~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kernel/rtasd.c

Version: ~ [ linux-5.15-rc1 ] ~ [ linux-5.14.5 ] ~ [ linux-5.13.18 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.66 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.147 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.206 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.246 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.282 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.283 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  4  *
  5  * Communication to userspace based on kernel/printk.c
  6  */
  7 
  8 #include <linux/types.h>
  9 #include <linux/errno.h>
 10 #include <linux/sched.h>
 11 #include <linux/kernel.h>
 12 #include <linux/poll.h>
 13 #include <linux/proc_fs.h>
 14 #include <linux/init.h>
 15 #include <linux/vmalloc.h>
 16 #include <linux/spinlock.h>
 17 #include <linux/cpu.h>
 18 #include <linux/workqueue.h>
 19 #include <linux/slab.h>
 20 #include <linux/topology.h>
 21 
 22 #include <linux/uaccess.h>
 23 #include <asm/io.h>
 24 #include <asm/rtas.h>
 25 #include <asm/prom.h>
 26 #include <asm/nvram.h>
 27 #include <linux/atomic.h>
 28 #include <asm/machdep.h>
 29 #include <asm/topology.h>
 30 
 31 
 32 static DEFINE_SPINLOCK(rtasd_log_lock);
 33 
 34 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
 35 
 36 static char *rtas_log_buf;
 37 static unsigned long rtas_log_start;
 38 static unsigned long rtas_log_size;
 39 
 40 static int surveillance_timeout = -1;
 41 
 42 static unsigned int rtas_error_log_max;
 43 static unsigned int rtas_error_log_buffer_max;
 44 
 45 /* RTAS service tokens */
 46 static unsigned int event_scan;
 47 static unsigned int rtas_event_scan_rate;
 48 
 49 static bool full_rtas_msgs;
 50 
 51 /* Stop logging to nvram after first fatal error */
 52 static int logging_enabled; /* Until we initialize everything,
 53                              * make sure we don't try logging
 54                              * anything */
 55 static int error_log_cnt;
 56 
 57 /*
 58  * Since we use 32 bit RTAS, the physical address of this must be below
 59  * 4G or else bad things happen. Allocate this in the kernel data and
 60  * make it big enough.
 61  */
 62 static unsigned char logdata[RTAS_ERROR_LOG_MAX];
 63 
 64 static char *rtas_type[] = {
 65         "Unknown", "Retry", "TCE Error", "Internal Device Failure",
 66         "Timeout", "Data Parity", "Address Parity", "Cache Parity",
 67         "Address Invalid", "ECC Uncorrected", "ECC Corrupted",
 68 };
 69 
 70 static char *rtas_event_type(int type)
 71 {
 72         if ((type > 0) && (type < 11))
 73                 return rtas_type[type];
 74 
 75         switch (type) {
 76                 case RTAS_TYPE_EPOW:
 77                         return "EPOW";
 78                 case RTAS_TYPE_PLATFORM:
 79                         return "Platform Error";
 80                 case RTAS_TYPE_IO:
 81                         return "I/O Event";
 82                 case RTAS_TYPE_INFO:
 83                         return "Platform Information Event";
 84                 case RTAS_TYPE_DEALLOC:
 85                         return "Resource Deallocation Event";
 86                 case RTAS_TYPE_DUMP:
 87                         return "Dump Notification Event";
 88                 case RTAS_TYPE_PRRN:
 89                         return "Platform Resource Reassignment Event";
 90                 case RTAS_TYPE_HOTPLUG:
 91                         return "Hotplug Event";
 92         }
 93 
 94         return rtas_type[0];
 95 }
 96 
 97 /* To see this info, grep RTAS /var/log/messages and each entry
 98  * will be collected together with obvious begin/end.
 99  * There will be a unique identifier on the begin and end lines.
100  * This will persist across reboots.
101  *
102  * format of error logs returned from RTAS:
103  * bytes        (size)  : contents
104  * --------------------------------------------------------
105  * 0-7          (8)     : rtas_error_log
106  * 8-47         (40)    : extended info
107  * 48-51        (4)     : vendor id
108  * 52-1023 (vendor specific) : location code and debug data
109  */
110 static void printk_log_rtas(char *buf, int len)
111 {
112 
113         int i,j,n = 0;
114         int perline = 16;
115         char buffer[64];
116         char * str = "RTAS event";
117 
118         if (full_rtas_msgs) {
119                 printk(RTAS_DEBUG "%d -------- %s begin --------\n",
120                        error_log_cnt, str);
121 
122                 /*
123                  * Print perline bytes on each line, each line will start
124                  * with RTAS and a changing number, so syslogd will
125                  * print lines that are otherwise the same.  Separate every
126                  * 4 bytes with a space.
127                  */
128                 for (i = 0; i < len; i++) {
129                         j = i % perline;
130                         if (j == 0) {
131                                 memset(buffer, 0, sizeof(buffer));
132                                 n = sprintf(buffer, "RTAS %d:", i/perline);
133                         }
134 
135                         if ((i % 4) == 0)
136                                 n += sprintf(buffer+n, " ");
137 
138                         n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
139 
140                         if (j == (perline-1))
141                                 printk(KERN_DEBUG "%s\n", buffer);
142                 }
143                 if ((i % perline) != 0)
144                         printk(KERN_DEBUG "%s\n", buffer);
145 
146                 printk(RTAS_DEBUG "%d -------- %s end ----------\n",
147                        error_log_cnt, str);
148         } else {
149                 struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
150 
151                 printk(RTAS_DEBUG "event: %d, Type: %s (%d), Severity: %d\n",
152                        error_log_cnt,
153                        rtas_event_type(rtas_error_type(errlog)),
154                        rtas_error_type(errlog),
155                        rtas_error_severity(errlog));
156         }
157 }
158 
159 static int log_rtas_len(char * buf)
160 {
161         int len;
162         struct rtas_error_log *err;
163         uint32_t extended_log_length;
164 
165         /* rtas fixed header */
166         len = 8;
167         err = (struct rtas_error_log *)buf;
168         extended_log_length = rtas_error_extended_log_length(err);
169         if (rtas_error_extended(err) && extended_log_length) {
170 
171                 /* extended header */
172                 len += extended_log_length;
173         }
174 
175         if (rtas_error_log_max == 0)
176                 rtas_error_log_max = rtas_get_error_log_max();
177 
178         if (len > rtas_error_log_max)
179                 len = rtas_error_log_max;
180 
181         return len;
182 }
183 
184 /*
185  * First write to nvram, if fatal error, that is the only
186  * place we log the info.  The error will be picked up
187  * on the next reboot by rtasd.  If not fatal, run the
188  * method for the type of error.  Currently, only RTAS
189  * errors have methods implemented, but in the future
190  * there might be a need to store data in nvram before a
191  * call to panic().
192  *
193  * XXX We write to nvram periodically, to indicate error has
194  * been written and sync'd, but there is a possibility
195  * that if we don't shutdown correctly, a duplicate error
196  * record will be created on next reboot.
197  */
198 void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
199 {
200         unsigned long offset;
201         unsigned long s;
202         int len = 0;
203 
204         pr_debug("rtasd: logging event\n");
205         if (buf == NULL)
206                 return;
207 
208         spin_lock_irqsave(&rtasd_log_lock, s);
209 
210         /* get length and increase count */
211         switch (err_type & ERR_TYPE_MASK) {
212         case ERR_TYPE_RTAS_LOG:
213                 len = log_rtas_len(buf);
214                 if (!(err_type & ERR_FLAG_BOOT))
215                         error_log_cnt++;
216                 break;
217         case ERR_TYPE_KERNEL_PANIC:
218         default:
219                 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
220                 spin_unlock_irqrestore(&rtasd_log_lock, s);
221                 return;
222         }
223 
224 #ifdef CONFIG_PPC64
225         /* Write error to NVRAM */
226         if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
227                 nvram_write_error_log(buf, len, err_type, error_log_cnt);
228 #endif /* CONFIG_PPC64 */
229 
230         /*
231          * rtas errors can occur during boot, and we do want to capture
232          * those somewhere, even if nvram isn't ready (why not?), and even
233          * if rtasd isn't ready. Put them into the boot log, at least.
234          */
235         if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
236                 printk_log_rtas(buf, len);
237 
238         /* Check to see if we need to or have stopped logging */
239         if (fatal || !logging_enabled) {
240                 logging_enabled = 0;
241                 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
242                 spin_unlock_irqrestore(&rtasd_log_lock, s);
243                 return;
244         }
245 
246         /* call type specific method for error */
247         switch (err_type & ERR_TYPE_MASK) {
248         case ERR_TYPE_RTAS_LOG:
249                 offset = rtas_error_log_buffer_max *
250                         ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
251 
252                 /* First copy over sequence number */
253                 memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
254 
255                 /* Second copy over error log data */
256                 offset += sizeof(int);
257                 memcpy(&rtas_log_buf[offset], buf, len);
258 
259                 if (rtas_log_size < LOG_NUMBER)
260                         rtas_log_size += 1;
261                 else
262                         rtas_log_start += 1;
263 
264                 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
265                 spin_unlock_irqrestore(&rtasd_log_lock, s);
266                 wake_up_interruptible(&rtas_log_wait);
267                 break;
268         case ERR_TYPE_KERNEL_PANIC:
269         default:
270                 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
271                 spin_unlock_irqrestore(&rtasd_log_lock, s);
272                 return;
273         }
274 }
275 
276 #ifdef CONFIG_PPC_PSERIES
277 static void handle_prrn_event(s32 scope)
278 {
279         /*
280          * For PRRN, we must pass the negative of the scope value in
281          * the RTAS event.
282          */
283         pseries_devicetree_update(-scope);
284         numa_update_cpu_topology(false);
285 }
286 
287 static void handle_rtas_event(const struct rtas_error_log *log)
288 {
289         if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
290                 return;
291 
292         /* For PRRN Events the extended log length is used to denote
293          * the scope for calling rtas update-nodes.
294          */
295         handle_prrn_event(rtas_error_extended_log_length(log));
296 }
297 
298 #else
299 
300 static void handle_rtas_event(const struct rtas_error_log *log)
301 {
302         return;
303 }
304 
305 #endif
306 
307 static int rtas_log_open(struct inode * inode, struct file * file)
308 {
309         return 0;
310 }
311 
312 static int rtas_log_release(struct inode * inode, struct file * file)
313 {
314         return 0;
315 }
316 
317 /* This will check if all events are logged, if they are then, we
318  * know that we can safely clear the events in NVRAM.
319  * Next we'll sit and wait for something else to log.
320  */
321 static ssize_t rtas_log_read(struct file * file, char __user * buf,
322                          size_t count, loff_t *ppos)
323 {
324         int error;
325         char *tmp;
326         unsigned long s;
327         unsigned long offset;
328 
329         if (!buf || count < rtas_error_log_buffer_max)
330                 return -EINVAL;
331 
332         count = rtas_error_log_buffer_max;
333 
334         if (!access_ok(buf, count))
335                 return -EFAULT;
336 
337         tmp = kmalloc(count, GFP_KERNEL);
338         if (!tmp)
339                 return -ENOMEM;
340 
341         spin_lock_irqsave(&rtasd_log_lock, s);
342 
343         /* if it's 0, then we know we got the last one (the one in NVRAM) */
344         while (rtas_log_size == 0) {
345                 if (file->f_flags & O_NONBLOCK) {
346                         spin_unlock_irqrestore(&rtasd_log_lock, s);
347                         error = -EAGAIN;
348                         goto out;
349                 }
350 
351                 if (!logging_enabled) {
352                         spin_unlock_irqrestore(&rtasd_log_lock, s);
353                         error = -ENODATA;
354                         goto out;
355                 }
356 #ifdef CONFIG_PPC64
357                 nvram_clear_error_log();
358 #endif /* CONFIG_PPC64 */
359 
360                 spin_unlock_irqrestore(&rtasd_log_lock, s);
361                 error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
362                 if (error)
363                         goto out;
364                 spin_lock_irqsave(&rtasd_log_lock, s);
365         }
366 
367         offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
368         memcpy(tmp, &rtas_log_buf[offset], count);
369 
370         rtas_log_start += 1;
371         rtas_log_size -= 1;
372         spin_unlock_irqrestore(&rtasd_log_lock, s);
373 
374         error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
375 out:
376         kfree(tmp);
377         return error;
378 }
379 
380 static __poll_t rtas_log_poll(struct file *file, poll_table * wait)
381 {
382         poll_wait(file, &rtas_log_wait, wait);
383         if (rtas_log_size)
384                 return EPOLLIN | EPOLLRDNORM;
385         return 0;
386 }
387 
388 static const struct file_operations proc_rtas_log_operations = {
389         .read =         rtas_log_read,
390         .poll =         rtas_log_poll,
391         .open =         rtas_log_open,
392         .release =      rtas_log_release,
393         .llseek =       noop_llseek,
394 };
395 
396 static int enable_surveillance(int timeout)
397 {
398         int error;
399 
400         error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
401 
402         if (error == 0)
403                 return 0;
404 
405         if (error == -EINVAL) {
406                 printk(KERN_DEBUG "rtasd: surveillance not supported\n");
407                 return 0;
408         }
409 
410         printk(KERN_ERR "rtasd: could not update surveillance\n");
411         return -1;
412 }
413 
414 static void do_event_scan(void)
415 {
416         int error;
417         do {
418                 memset(logdata, 0, rtas_error_log_max);
419                 error = rtas_call(event_scan, 4, 1, NULL,
420                                   RTAS_EVENT_SCAN_ALL_EVENTS, 0,
421                                   __pa(logdata), rtas_error_log_max);
422                 if (error == -1) {
423                         printk(KERN_ERR "event-scan failed\n");
424                         break;
425                 }
426 
427                 if (error == 0) {
428                         if (rtas_error_type((struct rtas_error_log *)logdata) !=
429                             RTAS_TYPE_PRRN)
430                                 pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
431                                                   0);
432                         handle_rtas_event((struct rtas_error_log *)logdata);
433                 }
434 
435         } while(error == 0);
436 }
437 
438 static void rtas_event_scan(struct work_struct *w);
439 static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
440 
441 /*
442  * Delay should be at least one second since some machines have problems if
443  * we call event-scan too quickly.
444  */
445 static unsigned long event_scan_delay = 1*HZ;
446 static int first_pass = 1;
447 
448 static void rtas_event_scan(struct work_struct *w)
449 {
450         unsigned int cpu;
451 
452         do_event_scan();
453 
454         get_online_cpus();
455 
456         /* raw_ OK because just using CPU as starting point. */
457         cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
458         if (cpu >= nr_cpu_ids) {
459                 cpu = cpumask_first(cpu_online_mask);
460 
461                 if (first_pass) {
462                         first_pass = 0;
463                         event_scan_delay = 30*HZ/rtas_event_scan_rate;
464 
465                         if (surveillance_timeout != -1) {
466                                 pr_debug("rtasd: enabling surveillance\n");
467                                 enable_surveillance(surveillance_timeout);
468                                 pr_debug("rtasd: surveillance enabled\n");
469                         }
470                 }
471         }
472 
473         schedule_delayed_work_on(cpu, &event_scan_work,
474                 __round_jiffies_relative(event_scan_delay, cpu));
475 
476         put_online_cpus();
477 }
478 
479 #ifdef CONFIG_PPC64
480 static void retrieve_nvram_error_log(void)
481 {
482         unsigned int err_type ;
483         int rc ;
484 
485         /* See if we have any error stored in NVRAM */
486         memset(logdata, 0, rtas_error_log_max);
487         rc = nvram_read_error_log(logdata, rtas_error_log_max,
488                                   &err_type, &error_log_cnt);
489         /* We can use rtas_log_buf now */
490         logging_enabled = 1;
491         if (!rc) {
492                 if (err_type != ERR_FLAG_ALREADY_LOGGED) {
493                         pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
494                 }
495         }
496 }
497 #else /* CONFIG_PPC64 */
498 static void retrieve_nvram_error_log(void)
499 {
500 }
501 #endif /* CONFIG_PPC64 */
502 
503 static void start_event_scan(void)
504 {
505         printk(KERN_DEBUG "RTAS daemon started\n");
506         pr_debug("rtasd: will sleep for %d milliseconds\n",
507                  (30000 / rtas_event_scan_rate));
508 
509         /* Retrieve errors from nvram if any */
510         retrieve_nvram_error_log();
511 
512         schedule_delayed_work_on(cpumask_first(cpu_online_mask),
513                                  &event_scan_work, event_scan_delay);
514 }
515 
516 /* Cancel the rtas event scan work */
517 void rtas_cancel_event_scan(void)
518 {
519         cancel_delayed_work_sync(&event_scan_work);
520 }
521 EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
522 
523 static int __init rtas_event_scan_init(void)
524 {
525         if (!machine_is(pseries) && !machine_is(chrp))
526                 return 0;
527 
528         /* No RTAS */
529         event_scan = rtas_token("event-scan");
530         if (event_scan == RTAS_UNKNOWN_SERVICE) {
531                 printk(KERN_INFO "rtasd: No event-scan on system\n");
532                 return -ENODEV;
533         }
534 
535         rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
536         if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
537                 printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
538                 return -ENODEV;
539         }
540 
541         if (!rtas_event_scan_rate) {
542                 /* Broken firmware: take a rate of zero to mean don't scan */
543                 printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
544                 return 0;
545         }
546 
547         /* Make room for the sequence number */
548         rtas_error_log_max = rtas_get_error_log_max();
549         rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
550 
551         rtas_log_buf = vmalloc(array_size(LOG_NUMBER,
552                                           rtas_error_log_buffer_max));
553         if (!rtas_log_buf) {
554                 printk(KERN_ERR "rtasd: no memory\n");
555                 return -ENOMEM;
556         }
557 
558         start_event_scan();
559 
560         return 0;
561 }
562 arch_initcall(rtas_event_scan_init);
563 
564 static int __init rtas_init(void)
565 {
566         struct proc_dir_entry *entry;
567 
568         if (!machine_is(pseries) && !machine_is(chrp))
569                 return 0;
570 
571         if (!rtas_log_buf)
572                 return -ENODEV;
573 
574         entry = proc_create("powerpc/rtas/error_log", 0400, NULL,
575                             &proc_rtas_log_operations);
576         if (!entry)
577                 printk(KERN_ERR "Failed to create error_log proc entry\n");
578 
579         return 0;
580 }
581 __initcall(rtas_init);
582 
583 static int __init surveillance_setup(char *str)
584 {
585         int i;
586 
587         /* We only do surveillance on pseries */
588         if (!machine_is(pseries))
589                 return 0;
590 
591         if (get_option(&str,&i)) {
592                 if (i >= 0 && i <= 255)
593                         surveillance_timeout = i;
594         }
595 
596         return 1;
597 }
598 __setup("surveillance=", surveillance_setup);
599 
600 static int __init rtasmsgs_setup(char *str)
601 {
602         return (kstrtobool(str, &full_rtas_msgs) == 0);
603 }
604 __setup("rtasmsgs=", rtasmsgs_setup);
605 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp