~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kernel/kexec_elf_64.c

Version: ~ [ linux-5.5-rc1 ] ~ [ linux-5.4.2 ] ~ [ linux-5.3.15 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.88 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.158 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.206 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.206 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.78 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Load ELF vmlinux file for the kexec_file_load syscall.
  3  *
  4  * Copyright (C) 2004  Adam Litke (agl@us.ibm.com)
  5  * Copyright (C) 2004  IBM Corp.
  6  * Copyright (C) 2005  R Sharada (sharada@in.ibm.com)
  7  * Copyright (C) 2006  Mohan Kumar M (mohan@in.ibm.com)
  8  * Copyright (C) 2016  IBM Corporation
  9  *
 10  * Based on kexec-tools' kexec-elf-exec.c and kexec-elf-ppc64.c.
 11  * Heavily modified for the kernel by
 12  * Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>.
 13  *
 14  * This program is free software; you can redistribute it and/or modify
 15  * it under the terms of the GNU General Public License as published by
 16  * the Free Software Foundation (version 2 of the License).
 17  *
 18  * This program is distributed in the hope that it will be useful,
 19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 21  * GNU General Public License for more details.
 22  */
 23 
 24 #define pr_fmt(fmt)     "kexec_elf: " fmt
 25 
 26 #include <linux/elf.h>
 27 #include <linux/kexec.h>
 28 #include <linux/libfdt.h>
 29 #include <linux/module.h>
 30 #include <linux/of_fdt.h>
 31 #include <linux/slab.h>
 32 #include <linux/types.h>
 33 
 34 #define PURGATORY_STACK_SIZE    (16 * 1024)
 35 
 36 #define elf_addr_to_cpu elf64_to_cpu
 37 
 38 #ifndef Elf_Rel
 39 #define Elf_Rel         Elf64_Rel
 40 #endif /* Elf_Rel */
 41 
 42 struct elf_info {
 43         /*
 44          * Where the ELF binary contents are kept.
 45          * Memory managed by the user of the struct.
 46          */
 47         const char *buffer;
 48 
 49         const struct elfhdr *ehdr;
 50         const struct elf_phdr *proghdrs;
 51         struct elf_shdr *sechdrs;
 52 };
 53 
 54 static inline bool elf_is_elf_file(const struct elfhdr *ehdr)
 55 {
 56        return memcmp(ehdr->e_ident, ELFMAG, SELFMAG) == 0;
 57 }
 58 
 59 static uint64_t elf64_to_cpu(const struct elfhdr *ehdr, uint64_t value)
 60 {
 61         if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
 62                 value = le64_to_cpu(value);
 63         else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
 64                 value = be64_to_cpu(value);
 65 
 66         return value;
 67 }
 68 
 69 static uint16_t elf16_to_cpu(const struct elfhdr *ehdr, uint16_t value)
 70 {
 71         if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
 72                 value = le16_to_cpu(value);
 73         else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
 74                 value = be16_to_cpu(value);
 75 
 76         return value;
 77 }
 78 
 79 static uint32_t elf32_to_cpu(const struct elfhdr *ehdr, uint32_t value)
 80 {
 81         if (ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
 82                 value = le32_to_cpu(value);
 83         else if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
 84                 value = be32_to_cpu(value);
 85 
 86         return value;
 87 }
 88 
 89 /**
 90  * elf_is_ehdr_sane - check that it is safe to use the ELF header
 91  * @buf_len:    size of the buffer in which the ELF file is loaded.
 92  */
 93 static bool elf_is_ehdr_sane(const struct elfhdr *ehdr, size_t buf_len)
 94 {
 95         if (ehdr->e_phnum > 0 && ehdr->e_phentsize != sizeof(struct elf_phdr)) {
 96                 pr_debug("Bad program header size.\n");
 97                 return false;
 98         } else if (ehdr->e_shnum > 0 &&
 99                    ehdr->e_shentsize != sizeof(struct elf_shdr)) {
100                 pr_debug("Bad section header size.\n");
101                 return false;
102         } else if (ehdr->e_ident[EI_VERSION] != EV_CURRENT ||
103                    ehdr->e_version != EV_CURRENT) {
104                 pr_debug("Unknown ELF version.\n");
105                 return false;
106         }
107 
108         if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) {
109                 size_t phdr_size;
110 
111                 /*
112                  * e_phnum is at most 65535 so calculating the size of the
113                  * program header cannot overflow.
114                  */
115                 phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum;
116 
117                 /* Sanity check the program header table location. */
118                 if (ehdr->e_phoff + phdr_size < ehdr->e_phoff) {
119                         pr_debug("Program headers at invalid location.\n");
120                         return false;
121                 } else if (ehdr->e_phoff + phdr_size > buf_len) {
122                         pr_debug("Program headers truncated.\n");
123                         return false;
124                 }
125         }
126 
127         if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) {
128                 size_t shdr_size;
129 
130                 /*
131                  * e_shnum is at most 65536 so calculating
132                  * the size of the section header cannot overflow.
133                  */
134                 shdr_size = sizeof(struct elf_shdr) * ehdr->e_shnum;
135 
136                 /* Sanity check the section header table location. */
137                 if (ehdr->e_shoff + shdr_size < ehdr->e_shoff) {
138                         pr_debug("Section headers at invalid location.\n");
139                         return false;
140                 } else if (ehdr->e_shoff + shdr_size > buf_len) {
141                         pr_debug("Section headers truncated.\n");
142                         return false;
143                 }
144         }
145 
146         return true;
147 }
148 
149 static int elf_read_ehdr(const char *buf, size_t len, struct elfhdr *ehdr)
150 {
151         struct elfhdr *buf_ehdr;
152 
153         if (len < sizeof(*buf_ehdr)) {
154                 pr_debug("Buffer is too small to hold ELF header.\n");
155                 return -ENOEXEC;
156         }
157 
158         memset(ehdr, 0, sizeof(*ehdr));
159         memcpy(ehdr->e_ident, buf, sizeof(ehdr->e_ident));
160         if (!elf_is_elf_file(ehdr)) {
161                 pr_debug("No ELF header magic.\n");
162                 return -ENOEXEC;
163         }
164 
165         if (ehdr->e_ident[EI_CLASS] != ELF_CLASS) {
166                 pr_debug("Not a supported ELF class.\n");
167                 return -ENOEXEC;
168         } else  if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB &&
169                 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
170                 pr_debug("Not a supported ELF data format.\n");
171                 return -ENOEXEC;
172         }
173 
174         buf_ehdr = (struct elfhdr *) buf;
175         if (elf16_to_cpu(ehdr, buf_ehdr->e_ehsize) != sizeof(*buf_ehdr)) {
176                 pr_debug("Bad ELF header size.\n");
177                 return -ENOEXEC;
178         }
179 
180         ehdr->e_type      = elf16_to_cpu(ehdr, buf_ehdr->e_type);
181         ehdr->e_machine   = elf16_to_cpu(ehdr, buf_ehdr->e_machine);
182         ehdr->e_version   = elf32_to_cpu(ehdr, buf_ehdr->e_version);
183         ehdr->e_entry     = elf_addr_to_cpu(ehdr, buf_ehdr->e_entry);
184         ehdr->e_phoff     = elf_addr_to_cpu(ehdr, buf_ehdr->e_phoff);
185         ehdr->e_shoff     = elf_addr_to_cpu(ehdr, buf_ehdr->e_shoff);
186         ehdr->e_flags     = elf32_to_cpu(ehdr, buf_ehdr->e_flags);
187         ehdr->e_phentsize = elf16_to_cpu(ehdr, buf_ehdr->e_phentsize);
188         ehdr->e_phnum     = elf16_to_cpu(ehdr, buf_ehdr->e_phnum);
189         ehdr->e_shentsize = elf16_to_cpu(ehdr, buf_ehdr->e_shentsize);
190         ehdr->e_shnum     = elf16_to_cpu(ehdr, buf_ehdr->e_shnum);
191         ehdr->e_shstrndx  = elf16_to_cpu(ehdr, buf_ehdr->e_shstrndx);
192 
193         return elf_is_ehdr_sane(ehdr, len) ? 0 : -ENOEXEC;
194 }
195 
196 /**
197  * elf_is_phdr_sane - check that it is safe to use the program header
198  * @buf_len:    size of the buffer in which the ELF file is loaded.
199  */
200 static bool elf_is_phdr_sane(const struct elf_phdr *phdr, size_t buf_len)
201 {
202 
203         if (phdr->p_offset + phdr->p_filesz < phdr->p_offset) {
204                 pr_debug("ELF segment location wraps around.\n");
205                 return false;
206         } else if (phdr->p_offset + phdr->p_filesz > buf_len) {
207                 pr_debug("ELF segment not in file.\n");
208                 return false;
209         } else if (phdr->p_paddr + phdr->p_memsz < phdr->p_paddr) {
210                 pr_debug("ELF segment address wraps around.\n");
211                 return false;
212         }
213 
214         return true;
215 }
216 
217 static int elf_read_phdr(const char *buf, size_t len, struct elf_info *elf_info,
218                          int idx)
219 {
220         /* Override the const in proghdrs, we are the ones doing the loading. */
221         struct elf_phdr *phdr = (struct elf_phdr *) &elf_info->proghdrs[idx];
222         const char *pbuf;
223         struct elf_phdr *buf_phdr;
224 
225         pbuf = buf + elf_info->ehdr->e_phoff + (idx * sizeof(*buf_phdr));
226         buf_phdr = (struct elf_phdr *) pbuf;
227 
228         phdr->p_type   = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_type);
229         phdr->p_offset = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_offset);
230         phdr->p_paddr  = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_paddr);
231         phdr->p_vaddr  = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_vaddr);
232         phdr->p_flags  = elf32_to_cpu(elf_info->ehdr, buf_phdr->p_flags);
233 
234         /*
235          * The following fields have a type equivalent to Elf_Addr
236          * both in 32 bit and 64 bit ELF.
237          */
238         phdr->p_filesz = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_filesz);
239         phdr->p_memsz  = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_memsz);
240         phdr->p_align  = elf_addr_to_cpu(elf_info->ehdr, buf_phdr->p_align);
241 
242         return elf_is_phdr_sane(phdr, len) ? 0 : -ENOEXEC;
243 }
244 
245 /**
246  * elf_read_phdrs - read the program headers from the buffer
247  *
248  * This function assumes that the program header table was checked for sanity.
249  * Use elf_is_ehdr_sane() if it wasn't.
250  */
251 static int elf_read_phdrs(const char *buf, size_t len,
252                           struct elf_info *elf_info)
253 {
254         size_t phdr_size, i;
255         const struct elfhdr *ehdr = elf_info->ehdr;
256 
257         /*
258          * e_phnum is at most 65535 so calculating the size of the
259          * program header cannot overflow.
260          */
261         phdr_size = sizeof(struct elf_phdr) * ehdr->e_phnum;
262 
263         elf_info->proghdrs = kzalloc(phdr_size, GFP_KERNEL);
264         if (!elf_info->proghdrs)
265                 return -ENOMEM;
266 
267         for (i = 0; i < ehdr->e_phnum; i++) {
268                 int ret;
269 
270                 ret = elf_read_phdr(buf, len, elf_info, i);
271                 if (ret) {
272                         kfree(elf_info->proghdrs);
273                         elf_info->proghdrs = NULL;
274                         return ret;
275                 }
276         }
277 
278         return 0;
279 }
280 
281 /**
282  * elf_is_shdr_sane - check that it is safe to use the section header
283  * @buf_len:    size of the buffer in which the ELF file is loaded.
284  */
285 static bool elf_is_shdr_sane(const struct elf_shdr *shdr, size_t buf_len)
286 {
287         bool size_ok;
288 
289         /* SHT_NULL headers have undefined values, so we can't check them. */
290         if (shdr->sh_type == SHT_NULL)
291                 return true;
292 
293         /* Now verify sh_entsize */
294         switch (shdr->sh_type) {
295         case SHT_SYMTAB:
296                 size_ok = shdr->sh_entsize == sizeof(Elf_Sym);
297                 break;
298         case SHT_RELA:
299                 size_ok = shdr->sh_entsize == sizeof(Elf_Rela);
300                 break;
301         case SHT_DYNAMIC:
302                 size_ok = shdr->sh_entsize == sizeof(Elf_Dyn);
303                 break;
304         case SHT_REL:
305                 size_ok = shdr->sh_entsize == sizeof(Elf_Rel);
306                 break;
307         case SHT_NOTE:
308         case SHT_PROGBITS:
309         case SHT_HASH:
310         case SHT_NOBITS:
311         default:
312                 /*
313                  * This is a section whose entsize requirements
314                  * I don't care about.  If I don't know about
315                  * the section I can't care about it's entsize
316                  * requirements.
317                  */
318                 size_ok = true;
319                 break;
320         }
321 
322         if (!size_ok) {
323                 pr_debug("ELF section with wrong entry size.\n");
324                 return false;
325         } else if (shdr->sh_addr + shdr->sh_size < shdr->sh_addr) {
326                 pr_debug("ELF section address wraps around.\n");
327                 return false;
328         }
329 
330         if (shdr->sh_type != SHT_NOBITS) {
331                 if (shdr->sh_offset + shdr->sh_size < shdr->sh_offset) {
332                         pr_debug("ELF section location wraps around.\n");
333                         return false;
334                 } else if (shdr->sh_offset + shdr->sh_size > buf_len) {
335                         pr_debug("ELF section not in file.\n");
336                         return false;
337                 }
338         }
339 
340         return true;
341 }
342 
343 static int elf_read_shdr(const char *buf, size_t len, struct elf_info *elf_info,
344                          int idx)
345 {
346         struct elf_shdr *shdr = &elf_info->sechdrs[idx];
347         const struct elfhdr *ehdr = elf_info->ehdr;
348         const char *sbuf;
349         struct elf_shdr *buf_shdr;
350 
351         sbuf = buf + ehdr->e_shoff + idx * sizeof(*buf_shdr);
352         buf_shdr = (struct elf_shdr *) sbuf;
353 
354         shdr->sh_name      = elf32_to_cpu(ehdr, buf_shdr->sh_name);
355         shdr->sh_type      = elf32_to_cpu(ehdr, buf_shdr->sh_type);
356         shdr->sh_addr      = elf_addr_to_cpu(ehdr, buf_shdr->sh_addr);
357         shdr->sh_offset    = elf_addr_to_cpu(ehdr, buf_shdr->sh_offset);
358         shdr->sh_link      = elf32_to_cpu(ehdr, buf_shdr->sh_link);
359         shdr->sh_info      = elf32_to_cpu(ehdr, buf_shdr->sh_info);
360 
361         /*
362          * The following fields have a type equivalent to Elf_Addr
363          * both in 32 bit and 64 bit ELF.
364          */
365         shdr->sh_flags     = elf_addr_to_cpu(ehdr, buf_shdr->sh_flags);
366         shdr->sh_size      = elf_addr_to_cpu(ehdr, buf_shdr->sh_size);
367         shdr->sh_addralign = elf_addr_to_cpu(ehdr, buf_shdr->sh_addralign);
368         shdr->sh_entsize   = elf_addr_to_cpu(ehdr, buf_shdr->sh_entsize);
369 
370         return elf_is_shdr_sane(shdr, len) ? 0 : -ENOEXEC;
371 }
372 
373 /**
374  * elf_read_shdrs - read the section headers from the buffer
375  *
376  * This function assumes that the section header table was checked for sanity.
377  * Use elf_is_ehdr_sane() if it wasn't.
378  */
379 static int elf_read_shdrs(const char *buf, size_t len,
380                           struct elf_info *elf_info)
381 {
382         size_t shdr_size, i;
383 
384         /*
385          * e_shnum is at most 65536 so calculating
386          * the size of the section header cannot overflow.
387          */
388         shdr_size = sizeof(struct elf_shdr) * elf_info->ehdr->e_shnum;
389 
390         elf_info->sechdrs = kzalloc(shdr_size, GFP_KERNEL);
391         if (!elf_info->sechdrs)
392                 return -ENOMEM;
393 
394         for (i = 0; i < elf_info->ehdr->e_shnum; i++) {
395                 int ret;
396 
397                 ret = elf_read_shdr(buf, len, elf_info, i);
398                 if (ret) {
399                         kfree(elf_info->sechdrs);
400                         elf_info->sechdrs = NULL;
401                         return ret;
402                 }
403         }
404 
405         return 0;
406 }
407 
408 /**
409  * elf_read_from_buffer - read ELF file and sets up ELF header and ELF info
410  * @buf:        Buffer to read ELF file from.
411  * @len:        Size of @buf.
412  * @ehdr:       Pointer to existing struct which will be populated.
413  * @elf_info:   Pointer to existing struct which will be populated.
414  *
415  * This function allows reading ELF files with different byte order than
416  * the kernel, byte-swapping the fields as needed.
417  *
418  * Return:
419  * On success returns 0, and the caller should call elf_free_info(elf_info) to
420  * free the memory allocated for the section and program headers.
421  */
422 int elf_read_from_buffer(const char *buf, size_t len, struct elfhdr *ehdr,
423                          struct elf_info *elf_info)
424 {
425         int ret;
426 
427         ret = elf_read_ehdr(buf, len, ehdr);
428         if (ret)
429                 return ret;
430 
431         elf_info->buffer = buf;
432         elf_info->ehdr = ehdr;
433         if (ehdr->e_phoff > 0 && ehdr->e_phnum > 0) {
434                 ret = elf_read_phdrs(buf, len, elf_info);
435                 if (ret)
436                         return ret;
437         }
438         if (ehdr->e_shoff > 0 && ehdr->e_shnum > 0) {
439                 ret = elf_read_shdrs(buf, len, elf_info);
440                 if (ret) {
441                         kfree(elf_info->proghdrs);
442                         return ret;
443                 }
444         }
445 
446         return 0;
447 }
448 
449 /**
450  * elf_free_info - free memory allocated by elf_read_from_buffer
451  */
452 void elf_free_info(struct elf_info *elf_info)
453 {
454         kfree(elf_info->proghdrs);
455         kfree(elf_info->sechdrs);
456         memset(elf_info, 0, sizeof(*elf_info));
457 }
458 /**
459  * build_elf_exec_info - read ELF executable and check that we can use it
460  */
461 static int build_elf_exec_info(const char *buf, size_t len, struct elfhdr *ehdr,
462                                struct elf_info *elf_info)
463 {
464         int i;
465         int ret;
466 
467         ret = elf_read_from_buffer(buf, len, ehdr, elf_info);
468         if (ret)
469                 return ret;
470 
471         /* Big endian vmlinux has type ET_DYN. */
472         if (ehdr->e_type != ET_EXEC && ehdr->e_type != ET_DYN) {
473                 pr_err("Not an ELF executable.\n");
474                 goto error;
475         } else if (!elf_info->proghdrs) {
476                 pr_err("No ELF program header.\n");
477                 goto error;
478         }
479 
480         for (i = 0; i < ehdr->e_phnum; i++) {
481                 /*
482                  * Kexec does not support loading interpreters.
483                  * In addition this check keeps us from attempting
484                  * to kexec ordinay executables.
485                  */
486                 if (elf_info->proghdrs[i].p_type == PT_INTERP) {
487                         pr_err("Requires an ELF interpreter.\n");
488                         goto error;
489                 }
490         }
491 
492         return 0;
493 error:
494         elf_free_info(elf_info);
495         return -ENOEXEC;
496 }
497 
498 static int elf64_probe(const char *buf, unsigned long len)
499 {
500         struct elfhdr ehdr;
501         struct elf_info elf_info;
502         int ret;
503 
504         ret = build_elf_exec_info(buf, len, &ehdr, &elf_info);
505         if (ret)
506                 return ret;
507 
508         elf_free_info(&elf_info);
509 
510         return elf_check_arch(&ehdr) ? 0 : -ENOEXEC;
511 }
512 
513 /**
514  * elf_exec_load - load ELF executable image
515  * @lowest_load_addr:   On return, will be the address where the first PT_LOAD
516  *                      section will be loaded in memory.
517  *
518  * Return:
519  * 0 on success, negative value on failure.
520  */
521 static int elf_exec_load(struct kimage *image, struct elfhdr *ehdr,
522                          struct elf_info *elf_info,
523                          unsigned long *lowest_load_addr)
524 {
525         unsigned long base = 0, lowest_addr = UINT_MAX;
526         int ret;
527         size_t i;
528         struct kexec_buf kbuf = { .image = image, .buf_max = ppc64_rma_size,
529                                   .top_down = false };
530 
531         /* Read in the PT_LOAD segments. */
532         for (i = 0; i < ehdr->e_phnum; i++) {
533                 unsigned long load_addr;
534                 size_t size;
535                 const struct elf_phdr *phdr;
536 
537                 phdr = &elf_info->proghdrs[i];
538                 if (phdr->p_type != PT_LOAD)
539                         continue;
540 
541                 size = phdr->p_filesz;
542                 if (size > phdr->p_memsz)
543                         size = phdr->p_memsz;
544 
545                 kbuf.buffer = (void *) elf_info->buffer + phdr->p_offset;
546                 kbuf.bufsz = size;
547                 kbuf.memsz = phdr->p_memsz;
548                 kbuf.buf_align = phdr->p_align;
549                 kbuf.buf_min = phdr->p_paddr + base;
550                 ret = kexec_add_buffer(&kbuf);
551                 if (ret)
552                         goto out;
553                 load_addr = kbuf.mem;
554 
555                 if (load_addr < lowest_addr)
556                         lowest_addr = load_addr;
557         }
558 
559         /* Update entry point to reflect new load address. */
560         ehdr->e_entry += base;
561 
562         *lowest_load_addr = lowest_addr;
563         ret = 0;
564  out:
565         return ret;
566 }
567 
568 static void *elf64_load(struct kimage *image, char *kernel_buf,
569                         unsigned long kernel_len, char *initrd,
570                         unsigned long initrd_len, char *cmdline,
571                         unsigned long cmdline_len)
572 {
573         int ret;
574         unsigned int fdt_size;
575         unsigned long kernel_load_addr, purgatory_load_addr;
576         unsigned long initrd_load_addr = 0, fdt_load_addr;
577         void *fdt;
578         const void *slave_code;
579         struct elfhdr ehdr;
580         struct elf_info elf_info;
581         struct kexec_buf kbuf = { .image = image, .buf_min = 0,
582                                   .buf_max = ppc64_rma_size };
583 
584         ret = build_elf_exec_info(kernel_buf, kernel_len, &ehdr, &elf_info);
585         if (ret)
586                 goto out;
587 
588         ret = elf_exec_load(image, &ehdr, &elf_info, &kernel_load_addr);
589         if (ret)
590                 goto out;
591 
592         pr_debug("Loaded the kernel at 0x%lx\n", kernel_load_addr);
593 
594         ret = kexec_load_purgatory(image, 0, ppc64_rma_size, true,
595                                    &purgatory_load_addr);
596         if (ret) {
597                 pr_err("Loading purgatory failed.\n");
598                 goto out;
599         }
600 
601         pr_debug("Loaded purgatory at 0x%lx\n", purgatory_load_addr);
602 
603         if (initrd != NULL) {
604                 kbuf.buffer = initrd;
605                 kbuf.bufsz = kbuf.memsz = initrd_len;
606                 kbuf.buf_align = PAGE_SIZE;
607                 kbuf.top_down = false;
608                 ret = kexec_add_buffer(&kbuf);
609                 if (ret)
610                         goto out;
611                 initrd_load_addr = kbuf.mem;
612 
613                 pr_debug("Loaded initrd at 0x%lx\n", initrd_load_addr);
614         }
615 
616         fdt_size = fdt_totalsize(initial_boot_params) * 2;
617         fdt = kmalloc(fdt_size, GFP_KERNEL);
618         if (!fdt) {
619                 pr_err("Not enough memory for the device tree.\n");
620                 ret = -ENOMEM;
621                 goto out;
622         }
623         ret = fdt_open_into(initial_boot_params, fdt, fdt_size);
624         if (ret < 0) {
625                 pr_err("Error setting up the new device tree.\n");
626                 ret = -EINVAL;
627                 goto out;
628         }
629 
630         ret = setup_new_fdt(image, fdt, initrd_load_addr, initrd_len, cmdline);
631         if (ret)
632                 goto out;
633 
634         fdt_pack(fdt);
635 
636         kbuf.buffer = fdt;
637         kbuf.bufsz = kbuf.memsz = fdt_size;
638         kbuf.buf_align = PAGE_SIZE;
639         kbuf.top_down = true;
640         ret = kexec_add_buffer(&kbuf);
641         if (ret)
642                 goto out;
643         fdt_load_addr = kbuf.mem;
644 
645         pr_debug("Loaded device tree at 0x%lx\n", fdt_load_addr);
646 
647         slave_code = elf_info.buffer + elf_info.proghdrs[0].p_offset;
648         ret = setup_purgatory(image, slave_code, fdt, kernel_load_addr,
649                               fdt_load_addr);
650         if (ret)
651                 pr_err("Error setting up the purgatory.\n");
652 
653 out:
654         elf_free_info(&elf_info);
655 
656         /* Make kimage_file_post_load_cleanup free the fdt buffer for us. */
657         return ret ? ERR_PTR(ret) : fdt;
658 }
659 
660 struct kexec_file_ops kexec_elf64_ops = {
661         .probe = elf64_probe,
662         .load = elf64_load,
663 };
664 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp