bits: %s%s%s%s%s%s%s%s\n", 1756 reg_val & (1<<29) ? "ED " : "", 1757 reg_val & (1<<28) ? "ET " : "", 1758 reg_val & (1<<27) ? "ES " : "", 1759 reg_val & (1<<26) ? "EE " : "", 1760 reg_val & (1<<25) ? "EB " : "", 1761 reg_val & (1<<24) ? "EI " : "", 1762 reg_val & (1<<23) ? "E1 " : "", 1763 reg_val & (1<<22) ? "E0 " : ""); 1764 } else { 1765 pr_err("Error bits: %s%s%s%s%s%s%s\n", 1766 reg_val & (1<<29) ? "ED " : "", 1767 reg_val & (1<<28) ? "ET " : "", 1768 reg_val & (1<<26) ? "EE " : "", 1769 reg_val & (1<<25) ? "EB " : "", 1770 reg_val & (1<<24) ? "EI " : "", 1771 reg_val & (1<<23) ? "E1 " : "", 1772 reg_val & (1<<22) ? "E0 " : ""); 1773 } 1774 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1)); 1775 1776 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64) 1777 if (reg_val & (1<<22)) 1778 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0()); 1779 1780 if (reg_val & (1<<23)) 1781 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1()); 1782 #endif 1783 1784 panic("Can't handle the cache error!"); 1785 } 1786 1787 asmlinkage void do_ftlb(void) 1788 { 1789 const int field = 2 * sizeof(unsigned long); 1790 unsigned int reg_val; 1791 1792 /* For the moment, report the problem and hang. */ 1793 if ((cpu_has_mips_r2_r6) && 1794 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) { 1795 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n", 1796 read_c0_ecc()); 1797 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc()); 1798 reg_val = read_c0_cacheerr(); 1799 pr_err("c0_cacheerr == %08x\n", reg_val); 1800 1801 if ((reg_val & 0xc0000000) == 0xc0000000) { 1802 pr_err("Decoded c0_cacheerr: FTLB parity error\n"); 1803 } else { 1804 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n", 1805 reg_val & (1<<30) ? "secondary" : "primary", 1806 reg_val & (1<<31) ? "data" : "insn"); 1807 } 1808 } else { 1809 pr_err("FTLB error exception\n"); 1810 } 1811 /* Just print the cacheerr bits for now */ 1812 cache_parity_error(); 1813 } 1814 1815 /* 1816 * SDBBP EJTAG debug exception handler. 1817 * We skip the instruction and return to the next instruction. 1818 */ 1819 void ejtag_exception_handler(struct pt_regs *regs) 1820 { 1821 const int field = 2 * sizeof(unsigned long); 1822 unsigned long depc, old_epc, old_ra; 1823 unsigned int debug; 1824 1825 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n"); 1826 depc = read_c0_depc(); 1827 debug = read_c0_debug(); 1828 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug); 1829 if (debug & 0x80000000) { 1830 /* 1831 * In branch delay slot. 1832 * We cheat a little bit here and use EPC to calculate the 1833 * debug return address (DEPC). EPC is restored after the 1834 * calculation. 1835 */ 1836 old_epc = regs->cp0_epc; 1837 old_ra = regs->regs[31]; 1838 regs->cp0_epc = depc; 1839 compute_return_epc(regs); 1840 depc = regs->cp0_epc; 1841 regs->cp0_epc = old_epc; 1842 regs->regs[31] = old_ra; 1843 } else 1844 depc += 4; 1845 write_c0_depc(depc); 1846 1847 #if 0 1848 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n"); 1849 write_c0_debug(debug | 0x100); 1850 #endif 1851 } 1852 1853 /* 1854 * NMI exception handler. 1855 * No lock; only written during early bootup by CPU 0. 1856 */ 1857 static RAW_NOTIFIER_HEAD(nmi_chain); 1858 1859 int register_nmi_notifier(struct notifier_block *nb) 1860 { 1861 return raw_notifier_chain_register(&nmi_chain, nb); 1862 } 1863 1864 void __noreturn nmi_exception_handler(struct pt_regs *regs) 1865 { 1866 char str[100]; 1867 1868 nmi_enter(); 1869 raw_notifier_call_chain(&nmi_chain, 0, regs); 1870 bust_spinlocks(1); 1871 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n", 1872 smp_processor_id(), regs->cp0_epc); 1873 regs->cp0_epc = read_c0_errorepc(); 1874 die(str, regs); 1875 nmi_exit(); 1876 } 1877 1878 #define VECTORSPACING 0x100 /* for EI/VI mode */ 1879 1880 unsigned long ebase; 1881 unsigned long exception_handlers[32]; 1882 unsigned long vi_handlers[64]; 1883 1884 void __init *set_except_vector(int n, void *addr) 1885 { 1886 unsigned long handler = (unsigned long) addr; 1887 unsigned long old_handler; 1888 1889 #ifdef CONFIG_CPU_MICROMIPS 1890 /* 1891 * Only the TLB handlers are cache aligned with an even 1892 * address. All other handlers are on an odd address and 1893 * require no modification. Otherwise, MIPS32 mode will 1894 * be entered when handling any TLB exceptions. That 1895 * would be bad...since we must stay in microMIPS mode. 1896 */ 1897 if (!(handler & 0x1)) 1898 handler |= 1; 1899 #endif 1900 old_handler = xchg(&exception_handlers[n], handler); 1901 1902 if (n == 0 && cpu_has_divec) { 1903 #ifdef CONFIG_CPU_MICROMIPS 1904 unsigned long jump_mask = ~((1 << 27) - 1); 1905 #else 1906 unsigned long jump_mask = ~((1 << 28) - 1); 1907 #endif 1908 u32 *buf = (u32 *)(ebase + 0x200); 1909 unsigned int k0 = 26; 1910 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) { 1911 uasm_i_j(&buf, handler & ~jump_mask); 1912 uasm_i_nop(&buf); 1913 } else { 1914 UASM_i_LA(&buf, k0, handler); 1915 uasm_i_jr(&buf, k0); 1916 uasm_i_nop(&buf); 1917 } 1918 local_flush_icache_range(ebase + 0x200, (unsigned long)buf); 1919 } 1920 return (void *)old_handler; 1921 } 1922 1923 static void do_default_vi(void) 1924 { 1925 show_regs(get_irq_regs()); 1926 panic("Caught unexpected vectored interrupt."); 1927 } 1928 1929 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs) 1930 { 1931 unsigned long handler; 1932 unsigned long old_handler = vi_handlers[n]; 1933 int srssets = current_cpu_data.srsets; 1934 u16 *h; 1935 unsigned char *b; 1936 1937 BUG_ON(!cpu_has_veic && !cpu_has_vint); 1938 1939 if (addr == NULL) { 1940 handler = (unsigned long) do_default_vi; 1941 srs = 0; 1942 } else 1943 handler = (unsigned long) addr; 1944 vi_handlers[n] = handler; 1945 1946 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING); 1947 1948 if (srs >= srssets) 1949 panic("Shadow register set %d not supported", srs); 1950 1951 if (cpu_has_veic) { 1952 if (board_bind_eic_interrupt) 1953 board_bind_eic_interrupt(n, srs); 1954 } else if (cpu_has_vint) { 1955 /* SRSMap is only defined if shadow sets are implemented */ 1956 if (srssets > 1) 1957 change_c0_srsmap(0xf << n*4, srs << n*4); 1958 } 1959 1960 if (srs == 0) { 1961 /* 1962 * If no shadow set is selected then use the default handler 1963 * that does normal register saving and standard interrupt exit 1964 */ 1965 extern char except_vec_vi, except_vec_vi_lui; 1966 extern char except_vec_vi_ori, except_vec_vi_end; 1967 extern char rollback_except_vec_vi; 1968 char *vec_start = using_rollback_handler() ? 1969 &rollback_except_vec_vi : &except_vec_vi; 1970 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN) 1971 const int lui_offset = &except_vec_vi_lui - vec_start + 2; 1972 const int ori_offset = &except_vec_vi_ori - vec_start + 2; 1973 #else 1974 const int lui_offset = &except_vec_vi_lui - vec_start; 1975 const int ori_offset = &except_vec_vi_ori - vec_start; 1976 #endif 1977 const int handler_len = &except_vec_vi_end - vec_start; 1978 1979 if (handler_len > VECTORSPACING) { 1980 /* 1981 * Sigh... panicing won't help as the console 1982 * is probably not configured :( 1983 */ 1984 panic("VECTORSPACING too small"); 1985 } 1986 1987 set_handler(((unsigned long)b - ebase), vec_start, 1988 #ifdef CONFIG_CPU_MICROMIPS 1989 (handler_len - 1)); 1990 #else 1991 handler_len); 1992 #endif 1993 h = (u16 *)(b + lui_offset); 1994 *h = (handler >> 16) & 0xffff; 1995 h = (u16 *)(b + ori_offset); 1996 *h = (handler & 0xffff); 1997 local_flush_icache_range((unsigned long)b, 1998 (unsigned long)(b+handler_len)); 1999 } 2000 else { 2001 /* 2002 * In other cases jump directly to the interrupt handler. It 2003 * is the handler's responsibility to save registers if required 2004 * (eg hi/lo) and return from the exception using "eret". 2005 */ 2006 u32 insn; 2007 2008 h = (u16 *)b; 2009 /* j handler */ 2010 #ifdef CONFIG_CPU_MICROMIPS 2011 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1); 2012 #else 2013 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2); 2014 #endif 2015 h[0] = (insn >> 16) & 0xffff; 2016 h[1] = insn & 0xffff; 2017 h[2] = 0; 2018 h[3] = 0; 2019 local_flush_icache_range((unsigned long)b, 2020 (unsigned long)(b+8)); 2021 } 2022 2023 return (void *)old_handler; 2024 } 2025 2026 void *set_vi_handler(int n, vi_handler_t addr) 2027 { 2028 return set_vi_srs_handler(n, addr, 0); 2029 } 2030 2031 extern void tlb_init(void); 2032 2033 /* 2034 * Timer interrupt 2035 */ 2036 int cp0_compare_irq; 2037 EXPORT_SYMBOL_GPL(cp0_compare_irq); 2038 int cp0_compare_irq_shift; 2039 2040 /* 2041 * Performance counter IRQ or -1 if shared with timer 2042 */ 2043 int cp0_perfcount_irq; 2044 EXPORT_SYMBOL_GPL(cp0_perfcount_irq); 2045 2046 /* 2047 * Fast debug channel IRQ or -1 if not present 2048 */ 2049 int cp0_fdc_irq; 2050 EXPORT_SYMBOL_GPL(cp0_fdc_irq); 2051 2052 static int noulri; 2053 2054 static int __init ulri_disable(char *s) 2055 { 2056 pr_info("Disabling ulri\n"); 2057 noulri = 1; 2058 2059 return 1; 2060 } 2061 __setup("noulri", ulri_disable); 2062 2063 /* configure STATUS register */ 2064 static void configure_status(void) 2065 { 2066 /* 2067 * Disable coprocessors and select 32-bit or 64-bit addressing 2068 * and the 16/32 or 32/32 FPR register model. Reset the BEV 2069 * flag that some firmware may have left set and the TS bit (for 2070 * IP27). Set XX for ISA IV code to work. 2071 */ 2072 unsigned int status_set = ST0_CU0; 2073 #ifdef CONFIG_64BIT 2074 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX; 2075 #endif 2076 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV) 2077 status_set |= ST0_XX; 2078 if (cpu_has_dsp) 2079 status_set |= ST0_MX; 2080 2081 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX, 2082 status_set); 2083 back_to_back_c0_hazard(); 2084 } 2085 2086 /* configure HWRENA register */ 2087 static void configure_hwrena(void) 2088 { 2089 unsigned int hwrena = cpu_hwrena_impl_bits; 2090 2091 if (cpu_has_mips_r2_r6) 2092 hwrena |= 0x0000000f; 2093 2094 if (!noulri && cpu_has_userlocal) 2095 hwrena |= (1 << 29); 2096 2097 if (hwrena) 2098 write_c0_hwrena(hwrena); 2099 } 2100 2101 static void configure_exception_vector(void) 2102 { 2103 if (cpu_has_veic || cpu_has_vint) { 2104 unsigned long sr = set_c0_status(ST0_BEV); 2105 write_c0_ebase(ebase); 2106 write_c0_status(sr); 2107 /* Setting vector spacing enables EI/VI mode */ 2108 change_c0_intctl(0x3e0, VECTORSPACING); 2109 } 2110 if (cpu_has_divec) { 2111 if (cpu_has_mipsmt) { 2112 unsigned int vpflags = dvpe(); 2113 set_c0_cause(CAUSEF_IV); 2114 evpe(vpflags); 2115 } else 2116 set_c0_cause(CAUSEF_IV); 2117 } 2118 } 2119 2120 void per_cpu_trap_init(bool is_boot_cpu) 2121 { 2122 unsigned int cpu = smp_processor_id(); 2123 2124 configure_status(); 2125 configure_hwrena(); 2126 2127 configure_exception_vector(); 2128 2129 /* 2130 * Before R2 both interrupt numbers were fixed to 7, so on R2 only: 2131 * 2132 * o read IntCtl.IPTI to determine the timer interrupt 2133 * o read IntCtl.IPPCI to determine the performance counter interrupt 2134 * o read IntCtl.IPFDC to determine the fast debug channel interrupt 2135 */ 2136 if (cpu_has_mips_r2_r6) { 2137 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP; 2138 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7; 2139 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7; 2140 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7; 2141 if (!cp0_fdc_irq) 2142 cp0_fdc_irq = -1; 2143 2144 } else { 2145 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ; 2146 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ; 2147 cp0_perfcount_irq = -1; 2148 cp0_fdc_irq = -1; 2149 } 2150 2151 if (!cpu_data[cpu].asid_cache) 2152 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION; 2153 2154 atomic_inc(&init_mm.mm_count); 2155 current->active_mm = &init_mm; 2156 BUG_ON(current->mm); 2157 enter_lazy_tlb(&init_mm, current); 2158 2159 /* Boot CPU's cache setup in setup_arch(). */ 2160 if (!is_boot_cpu) 2161 cpu_cache_init(); 2162 tlb_init(); 2163 TLBMISS_HANDLER_SETUP(); 2164 } 2165 2166 /* Install CPU exception handler */ 2167 void set_handler(unsigned long offset, void *addr, unsigned long size) 2168 { 2169 #ifdef CONFIG_CPU_MICROMIPS 2170 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size); 2171 #else 2172 memcpy((void *)(ebase + offset), addr, size); 2173 #endif 2174 local_flush_icache_range(ebase + offset, ebase + offset + size); 2175 } 2176 2177 static char panic_null_cerr[] = 2178 "Trying to set NULL cache error exception handler"; 2179 2180 /* 2181 * Install uncached CPU exception handler. 2182 * This is suitable only for the cache error exception which is the only 2183 * exception handler that is being run uncached. 2184 */ 2185 void set_uncached_handler(unsigned long offset, void *addr, 2186 unsigned long size) 2187 { 2188 unsigned long uncached_ebase = CKSEG1ADDR(ebase); 2189 2190 if (!addr) 2191 panic(panic_null_cerr); 2192 2193 memcpy((void *)(uncached_ebase + offset), addr, size); 2194 } 2195 2196 static int __initdata rdhwr_noopt; 2197 static int __init set_rdhwr_noopt(char *str) 2198 { 2199 rdhwr_noopt = 1; 2200 return 1; 2201 } 2202 2203 __setup("rdhwr_noopt", set_rdhwr_noopt); 2204 2205 void __init trap_init(void) 2206 { 2207 extern char except_vec3_generic; 2208 extern char except_vec4; 2209 extern char except_vec3_r4000; 2210 unsigned long i; 2211 2212 check_wait(); 2213 2214 if (cpu_has_veic || cpu_has_vint) { 2215 unsigned long size = 0x200 + VECTORSPACING*64; 2216 ebase = (unsigned long) 2217 __alloc_bootmem(size, 1 << fls(size), 0); 2218 } else { 2219 ebase = CAC_BASE; 2220 2221 if (cpu_has_mips_r2_r6) 2222 ebase += (read_c0_ebase() & 0x3ffff000); 2223 } 2224 2225 if (cpu_has_mmips) { 2226 unsigned int config3 = read_c0_config3(); 2227 2228 if (IS_ENABLED(CONFIG_CPU_MICROMIPS)) 2229 write_c0_config3(config3 | MIPS_CONF3_ISA_OE); 2230 else 2231 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE); 2232 } 2233 2234 if (board_ebase_setup) 2235 board_ebase_setup(); 2236 per_cpu_trap_init(true); 2237 2238 /* 2239 * Copy the generic exception handlers to their final destination. 2240 * This will be overriden later as suitable for a particular 2241 * configuration. 2242 */ 2243 set_handler(0x180, &except_vec3_generic, 0x80); 2244 2245 /* 2246 * Setup default vectors 2247 */ 2248 for (i = 0; i <= 31; i++) 2249 set_except_vector(i, handle_reserved); 2250 2251 /* 2252 * Copy the EJTAG debug exception vector handler code to it's final 2253 * destination. 2254 */ 2255 if (cpu_has_ejtag && board_ejtag_handler_setup) 2256 board_ejtag_handler_setup(); 2257 2258 /* 2259 * Only some CPUs have the watch exceptions. 2260 */ 2261 if (cpu_has_watch) 2262 set_except_vector(23, handle_watch); 2263 2264 /* 2265 * Initialise interrupt handlers 2266 */ 2267 if (cpu_has_veic || cpu_has_vint) { 2268 int nvec = cpu_has_veic ? 64 : 8; 2269 for (i = 0; i < nvec; i++) 2270 set_vi_handler(i, NULL); 2271 } 2272 else if (cpu_has_divec) 2273 set_handler(0x200, &except_vec4, 0x8); 2274 2275 /* 2276 * Some CPUs can enable/disable for cache parity detection, but does 2277 * it different ways. 2278 */ 2279 parity_protection_init(); 2280 2281 /* 2282 * The Data Bus Errors / Instruction Bus Errors are signaled 2283 * by external hardware. Therefore these two exceptions 2284 * may have board specific handlers. 2285 */ 2286 if (board_be_init) 2287 board_be_init(); 2288 2289 set_except_vector(0, using_rollback_handler() ? rollback_handle_int 2290 : handle_int); 2291 set_except_vector(1, handle_tlbm); 2292 set_except_vector(2, handle_tlbl); 2293 set_except_vector(3, handle_tlbs); 2294 2295 set_except_vector(4, handle_adel); 2296 set_except_vector(5, handle_ades); 2297 2298 set_except_vector(6, handle_ibe); 2299 set_except_vector(7, handle_dbe); 2300 2301 set_except_vector(8, handle_sys); 2302 set_except_vector(9, handle_bp); 2303 set_except_vector(10, rdhwr_noopt ? handle_ri : 2304 (cpu_has_vtag_icache ? 2305 handle_ri_rdhwr_vivt : handle_ri_rdhwr)); 2306 set_except_vector(11, handle_cpu); 2307 set_except_vector(12, handle_ov); 2308 set_except_vector(13, handle_tr); 2309 set_except_vector(14, handle_msa_fpe); 2310 2311 if (current_cpu_type() == CPU_R6000 || 2312 current_cpu_type() == CPU_R6000A) { 2313 /* 2314 * The R6000 is the only R-series CPU that features a machine 2315 * check exception (similar to the R4000 cache error) and 2316 * unaligned ldc1/sdc1 exception. The handlers have not been 2317 * written yet. Well, anyway there is no R6000 machine on the 2318 * current list of targets for Linux/MIPS. 2319 * (Duh, crap, there is someone with a triple R6k machine) 2320 */ 2321 //set_except_vector(14, handle_mc); 2322 //set_except_vector(15, handle_ndc); 2323 } 2324 2325 2326 if (board_nmi_handler_setup) 2327 board_nmi_handler_setup(); 2328 2329 if (cpu_has_fpu && !cpu_has_nofpuex) 2330 set_except_vector(15, handle_fpe); 2331 2332 set_except_vector(16, handle_ftlb); 2333 2334 if (cpu_has_rixiex) { 2335 set_except_vector(19, tlb_do_page_fault_0); 2336 set_except_vector(20, tlb_do_page_fault_0); 2337 } 2338 2339 set_except_vector(21, handle_msa); 2340 set_except_vector(22, handle_mdmx); 2341 2342 if (cpu_has_mcheck) 2343 set_except_vector(24, handle_mcheck); 2344 2345 if (cpu_has_mipsmt) 2346 set_except_vector(25, handle_mt); 2347 2348 set_except_vector(26, handle_dsp); 2349 2350 if (board_cache_error_setup) 2351 board_cache_error_setup(); 2352 2353 if (cpu_has_vce) 2354 /* Special exception: R4[04]00 uses also the divec space. */ 2355 set_handler(0x180, &except_vec3_r4000, 0x100); 2356 else if (cpu_has_4kex) 2357 set_handler(0x180, &except_vec3_generic, 0x80); 2358 else 2359 set_handler(0x080, &except_vec3_generic, 0x80); 2360 2361 local_flush_icache_range(ebase, ebase + 0x400); 2362 2363 sort_extable(__start___dbe_table, __stop___dbe_table); 2364 2365 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */ 2366 } 2367 2368 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd, 2369 void *v) 2370 { 2371 switch (cmd) { 2372 case CPU_PM_ENTER_FAILED: 2373 case CPU_PM_EXIT: 2374 configure_status(); 2375 configure_hwrena(); 2376 configure_exception_vector(); 2377 2378 /* Restore register with CPU number for TLB handlers */ 2379 TLBMISS_HANDLER_RESTORE(); 2380 2381 break; 2382 } 2383 2384 return NOTIFY_OK; 2385 } 2386 2387 static struct notifier_block trap_pm_notifier_block = { 2388 .notifier_call = trap_pm_notifier, 2389 }; 2390 2391 static int __init trap_pm_init(void) 2392 { 2393 return cpu_pm_register_notifier(&trap_pm_notifier_block); 2394 } 2395 arch_initcall(trap_pm_init); 2396
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.