~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kernel/traps.c

Version: ~ [ linux-6.3-rc3 ] ~ [ linux-6.2.7 ] ~ [ linux-6.1.20 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.103 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.175 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.237 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.278 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.310 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *  Copyright (C) 1995-1996  Gary Thomas (gdt@linuxppc.org)
  4  *  Copyright 2007-2010 Freescale Semiconductor, Inc.
  5  *
  6  *  Modified by Cort Dougan (cort@cs.nmt.edu)
  7  *  and Paul Mackerras (paulus@samba.org)
  8  */
  9 
 10 /*
 11  * This file handles the architecture-dependent parts of hardware exceptions
 12  */
 13 
 14 #include <linux/errno.h>
 15 #include <linux/sched.h>
 16 #include <linux/sched/debug.h>
 17 #include <linux/kernel.h>
 18 #include <linux/mm.h>
 19 #include <linux/pkeys.h>
 20 #include <linux/stddef.h>
 21 #include <linux/unistd.h>
 22 #include <linux/ptrace.h>
 23 #include <linux/user.h>
 24 #include <linux/interrupt.h>
 25 #include <linux/init.h>
 26 #include <linux/extable.h>
 27 #include <linux/module.h>       /* print_modules */
 28 #include <linux/prctl.h>
 29 #include <linux/delay.h>
 30 #include <linux/kprobes.h>
 31 #include <linux/kexec.h>
 32 #include <linux/backlight.h>
 33 #include <linux/bug.h>
 34 #include <linux/kdebug.h>
 35 #include <linux/ratelimit.h>
 36 #include <linux/context_tracking.h>
 37 #include <linux/smp.h>
 38 #include <linux/console.h>
 39 #include <linux/kmsg_dump.h>
 40 #include <linux/debugfs.h>
 41 
 42 #include <asm/emulated_ops.h>
 43 #include <linux/uaccess.h>
 44 #include <asm/interrupt.h>
 45 #include <asm/io.h>
 46 #include <asm/machdep.h>
 47 #include <asm/rtas.h>
 48 #include <asm/pmc.h>
 49 #include <asm/reg.h>
 50 #ifdef CONFIG_PMAC_BACKLIGHT
 51 #include <asm/backlight.h>
 52 #endif
 53 #ifdef CONFIG_PPC64
 54 #include <asm/firmware.h>
 55 #include <asm/processor.h>
 56 #endif
 57 #include <asm/kexec.h>
 58 #include <asm/ppc-opcode.h>
 59 #include <asm/rio.h>
 60 #include <asm/fadump.h>
 61 #include <asm/switch_to.h>
 62 #include <asm/tm.h>
 63 #include <asm/debug.h>
 64 #include <asm/asm-prototypes.h>
 65 #include <asm/hmi.h>
 66 #include <sysdev/fsl_pci.h>
 67 #include <asm/kprobes.h>
 68 #include <asm/stacktrace.h>
 69 #include <asm/nmi.h>
 70 #include <asm/disassemble.h>
 71 
 72 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
 73 int (*__debugger)(struct pt_regs *regs) __read_mostly;
 74 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
 75 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
 76 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
 77 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
 78 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
 79 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
 80 
 81 EXPORT_SYMBOL(__debugger);
 82 EXPORT_SYMBOL(__debugger_ipi);
 83 EXPORT_SYMBOL(__debugger_bpt);
 84 EXPORT_SYMBOL(__debugger_sstep);
 85 EXPORT_SYMBOL(__debugger_iabr_match);
 86 EXPORT_SYMBOL(__debugger_break_match);
 87 EXPORT_SYMBOL(__debugger_fault_handler);
 88 #endif
 89 
 90 /* Transactional Memory trap debug */
 91 #ifdef TM_DEBUG_SW
 92 #define TM_DEBUG(x...) printk(KERN_INFO x)
 93 #else
 94 #define TM_DEBUG(x...) do { } while(0)
 95 #endif
 96 
 97 static const char *signame(int signr)
 98 {
 99         switch (signr) {
100         case SIGBUS:    return "bus error";
101         case SIGFPE:    return "floating point exception";
102         case SIGILL:    return "illegal instruction";
103         case SIGSEGV:   return "segfault";
104         case SIGTRAP:   return "unhandled trap";
105         }
106 
107         return "unknown signal";
108 }
109 
110 /*
111  * Trap & Exception support
112  */
113 
114 #ifdef CONFIG_PMAC_BACKLIGHT
115 static void pmac_backlight_unblank(void)
116 {
117         mutex_lock(&pmac_backlight_mutex);
118         if (pmac_backlight) {
119                 struct backlight_properties *props;
120 
121                 props = &pmac_backlight->props;
122                 props->brightness = props->max_brightness;
123                 props->power = FB_BLANK_UNBLANK;
124                 backlight_update_status(pmac_backlight);
125         }
126         mutex_unlock(&pmac_backlight_mutex);
127 }
128 #else
129 static inline void pmac_backlight_unblank(void) { }
130 #endif
131 
132 /*
133  * If oops/die is expected to crash the machine, return true here.
134  *
135  * This should not be expected to be 100% accurate, there may be
136  * notifiers registered or other unexpected conditions that may bring
137  * down the kernel. Or if the current process in the kernel is holding
138  * locks or has other critical state, the kernel may become effectively
139  * unusable anyway.
140  */
141 bool die_will_crash(void)
142 {
143         if (should_fadump_crash())
144                 return true;
145         if (kexec_should_crash(current))
146                 return true;
147         if (in_interrupt() || panic_on_oops ||
148                         !current->pid || is_global_init(current))
149                 return true;
150 
151         return false;
152 }
153 
154 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
155 static int die_owner = -1;
156 static unsigned int die_nest_count;
157 static int die_counter;
158 
159 extern void panic_flush_kmsg_start(void)
160 {
161         /*
162          * These are mostly taken from kernel/panic.c, but tries to do
163          * relatively minimal work. Don't use delay functions (TB may
164          * be broken), don't crash dump (need to set a firmware log),
165          * don't run notifiers. We do want to get some information to
166          * Linux console.
167          */
168         console_verbose();
169         bust_spinlocks(1);
170 }
171 
172 extern void panic_flush_kmsg_end(void)
173 {
174         kmsg_dump(KMSG_DUMP_PANIC);
175         bust_spinlocks(0);
176         debug_locks_off();
177         console_flush_on_panic(CONSOLE_FLUSH_PENDING);
178 }
179 
180 static unsigned long oops_begin(struct pt_regs *regs)
181 {
182         int cpu;
183         unsigned long flags;
184 
185         oops_enter();
186 
187         /* racy, but better than risking deadlock. */
188         raw_local_irq_save(flags);
189         cpu = smp_processor_id();
190         if (!arch_spin_trylock(&die_lock)) {
191                 if (cpu == die_owner)
192                         /* nested oops. should stop eventually */;
193                 else
194                         arch_spin_lock(&die_lock);
195         }
196         die_nest_count++;
197         die_owner = cpu;
198         console_verbose();
199         bust_spinlocks(1);
200         if (machine_is(powermac))
201                 pmac_backlight_unblank();
202         return flags;
203 }
204 NOKPROBE_SYMBOL(oops_begin);
205 
206 static void oops_end(unsigned long flags, struct pt_regs *regs,
207                                int signr)
208 {
209         bust_spinlocks(0);
210         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
211         die_nest_count--;
212         oops_exit();
213         printk("\n");
214         if (!die_nest_count) {
215                 /* Nest count reaches zero, release the lock. */
216                 die_owner = -1;
217                 arch_spin_unlock(&die_lock);
218         }
219         raw_local_irq_restore(flags);
220 
221         /*
222          * system_reset_excption handles debugger, crash dump, panic, for 0x100
223          */
224         if (TRAP(regs) == INTERRUPT_SYSTEM_RESET)
225                 return;
226 
227         crash_fadump(regs, "die oops");
228 
229         if (kexec_should_crash(current))
230                 crash_kexec(regs);
231 
232         if (!signr)
233                 return;
234 
235         /*
236          * While our oops output is serialised by a spinlock, output
237          * from panic() called below can race and corrupt it. If we
238          * know we are going to panic, delay for 1 second so we have a
239          * chance to get clean backtraces from all CPUs that are oopsing.
240          */
241         if (in_interrupt() || panic_on_oops || !current->pid ||
242             is_global_init(current)) {
243                 mdelay(MSEC_PER_SEC);
244         }
245 
246         if (panic_on_oops)
247                 panic("Fatal exception");
248         make_task_dead(signr);
249 }
250 NOKPROBE_SYMBOL(oops_end);
251 
252 static char *get_mmu_str(void)
253 {
254         if (early_radix_enabled())
255                 return " MMU=Radix";
256         if (early_mmu_has_feature(MMU_FTR_HPTE_TABLE))
257                 return " MMU=Hash";
258         return "";
259 }
260 
261 static int __die(const char *str, struct pt_regs *regs, long err)
262 {
263         printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
264 
265         printk("%s PAGE_SIZE=%luK%s%s%s%s%s%s %s\n",
266                IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) ? "LE" : "BE",
267                PAGE_SIZE / 1024, get_mmu_str(),
268                IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT" : "",
269                IS_ENABLED(CONFIG_SMP) ? " SMP" : "",
270                IS_ENABLED(CONFIG_SMP) ? (" NR_CPUS=" __stringify(NR_CPUS)) : "",
271                debug_pagealloc_enabled() ? " DEBUG_PAGEALLOC" : "",
272                IS_ENABLED(CONFIG_NUMA) ? " NUMA" : "",
273                ppc_md.name ? ppc_md.name : "");
274 
275         if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
276                 return 1;
277 
278         print_modules();
279         show_regs(regs);
280 
281         return 0;
282 }
283 NOKPROBE_SYMBOL(__die);
284 
285 void die(const char *str, struct pt_regs *regs, long err)
286 {
287         unsigned long flags;
288 
289         /*
290          * system_reset_excption handles debugger, crash dump, panic, for 0x100
291          */
292         if (TRAP(regs) != INTERRUPT_SYSTEM_RESET) {
293                 if (debugger(regs))
294                         return;
295         }
296 
297         flags = oops_begin(regs);
298         if (__die(str, regs, err))
299                 err = 0;
300         oops_end(flags, regs, err);
301 }
302 NOKPROBE_SYMBOL(die);
303 
304 void user_single_step_report(struct pt_regs *regs)
305 {
306         force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip);
307 }
308 
309 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
310                             unsigned long addr)
311 {
312         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
313                                       DEFAULT_RATELIMIT_BURST);
314 
315         if (!show_unhandled_signals)
316                 return;
317 
318         if (!unhandled_signal(current, signr))
319                 return;
320 
321         if (!__ratelimit(&rs))
322                 return;
323 
324         pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
325                 current->comm, current->pid, signame(signr), signr,
326                 addr, regs->nip, regs->link, code);
327 
328         print_vma_addr(KERN_CONT " in ", regs->nip);
329 
330         pr_cont("\n");
331 
332         show_user_instructions(regs);
333 }
334 
335 static bool exception_common(int signr, struct pt_regs *regs, int code,
336                               unsigned long addr)
337 {
338         if (!user_mode(regs)) {
339                 die("Exception in kernel mode", regs, signr);
340                 return false;
341         }
342 
343         /*
344          * Must not enable interrupts even for user-mode exception, because
345          * this can be called from machine check, which may be a NMI or IRQ
346          * which don't like interrupts being enabled. Could check for
347          * in_hardirq || in_nmi perhaps, but there doesn't seem to be a good
348          * reason why _exception() should enable irqs for an exception handler,
349          * the handlers themselves do that directly.
350          */
351 
352         show_signal_msg(signr, regs, code, addr);
353 
354         current->thread.trap_nr = code;
355 
356         return true;
357 }
358 
359 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
360 {
361         if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
362                 return;
363 
364         force_sig_pkuerr((void __user *) addr, key);
365 }
366 
367 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
368 {
369         if (!exception_common(signr, regs, code, addr))
370                 return;
371 
372         force_sig_fault(signr, code, (void __user *)addr);
373 }
374 
375 /*
376  * The interrupt architecture has a quirk in that the HV interrupts excluding
377  * the NMIs (0x100 and 0x200) do not clear MSR[RI] at entry. The first thing
378  * that an interrupt handler must do is save off a GPR into a scratch register,
379  * and all interrupts on POWERNV (HV=1) use the HSPRG1 register as scratch.
380  * Therefore an NMI can clobber an HV interrupt's live HSPRG1 without noticing
381  * that it is non-reentrant, which leads to random data corruption.
382  *
383  * The solution is for NMI interrupts in HV mode to check if they originated
384  * from these critical HV interrupt regions. If so, then mark them not
385  * recoverable.
386  *
387  * An alternative would be for HV NMIs to use SPRG for scratch to avoid the
388  * HSPRG1 clobber, however this would cause guest SPRG to be clobbered. Linux
389  * guests should always have MSR[RI]=0 when its scratch SPRG is in use, so
390  * that would work. However any other guest OS that may have the SPRG live
391  * and MSR[RI]=1 could encounter silent corruption.
392  *
393  * Builds that do not support KVM could take this second option to increase
394  * the recoverability of NMIs.
395  */
396 noinstr void hv_nmi_check_nonrecoverable(struct pt_regs *regs)
397 {
398 #ifdef CONFIG_PPC_POWERNV
399         unsigned long kbase = (unsigned long)_stext;
400         unsigned long nip = regs->nip;
401 
402         if (!(regs->msr & MSR_RI))
403                 return;
404         if (!(regs->msr & MSR_HV))
405                 return;
406         if (regs->msr & MSR_PR)
407                 return;
408 
409         /*
410          * Now test if the interrupt has hit a range that may be using
411          * HSPRG1 without having RI=0 (i.e., an HSRR interrupt). The
412          * problem ranges all run un-relocated. Test real and virt modes
413          * at the same time by dropping the high bit of the nip (virt mode
414          * entry points still have the +0x4000 offset).
415          */
416         nip &= ~0xc000000000000000ULL;
417         if ((nip >= 0x500 && nip < 0x600) || (nip >= 0x4500 && nip < 0x4600))
418                 goto nonrecoverable;
419         if ((nip >= 0x980 && nip < 0xa00) || (nip >= 0x4980 && nip < 0x4a00))
420                 goto nonrecoverable;
421         if ((nip >= 0xe00 && nip < 0xec0) || (nip >= 0x4e00 && nip < 0x4ec0))
422                 goto nonrecoverable;
423         if ((nip >= 0xf80 && nip < 0xfa0) || (nip >= 0x4f80 && nip < 0x4fa0))
424                 goto nonrecoverable;
425 
426         /* Trampoline code runs un-relocated so subtract kbase. */
427         if (nip >= (unsigned long)(start_real_trampolines - kbase) &&
428                         nip < (unsigned long)(end_real_trampolines - kbase))
429                 goto nonrecoverable;
430         if (nip >= (unsigned long)(start_virt_trampolines - kbase) &&
431                         nip < (unsigned long)(end_virt_trampolines - kbase))
432                 goto nonrecoverable;
433         return;
434 
435 nonrecoverable:
436         regs->msr &= ~MSR_RI;
437         local_paca->hsrr_valid = 0;
438         local_paca->srr_valid = 0;
439 #endif
440 }
441 DEFINE_INTERRUPT_HANDLER_NMI(system_reset_exception)
442 {
443         unsigned long hsrr0, hsrr1;
444         bool saved_hsrrs = false;
445 
446         /*
447          * System reset can interrupt code where HSRRs are live and MSR[RI]=1.
448          * The system reset interrupt itself may clobber HSRRs (e.g., to call
449          * OPAL), so save them here and restore them before returning.
450          *
451          * Machine checks don't need to save HSRRs, as the real mode handler
452          * is careful to avoid them, and the regular handler is not delivered
453          * as an NMI.
454          */
455         if (cpu_has_feature(CPU_FTR_HVMODE)) {
456                 hsrr0 = mfspr(SPRN_HSRR0);
457                 hsrr1 = mfspr(SPRN_HSRR1);
458                 saved_hsrrs = true;
459         }
460 
461         hv_nmi_check_nonrecoverable(regs);
462 
463         __this_cpu_inc(irq_stat.sreset_irqs);
464 
465         /* See if any machine dependent calls */
466         if (ppc_md.system_reset_exception) {
467                 if (ppc_md.system_reset_exception(regs))
468                         goto out;
469         }
470 
471         if (debugger(regs))
472                 goto out;
473 
474         kmsg_dump(KMSG_DUMP_OOPS);
475         /*
476          * A system reset is a request to dump, so we always send
477          * it through the crashdump code (if fadump or kdump are
478          * registered).
479          */
480         crash_fadump(regs, "System Reset");
481 
482         crash_kexec(regs);
483 
484         /*
485          * We aren't the primary crash CPU. We need to send it
486          * to a holding pattern to avoid it ending up in the panic
487          * code.
488          */
489         crash_kexec_secondary(regs);
490 
491         /*
492          * No debugger or crash dump registered, print logs then
493          * panic.
494          */
495         die("System Reset", regs, SIGABRT);
496 
497         mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
498         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
499         nmi_panic(regs, "System Reset");
500 
501 out:
502 #ifdef CONFIG_PPC_BOOK3S_64
503         BUG_ON(get_paca()->in_nmi == 0);
504         if (get_paca()->in_nmi > 1)
505                 die("Unrecoverable nested System Reset", regs, SIGABRT);
506 #endif
507         /* Must die if the interrupt is not recoverable */
508         if (regs_is_unrecoverable(regs)) {
509                 /* For the reason explained in die_mce, nmi_exit before die */
510                 nmi_exit();
511                 die("Unrecoverable System Reset", regs, SIGABRT);
512         }
513 
514         if (saved_hsrrs) {
515                 mtspr(SPRN_HSRR0, hsrr0);
516                 mtspr(SPRN_HSRR1, hsrr1);
517         }
518 
519         /* What should we do here? We could issue a shutdown or hard reset. */
520 
521         return 0;
522 }
523 
524 /*
525  * I/O accesses can cause machine checks on powermacs.
526  * Check if the NIP corresponds to the address of a sync
527  * instruction for which there is an entry in the exception
528  * table.
529  *  -- paulus.
530  */
531 static inline int check_io_access(struct pt_regs *regs)
532 {
533 #ifdef CONFIG_PPC32
534         unsigned long msr = regs->msr;
535         const struct exception_table_entry *entry;
536         unsigned int *nip = (unsigned int *)regs->nip;
537 
538         if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
539             && (entry = search_exception_tables(regs->nip)) != NULL) {
540                 /*
541                  * Check that it's a sync instruction, or somewhere
542                  * in the twi; isync; nop sequence that inb/inw/inl uses.
543                  * As the address is in the exception table
544                  * we should be able to read the instr there.
545                  * For the debug message, we look at the preceding
546                  * load or store.
547                  */
548                 if (*nip == PPC_RAW_NOP())
549                         nip -= 2;
550                 else if (*nip == PPC_RAW_ISYNC())
551                         --nip;
552                 if (*nip == PPC_RAW_SYNC() || get_op(*nip) == OP_TRAP) {
553                         unsigned int rb;
554 
555                         --nip;
556                         rb = (*nip >> 11) & 0x1f;
557                         printk(KERN_DEBUG "%s bad port %lx at %p\n",
558                                (*nip & 0x100)? "OUT to": "IN from",
559                                regs->gpr[rb] - _IO_BASE, nip);
560                         regs_set_recoverable(regs);
561                         regs_set_return_ip(regs, extable_fixup(entry));
562                         return 1;
563                 }
564         }
565 #endif /* CONFIG_PPC32 */
566         return 0;
567 }
568 
569 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
570 /* On 4xx, the reason for the machine check or program exception
571    is in the ESR. */
572 #define get_reason(regs)        ((regs)->esr)
573 #define REASON_FP               ESR_FP
574 #define REASON_ILLEGAL          (ESR_PIL | ESR_PUO)
575 #define REASON_PRIVILEGED       ESR_PPR
576 #define REASON_TRAP             ESR_PTR
577 #define REASON_PREFIXED         0
578 #define REASON_BOUNDARY         0
579 
580 /* single-step stuff */
581 #define single_stepping(regs)   (current->thread.debug.dbcr0 & DBCR0_IC)
582 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
583 #define clear_br_trace(regs)    do {} while(0)
584 #else
585 /* On non-4xx, the reason for the machine check or program
586    exception is in the MSR. */
587 #define get_reason(regs)        ((regs)->msr)
588 #define REASON_TM               SRR1_PROGTM
589 #define REASON_FP               SRR1_PROGFPE
590 #define REASON_ILLEGAL          SRR1_PROGILL
591 #define REASON_PRIVILEGED       SRR1_PROGPRIV
592 #define REASON_TRAP             SRR1_PROGTRAP
593 #define REASON_PREFIXED         SRR1_PREFIXED
594 #define REASON_BOUNDARY         SRR1_BOUNDARY
595 
596 #define single_stepping(regs)   ((regs)->msr & MSR_SE)
597 #define clear_single_step(regs) (regs_set_return_msr((regs), (regs)->msr & ~MSR_SE))
598 #define clear_br_trace(regs)    (regs_set_return_msr((regs), (regs)->msr & ~MSR_BE))
599 #endif
600 
601 #define inst_length(reason)     (((reason) & REASON_PREFIXED) ? 8 : 4)
602 
603 #if defined(CONFIG_E500)
604 int machine_check_e500mc(struct pt_regs *regs)
605 {
606         unsigned long mcsr = mfspr(SPRN_MCSR);
607         unsigned long pvr = mfspr(SPRN_PVR);
608         unsigned long reason = mcsr;
609         int recoverable = 1;
610 
611         if (reason & MCSR_LD) {
612                 recoverable = fsl_rio_mcheck_exception(regs);
613                 if (recoverable == 1)
614                         goto silent_out;
615         }
616 
617         printk("Machine check in kernel mode.\n");
618         printk("Caused by (from MCSR=%lx): ", reason);
619 
620         if (reason & MCSR_MCP)
621                 pr_cont("Machine Check Signal\n");
622 
623         if (reason & MCSR_ICPERR) {
624                 pr_cont("Instruction Cache Parity Error\n");
625 
626                 /*
627                  * This is recoverable by invalidating the i-cache.
628                  */
629                 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
630                 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
631                         ;
632 
633                 /*
634                  * This will generally be accompanied by an instruction
635                  * fetch error report -- only treat MCSR_IF as fatal
636                  * if it wasn't due to an L1 parity error.
637                  */
638                 reason &= ~MCSR_IF;
639         }
640 
641         if (reason & MCSR_DCPERR_MC) {
642                 pr_cont("Data Cache Parity Error\n");
643 
644                 /*
645                  * In write shadow mode we auto-recover from the error, but it
646                  * may still get logged and cause a machine check.  We should
647                  * only treat the non-write shadow case as non-recoverable.
648                  */
649                 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
650                  * is not implemented but L1 data cache always runs in write
651                  * shadow mode. Hence on data cache parity errors HW will
652                  * automatically invalidate the L1 Data Cache.
653                  */
654                 if (PVR_VER(pvr) != PVR_VER_E6500) {
655                         if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
656                                 recoverable = 0;
657                 }
658         }
659 
660         if (reason & MCSR_L2MMU_MHIT) {
661                 pr_cont("Hit on multiple TLB entries\n");
662                 recoverable = 0;
663         }
664 
665         if (reason & MCSR_NMI)
666                 pr_cont("Non-maskable interrupt\n");
667 
668         if (reason & MCSR_IF) {
669                 pr_cont("Instruction Fetch Error Report\n");
670                 recoverable = 0;
671         }
672 
673         if (reason & MCSR_LD) {
674                 pr_cont("Load Error Report\n");
675                 recoverable = 0;
676         }
677 
678         if (reason & MCSR_ST) {
679                 pr_cont("Store Error Report\n");
680                 recoverable = 0;
681         }
682 
683         if (reason & MCSR_LDG) {
684                 pr_cont("Guarded Load Error Report\n");
685                 recoverable = 0;
686         }
687 
688         if (reason & MCSR_TLBSYNC)
689                 pr_cont("Simultaneous tlbsync operations\n");
690 
691         if (reason & MCSR_BSL2_ERR) {
692                 pr_cont("Level 2 Cache Error\n");
693                 recoverable = 0;
694         }
695 
696         if (reason & MCSR_MAV) {
697                 u64 addr;
698 
699                 addr = mfspr(SPRN_MCAR);
700                 addr |= (u64)mfspr(SPRN_MCARU) << 32;
701 
702                 pr_cont("Machine Check %s Address: %#llx\n",
703                        reason & MCSR_MEA ? "Effective" : "Physical", addr);
704         }
705 
706 silent_out:
707         mtspr(SPRN_MCSR, mcsr);
708         return mfspr(SPRN_MCSR) == 0 && recoverable;
709 }
710 
711 int machine_check_e500(struct pt_regs *regs)
712 {
713         unsigned long reason = mfspr(SPRN_MCSR);
714 
715         if (reason & MCSR_BUS_RBERR) {
716                 if (fsl_rio_mcheck_exception(regs))
717                         return 1;
718                 if (fsl_pci_mcheck_exception(regs))
719                         return 1;
720         }
721 
722         printk("Machine check in kernel mode.\n");
723         printk("Caused by (from MCSR=%lx): ", reason);
724 
725         if (reason & MCSR_MCP)
726                 pr_cont("Machine Check Signal\n");
727         if (reason & MCSR_ICPERR)
728                 pr_cont("Instruction Cache Parity Error\n");
729         if (reason & MCSR_DCP_PERR)
730                 pr_cont("Data Cache Push Parity Error\n");
731         if (reason & MCSR_DCPERR)
732                 pr_cont("Data Cache Parity Error\n");
733         if (reason & MCSR_BUS_IAERR)
734                 pr_cont("Bus - Instruction Address Error\n");
735         if (reason & MCSR_BUS_RAERR)
736                 pr_cont("Bus - Read Address Error\n");
737         if (reason & MCSR_BUS_WAERR)
738                 pr_cont("Bus - Write Address Error\n");
739         if (reason & MCSR_BUS_IBERR)
740                 pr_cont("Bus - Instruction Data Error\n");
741         if (reason & MCSR_BUS_RBERR)
742                 pr_cont("Bus - Read Data Bus Error\n");
743         if (reason & MCSR_BUS_WBERR)
744                 pr_cont("Bus - Write Data Bus Error\n");
745         if (reason & MCSR_BUS_IPERR)
746                 pr_cont("Bus - Instruction Parity Error\n");
747         if (reason & MCSR_BUS_RPERR)
748                 pr_cont("Bus - Read Parity Error\n");
749 
750         return 0;
751 }
752 
753 int machine_check_generic(struct pt_regs *regs)
754 {
755         return 0;
756 }
757 #elif defined(CONFIG_PPC32)
758 int machine_check_generic(struct pt_regs *regs)
759 {
760         unsigned long reason = regs->msr;
761 
762         printk("Machine check in kernel mode.\n");
763         printk("Caused by (from SRR1=%lx): ", reason);
764         switch (reason & 0x601F0000) {
765         case 0x80000:
766                 pr_cont("Machine check signal\n");
767                 break;
768         case 0x40000:
769         case 0x140000:  /* 7450 MSS error and TEA */
770                 pr_cont("Transfer error ack signal\n");
771                 break;
772         case 0x20000:
773                 pr_cont("Data parity error signal\n");
774                 break;
775         case 0x10000:
776                 pr_cont("Address parity error signal\n");
777                 break;
778         case 0x20000000:
779                 pr_cont("L1 Data Cache error\n");
780                 break;
781         case 0x40000000:
782                 pr_cont("L1 Instruction Cache error\n");
783                 break;
784         case 0x00100000:
785                 pr_cont("L2 data cache parity error\n");
786                 break;
787         default:
788                 pr_cont("Unknown values in msr\n");
789         }
790         return 0;
791 }
792 #endif /* everything else */
793 
794 void die_mce(const char *str, struct pt_regs *regs, long err)
795 {
796         /*
797          * The machine check wants to kill the interrupted context,
798          * but make_task_dead() checks for in_interrupt() and panics
799          * in that case, so exit the irq/nmi before calling die.
800          */
801         if (in_nmi())
802                 nmi_exit();
803         else
804                 irq_exit();
805         die(str, regs, err);
806 }
807 
808 /*
809  * BOOK3S_64 does not usually call this handler as a non-maskable interrupt
810  * (it uses its own early real-mode handler to handle the MCE proper
811  * and then raises irq_work to call this handler when interrupts are
812  * enabled). The only time when this is not true is if the early handler
813  * is unrecoverable, then it does call this directly to try to get a
814  * message out.
815  */
816 static void __machine_check_exception(struct pt_regs *regs)
817 {
818         int recover = 0;
819 
820         __this_cpu_inc(irq_stat.mce_exceptions);
821 
822         add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
823 
824         /* See if any machine dependent calls. In theory, we would want
825          * to call the CPU first, and call the ppc_md. one if the CPU
826          * one returns a positive number. However there is existing code
827          * that assumes the board gets a first chance, so let's keep it
828          * that way for now and fix things later. --BenH.
829          */
830         if (ppc_md.machine_check_exception)
831                 recover = ppc_md.machine_check_exception(regs);
832         else if (cur_cpu_spec->machine_check)
833                 recover = cur_cpu_spec->machine_check(regs);
834 
835         if (recover > 0)
836                 goto bail;
837 
838         if (debugger_fault_handler(regs))
839                 goto bail;
840 
841         if (check_io_access(regs))
842                 goto bail;
843 
844         die_mce("Machine check", regs, SIGBUS);
845 
846 bail:
847         /* Must die if the interrupt is not recoverable */
848         if (regs_is_unrecoverable(regs))
849                 die_mce("Unrecoverable Machine check", regs, SIGBUS);
850 }
851 
852 #ifdef CONFIG_PPC_BOOK3S_64
853 DEFINE_INTERRUPT_HANDLER_ASYNC(machine_check_exception_async)
854 {
855         __machine_check_exception(regs);
856 }
857 #endif
858 DEFINE_INTERRUPT_HANDLER_NMI(machine_check_exception)
859 {
860         __machine_check_exception(regs);
861 
862         return 0;
863 }
864 
865 DEFINE_INTERRUPT_HANDLER(SMIException) /* async? */
866 {
867         die("System Management Interrupt", regs, SIGABRT);
868 }
869 
870 #ifdef CONFIG_VSX
871 static void p9_hmi_special_emu(struct pt_regs *regs)
872 {
873         unsigned int ra, rb, t, i, sel, instr, rc;
874         const void __user *addr;
875         u8 vbuf[16] __aligned(16), *vdst;
876         unsigned long ea, msr, msr_mask;
877         bool swap;
878 
879         if (__get_user(instr, (unsigned int __user *)regs->nip))
880                 return;
881 
882         /*
883          * lxvb16x      opcode: 0x7c0006d8
884          * lxvd2x       opcode: 0x7c000698
885          * lxvh8x       opcode: 0x7c000658
886          * lxvw4x       opcode: 0x7c000618
887          */
888         if ((instr & 0xfc00073e) != 0x7c000618) {
889                 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
890                          " instr=%08x\n",
891                          smp_processor_id(), current->comm, current->pid,
892                          regs->nip, instr);
893                 return;
894         }
895 
896         /* Grab vector registers into the task struct */
897         msr = regs->msr; /* Grab msr before we flush the bits */
898         flush_vsx_to_thread(current);
899         enable_kernel_altivec();
900 
901         /*
902          * Is userspace running with a different endian (this is rare but
903          * not impossible)
904          */
905         swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
906 
907         /* Decode the instruction */
908         ra = (instr >> 16) & 0x1f;
909         rb = (instr >> 11) & 0x1f;
910         t = (instr >> 21) & 0x1f;
911         if (instr & 1)
912                 vdst = (u8 *)&current->thread.vr_state.vr[t];
913         else
914                 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
915 
916         /* Grab the vector address */
917         ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
918         if (is_32bit_task())
919                 ea &= 0xfffffffful;
920         addr = (__force const void __user *)ea;
921 
922         /* Check it */
923         if (!access_ok(addr, 16)) {
924                 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
925                          " instr=%08x addr=%016lx\n",
926                          smp_processor_id(), current->comm, current->pid,
927                          regs->nip, instr, (unsigned long)addr);
928                 return;
929         }
930 
931         /* Read the vector */
932         rc = 0;
933         if ((unsigned long)addr & 0xfUL)
934                 /* unaligned case */
935                 rc = __copy_from_user_inatomic(vbuf, addr, 16);
936         else
937                 __get_user_atomic_128_aligned(vbuf, addr, rc);
938         if (rc) {
939                 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
940                          " instr=%08x addr=%016lx\n",
941                          smp_processor_id(), current->comm, current->pid,
942                          regs->nip, instr, (unsigned long)addr);
943                 return;
944         }
945 
946         pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
947                  " instr=%08x addr=%016lx\n",
948                  smp_processor_id(), current->comm, current->pid, regs->nip,
949                  instr, (unsigned long) addr);
950 
951         /* Grab instruction "selector" */
952         sel = (instr >> 6) & 3;
953 
954         /*
955          * Check to make sure the facility is actually enabled. This
956          * could happen if we get a false positive hit.
957          *
958          * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
959          * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
960          */
961         msr_mask = MSR_VSX;
962         if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
963                 msr_mask = MSR_VEC;
964         if (!(msr & msr_mask)) {
965                 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
966                          " instr=%08x msr:%016lx\n",
967                          smp_processor_id(), current->comm, current->pid,
968                          regs->nip, instr, msr);
969                 return;
970         }
971 
972         /* Do logging here before we modify sel based on endian */
973         switch (sel) {
974         case 0: /* lxvw4x */
975                 PPC_WARN_EMULATED(lxvw4x, regs);
976                 break;
977         case 1: /* lxvh8x */
978                 PPC_WARN_EMULATED(lxvh8x, regs);
979                 break;
980         case 2: /* lxvd2x */
981                 PPC_WARN_EMULATED(lxvd2x, regs);
982                 break;
983         case 3: /* lxvb16x */
984                 PPC_WARN_EMULATED(lxvb16x, regs);
985                 break;
986         }
987 
988 #ifdef __LITTLE_ENDIAN__
989         /*
990          * An LE kernel stores the vector in the task struct as an LE
991          * byte array (effectively swapping both the components and
992          * the content of the components). Those instructions expect
993          * the components to remain in ascending address order, so we
994          * swap them back.
995          *
996          * If we are running a BE user space, the expectation is that
997          * of a simple memcpy, so forcing the emulation to look like
998          * a lxvb16x should do the trick.
999          */
1000         if (swap)
1001                 sel = 3;
1002 
1003         switch (sel) {
1004         case 0: /* lxvw4x */
1005                 for (i = 0; i < 4; i++)
1006                         ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
1007                 break;
1008         case 1: /* lxvh8x */
1009                 for (i = 0; i < 8; i++)
1010                         ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
1011                 break;
1012         case 2: /* lxvd2x */
1013                 for (i = 0; i < 2; i++)
1014                         ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
1015                 break;
1016         case 3: /* lxvb16x */
1017                 for (i = 0; i < 16; i++)
1018                         vdst[i] = vbuf[15-i];
1019                 break;
1020         }
1021 #else /* __LITTLE_ENDIAN__ */
1022         /* On a big endian kernel, a BE userspace only needs a memcpy */
1023         if (!swap)
1024                 sel = 3;
1025 
1026         /* Otherwise, we need to swap the content of the components */
1027         switch (sel) {
1028         case 0: /* lxvw4x */
1029                 for (i = 0; i < 4; i++)
1030                         ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
1031                 break;
1032         case 1: /* lxvh8x */
1033                 for (i = 0; i < 8; i++)
1034                         ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
1035                 break;
1036         case 2: /* lxvd2x */
1037                 for (i = 0; i < 2; i++)
1038                         ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
1039                 break;
1040         case 3: /* lxvb16x */
1041                 memcpy(vdst, vbuf, 16);
1042                 break;
1043         }
1044 #endif /* !__LITTLE_ENDIAN__ */
1045 
1046         /* Go to next instruction */
1047         regs_add_return_ip(regs, 4);
1048 }
1049 #endif /* CONFIG_VSX */
1050 
1051 DEFINE_INTERRUPT_HANDLER_ASYNC(handle_hmi_exception)
1052 {
1053         struct pt_regs *old_regs;
1054 
1055         old_regs = set_irq_regs(regs);
1056 
1057 #ifdef CONFIG_VSX
1058         /* Real mode flagged P9 special emu is needed */
1059         if (local_paca->hmi_p9_special_emu) {
1060                 local_paca->hmi_p9_special_emu = 0;
1061 
1062                 /*
1063                  * We don't want to take page faults while doing the
1064                  * emulation, we just replay the instruction if necessary.
1065                  */
1066                 pagefault_disable();
1067                 p9_hmi_special_emu(regs);
1068                 pagefault_enable();
1069         }
1070 #endif /* CONFIG_VSX */
1071 
1072         if (ppc_md.handle_hmi_exception)
1073                 ppc_md.handle_hmi_exception(regs);
1074 
1075         set_irq_regs(old_regs);
1076 }
1077 
1078 DEFINE_INTERRUPT_HANDLER(unknown_exception)
1079 {
1080         printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1081                regs->nip, regs->msr, regs->trap);
1082 
1083         _exception(SIGTRAP, regs, TRAP_UNK, 0);
1084 }
1085 
1086 DEFINE_INTERRUPT_HANDLER_ASYNC(unknown_async_exception)
1087 {
1088         printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1089                regs->nip, regs->msr, regs->trap);
1090 
1091         _exception(SIGTRAP, regs, TRAP_UNK, 0);
1092 }
1093 
1094 DEFINE_INTERRUPT_HANDLER_NMI(unknown_nmi_exception)
1095 {
1096         printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1097                regs->nip, regs->msr, regs->trap);
1098 
1099         _exception(SIGTRAP, regs, TRAP_UNK, 0);
1100 
1101         return 0;
1102 }
1103 
1104 DEFINE_INTERRUPT_HANDLER(instruction_breakpoint_exception)
1105 {
1106         if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1107                                         5, SIGTRAP) == NOTIFY_STOP)
1108                 return;
1109         if (debugger_iabr_match(regs))
1110                 return;
1111         _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1112 }
1113 
1114 DEFINE_INTERRUPT_HANDLER(RunModeException)
1115 {
1116         _exception(SIGTRAP, regs, TRAP_UNK, 0);
1117 }
1118 
1119 static void __single_step_exception(struct pt_regs *regs)
1120 {
1121         clear_single_step(regs);
1122         clear_br_trace(regs);
1123 
1124         if (kprobe_post_handler(regs))
1125                 return;
1126 
1127         if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1128                                         5, SIGTRAP) == NOTIFY_STOP)
1129                 return;
1130         if (debugger_sstep(regs))
1131                 return;
1132 
1133         _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1134 }
1135 
1136 DEFINE_INTERRUPT_HANDLER(single_step_exception)
1137 {
1138         __single_step_exception(regs);
1139 }
1140 
1141 /*
1142  * After we have successfully emulated an instruction, we have to
1143  * check if the instruction was being single-stepped, and if so,
1144  * pretend we got a single-step exception.  This was pointed out
1145  * by Kumar Gala.  -- paulus
1146  */
1147 static void emulate_single_step(struct pt_regs *regs)
1148 {
1149         if (single_stepping(regs))
1150                 __single_step_exception(regs);
1151 }
1152 
1153 static inline int __parse_fpscr(unsigned long fpscr)
1154 {
1155         int ret = FPE_FLTUNK;
1156 
1157         /* Invalid operation */
1158         if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1159                 ret = FPE_FLTINV;
1160 
1161         /* Overflow */
1162         else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1163                 ret = FPE_FLTOVF;
1164 
1165         /* Underflow */
1166         else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1167                 ret = FPE_FLTUND;
1168 
1169         /* Divide by zero */
1170         else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1171                 ret = FPE_FLTDIV;
1172 
1173         /* Inexact result */
1174         else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1175                 ret = FPE_FLTRES;
1176 
1177         return ret;
1178 }
1179 
1180 static void parse_fpe(struct pt_regs *regs)
1181 {
1182         int code = 0;
1183 
1184         flush_fp_to_thread(current);
1185 
1186 #ifdef CONFIG_PPC_FPU_REGS
1187         code = __parse_fpscr(current->thread.fp_state.fpscr);
1188 #endif
1189 
1190         _exception(SIGFPE, regs, code, regs->nip);
1191 }
1192 
1193 /*
1194  * Illegal instruction emulation support.  Originally written to
1195  * provide the PVR to user applications using the mfspr rd, PVR.
1196  * Return non-zero if we can't emulate, or -EFAULT if the associated
1197  * memory access caused an access fault.  Return zero on success.
1198  *
1199  * There are a couple of ways to do this, either "decode" the instruction
1200  * or directly match lots of bits.  In this case, matching lots of
1201  * bits is faster and easier.
1202  *
1203  */
1204 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1205 {
1206         u8 rT = (instword >> 21) & 0x1f;
1207         u8 rA = (instword >> 16) & 0x1f;
1208         u8 NB_RB = (instword >> 11) & 0x1f;
1209         u32 num_bytes;
1210         unsigned long EA;
1211         int pos = 0;
1212 
1213         /* Early out if we are an invalid form of lswx */
1214         if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1215                 if ((rT == rA) || (rT == NB_RB))
1216                         return -EINVAL;
1217 
1218         EA = (rA == 0) ? 0 : regs->gpr[rA];
1219 
1220         switch (instword & PPC_INST_STRING_MASK) {
1221                 case PPC_INST_LSWX:
1222                 case PPC_INST_STSWX:
1223                         EA += NB_RB;
1224                         num_bytes = regs->xer & 0x7f;
1225                         break;
1226                 case PPC_INST_LSWI:
1227                 case PPC_INST_STSWI:
1228                         num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1229                         break;
1230                 default:
1231                         return -EINVAL;
1232         }
1233 
1234         while (num_bytes != 0)
1235         {
1236                 u8 val;
1237                 u32 shift = 8 * (3 - (pos & 0x3));
1238 
1239                 /* if process is 32-bit, clear upper 32 bits of EA */
1240                 if ((regs->msr & MSR_64BIT) == 0)
1241                         EA &= 0xFFFFFFFF;
1242 
1243                 switch ((instword & PPC_INST_STRING_MASK)) {
1244                         case PPC_INST_LSWX:
1245                         case PPC_INST_LSWI:
1246                                 if (get_user(val, (u8 __user *)EA))
1247                                         return -EFAULT;
1248                                 /* first time updating this reg,
1249                                  * zero it out */
1250                                 if (pos == 0)
1251                                         regs->gpr[rT] = 0;
1252                                 regs->gpr[rT] |= val << shift;
1253                                 break;
1254                         case PPC_INST_STSWI:
1255                         case PPC_INST_STSWX:
1256                                 val = regs->gpr[rT] >> shift;
1257                                 if (put_user(val, (u8 __user *)EA))
1258                                         return -EFAULT;
1259                                 break;
1260                 }
1261                 /* move EA to next address */
1262                 EA += 1;
1263                 num_bytes--;
1264 
1265                 /* manage our position within the register */
1266                 if (++pos == 4) {
1267                         pos = 0;
1268                         if (++rT == 32)
1269                                 rT = 0;
1270                 }
1271         }
1272 
1273         return 0;
1274 }
1275 
1276 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1277 {
1278         u32 ra,rs;
1279         unsigned long tmp;
1280 
1281         ra = (instword >> 16) & 0x1f;
1282         rs = (instword >> 21) & 0x1f;
1283 
1284         tmp = regs->gpr[rs];
1285         tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1286         tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1287         tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1288         regs->gpr[ra] = tmp;
1289 
1290         return 0;
1291 }
1292 
1293 static int emulate_isel(struct pt_regs *regs, u32 instword)
1294 {
1295         u8 rT = (instword >> 21) & 0x1f;
1296         u8 rA = (instword >> 16) & 0x1f;
1297         u8 rB = (instword >> 11) & 0x1f;
1298         u8 BC = (instword >> 6) & 0x1f;
1299         u8 bit;
1300         unsigned long tmp;
1301 
1302         tmp = (rA == 0) ? 0 : regs->gpr[rA];
1303         bit = (regs->ccr >> (31 - BC)) & 0x1;
1304 
1305         regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1306 
1307         return 0;
1308 }
1309 
1310 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1311 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1312 {
1313         /* If we're emulating a load/store in an active transaction, we cannot
1314          * emulate it as the kernel operates in transaction suspended context.
1315          * We need to abort the transaction.  This creates a persistent TM
1316          * abort so tell the user what caused it with a new code.
1317          */
1318         if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1319                 tm_enable();
1320                 tm_abort(cause);
1321                 return true;
1322         }
1323         return false;
1324 }
1325 #else
1326 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1327 {
1328         return false;
1329 }
1330 #endif
1331 
1332 static int emulate_instruction(struct pt_regs *regs)
1333 {
1334         u32 instword;
1335         u32 rd;
1336 
1337         if (!user_mode(regs))
1338                 return -EINVAL;
1339 
1340         if (get_user(instword, (u32 __user *)(regs->nip)))
1341                 return -EFAULT;
1342 
1343         /* Emulate the mfspr rD, PVR. */
1344         if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1345                 PPC_WARN_EMULATED(mfpvr, regs);
1346                 rd = (instword >> 21) & 0x1f;
1347                 regs->gpr[rd] = mfspr(SPRN_PVR);
1348                 return 0;
1349         }
1350 
1351         /* Emulating the dcba insn is just a no-op.  */
1352         if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1353                 PPC_WARN_EMULATED(dcba, regs);
1354                 return 0;
1355         }
1356 
1357         /* Emulate the mcrxr insn.  */
1358         if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1359                 int shift = (instword >> 21) & 0x1c;
1360                 unsigned long msk = 0xf0000000UL >> shift;
1361 
1362                 PPC_WARN_EMULATED(mcrxr, regs);
1363                 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1364                 regs->xer &= ~0xf0000000UL;
1365                 return 0;
1366         }
1367 
1368         /* Emulate load/store string insn. */
1369         if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1370                 if (tm_abort_check(regs,
1371                                    TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1372                         return -EINVAL;
1373                 PPC_WARN_EMULATED(string, regs);
1374                 return emulate_string_inst(regs, instword);
1375         }
1376 
1377         /* Emulate the popcntb (Population Count Bytes) instruction. */
1378         if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1379                 PPC_WARN_EMULATED(popcntb, regs);
1380                 return emulate_popcntb_inst(regs, instword);
1381         }
1382 
1383         /* Emulate isel (Integer Select) instruction */
1384         if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1385                 PPC_WARN_EMULATED(isel, regs);
1386                 return emulate_isel(regs, instword);
1387         }
1388 
1389         /* Emulate sync instruction variants */
1390         if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1391                 PPC_WARN_EMULATED(sync, regs);
1392                 asm volatile("sync");
1393                 return 0;
1394         }
1395 
1396 #ifdef CONFIG_PPC64
1397         /* Emulate the mfspr rD, DSCR. */
1398         if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1399                 PPC_INST_MFSPR_DSCR_USER) ||
1400              ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1401                 PPC_INST_MFSPR_DSCR)) &&
1402                         cpu_has_feature(CPU_FTR_DSCR)) {
1403                 PPC_WARN_EMULATED(mfdscr, regs);
1404                 rd = (instword >> 21) & 0x1f;
1405                 regs->gpr[rd] = mfspr(SPRN_DSCR);
1406                 return 0;
1407         }
1408         /* Emulate the mtspr DSCR, rD. */
1409         if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1410                 PPC_INST_MTSPR_DSCR_USER) ||
1411              ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1412                 PPC_INST_MTSPR_DSCR)) &&
1413                         cpu_has_feature(CPU_FTR_DSCR)) {
1414                 PPC_WARN_EMULATED(mtdscr, regs);
1415                 rd = (instword >> 21) & 0x1f;
1416                 current->thread.dscr = regs->gpr[rd];
1417                 current->thread.dscr_inherit = 1;
1418                 mtspr(SPRN_DSCR, current->thread.dscr);
1419                 return 0;
1420         }
1421 #endif
1422 
1423         return -EINVAL;
1424 }
1425 
1426 int is_valid_bugaddr(unsigned long addr)
1427 {
1428         return is_kernel_addr(addr);
1429 }
1430 
1431 #ifdef CONFIG_MATH_EMULATION
1432 static int emulate_math(struct pt_regs *regs)
1433 {
1434         int ret;
1435 
1436         ret = do_mathemu(regs);
1437         if (ret >= 0)
1438                 PPC_WARN_EMULATED(math, regs);
1439 
1440         switch (ret) {
1441         case 0:
1442                 emulate_single_step(regs);
1443                 return 0;
1444         case 1: {
1445                         int code = 0;
1446                         code = __parse_fpscr(current->thread.fp_state.fpscr);
1447                         _exception(SIGFPE, regs, code, regs->nip);
1448                         return 0;
1449                 }
1450         case -EFAULT:
1451                 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1452                 return 0;
1453         }
1454 
1455         return -1;
1456 }
1457 #else
1458 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1459 #endif
1460 
1461 static void do_program_check(struct pt_regs *regs)
1462 {
1463         unsigned int reason = get_reason(regs);
1464 
1465         /* We can now get here via a FP Unavailable exception if the core
1466          * has no FPU, in that case the reason flags will be 0 */
1467 
1468         if (reason & REASON_FP) {
1469                 /* IEEE FP exception */
1470                 parse_fpe(regs);
1471                 return;
1472         }
1473         if (reason & REASON_TRAP) {
1474                 unsigned long bugaddr;
1475                 /* Debugger is first in line to stop recursive faults in
1476                  * rcu_lock, notify_die, or atomic_notifier_call_chain */
1477                 if (debugger_bpt(regs))
1478                         return;
1479 
1480                 if (kprobe_handler(regs))
1481                         return;
1482 
1483                 /* trap exception */
1484                 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1485                                 == NOTIFY_STOP)
1486                         return;
1487 
1488                 bugaddr = regs->nip;
1489                 /*
1490                  * Fixup bugaddr for BUG_ON() in real mode
1491                  */
1492                 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1493                         bugaddr += PAGE_OFFSET;
1494 
1495                 if (!(regs->msr & MSR_PR) &&  /* not user-mode */
1496                     report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1497                         const struct exception_table_entry *entry;
1498 
1499                         entry = search_exception_tables(bugaddr);
1500                         if (entry) {
1501                                 regs_set_return_ip(regs, extable_fixup(entry) + regs->nip - bugaddr);
1502                                 return;
1503                         }
1504                 }
1505                 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1506                 return;
1507         }
1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1509         if (reason & REASON_TM) {
1510                 /* This is a TM "Bad Thing Exception" program check.
1511                  * This occurs when:
1512                  * -  An rfid/hrfid/mtmsrd attempts to cause an illegal
1513                  *    transition in TM states.
1514                  * -  A trechkpt is attempted when transactional.
1515                  * -  A treclaim is attempted when non transactional.
1516                  * -  A tend is illegally attempted.
1517                  * -  writing a TM SPR when transactional.
1518                  *
1519                  * If usermode caused this, it's done something illegal and
1520                  * gets a SIGILL slap on the wrist.  We call it an illegal
1521                  * operand to distinguish from the instruction just being bad
1522                  * (e.g. executing a 'tend' on a CPU without TM!); it's an
1523                  * illegal /placement/ of a valid instruction.
1524                  */
1525                 if (user_mode(regs)) {
1526                         _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1527                         return;
1528                 } else {
1529                         printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1530                                "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1531                                regs->nip, regs->msr, get_paca()->tm_scratch);
1532                         die("Unrecoverable exception", regs, SIGABRT);
1533                 }
1534         }
1535 #endif
1536 
1537         /*
1538          * If we took the program check in the kernel skip down to sending a
1539          * SIGILL. The subsequent cases all relate to emulating instructions
1540          * which we should only do for userspace. We also do not want to enable
1541          * interrupts for kernel faults because that might lead to further
1542          * faults, and loose the context of the original exception.
1543          */
1544         if (!user_mode(regs))
1545                 goto sigill;
1546 
1547         interrupt_cond_local_irq_enable(regs);
1548 
1549         /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1550          * but there seems to be a hardware bug on the 405GP (RevD)
1551          * that means ESR is sometimes set incorrectly - either to
1552          * ESR_DST (!?) or 0.  In the process of chasing this with the
1553          * hardware people - not sure if it can happen on any illegal
1554          * instruction or only on FP instructions, whether there is a
1555          * pattern to occurrences etc. -dgibson 31/Mar/2003
1556          */
1557         if (!emulate_math(regs))
1558                 return;
1559 
1560         /* Try to emulate it if we should. */
1561         if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1562                 switch (emulate_instruction(regs)) {
1563                 case 0:
1564                         regs_add_return_ip(regs, 4);
1565                         emulate_single_step(regs);
1566                         return;
1567                 case -EFAULT:
1568                         _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1569                         return;
1570                 }
1571         }
1572 
1573 sigill:
1574         if (reason & REASON_PRIVILEGED)
1575                 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1576         else
1577                 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1578 
1579 }
1580 
1581 DEFINE_INTERRUPT_HANDLER(program_check_exception)
1582 {
1583         do_program_check(regs);
1584 }
1585 
1586 /*
1587  * This occurs when running in hypervisor mode on POWER6 or later
1588  * and an illegal instruction is encountered.
1589  */
1590 DEFINE_INTERRUPT_HANDLER(emulation_assist_interrupt)
1591 {
1592         regs_set_return_msr(regs, regs->msr | REASON_ILLEGAL);
1593         do_program_check(regs);
1594 }
1595 
1596 DEFINE_INTERRUPT_HANDLER(alignment_exception)
1597 {
1598         int sig, code, fixed = 0;
1599         unsigned long  reason;
1600 
1601         interrupt_cond_local_irq_enable(regs);
1602 
1603         reason = get_reason(regs);
1604         if (reason & REASON_BOUNDARY) {
1605                 sig = SIGBUS;
1606                 code = BUS_ADRALN;
1607                 goto bad;
1608         }
1609 
1610         if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1611                 return;
1612 
1613         /* we don't implement logging of alignment exceptions */
1614         if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1615                 fixed = fix_alignment(regs);
1616 
1617         if (fixed == 1) {
1618                 /* skip over emulated instruction */
1619                 regs_add_return_ip(regs, inst_length(reason));
1620                 emulate_single_step(regs);
1621                 return;
1622         }
1623 
1624         /* Operand address was bad */
1625         if (fixed == -EFAULT) {
1626                 sig = SIGSEGV;
1627                 code = SEGV_ACCERR;
1628         } else {
1629                 sig = SIGBUS;
1630                 code = BUS_ADRALN;
1631         }
1632 bad:
1633         if (user_mode(regs))
1634                 _exception(sig, regs, code, regs->dar);
1635         else
1636                 bad_page_fault(regs, sig);
1637 }
1638 
1639 DEFINE_INTERRUPT_HANDLER(stack_overflow_exception)
1640 {
1641         die("Kernel stack overflow", regs, SIGSEGV);
1642 }
1643 
1644 DEFINE_INTERRUPT_HANDLER(kernel_fp_unavailable_exception)
1645 {
1646         printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1647                           "%lx at %lx\n", regs->trap, regs->nip);
1648         die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1649 }
1650 
1651 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_exception)
1652 {
1653         if (user_mode(regs)) {
1654                 /* A user program has executed an altivec instruction,
1655                    but this kernel doesn't support altivec. */
1656                 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1657                 return;
1658         }
1659 
1660         printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1661                         "%lx at %lx\n", regs->trap, regs->nip);
1662         die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1663 }
1664 
1665 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_exception)
1666 {
1667         if (user_mode(regs)) {
1668                 /* A user program has executed an vsx instruction,
1669                    but this kernel doesn't support vsx. */
1670                 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1671                 return;
1672         }
1673 
1674         printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1675                         "%lx at %lx\n", regs->trap, regs->nip);
1676         die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1677 }
1678 
1679 #ifdef CONFIG_PPC64
1680 static void tm_unavailable(struct pt_regs *regs)
1681 {
1682 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1683         if (user_mode(regs)) {
1684                 current->thread.load_tm++;
1685                 regs_set_return_msr(regs, regs->msr | MSR_TM);
1686                 tm_enable();
1687                 tm_restore_sprs(&current->thread);
1688                 return;
1689         }
1690 #endif
1691         pr_emerg("Unrecoverable TM Unavailable Exception "
1692                         "%lx at %lx\n", regs->trap, regs->nip);
1693         die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1694 }
1695 
1696 DEFINE_INTERRUPT_HANDLER(facility_unavailable_exception)
1697 {
1698         static char *facility_strings[] = {
1699                 [FSCR_FP_LG] = "FPU",
1700                 [FSCR_VECVSX_LG] = "VMX/VSX",
1701                 [FSCR_DSCR_LG] = "DSCR",
1702                 [FSCR_PM_LG] = "PMU SPRs",
1703                 [FSCR_BHRB_LG] = "BHRB",
1704                 [FSCR_TM_LG] = "TM",
1705                 [FSCR_EBB_LG] = "EBB",
1706                 [FSCR_TAR_LG] = "TAR",
1707                 [FSCR_MSGP_LG] = "MSGP",
1708                 [FSCR_SCV_LG] = "SCV",
1709                 [FSCR_PREFIX_LG] = "PREFIX",
1710         };
1711         char *facility = "unknown";
1712         u64 value;
1713         u32 instword, rd;
1714         u8 status;
1715         bool hv;
1716 
1717         hv = (TRAP(regs) == INTERRUPT_H_FAC_UNAVAIL);
1718         if (hv)
1719                 value = mfspr(SPRN_HFSCR);
1720         else
1721                 value = mfspr(SPRN_FSCR);
1722 
1723         status = value >> 56;
1724         if ((hv || status >= 2) &&
1725             (status < ARRAY_SIZE(facility_strings)) &&
1726             facility_strings[status])
1727                 facility = facility_strings[status];
1728 
1729         /* We should not have taken this interrupt in kernel */
1730         if (!user_mode(regs)) {
1731                 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1732                          facility, status, regs->nip);
1733                 die("Unexpected facility unavailable exception", regs, SIGABRT);
1734         }
1735 
1736         interrupt_cond_local_irq_enable(regs);
1737 
1738         if (status == FSCR_DSCR_LG) {
1739                 /*
1740                  * User is accessing the DSCR register using the problem
1741                  * state only SPR number (0x03) either through a mfspr or
1742                  * a mtspr instruction. If it is a write attempt through
1743                  * a mtspr, then we set the inherit bit. This also allows
1744                  * the user to write or read the register directly in the
1745                  * future by setting via the FSCR DSCR bit. But in case it
1746                  * is a read DSCR attempt through a mfspr instruction, we
1747                  * just emulate the instruction instead. This code path will
1748                  * always emulate all the mfspr instructions till the user
1749                  * has attempted at least one mtspr instruction. This way it
1750                  * preserves the same behaviour when the user is accessing
1751                  * the DSCR through privilege level only SPR number (0x11)
1752                  * which is emulated through illegal instruction exception.
1753                  * We always leave HFSCR DSCR set.
1754                  */
1755                 if (get_user(instword, (u32 __user *)(regs->nip))) {
1756                         pr_err("Failed to fetch the user instruction\n");
1757                         return;
1758                 }
1759 
1760                 /* Write into DSCR (mtspr 0x03, RS) */
1761                 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1762                                 == PPC_INST_MTSPR_DSCR_USER) {
1763                         rd = (instword >> 21) & 0x1f;
1764                         current->thread.dscr = regs->gpr[rd];
1765                         current->thread.dscr_inherit = 1;
1766                         current->thread.fscr |= FSCR_DSCR;
1767                         mtspr(SPRN_FSCR, current->thread.fscr);
1768                 }
1769 
1770                 /* Read from DSCR (mfspr RT, 0x03) */
1771                 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1772                                 == PPC_INST_MFSPR_DSCR_USER) {
1773                         if (emulate_instruction(regs)) {
1774                                 pr_err("DSCR based mfspr emulation failed\n");
1775                                 return;
1776                         }
1777                         regs_add_return_ip(regs, 4);
1778                         emulate_single_step(regs);
1779                 }
1780                 return;
1781         }
1782 
1783         if (status == FSCR_TM_LG) {
1784                 /*
1785                  * If we're here then the hardware is TM aware because it
1786                  * generated an exception with FSRM_TM set.
1787                  *
1788                  * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1789                  * told us not to do TM, or the kernel is not built with TM
1790                  * support.
1791                  *
1792                  * If both of those things are true, then userspace can spam the
1793                  * console by triggering the printk() below just by continually
1794                  * doing tbegin (or any TM instruction). So in that case just
1795                  * send the process a SIGILL immediately.
1796                  */
1797                 if (!cpu_has_feature(CPU_FTR_TM))
1798                         goto out;
1799 
1800                 tm_unavailable(regs);
1801                 return;
1802         }
1803 
1804         pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1805                 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1806 
1807 out:
1808         _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1809 }
1810 #endif
1811 
1812 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1813 
1814 DEFINE_INTERRUPT_HANDLER(fp_unavailable_tm)
1815 {
1816         /* Note:  This does not handle any kind of FP laziness. */
1817 
1818         TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1819                  regs->nip, regs->msr);
1820 
1821         /* We can only have got here if the task started using FP after
1822          * beginning the transaction.  So, the transactional regs are just a
1823          * copy of the checkpointed ones.  But, we still need to recheckpoint
1824          * as we're enabling FP for the process; it will return, abort the
1825          * transaction, and probably retry but now with FP enabled.  So the
1826          * checkpointed FP registers need to be loaded.
1827          */
1828         tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1829 
1830         /*
1831          * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1832          * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1833          *
1834          * At this point, ck{fp,vr}_state contains the exact values we want to
1835          * recheckpoint.
1836          */
1837 
1838         /* Enable FP for the task: */
1839         current->thread.load_fp = 1;
1840 
1841         /*
1842          * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1843          */
1844         tm_recheckpoint(&current->thread);
1845 }
1846 
1847 DEFINE_INTERRUPT_HANDLER(altivec_unavailable_tm)
1848 {
1849         /* See the comments in fp_unavailable_tm().  This function operates
1850          * the same way.
1851          */
1852 
1853         TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1854                  "MSR=%lx\n",
1855                  regs->nip, regs->msr);
1856         tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1857         current->thread.load_vec = 1;
1858         tm_recheckpoint(&current->thread);
1859         current->thread.used_vr = 1;
1860 }
1861 
1862 DEFINE_INTERRUPT_HANDLER(vsx_unavailable_tm)
1863 {
1864         /* See the comments in fp_unavailable_tm().  This works similarly,
1865          * though we're loading both FP and VEC registers in here.
1866          *
1867          * If FP isn't in use, load FP regs.  If VEC isn't in use, load VEC
1868          * regs.  Either way, set MSR_VSX.
1869          */
1870 
1871         TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1872                  "MSR=%lx\n",
1873                  regs->nip, regs->msr);
1874 
1875         current->thread.used_vsr = 1;
1876 
1877         /* This reclaims FP and/or VR regs if they're already enabled */
1878         tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1879 
1880         current->thread.load_vec = 1;
1881         current->thread.load_fp = 1;
1882 
1883         tm_recheckpoint(&current->thread);
1884 }
1885 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1886 
1887 #ifdef CONFIG_PPC64
1888 DECLARE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi);
1889 DEFINE_INTERRUPT_HANDLER_NMI(performance_monitor_exception_nmi)
1890 {
1891         __this_cpu_inc(irq_stat.pmu_irqs);
1892 
1893         perf_irq(regs);
1894 
1895         return 0;
1896 }
1897 #endif
1898 
1899 DECLARE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async);
1900 DEFINE_INTERRUPT_HANDLER_ASYNC(performance_monitor_exception_async)
1901 {
1902         __this_cpu_inc(irq_stat.pmu_irqs);
1903 
1904         perf_irq(regs);
1905 }
1906 
1907 DEFINE_INTERRUPT_HANDLER_RAW(performance_monitor_exception)
1908 {
1909         /*
1910          * On 64-bit, if perf interrupts hit in a local_irq_disable
1911          * (soft-masked) region, we consider them as NMIs. This is required to
1912          * prevent hash faults on user addresses when reading callchains (and
1913          * looks better from an irq tracing perspective).
1914          */
1915         if (IS_ENABLED(CONFIG_PPC64) && unlikely(arch_irq_disabled_regs(regs)))
1916                 performance_monitor_exception_nmi(regs);
1917         else
1918                 performance_monitor_exception_async(regs);
1919 
1920         return 0;
1921 }
1922 
1923 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1924 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1925 {
1926         int changed = 0;
1927         /*
1928          * Determine the cause of the debug event, clear the
1929          * event flags and send a trap to the handler. Torez
1930          */
1931         if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1932                 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1933 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1934                 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1935 #endif
1936                 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1937                              5);
1938                 changed |= 0x01;
1939         }  else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1940                 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1941                 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1942                              6);
1943                 changed |= 0x01;
1944         }  else if (debug_status & DBSR_IAC1) {
1945                 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1946                 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1947                 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1948                              1);
1949                 changed |= 0x01;
1950         }  else if (debug_status & DBSR_IAC2) {
1951                 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1952                 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1953                              2);
1954                 changed |= 0x01;
1955         }  else if (debug_status & DBSR_IAC3) {
1956                 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1957                 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1958                 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1959                              3);
1960                 changed |= 0x01;
1961         }  else if (debug_status & DBSR_IAC4) {
1962                 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1963                 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1964                              4);
1965                 changed |= 0x01;
1966         }
1967         /*
1968          * At the point this routine was called, the MSR(DE) was turned off.
1969          * Check all other debug flags and see if that bit needs to be turned
1970          * back on or not.
1971          */
1972         if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1973                                current->thread.debug.dbcr1))
1974                 regs_set_return_msr(regs, regs->msr | MSR_DE);
1975         else
1976                 /* Make sure the IDM flag is off */
1977                 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1978 
1979         if (changed & 0x01)
1980                 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1981 }
1982 
1983 DEFINE_INTERRUPT_HANDLER(DebugException)
1984 {
1985         unsigned long debug_status = regs->dsisr;
1986 
1987         current->thread.debug.dbsr = debug_status;
1988 
1989         /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1990          * on server, it stops on the target of the branch. In order to simulate
1991          * the server behaviour, we thus restart right away with a single step
1992          * instead of stopping here when hitting a BT
1993          */
1994         if (debug_status & DBSR_BT) {
1995                 regs_set_return_msr(regs, regs->msr & ~MSR_DE);
1996 
1997                 /* Disable BT */
1998                 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1999                 /* Clear the BT event */
2000                 mtspr(SPRN_DBSR, DBSR_BT);
2001 
2002                 /* Do the single step trick only when coming from userspace */
2003                 if (user_mode(regs)) {
2004                         current->thread.debug.dbcr0 &= ~DBCR0_BT;
2005                         current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2006                         regs_set_return_msr(regs, regs->msr | MSR_DE);
2007                         return;
2008                 }
2009 
2010                 if (kprobe_post_handler(regs))
2011                         return;
2012 
2013                 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
2014                                5, SIGTRAP) == NOTIFY_STOP) {
2015                         return;
2016                 }
2017                 if (debugger_sstep(regs))
2018                         return;
2019         } else if (debug_status & DBSR_IC) {    /* Instruction complete */
2020                 regs_set_return_msr(regs, regs->msr & ~MSR_DE);
2021 
2022                 /* Disable instruction completion */
2023                 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
2024                 /* Clear the instruction completion event */
2025                 mtspr(SPRN_DBSR, DBSR_IC);
2026 
2027                 if (kprobe_post_handler(regs))
2028                         return;
2029 
2030                 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
2031                                5, SIGTRAP) == NOTIFY_STOP) {
2032                         return;
2033                 }
2034 
2035                 if (debugger_sstep(regs))
2036                         return;
2037 
2038                 if (user_mode(regs)) {
2039                         current->thread.debug.dbcr0 &= ~DBCR0_IC;
2040                         if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
2041                                                current->thread.debug.dbcr1))
2042                                 regs_set_return_msr(regs, regs->msr | MSR_DE);
2043                         else
2044                                 /* Make sure the IDM bit is off */
2045                                 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
2046                 }
2047 
2048                 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
2049         } else
2050                 handle_debug(regs, debug_status);
2051 }
2052 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2053 
2054 #ifdef CONFIG_ALTIVEC
2055 DEFINE_INTERRUPT_HANDLER(altivec_assist_exception)
2056 {
2057         int err;
2058 
2059         if (!user_mode(regs)) {
2060                 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
2061                        " at %lx\n", regs->nip);
2062                 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
2063         }
2064 
2065         flush_altivec_to_thread(current);
2066 
2067         PPC_WARN_EMULATED(altivec, regs);
2068         err = emulate_altivec(regs);
2069         if (err == 0) {
2070                 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2071                 emulate_single_step(regs);
2072                 return;
2073         }
2074 
2075         if (err == -EFAULT) {
2076                 /* got an error reading the instruction */
2077                 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2078         } else {
2079                 /* didn't recognize the instruction */
2080                 /* XXX quick hack for now: set the non-Java bit in the VSCR */
2081                 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
2082                                    "in %s at %lx\n", current->comm, regs->nip);
2083                 current->thread.vr_state.vscr.u[3] |= 0x10000;
2084         }
2085 }
2086 #endif /* CONFIG_ALTIVEC */
2087 
2088 #ifdef CONFIG_FSL_BOOKE
2089 DEFINE_INTERRUPT_HANDLER(CacheLockingException)
2090 {
2091         unsigned long error_code = regs->dsisr;
2092 
2093         /* We treat cache locking instructions from the user
2094          * as priv ops, in the future we could try to do
2095          * something smarter
2096          */
2097         if (error_code & (ESR_DLK|ESR_ILK))
2098                 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
2099         return;
2100 }
2101 #endif /* CONFIG_FSL_BOOKE */
2102 
2103 #ifdef CONFIG_SPE
2104 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointException)
2105 {
2106         extern int do_spe_mathemu(struct pt_regs *regs);
2107         unsigned long spefscr;
2108         int fpexc_mode;
2109         int code = FPE_FLTUNK;
2110         int err;
2111 
2112         interrupt_cond_local_irq_enable(regs);
2113 
2114         flush_spe_to_thread(current);
2115 
2116         spefscr = current->thread.spefscr;
2117         fpexc_mode = current->thread.fpexc_mode;
2118 
2119         if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2120                 code = FPE_FLTOVF;
2121         }
2122         else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2123                 code = FPE_FLTUND;
2124         }
2125         else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2126                 code = FPE_FLTDIV;
2127         else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2128                 code = FPE_FLTINV;
2129         }
2130         else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2131                 code = FPE_FLTRES;
2132 
2133         err = do_spe_mathemu(regs);
2134         if (err == 0) {
2135                 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2136                 emulate_single_step(regs);
2137                 return;
2138         }
2139 
2140         if (err == -EFAULT) {
2141                 /* got an error reading the instruction */
2142                 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2143         } else if (err == -EINVAL) {
2144                 /* didn't recognize the instruction */
2145                 printk(KERN_ERR "unrecognized spe instruction "
2146                        "in %s at %lx\n", current->comm, regs->nip);
2147         } else {
2148                 _exception(SIGFPE, regs, code, regs->nip);
2149         }
2150 
2151         return;
2152 }
2153 
2154 DEFINE_INTERRUPT_HANDLER(SPEFloatingPointRoundException)
2155 {
2156         extern int speround_handler(struct pt_regs *regs);
2157         int err;
2158 
2159         interrupt_cond_local_irq_enable(regs);
2160 
2161         preempt_disable();
2162         if (regs->msr & MSR_SPE)
2163                 giveup_spe(current);
2164         preempt_enable();
2165 
2166         regs_add_return_ip(regs, -4);
2167         err = speround_handler(regs);
2168         if (err == 0) {
2169                 regs_add_return_ip(regs, 4); /* skip emulated instruction */
2170                 emulate_single_step(regs);
2171                 return;
2172         }
2173 
2174         if (err == -EFAULT) {
2175                 /* got an error reading the instruction */
2176                 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2177         } else if (err == -EINVAL) {
2178                 /* didn't recognize the instruction */
2179                 printk(KERN_ERR "unrecognized spe instruction "
2180                        "in %s at %lx\n", current->comm, regs->nip);
2181         } else {
2182                 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2183                 return;
2184         }
2185 }
2186 #endif
2187 
2188 /*
2189  * We enter here if we get an unrecoverable exception, that is, one
2190  * that happened at a point where the RI (recoverable interrupt) bit
2191  * in the MSR is 0.  This indicates that SRR0/1 are live, and that
2192  * we therefore lost state by taking this exception.
2193  */
2194 void __noreturn unrecoverable_exception(struct pt_regs *regs)
2195 {
2196         pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2197                  regs->trap, regs->nip, regs->msr);
2198         die("Unrecoverable exception", regs, SIGABRT);
2199         /* die() should not return */
2200         for (;;)
2201                 ;
2202 }
2203 
2204 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2205 /*
2206  * Default handler for a Watchdog exception,
2207  * spins until a reboot occurs
2208  */
2209 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2210 {
2211         /* Generic WatchdogHandler, implement your own */
2212         mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2213         return;
2214 }
2215 
2216 DEFINE_INTERRUPT_HANDLER_NMI(WatchdogException)
2217 {
2218         printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2219         WatchdogHandler(regs);
2220         return 0;
2221 }
2222 #endif
2223 
2224 /*
2225  * We enter here if we discover during exception entry that we are
2226  * running in supervisor mode with a userspace value in the stack pointer.
2227  */
2228 DEFINE_INTERRUPT_HANDLER(kernel_bad_stack)
2229 {
2230         printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2231                regs->gpr[1], regs->nip);
2232         die("Bad kernel stack pointer", regs, SIGABRT);
2233 }
2234 
2235 #ifdef CONFIG_PPC_EMULATED_STATS
2236 
2237 #define WARN_EMULATED_SETUP(type)       .type = { .name = #type }
2238 
2239 struct ppc_emulated ppc_emulated = {
2240 #ifdef CONFIG_ALTIVEC
2241         WARN_EMULATED_SETUP(altivec),
2242 #endif
2243         WARN_EMULATED_SETUP(dcba),
2244         WARN_EMULATED_SETUP(dcbz),
2245         WARN_EMULATED_SETUP(fp_pair),
2246         WARN_EMULATED_SETUP(isel),
2247         WARN_EMULATED_SETUP(mcrxr),
2248         WARN_EMULATED_SETUP(mfpvr),
2249         WARN_EMULATED_SETUP(multiple),
2250         WARN_EMULATED_SETUP(popcntb),
2251         WARN_EMULATED_SETUP(spe),
2252         WARN_EMULATED_SETUP(string),
2253         WARN_EMULATED_SETUP(sync),
2254         WARN_EMULATED_SETUP(unaligned),
2255 #ifdef CONFIG_MATH_EMULATION
2256         WARN_EMULATED_SETUP(math),
2257 #endif
2258 #ifdef CONFIG_VSX
2259         WARN_EMULATED_SETUP(vsx),
2260 #endif
2261 #ifdef CONFIG_PPC64
2262         WARN_EMULATED_SETUP(mfdscr),
2263         WARN_EMULATED_SETUP(mtdscr),
2264         WARN_EMULATED_SETUP(lq_stq),
2265         WARN_EMULATED_SETUP(lxvw4x),
2266         WARN_EMULATED_SETUP(lxvh8x),
2267         WARN_EMULATED_SETUP(lxvd2x),
2268         WARN_EMULATED_SETUP(lxvb16x),
2269 #endif
2270 };
2271 
2272 u32 ppc_warn_emulated;
2273 
2274 void ppc_warn_emulated_print(const char *type)
2275 {
2276         pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2277                             type);
2278 }
2279 
2280 static int __init ppc_warn_emulated_init(void)
2281 {
2282         struct dentry *dir;
2283         unsigned int i;
2284         struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2285 
2286         dir = debugfs_create_dir("emulated_instructions",
2287                                  arch_debugfs_dir);
2288 
2289         debugfs_create_u32("do_warn", 0644, dir, &ppc_warn_emulated);
2290 
2291         for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++)
2292                 debugfs_create_u32(entries[i].name, 0644, dir,
2293                                    (u32 *)&entries[i].val.counter);
2294 
2295         return 0;
2296 }
2297 
2298 device_initcall(ppc_warn_emulated_init);
2299 
2300 #endif /* CONFIG_PPC_EMULATED_STATS */
2301 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp