~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/crypto/sha256-spe-glue.c

Version: ~ [ linux-5.8-rc5 ] ~ [ linux-5.7.8 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.51 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.132 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.188 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.230 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.230 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Glue code for SHA-256 implementation for SPE instructions (PPC)
  3  *
  4  * Based on generic implementation. The assembler module takes care 
  5  * about the SPE registers so it can run from interrupt context.
  6  *
  7  * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de>
  8  *
  9  * This program is free software; you can redistribute it and/or modify it
 10  * under the terms of the GNU General Public License as published by the Free
 11  * Software Foundation; either version 2 of the License, or (at your option)
 12  * any later version.
 13  *
 14  */
 15 
 16 #include <crypto/internal/hash.h>
 17 #include <linux/init.h>
 18 #include <linux/module.h>
 19 #include <linux/mm.h>
 20 #include <linux/cryptohash.h>
 21 #include <linux/types.h>
 22 #include <crypto/sha.h>
 23 #include <asm/byteorder.h>
 24 #include <asm/switch_to.h>
 25 #include <linux/hardirq.h>
 26 
 27 /*
 28  * MAX_BYTES defines the number of bytes that are allowed to be processed
 29  * between preempt_disable() and preempt_enable(). SHA256 takes ~2,000
 30  * operations per 64 bytes. e500 cores can issue two arithmetic instructions
 31  * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2).
 32  * Thus 1KB of input data will need an estimated maximum of 18,000 cycles.
 33  * Headroom for cache misses included. Even with the low end model clocked
 34  * at 667 MHz this equals to a critical time window of less than 27us.
 35  *
 36  */
 37 #define MAX_BYTES 1024
 38 
 39 extern void ppc_spe_sha256_transform(u32 *state, const u8 *src, u32 blocks);
 40 
 41 static void spe_begin(void)
 42 {
 43         /* We just start SPE operations and will save SPE registers later. */
 44         preempt_disable();
 45         enable_kernel_spe();
 46 }
 47 
 48 static void spe_end(void)
 49 {
 50         disable_kernel_spe();
 51         /* reenable preemption */
 52         preempt_enable();
 53 }
 54 
 55 static inline void ppc_sha256_clear_context(struct sha256_state *sctx)
 56 {
 57         int count = sizeof(struct sha256_state) >> 2;
 58         u32 *ptr = (u32 *)sctx;
 59 
 60         /* make sure we can clear the fast way */
 61         BUILD_BUG_ON(sizeof(struct sha256_state) % 4);
 62         do { *ptr++ = 0; } while (--count);
 63 }
 64 
 65 static int ppc_spe_sha256_init(struct shash_desc *desc)
 66 {
 67         struct sha256_state *sctx = shash_desc_ctx(desc);
 68 
 69         sctx->state[0] = SHA256_H0;
 70         sctx->state[1] = SHA256_H1;
 71         sctx->state[2] = SHA256_H2;
 72         sctx->state[3] = SHA256_H3;
 73         sctx->state[4] = SHA256_H4;
 74         sctx->state[5] = SHA256_H5;
 75         sctx->state[6] = SHA256_H6;
 76         sctx->state[7] = SHA256_H7;
 77         sctx->count = 0;
 78 
 79         return 0;
 80 }
 81 
 82 static int ppc_spe_sha224_init(struct shash_desc *desc)
 83 {
 84         struct sha256_state *sctx = shash_desc_ctx(desc);
 85 
 86         sctx->state[0] = SHA224_H0;
 87         sctx->state[1] = SHA224_H1;
 88         sctx->state[2] = SHA224_H2;
 89         sctx->state[3] = SHA224_H3;
 90         sctx->state[4] = SHA224_H4;
 91         sctx->state[5] = SHA224_H5;
 92         sctx->state[6] = SHA224_H6;
 93         sctx->state[7] = SHA224_H7;
 94         sctx->count = 0;
 95 
 96         return 0;
 97 }
 98 
 99 static int ppc_spe_sha256_update(struct shash_desc *desc, const u8 *data,
100                         unsigned int len)
101 {
102         struct sha256_state *sctx = shash_desc_ctx(desc);
103         const unsigned int offset = sctx->count & 0x3f;
104         const unsigned int avail = 64 - offset;
105         unsigned int bytes;
106         const u8 *src = data;
107 
108         if (avail > len) {
109                 sctx->count += len;
110                 memcpy((char *)sctx->buf + offset, src, len);
111                 return 0;
112         }
113 
114         sctx->count += len;
115 
116         if (offset) {
117                 memcpy((char *)sctx->buf + offset, src, avail);
118 
119                 spe_begin();
120                 ppc_spe_sha256_transform(sctx->state, (const u8 *)sctx->buf, 1);
121                 spe_end();
122 
123                 len -= avail;
124                 src += avail;
125         }
126 
127         while (len > 63) {
128                 /* cut input data into smaller blocks */
129                 bytes = (len > MAX_BYTES) ? MAX_BYTES : len;
130                 bytes = bytes & ~0x3f;
131 
132                 spe_begin();
133                 ppc_spe_sha256_transform(sctx->state, src, bytes >> 6);
134                 spe_end();
135 
136                 src += bytes;
137                 len -= bytes;
138         };
139 
140         memcpy((char *)sctx->buf, src, len);
141         return 0;
142 }
143 
144 static int ppc_spe_sha256_final(struct shash_desc *desc, u8 *out)
145 {
146         struct sha256_state *sctx = shash_desc_ctx(desc);
147         const unsigned int offset = sctx->count & 0x3f;
148         char *p = (char *)sctx->buf + offset;
149         int padlen;
150         __be64 *pbits = (__be64 *)(((char *)&sctx->buf) + 56);
151         __be32 *dst = (__be32 *)out;
152 
153         padlen = 55 - offset;
154         *p++ = 0x80;
155 
156         spe_begin();
157 
158         if (padlen < 0) {
159                 memset(p, 0x00, padlen + sizeof (u64));
160                 ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
161                 p = (char *)sctx->buf;
162                 padlen = 56;
163         }
164 
165         memset(p, 0, padlen);
166         *pbits = cpu_to_be64(sctx->count << 3);
167         ppc_spe_sha256_transform(sctx->state, sctx->buf, 1);
168 
169         spe_end();
170 
171         dst[0] = cpu_to_be32(sctx->state[0]);
172         dst[1] = cpu_to_be32(sctx->state[1]);
173         dst[2] = cpu_to_be32(sctx->state[2]);
174         dst[3] = cpu_to_be32(sctx->state[3]);
175         dst[4] = cpu_to_be32(sctx->state[4]);
176         dst[5] = cpu_to_be32(sctx->state[5]);
177         dst[6] = cpu_to_be32(sctx->state[6]);
178         dst[7] = cpu_to_be32(sctx->state[7]);
179 
180         ppc_sha256_clear_context(sctx);
181         return 0;
182 }
183 
184 static int ppc_spe_sha224_final(struct shash_desc *desc, u8 *out)
185 {
186         u32 D[SHA256_DIGEST_SIZE >> 2];
187         __be32 *dst = (__be32 *)out;
188 
189         ppc_spe_sha256_final(desc, (u8 *)D);
190 
191         /* avoid bytewise memcpy */
192         dst[0] = D[0];
193         dst[1] = D[1];
194         dst[2] = D[2];
195         dst[3] = D[3];
196         dst[4] = D[4];
197         dst[5] = D[5];
198         dst[6] = D[6];
199 
200         /* clear sensitive data */
201         memzero_explicit(D, SHA256_DIGEST_SIZE);
202         return 0;
203 }
204 
205 static int ppc_spe_sha256_export(struct shash_desc *desc, void *out)
206 {
207         struct sha256_state *sctx = shash_desc_ctx(desc);
208 
209         memcpy(out, sctx, sizeof(*sctx));
210         return 0;
211 }
212 
213 static int ppc_spe_sha256_import(struct shash_desc *desc, const void *in)
214 {
215         struct sha256_state *sctx = shash_desc_ctx(desc);
216 
217         memcpy(sctx, in, sizeof(*sctx));
218         return 0;
219 }
220 
221 static struct shash_alg algs[2] = { {
222         .digestsize     =       SHA256_DIGEST_SIZE,
223         .init           =       ppc_spe_sha256_init,
224         .update         =       ppc_spe_sha256_update,
225         .final          =       ppc_spe_sha256_final,
226         .export         =       ppc_spe_sha256_export,
227         .import         =       ppc_spe_sha256_import,
228         .descsize       =       sizeof(struct sha256_state),
229         .statesize      =       sizeof(struct sha256_state),
230         .base           =       {
231                 .cra_name       =       "sha256",
232                 .cra_driver_name=       "sha256-ppc-spe",
233                 .cra_priority   =       300,
234                 .cra_flags      =       CRYPTO_ALG_TYPE_SHASH,
235                 .cra_blocksize  =       SHA256_BLOCK_SIZE,
236                 .cra_module     =       THIS_MODULE,
237         }
238 }, {
239         .digestsize     =       SHA224_DIGEST_SIZE,
240         .init           =       ppc_spe_sha224_init,
241         .update         =       ppc_spe_sha256_update,
242         .final          =       ppc_spe_sha224_final,
243         .export         =       ppc_spe_sha256_export,
244         .import         =       ppc_spe_sha256_import,
245         .descsize       =       sizeof(struct sha256_state),
246         .statesize      =       sizeof(struct sha256_state),
247         .base           =       {
248                 .cra_name       =       "sha224",
249                 .cra_driver_name=       "sha224-ppc-spe",
250                 .cra_priority   =       300,
251                 .cra_flags      =       CRYPTO_ALG_TYPE_SHASH,
252                 .cra_blocksize  =       SHA224_BLOCK_SIZE,
253                 .cra_module     =       THIS_MODULE,
254         }
255 } };
256 
257 static int __init ppc_spe_sha256_mod_init(void)
258 {
259         return crypto_register_shashes(algs, ARRAY_SIZE(algs));
260 }
261 
262 static void __exit ppc_spe_sha256_mod_fini(void)
263 {
264         crypto_unregister_shashes(algs, ARRAY_SIZE(algs));
265 }
266 
267 module_init(ppc_spe_sha256_mod_init);
268 module_exit(ppc_spe_sha256_mod_fini);
269 
270 MODULE_LICENSE("GPL");
271 MODULE_DESCRIPTION("SHA-224 and SHA-256 Secure Hash Algorithm, SPE optimized");
272 
273 MODULE_ALIAS_CRYPTO("sha224");
274 MODULE_ALIAS_CRYPTO("sha224-ppc-spe");
275 MODULE_ALIAS_CRYPTO("sha256");
276 MODULE_ALIAS_CRYPTO("sha256-ppc-spe");
277 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp