~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kvm/book3s_hv.c

Version: ~ [ linux-5.2 ] ~ [ linux-5.1.16 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.57 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.132 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.184 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.184 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.69 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4  *
  5  * Authors:
  6  *    Paul Mackerras <paulus@au1.ibm.com>
  7  *    Alexander Graf <agraf@suse.de>
  8  *    Kevin Wolf <mail@kevin-wolf.de>
  9  *
 10  * Description: KVM functions specific to running on Book 3S
 11  * processors in hypervisor mode (specifically POWER7 and later).
 12  *
 13  * This file is derived from arch/powerpc/kvm/book3s.c,
 14  * by Alexander Graf <agraf@suse.de>.
 15  *
 16  * This program is free software; you can redistribute it and/or modify
 17  * it under the terms of the GNU General Public License, version 2, as
 18  * published by the Free Software Foundation.
 19  */
 20 
 21 #include <linux/kvm_host.h>
 22 #include <linux/err.h>
 23 #include <linux/slab.h>
 24 #include <linux/preempt.h>
 25 #include <linux/sched.h>
 26 #include <linux/delay.h>
 27 #include <linux/export.h>
 28 #include <linux/fs.h>
 29 #include <linux/anon_inodes.h>
 30 #include <linux/cpumask.h>
 31 #include <linux/spinlock.h>
 32 #include <linux/page-flags.h>
 33 #include <linux/srcu.h>
 34 #include <linux/miscdevice.h>
 35 #include <linux/debugfs.h>
 36 
 37 #include <asm/reg.h>
 38 #include <asm/cputable.h>
 39 #include <asm/cacheflush.h>
 40 #include <asm/tlbflush.h>
 41 #include <asm/uaccess.h>
 42 #include <asm/io.h>
 43 #include <asm/kvm_ppc.h>
 44 #include <asm/kvm_book3s.h>
 45 #include <asm/mmu_context.h>
 46 #include <asm/lppaca.h>
 47 #include <asm/processor.h>
 48 #include <asm/cputhreads.h>
 49 #include <asm/page.h>
 50 #include <asm/hvcall.h>
 51 #include <asm/switch_to.h>
 52 #include <asm/smp.h>
 53 #include <asm/dbell.h>
 54 #include <linux/gfp.h>
 55 #include <linux/vmalloc.h>
 56 #include <linux/highmem.h>
 57 #include <linux/hugetlb.h>
 58 #include <linux/module.h>
 59 
 60 #include "book3s.h"
 61 
 62 #define CREATE_TRACE_POINTS
 63 #include "trace_hv.h"
 64 
 65 /* #define EXIT_DEBUG */
 66 /* #define EXIT_DEBUG_SIMPLE */
 67 /* #define EXIT_DEBUG_INT */
 68 
 69 /* Used to indicate that a guest page fault needs to be handled */
 70 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
 71 
 72 /* Used as a "null" value for timebase values */
 73 #define TB_NIL  (~(u64)0)
 74 
 75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
 76 
 77 static int dynamic_mt_modes = 6;
 78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
 79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
 80 static int target_smt_mode;
 81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
 82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
 83 
 84 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
 85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
 86 
 87 static bool kvmppc_ipi_thread(int cpu)
 88 {
 89         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
 90         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 91                 preempt_disable();
 92                 if (cpu_first_thread_sibling(cpu) ==
 93                     cpu_first_thread_sibling(smp_processor_id())) {
 94                         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
 95                         msg |= cpu_thread_in_core(cpu);
 96                         smp_mb();
 97                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
 98                         preempt_enable();
 99                         return true;
100                 }
101                 preempt_enable();
102         }
103 
104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
105         if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
106                 xics_wake_cpu(cpu);
107                 return true;
108         }
109 #endif
110 
111         return false;
112 }
113 
114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
115 {
116         int cpu;
117         wait_queue_head_t *wqp;
118 
119         wqp = kvm_arch_vcpu_wq(vcpu);
120         if (waitqueue_active(wqp)) {
121                 wake_up_interruptible(wqp);
122                 ++vcpu->stat.halt_wakeup;
123         }
124 
125         if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
126                 return;
127 
128         /* CPU points to the first thread of the core */
129         cpu = vcpu->cpu;
130         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
131                 smp_send_reschedule(cpu);
132 }
133 
134 /*
135  * We use the vcpu_load/put functions to measure stolen time.
136  * Stolen time is counted as time when either the vcpu is able to
137  * run as part of a virtual core, but the task running the vcore
138  * is preempted or sleeping, or when the vcpu needs something done
139  * in the kernel by the task running the vcpu, but that task is
140  * preempted or sleeping.  Those two things have to be counted
141  * separately, since one of the vcpu tasks will take on the job
142  * of running the core, and the other vcpu tasks in the vcore will
143  * sleep waiting for it to do that, but that sleep shouldn't count
144  * as stolen time.
145  *
146  * Hence we accumulate stolen time when the vcpu can run as part of
147  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148  * needs its task to do other things in the kernel (for example,
149  * service a page fault) in busy_stolen.  We don't accumulate
150  * stolen time for a vcore when it is inactive, or for a vcpu
151  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
152  * a misnomer; it means that the vcpu task is not executing in
153  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154  * the kernel.  We don't have any way of dividing up that time
155  * between time that the vcpu is genuinely stopped, time that
156  * the task is actively working on behalf of the vcpu, and time
157  * that the task is preempted, so we don't count any of it as
158  * stolen.
159  *
160  * Updates to busy_stolen are protected by arch.tbacct_lock;
161  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162  * lock.  The stolen times are measured in units of timebase ticks.
163  * (Note that the != TB_NIL checks below are purely defensive;
164  * they should never fail.)
165  */
166 
167 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
168 {
169         unsigned long flags;
170 
171         spin_lock_irqsave(&vc->stoltb_lock, flags);
172         vc->preempt_tb = mftb();
173         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
174 }
175 
176 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
177 {
178         unsigned long flags;
179 
180         spin_lock_irqsave(&vc->stoltb_lock, flags);
181         if (vc->preempt_tb != TB_NIL) {
182                 vc->stolen_tb += mftb() - vc->preempt_tb;
183                 vc->preempt_tb = TB_NIL;
184         }
185         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
186 }
187 
188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
189 {
190         struct kvmppc_vcore *vc = vcpu->arch.vcore;
191         unsigned long flags;
192 
193         /*
194          * We can test vc->runner without taking the vcore lock,
195          * because only this task ever sets vc->runner to this
196          * vcpu, and once it is set to this vcpu, only this task
197          * ever sets it to NULL.
198          */
199         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
200                 kvmppc_core_end_stolen(vc);
201 
202         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
203         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
204             vcpu->arch.busy_preempt != TB_NIL) {
205                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
206                 vcpu->arch.busy_preempt = TB_NIL;
207         }
208         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
209 }
210 
211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
212 {
213         struct kvmppc_vcore *vc = vcpu->arch.vcore;
214         unsigned long flags;
215 
216         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
217                 kvmppc_core_start_stolen(vc);
218 
219         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
220         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
221                 vcpu->arch.busy_preempt = mftb();
222         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
223 }
224 
225 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
226 {
227         /*
228          * Check for illegal transactional state bit combination
229          * and if we find it, force the TS field to a safe state.
230          */
231         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
232                 msr &= ~MSR_TS_MASK;
233         vcpu->arch.shregs.msr = msr;
234         kvmppc_end_cede(vcpu);
235 }
236 
237 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
238 {
239         vcpu->arch.pvr = pvr;
240 }
241 
242 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
243 {
244         unsigned long pcr = 0;
245         struct kvmppc_vcore *vc = vcpu->arch.vcore;
246 
247         if (arch_compat) {
248                 switch (arch_compat) {
249                 case PVR_ARCH_205:
250                         /*
251                          * If an arch bit is set in PCR, all the defined
252                          * higher-order arch bits also have to be set.
253                          */
254                         pcr = PCR_ARCH_206 | PCR_ARCH_205;
255                         break;
256                 case PVR_ARCH_206:
257                 case PVR_ARCH_206p:
258                         pcr = PCR_ARCH_206;
259                         break;
260                 case PVR_ARCH_207:
261                         break;
262                 default:
263                         return -EINVAL;
264                 }
265 
266                 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
267                         /* POWER7 can't emulate POWER8 */
268                         if (!(pcr & PCR_ARCH_206))
269                                 return -EINVAL;
270                         pcr &= ~PCR_ARCH_206;
271                 }
272         }
273 
274         spin_lock(&vc->lock);
275         vc->arch_compat = arch_compat;
276         vc->pcr = pcr;
277         spin_unlock(&vc->lock);
278 
279         return 0;
280 }
281 
282 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
283 {
284         int r;
285 
286         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
287         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
288                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
289         for (r = 0; r < 16; ++r)
290                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
291                        r, kvmppc_get_gpr(vcpu, r),
292                        r+16, kvmppc_get_gpr(vcpu, r+16));
293         pr_err("ctr = %.16lx  lr  = %.16lx\n",
294                vcpu->arch.ctr, vcpu->arch.lr);
295         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
296                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
297         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
298                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
299         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
300                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
301         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
302                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
303         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
304         pr_err("fault dar = %.16lx dsisr = %.8x\n",
305                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
306         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
307         for (r = 0; r < vcpu->arch.slb_max; ++r)
308                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
309                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
310         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
311                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
312                vcpu->arch.last_inst);
313 }
314 
315 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
316 {
317         int r;
318         struct kvm_vcpu *v, *ret = NULL;
319 
320         mutex_lock(&kvm->lock);
321         kvm_for_each_vcpu(r, v, kvm) {
322                 if (v->vcpu_id == id) {
323                         ret = v;
324                         break;
325                 }
326         }
327         mutex_unlock(&kvm->lock);
328         return ret;
329 }
330 
331 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
332 {
333         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
334         vpa->yield_count = cpu_to_be32(1);
335 }
336 
337 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
338                    unsigned long addr, unsigned long len)
339 {
340         /* check address is cacheline aligned */
341         if (addr & (L1_CACHE_BYTES - 1))
342                 return -EINVAL;
343         spin_lock(&vcpu->arch.vpa_update_lock);
344         if (v->next_gpa != addr || v->len != len) {
345                 v->next_gpa = addr;
346                 v->len = addr ? len : 0;
347                 v->update_pending = 1;
348         }
349         spin_unlock(&vcpu->arch.vpa_update_lock);
350         return 0;
351 }
352 
353 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
354 struct reg_vpa {
355         u32 dummy;
356         union {
357                 __be16 hword;
358                 __be32 word;
359         } length;
360 };
361 
362 static int vpa_is_registered(struct kvmppc_vpa *vpap)
363 {
364         if (vpap->update_pending)
365                 return vpap->next_gpa != 0;
366         return vpap->pinned_addr != NULL;
367 }
368 
369 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
370                                        unsigned long flags,
371                                        unsigned long vcpuid, unsigned long vpa)
372 {
373         struct kvm *kvm = vcpu->kvm;
374         unsigned long len, nb;
375         void *va;
376         struct kvm_vcpu *tvcpu;
377         int err;
378         int subfunc;
379         struct kvmppc_vpa *vpap;
380 
381         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
382         if (!tvcpu)
383                 return H_PARAMETER;
384 
385         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
386         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
387             subfunc == H_VPA_REG_SLB) {
388                 /* Registering new area - address must be cache-line aligned */
389                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
390                         return H_PARAMETER;
391 
392                 /* convert logical addr to kernel addr and read length */
393                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
394                 if (va == NULL)
395                         return H_PARAMETER;
396                 if (subfunc == H_VPA_REG_VPA)
397                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
398                 else
399                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
400                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
401 
402                 /* Check length */
403                 if (len > nb || len < sizeof(struct reg_vpa))
404                         return H_PARAMETER;
405         } else {
406                 vpa = 0;
407                 len = 0;
408         }
409 
410         err = H_PARAMETER;
411         vpap = NULL;
412         spin_lock(&tvcpu->arch.vpa_update_lock);
413 
414         switch (subfunc) {
415         case H_VPA_REG_VPA:             /* register VPA */
416                 if (len < sizeof(struct lppaca))
417                         break;
418                 vpap = &tvcpu->arch.vpa;
419                 err = 0;
420                 break;
421 
422         case H_VPA_REG_DTL:             /* register DTL */
423                 if (len < sizeof(struct dtl_entry))
424                         break;
425                 len -= len % sizeof(struct dtl_entry);
426 
427                 /* Check that they have previously registered a VPA */
428                 err = H_RESOURCE;
429                 if (!vpa_is_registered(&tvcpu->arch.vpa))
430                         break;
431 
432                 vpap = &tvcpu->arch.dtl;
433                 err = 0;
434                 break;
435 
436         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
437                 /* Check that they have previously registered a VPA */
438                 err = H_RESOURCE;
439                 if (!vpa_is_registered(&tvcpu->arch.vpa))
440                         break;
441 
442                 vpap = &tvcpu->arch.slb_shadow;
443                 err = 0;
444                 break;
445 
446         case H_VPA_DEREG_VPA:           /* deregister VPA */
447                 /* Check they don't still have a DTL or SLB buf registered */
448                 err = H_RESOURCE;
449                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
450                     vpa_is_registered(&tvcpu->arch.slb_shadow))
451                         break;
452 
453                 vpap = &tvcpu->arch.vpa;
454                 err = 0;
455                 break;
456 
457         case H_VPA_DEREG_DTL:           /* deregister DTL */
458                 vpap = &tvcpu->arch.dtl;
459                 err = 0;
460                 break;
461 
462         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
463                 vpap = &tvcpu->arch.slb_shadow;
464                 err = 0;
465                 break;
466         }
467 
468         if (vpap) {
469                 vpap->next_gpa = vpa;
470                 vpap->len = len;
471                 vpap->update_pending = 1;
472         }
473 
474         spin_unlock(&tvcpu->arch.vpa_update_lock);
475 
476         return err;
477 }
478 
479 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
480 {
481         struct kvm *kvm = vcpu->kvm;
482         void *va;
483         unsigned long nb;
484         unsigned long gpa;
485 
486         /*
487          * We need to pin the page pointed to by vpap->next_gpa,
488          * but we can't call kvmppc_pin_guest_page under the lock
489          * as it does get_user_pages() and down_read().  So we
490          * have to drop the lock, pin the page, then get the lock
491          * again and check that a new area didn't get registered
492          * in the meantime.
493          */
494         for (;;) {
495                 gpa = vpap->next_gpa;
496                 spin_unlock(&vcpu->arch.vpa_update_lock);
497                 va = NULL;
498                 nb = 0;
499                 if (gpa)
500                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
501                 spin_lock(&vcpu->arch.vpa_update_lock);
502                 if (gpa == vpap->next_gpa)
503                         break;
504                 /* sigh... unpin that one and try again */
505                 if (va)
506                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
507         }
508 
509         vpap->update_pending = 0;
510         if (va && nb < vpap->len) {
511                 /*
512                  * If it's now too short, it must be that userspace
513                  * has changed the mappings underlying guest memory,
514                  * so unregister the region.
515                  */
516                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
517                 va = NULL;
518         }
519         if (vpap->pinned_addr)
520                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
521                                         vpap->dirty);
522         vpap->gpa = gpa;
523         vpap->pinned_addr = va;
524         vpap->dirty = false;
525         if (va)
526                 vpap->pinned_end = va + vpap->len;
527 }
528 
529 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
530 {
531         if (!(vcpu->arch.vpa.update_pending ||
532               vcpu->arch.slb_shadow.update_pending ||
533               vcpu->arch.dtl.update_pending))
534                 return;
535 
536         spin_lock(&vcpu->arch.vpa_update_lock);
537         if (vcpu->arch.vpa.update_pending) {
538                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
539                 if (vcpu->arch.vpa.pinned_addr)
540                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
541         }
542         if (vcpu->arch.dtl.update_pending) {
543                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
544                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
545                 vcpu->arch.dtl_index = 0;
546         }
547         if (vcpu->arch.slb_shadow.update_pending)
548                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
549         spin_unlock(&vcpu->arch.vpa_update_lock);
550 }
551 
552 /*
553  * Return the accumulated stolen time for the vcore up until `now'.
554  * The caller should hold the vcore lock.
555  */
556 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
557 {
558         u64 p;
559         unsigned long flags;
560 
561         spin_lock_irqsave(&vc->stoltb_lock, flags);
562         p = vc->stolen_tb;
563         if (vc->vcore_state != VCORE_INACTIVE &&
564             vc->preempt_tb != TB_NIL)
565                 p += now - vc->preempt_tb;
566         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
567         return p;
568 }
569 
570 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
571                                     struct kvmppc_vcore *vc)
572 {
573         struct dtl_entry *dt;
574         struct lppaca *vpa;
575         unsigned long stolen;
576         unsigned long core_stolen;
577         u64 now;
578 
579         dt = vcpu->arch.dtl_ptr;
580         vpa = vcpu->arch.vpa.pinned_addr;
581         now = mftb();
582         core_stolen = vcore_stolen_time(vc, now);
583         stolen = core_stolen - vcpu->arch.stolen_logged;
584         vcpu->arch.stolen_logged = core_stolen;
585         spin_lock_irq(&vcpu->arch.tbacct_lock);
586         stolen += vcpu->arch.busy_stolen;
587         vcpu->arch.busy_stolen = 0;
588         spin_unlock_irq(&vcpu->arch.tbacct_lock);
589         if (!dt || !vpa)
590                 return;
591         memset(dt, 0, sizeof(struct dtl_entry));
592         dt->dispatch_reason = 7;
593         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
594         dt->timebase = cpu_to_be64(now + vc->tb_offset);
595         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
596         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
597         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
598         ++dt;
599         if (dt == vcpu->arch.dtl.pinned_end)
600                 dt = vcpu->arch.dtl.pinned_addr;
601         vcpu->arch.dtl_ptr = dt;
602         /* order writing *dt vs. writing vpa->dtl_idx */
603         smp_wmb();
604         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
605         vcpu->arch.dtl.dirty = true;
606 }
607 
608 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
609 {
610         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
611                 return true;
612         if ((!vcpu->arch.vcore->arch_compat) &&
613             cpu_has_feature(CPU_FTR_ARCH_207S))
614                 return true;
615         return false;
616 }
617 
618 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
619                              unsigned long resource, unsigned long value1,
620                              unsigned long value2)
621 {
622         switch (resource) {
623         case H_SET_MODE_RESOURCE_SET_CIABR:
624                 if (!kvmppc_power8_compatible(vcpu))
625                         return H_P2;
626                 if (value2)
627                         return H_P4;
628                 if (mflags)
629                         return H_UNSUPPORTED_FLAG_START;
630                 /* Guests can't breakpoint the hypervisor */
631                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
632                         return H_P3;
633                 vcpu->arch.ciabr  = value1;
634                 return H_SUCCESS;
635         case H_SET_MODE_RESOURCE_SET_DAWR:
636                 if (!kvmppc_power8_compatible(vcpu))
637                         return H_P2;
638                 if (mflags)
639                         return H_UNSUPPORTED_FLAG_START;
640                 if (value2 & DABRX_HYP)
641                         return H_P4;
642                 vcpu->arch.dawr  = value1;
643                 vcpu->arch.dawrx = value2;
644                 return H_SUCCESS;
645         default:
646                 return H_TOO_HARD;
647         }
648 }
649 
650 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
651 {
652         struct kvmppc_vcore *vcore = target->arch.vcore;
653 
654         /*
655          * We expect to have been called by the real mode handler
656          * (kvmppc_rm_h_confer()) which would have directly returned
657          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
658          * have useful work to do and should not confer) so we don't
659          * recheck that here.
660          */
661 
662         spin_lock(&vcore->lock);
663         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
664             vcore->vcore_state != VCORE_INACTIVE &&
665             vcore->runner)
666                 target = vcore->runner;
667         spin_unlock(&vcore->lock);
668 
669         return kvm_vcpu_yield_to(target);
670 }
671 
672 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
673 {
674         int yield_count = 0;
675         struct lppaca *lppaca;
676 
677         spin_lock(&vcpu->arch.vpa_update_lock);
678         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
679         if (lppaca)
680                 yield_count = be32_to_cpu(lppaca->yield_count);
681         spin_unlock(&vcpu->arch.vpa_update_lock);
682         return yield_count;
683 }
684 
685 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
686 {
687         unsigned long req = kvmppc_get_gpr(vcpu, 3);
688         unsigned long target, ret = H_SUCCESS;
689         int yield_count;
690         struct kvm_vcpu *tvcpu;
691         int idx, rc;
692 
693         if (req <= MAX_HCALL_OPCODE &&
694             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
695                 return RESUME_HOST;
696 
697         switch (req) {
698         case H_CEDE:
699                 break;
700         case H_PROD:
701                 target = kvmppc_get_gpr(vcpu, 4);
702                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
703                 if (!tvcpu) {
704                         ret = H_PARAMETER;
705                         break;
706                 }
707                 tvcpu->arch.prodded = 1;
708                 smp_mb();
709                 if (vcpu->arch.ceded) {
710                         if (waitqueue_active(&vcpu->wq)) {
711                                 wake_up_interruptible(&vcpu->wq);
712                                 vcpu->stat.halt_wakeup++;
713                         }
714                 }
715                 break;
716         case H_CONFER:
717                 target = kvmppc_get_gpr(vcpu, 4);
718                 if (target == -1)
719                         break;
720                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
721                 if (!tvcpu) {
722                         ret = H_PARAMETER;
723                         break;
724                 }
725                 yield_count = kvmppc_get_gpr(vcpu, 5);
726                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
727                         break;
728                 kvm_arch_vcpu_yield_to(tvcpu);
729                 break;
730         case H_REGISTER_VPA:
731                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
732                                         kvmppc_get_gpr(vcpu, 5),
733                                         kvmppc_get_gpr(vcpu, 6));
734                 break;
735         case H_RTAS:
736                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
737                         return RESUME_HOST;
738 
739                 idx = srcu_read_lock(&vcpu->kvm->srcu);
740                 rc = kvmppc_rtas_hcall(vcpu);
741                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
742 
743                 if (rc == -ENOENT)
744                         return RESUME_HOST;
745                 else if (rc == 0)
746                         break;
747 
748                 /* Send the error out to userspace via KVM_RUN */
749                 return rc;
750         case H_LOGICAL_CI_LOAD:
751                 ret = kvmppc_h_logical_ci_load(vcpu);
752                 if (ret == H_TOO_HARD)
753                         return RESUME_HOST;
754                 break;
755         case H_LOGICAL_CI_STORE:
756                 ret = kvmppc_h_logical_ci_store(vcpu);
757                 if (ret == H_TOO_HARD)
758                         return RESUME_HOST;
759                 break;
760         case H_SET_MODE:
761                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
762                                         kvmppc_get_gpr(vcpu, 5),
763                                         kvmppc_get_gpr(vcpu, 6),
764                                         kvmppc_get_gpr(vcpu, 7));
765                 if (ret == H_TOO_HARD)
766                         return RESUME_HOST;
767                 break;
768         case H_XIRR:
769         case H_CPPR:
770         case H_EOI:
771         case H_IPI:
772         case H_IPOLL:
773         case H_XIRR_X:
774                 if (kvmppc_xics_enabled(vcpu)) {
775                         ret = kvmppc_xics_hcall(vcpu, req);
776                         break;
777                 } /* fallthrough */
778         default:
779                 return RESUME_HOST;
780         }
781         kvmppc_set_gpr(vcpu, 3, ret);
782         vcpu->arch.hcall_needed = 0;
783         return RESUME_GUEST;
784 }
785 
786 static int kvmppc_hcall_impl_hv(unsigned long cmd)
787 {
788         switch (cmd) {
789         case H_CEDE:
790         case H_PROD:
791         case H_CONFER:
792         case H_REGISTER_VPA:
793         case H_SET_MODE:
794         case H_LOGICAL_CI_LOAD:
795         case H_LOGICAL_CI_STORE:
796 #ifdef CONFIG_KVM_XICS
797         case H_XIRR:
798         case H_CPPR:
799         case H_EOI:
800         case H_IPI:
801         case H_IPOLL:
802         case H_XIRR_X:
803 #endif
804                 return 1;
805         }
806 
807         /* See if it's in the real-mode table */
808         return kvmppc_hcall_impl_hv_realmode(cmd);
809 }
810 
811 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
812                                         struct kvm_vcpu *vcpu)
813 {
814         u32 last_inst;
815 
816         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
817                                         EMULATE_DONE) {
818                 /*
819                  * Fetch failed, so return to guest and
820                  * try executing it again.
821                  */
822                 return RESUME_GUEST;
823         }
824 
825         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
826                 run->exit_reason = KVM_EXIT_DEBUG;
827                 run->debug.arch.address = kvmppc_get_pc(vcpu);
828                 return RESUME_HOST;
829         } else {
830                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
831                 return RESUME_GUEST;
832         }
833 }
834 
835 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
836                                  struct task_struct *tsk)
837 {
838         int r = RESUME_HOST;
839 
840         vcpu->stat.sum_exits++;
841 
842         run->exit_reason = KVM_EXIT_UNKNOWN;
843         run->ready_for_interrupt_injection = 1;
844         switch (vcpu->arch.trap) {
845         /* We're good on these - the host merely wanted to get our attention */
846         case BOOK3S_INTERRUPT_HV_DECREMENTER:
847                 vcpu->stat.dec_exits++;
848                 r = RESUME_GUEST;
849                 break;
850         case BOOK3S_INTERRUPT_EXTERNAL:
851         case BOOK3S_INTERRUPT_H_DOORBELL:
852                 vcpu->stat.ext_intr_exits++;
853                 r = RESUME_GUEST;
854                 break;
855         /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
856         case BOOK3S_INTERRUPT_HMI:
857         case BOOK3S_INTERRUPT_PERFMON:
858                 r = RESUME_GUEST;
859                 break;
860         case BOOK3S_INTERRUPT_MACHINE_CHECK:
861                 /*
862                  * Deliver a machine check interrupt to the guest.
863                  * We have to do this, even if the host has handled the
864                  * machine check, because machine checks use SRR0/1 and
865                  * the interrupt might have trashed guest state in them.
866                  */
867                 kvmppc_book3s_queue_irqprio(vcpu,
868                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
869                 r = RESUME_GUEST;
870                 break;
871         case BOOK3S_INTERRUPT_PROGRAM:
872         {
873                 ulong flags;
874                 /*
875                  * Normally program interrupts are delivered directly
876                  * to the guest by the hardware, but we can get here
877                  * as a result of a hypervisor emulation interrupt
878                  * (e40) getting turned into a 700 by BML RTAS.
879                  */
880                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
881                 kvmppc_core_queue_program(vcpu, flags);
882                 r = RESUME_GUEST;
883                 break;
884         }
885         case BOOK3S_INTERRUPT_SYSCALL:
886         {
887                 /* hcall - punt to userspace */
888                 int i;
889 
890                 /* hypercall with MSR_PR has already been handled in rmode,
891                  * and never reaches here.
892                  */
893 
894                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
895                 for (i = 0; i < 9; ++i)
896                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
897                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
898                 vcpu->arch.hcall_needed = 1;
899                 r = RESUME_HOST;
900                 break;
901         }
902         /*
903          * We get these next two if the guest accesses a page which it thinks
904          * it has mapped but which is not actually present, either because
905          * it is for an emulated I/O device or because the corresonding
906          * host page has been paged out.  Any other HDSI/HISI interrupts
907          * have been handled already.
908          */
909         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
910                 r = RESUME_PAGE_FAULT;
911                 break;
912         case BOOK3S_INTERRUPT_H_INST_STORAGE:
913                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
914                 vcpu->arch.fault_dsisr = 0;
915                 r = RESUME_PAGE_FAULT;
916                 break;
917         /*
918          * This occurs if the guest executes an illegal instruction.
919          * If the guest debug is disabled, generate a program interrupt
920          * to the guest. If guest debug is enabled, we need to check
921          * whether the instruction is a software breakpoint instruction.
922          * Accordingly return to Guest or Host.
923          */
924         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
925                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
926                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
927                                 swab32(vcpu->arch.emul_inst) :
928                                 vcpu->arch.emul_inst;
929                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
930                         r = kvmppc_emulate_debug_inst(run, vcpu);
931                 } else {
932                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
933                         r = RESUME_GUEST;
934                 }
935                 break;
936         /*
937          * This occurs if the guest (kernel or userspace), does something that
938          * is prohibited by HFSCR.  We just generate a program interrupt to
939          * the guest.
940          */
941         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
942                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
943                 r = RESUME_GUEST;
944                 break;
945         default:
946                 kvmppc_dump_regs(vcpu);
947                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
948                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
949                         vcpu->arch.shregs.msr);
950                 run->hw.hardware_exit_reason = vcpu->arch.trap;
951                 r = RESUME_HOST;
952                 break;
953         }
954 
955         return r;
956 }
957 
958 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
959                                             struct kvm_sregs *sregs)
960 {
961         int i;
962 
963         memset(sregs, 0, sizeof(struct kvm_sregs));
964         sregs->pvr = vcpu->arch.pvr;
965         for (i = 0; i < vcpu->arch.slb_max; i++) {
966                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
967                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
968         }
969 
970         return 0;
971 }
972 
973 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
974                                             struct kvm_sregs *sregs)
975 {
976         int i, j;
977 
978         /* Only accept the same PVR as the host's, since we can't spoof it */
979         if (sregs->pvr != vcpu->arch.pvr)
980                 return -EINVAL;
981 
982         j = 0;
983         for (i = 0; i < vcpu->arch.slb_nr; i++) {
984                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
985                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
986                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
987                         ++j;
988                 }
989         }
990         vcpu->arch.slb_max = j;
991 
992         return 0;
993 }
994 
995 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
996                 bool preserve_top32)
997 {
998         struct kvm *kvm = vcpu->kvm;
999         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1000         u64 mask;
1001 
1002         mutex_lock(&kvm->lock);
1003         spin_lock(&vc->lock);
1004         /*
1005          * If ILE (interrupt little-endian) has changed, update the
1006          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1007          */
1008         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1009                 struct kvm_vcpu *vcpu;
1010                 int i;
1011 
1012                 kvm_for_each_vcpu(i, vcpu, kvm) {
1013                         if (vcpu->arch.vcore != vc)
1014                                 continue;
1015                         if (new_lpcr & LPCR_ILE)
1016                                 vcpu->arch.intr_msr |= MSR_LE;
1017                         else
1018                                 vcpu->arch.intr_msr &= ~MSR_LE;
1019                 }
1020         }
1021 
1022         /*
1023          * Userspace can only modify DPFD (default prefetch depth),
1024          * ILE (interrupt little-endian) and TC (translation control).
1025          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1026          */
1027         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1028         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1029                 mask |= LPCR_AIL;
1030 
1031         /* Broken 32-bit version of LPCR must not clear top bits */
1032         if (preserve_top32)
1033                 mask &= 0xFFFFFFFF;
1034         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1035         spin_unlock(&vc->lock);
1036         mutex_unlock(&kvm->lock);
1037 }
1038 
1039 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1040                                  union kvmppc_one_reg *val)
1041 {
1042         int r = 0;
1043         long int i;
1044 
1045         switch (id) {
1046         case KVM_REG_PPC_DEBUG_INST:
1047                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1048                 break;
1049         case KVM_REG_PPC_HIOR:
1050                 *val = get_reg_val(id, 0);
1051                 break;
1052         case KVM_REG_PPC_DABR:
1053                 *val = get_reg_val(id, vcpu->arch.dabr);
1054                 break;
1055         case KVM_REG_PPC_DABRX:
1056                 *val = get_reg_val(id, vcpu->arch.dabrx);
1057                 break;
1058         case KVM_REG_PPC_DSCR:
1059                 *val = get_reg_val(id, vcpu->arch.dscr);
1060                 break;
1061         case KVM_REG_PPC_PURR:
1062                 *val = get_reg_val(id, vcpu->arch.purr);
1063                 break;
1064         case KVM_REG_PPC_SPURR:
1065                 *val = get_reg_val(id, vcpu->arch.spurr);
1066                 break;
1067         case KVM_REG_PPC_AMR:
1068                 *val = get_reg_val(id, vcpu->arch.amr);
1069                 break;
1070         case KVM_REG_PPC_UAMOR:
1071                 *val = get_reg_val(id, vcpu->arch.uamor);
1072                 break;
1073         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1074                 i = id - KVM_REG_PPC_MMCR0;
1075                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1076                 break;
1077         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1078                 i = id - KVM_REG_PPC_PMC1;
1079                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1080                 break;
1081         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1082                 i = id - KVM_REG_PPC_SPMC1;
1083                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1084                 break;
1085         case KVM_REG_PPC_SIAR:
1086                 *val = get_reg_val(id, vcpu->arch.siar);
1087                 break;
1088         case KVM_REG_PPC_SDAR:
1089                 *val = get_reg_val(id, vcpu->arch.sdar);
1090                 break;
1091         case KVM_REG_PPC_SIER:
1092                 *val = get_reg_val(id, vcpu->arch.sier);
1093                 break;
1094         case KVM_REG_PPC_IAMR:
1095                 *val = get_reg_val(id, vcpu->arch.iamr);
1096                 break;
1097         case KVM_REG_PPC_PSPB:
1098                 *val = get_reg_val(id, vcpu->arch.pspb);
1099                 break;
1100         case KVM_REG_PPC_DPDES:
1101                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1102                 break;
1103         case KVM_REG_PPC_DAWR:
1104                 *val = get_reg_val(id, vcpu->arch.dawr);
1105                 break;
1106         case KVM_REG_PPC_DAWRX:
1107                 *val = get_reg_val(id, vcpu->arch.dawrx);
1108                 break;
1109         case KVM_REG_PPC_CIABR:
1110                 *val = get_reg_val(id, vcpu->arch.ciabr);
1111                 break;
1112         case KVM_REG_PPC_CSIGR:
1113                 *val = get_reg_val(id, vcpu->arch.csigr);
1114                 break;
1115         case KVM_REG_PPC_TACR:
1116                 *val = get_reg_val(id, vcpu->arch.tacr);
1117                 break;
1118         case KVM_REG_PPC_TCSCR:
1119                 *val = get_reg_val(id, vcpu->arch.tcscr);
1120                 break;
1121         case KVM_REG_PPC_PID:
1122                 *val = get_reg_val(id, vcpu->arch.pid);
1123                 break;
1124         case KVM_REG_PPC_ACOP:
1125                 *val = get_reg_val(id, vcpu->arch.acop);
1126                 break;
1127         case KVM_REG_PPC_WORT:
1128                 *val = get_reg_val(id, vcpu->arch.wort);
1129                 break;
1130         case KVM_REG_PPC_VPA_ADDR:
1131                 spin_lock(&vcpu->arch.vpa_update_lock);
1132                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1133                 spin_unlock(&vcpu->arch.vpa_update_lock);
1134                 break;
1135         case KVM_REG_PPC_VPA_SLB:
1136                 spin_lock(&vcpu->arch.vpa_update_lock);
1137                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1138                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1139                 spin_unlock(&vcpu->arch.vpa_update_lock);
1140                 break;
1141         case KVM_REG_PPC_VPA_DTL:
1142                 spin_lock(&vcpu->arch.vpa_update_lock);
1143                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1144                 val->vpaval.length = vcpu->arch.dtl.len;
1145                 spin_unlock(&vcpu->arch.vpa_update_lock);
1146                 break;
1147         case KVM_REG_PPC_TB_OFFSET:
1148                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1149                 break;
1150         case KVM_REG_PPC_LPCR:
1151         case KVM_REG_PPC_LPCR_64:
1152                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1153                 break;
1154         case KVM_REG_PPC_PPR:
1155                 *val = get_reg_val(id, vcpu->arch.ppr);
1156                 break;
1157 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1158         case KVM_REG_PPC_TFHAR:
1159                 *val = get_reg_val(id, vcpu->arch.tfhar);
1160                 break;
1161         case KVM_REG_PPC_TFIAR:
1162                 *val = get_reg_val(id, vcpu->arch.tfiar);
1163                 break;
1164         case KVM_REG_PPC_TEXASR:
1165                 *val = get_reg_val(id, vcpu->arch.texasr);
1166                 break;
1167         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1168                 i = id - KVM_REG_PPC_TM_GPR0;
1169                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1170                 break;
1171         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1172         {
1173                 int j;
1174                 i = id - KVM_REG_PPC_TM_VSR0;
1175                 if (i < 32)
1176                         for (j = 0; j < TS_FPRWIDTH; j++)
1177                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1178                 else {
1179                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1180                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1181                         else
1182                                 r = -ENXIO;
1183                 }
1184                 break;
1185         }
1186         case KVM_REG_PPC_TM_CR:
1187                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1188                 break;
1189         case KVM_REG_PPC_TM_LR:
1190                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1191                 break;
1192         case KVM_REG_PPC_TM_CTR:
1193                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1194                 break;
1195         case KVM_REG_PPC_TM_FPSCR:
1196                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1197                 break;
1198         case KVM_REG_PPC_TM_AMR:
1199                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1200                 break;
1201         case KVM_REG_PPC_TM_PPR:
1202                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1203                 break;
1204         case KVM_REG_PPC_TM_VRSAVE:
1205                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1206                 break;
1207         case KVM_REG_PPC_TM_VSCR:
1208                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1209                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1210                 else
1211                         r = -ENXIO;
1212                 break;
1213         case KVM_REG_PPC_TM_DSCR:
1214                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1215                 break;
1216         case KVM_REG_PPC_TM_TAR:
1217                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1218                 break;
1219 #endif
1220         case KVM_REG_PPC_ARCH_COMPAT:
1221                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1222                 break;
1223         default:
1224                 r = -EINVAL;
1225                 break;
1226         }
1227 
1228         return r;
1229 }
1230 
1231 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1232                                  union kvmppc_one_reg *val)
1233 {
1234         int r = 0;
1235         long int i;
1236         unsigned long addr, len;
1237 
1238         switch (id) {
1239         case KVM_REG_PPC_HIOR:
1240                 /* Only allow this to be set to zero */
1241                 if (set_reg_val(id, *val))
1242                         r = -EINVAL;
1243                 break;
1244         case KVM_REG_PPC_DABR:
1245                 vcpu->arch.dabr = set_reg_val(id, *val);
1246                 break;
1247         case KVM_REG_PPC_DABRX:
1248                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1249                 break;
1250         case KVM_REG_PPC_DSCR:
1251                 vcpu->arch.dscr = set_reg_val(id, *val);
1252                 break;
1253         case KVM_REG_PPC_PURR:
1254                 vcpu->arch.purr = set_reg_val(id, *val);
1255                 break;
1256         case KVM_REG_PPC_SPURR:
1257                 vcpu->arch.spurr = set_reg_val(id, *val);
1258                 break;
1259         case KVM_REG_PPC_AMR:
1260                 vcpu->arch.amr = set_reg_val(id, *val);
1261                 break;
1262         case KVM_REG_PPC_UAMOR:
1263                 vcpu->arch.uamor = set_reg_val(id, *val);
1264                 break;
1265         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1266                 i = id - KVM_REG_PPC_MMCR0;
1267                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1268                 break;
1269         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1270                 i = id - KVM_REG_PPC_PMC1;
1271                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1272                 break;
1273         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1274                 i = id - KVM_REG_PPC_SPMC1;
1275                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1276                 break;
1277         case KVM_REG_PPC_SIAR:
1278                 vcpu->arch.siar = set_reg_val(id, *val);
1279                 break;
1280         case KVM_REG_PPC_SDAR:
1281                 vcpu->arch.sdar = set_reg_val(id, *val);
1282                 break;
1283         case KVM_REG_PPC_SIER:
1284                 vcpu->arch.sier = set_reg_val(id, *val);
1285                 break;
1286         case KVM_REG_PPC_IAMR:
1287                 vcpu->arch.iamr = set_reg_val(id, *val);
1288                 break;
1289         case KVM_REG_PPC_PSPB:
1290                 vcpu->arch.pspb = set_reg_val(id, *val);
1291                 break;
1292         case KVM_REG_PPC_DPDES:
1293                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1294                 break;
1295         case KVM_REG_PPC_DAWR:
1296                 vcpu->arch.dawr = set_reg_val(id, *val);
1297                 break;
1298         case KVM_REG_PPC_DAWRX:
1299                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1300                 break;
1301         case KVM_REG_PPC_CIABR:
1302                 vcpu->arch.ciabr = set_reg_val(id, *val);
1303                 /* Don't allow setting breakpoints in hypervisor code */
1304                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1305                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1306                 break;
1307         case KVM_REG_PPC_CSIGR:
1308                 vcpu->arch.csigr = set_reg_val(id, *val);
1309                 break;
1310         case KVM_REG_PPC_TACR:
1311                 vcpu->arch.tacr = set_reg_val(id, *val);
1312                 break;
1313         case KVM_REG_PPC_TCSCR:
1314                 vcpu->arch.tcscr = set_reg_val(id, *val);
1315                 break;
1316         case KVM_REG_PPC_PID:
1317                 vcpu->arch.pid = set_reg_val(id, *val);
1318                 break;
1319         case KVM_REG_PPC_ACOP:
1320                 vcpu->arch.acop = set_reg_val(id, *val);
1321                 break;
1322         case KVM_REG_PPC_WORT:
1323                 vcpu->arch.wort = set_reg_val(id, *val);
1324                 break;
1325         case KVM_REG_PPC_VPA_ADDR:
1326                 addr = set_reg_val(id, *val);
1327                 r = -EINVAL;
1328                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1329                               vcpu->arch.dtl.next_gpa))
1330                         break;
1331                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1332                 break;
1333         case KVM_REG_PPC_VPA_SLB:
1334                 addr = val->vpaval.addr;
1335                 len = val->vpaval.length;
1336                 r = -EINVAL;
1337                 if (addr && !vcpu->arch.vpa.next_gpa)
1338                         break;
1339                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1340                 break;
1341         case KVM_REG_PPC_VPA_DTL:
1342                 addr = val->vpaval.addr;
1343                 len = val->vpaval.length;
1344                 r = -EINVAL;
1345                 if (addr && (len < sizeof(struct dtl_entry) ||
1346                              !vcpu->arch.vpa.next_gpa))
1347                         break;
1348                 len -= len % sizeof(struct dtl_entry);
1349                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1350                 break;
1351         case KVM_REG_PPC_TB_OFFSET:
1352                 /* round up to multiple of 2^24 */
1353                 vcpu->arch.vcore->tb_offset =
1354                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1355                 break;
1356         case KVM_REG_PPC_LPCR:
1357                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1358                 break;
1359         case KVM_REG_PPC_LPCR_64:
1360                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1361                 break;
1362         case KVM_REG_PPC_PPR:
1363                 vcpu->arch.ppr = set_reg_val(id, *val);
1364                 break;
1365 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1366         case KVM_REG_PPC_TFHAR:
1367                 vcpu->arch.tfhar = set_reg_val(id, *val);
1368                 break;
1369         case KVM_REG_PPC_TFIAR:
1370                 vcpu->arch.tfiar = set_reg_val(id, *val);
1371                 break;
1372         case KVM_REG_PPC_TEXASR:
1373                 vcpu->arch.texasr = set_reg_val(id, *val);
1374                 break;
1375         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1376                 i = id - KVM_REG_PPC_TM_GPR0;
1377                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1378                 break;
1379         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1380         {
1381                 int j;
1382                 i = id - KVM_REG_PPC_TM_VSR0;
1383                 if (i < 32)
1384                         for (j = 0; j < TS_FPRWIDTH; j++)
1385                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1386                 else
1387                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1388                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1389                         else
1390                                 r = -ENXIO;
1391                 break;
1392         }
1393         case KVM_REG_PPC_TM_CR:
1394                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1395                 break;
1396         case KVM_REG_PPC_TM_LR:
1397                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1398                 break;
1399         case KVM_REG_PPC_TM_CTR:
1400                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1401                 break;
1402         case KVM_REG_PPC_TM_FPSCR:
1403                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1404                 break;
1405         case KVM_REG_PPC_TM_AMR:
1406                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1407                 break;
1408         case KVM_REG_PPC_TM_PPR:
1409                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1410                 break;
1411         case KVM_REG_PPC_TM_VRSAVE:
1412                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1413                 break;
1414         case KVM_REG_PPC_TM_VSCR:
1415                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1416                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1417                 else
1418                         r = - ENXIO;
1419                 break;
1420         case KVM_REG_PPC_TM_DSCR:
1421                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1422                 break;
1423         case KVM_REG_PPC_TM_TAR:
1424                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1425                 break;
1426 #endif
1427         case KVM_REG_PPC_ARCH_COMPAT:
1428                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1429                 break;
1430         default:
1431                 r = -EINVAL;
1432                 break;
1433         }
1434 
1435         return r;
1436 }
1437 
1438 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1439 {
1440         struct kvmppc_vcore *vcore;
1441 
1442         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1443 
1444         if (vcore == NULL)
1445                 return NULL;
1446 
1447         INIT_LIST_HEAD(&vcore->runnable_threads);
1448         spin_lock_init(&vcore->lock);
1449         spin_lock_init(&vcore->stoltb_lock);
1450         init_waitqueue_head(&vcore->wq);
1451         vcore->preempt_tb = TB_NIL;
1452         vcore->lpcr = kvm->arch.lpcr;
1453         vcore->first_vcpuid = core * threads_per_subcore;
1454         vcore->kvm = kvm;
1455         INIT_LIST_HEAD(&vcore->preempt_list);
1456 
1457         return vcore;
1458 }
1459 
1460 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1461 static struct debugfs_timings_element {
1462         const char *name;
1463         size_t offset;
1464 } timings[] = {
1465         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1466         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1467         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1468         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1469         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1470 };
1471 
1472 #define N_TIMINGS       (sizeof(timings) / sizeof(timings[0]))
1473 
1474 struct debugfs_timings_state {
1475         struct kvm_vcpu *vcpu;
1476         unsigned int    buflen;
1477         char            buf[N_TIMINGS * 100];
1478 };
1479 
1480 static int debugfs_timings_open(struct inode *inode, struct file *file)
1481 {
1482         struct kvm_vcpu *vcpu = inode->i_private;
1483         struct debugfs_timings_state *p;
1484 
1485         p = kzalloc(sizeof(*p), GFP_KERNEL);
1486         if (!p)
1487                 return -ENOMEM;
1488 
1489         kvm_get_kvm(vcpu->kvm);
1490         p->vcpu = vcpu;
1491         file->private_data = p;
1492 
1493         return nonseekable_open(inode, file);
1494 }
1495 
1496 static int debugfs_timings_release(struct inode *inode, struct file *file)
1497 {
1498         struct debugfs_timings_state *p = file->private_data;
1499 
1500         kvm_put_kvm(p->vcpu->kvm);
1501         kfree(p);
1502         return 0;
1503 }
1504 
1505 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1506                                     size_t len, loff_t *ppos)
1507 {
1508         struct debugfs_timings_state *p = file->private_data;
1509         struct kvm_vcpu *vcpu = p->vcpu;
1510         char *s, *buf_end;
1511         struct kvmhv_tb_accumulator tb;
1512         u64 count;
1513         loff_t pos;
1514         ssize_t n;
1515         int i, loops;
1516         bool ok;
1517 
1518         if (!p->buflen) {
1519                 s = p->buf;
1520                 buf_end = s + sizeof(p->buf);
1521                 for (i = 0; i < N_TIMINGS; ++i) {
1522                         struct kvmhv_tb_accumulator *acc;
1523 
1524                         acc = (struct kvmhv_tb_accumulator *)
1525                                 ((unsigned long)vcpu + timings[i].offset);
1526                         ok = false;
1527                         for (loops = 0; loops < 1000; ++loops) {
1528                                 count = acc->seqcount;
1529                                 if (!(count & 1)) {
1530                                         smp_rmb();
1531                                         tb = *acc;
1532                                         smp_rmb();
1533                                         if (count == acc->seqcount) {
1534                                                 ok = true;
1535                                                 break;
1536                                         }
1537                                 }
1538                                 udelay(1);
1539                         }
1540                         if (!ok)
1541                                 snprintf(s, buf_end - s, "%s: stuck\n",
1542                                         timings[i].name);
1543                         else
1544                                 snprintf(s, buf_end - s,
1545                                         "%s: %llu %llu %llu %llu\n",
1546                                         timings[i].name, count / 2,
1547                                         tb_to_ns(tb.tb_total),
1548                                         tb_to_ns(tb.tb_min),
1549                                         tb_to_ns(tb.tb_max));
1550                         s += strlen(s);
1551                 }
1552                 p->buflen = s - p->buf;
1553         }
1554 
1555         pos = *ppos;
1556         if (pos >= p->buflen)
1557                 return 0;
1558         if (len > p->buflen - pos)
1559                 len = p->buflen - pos;
1560         n = copy_to_user(buf, p->buf + pos, len);
1561         if (n) {
1562                 if (n == len)
1563                         return -EFAULT;
1564                 len -= n;
1565         }
1566         *ppos = pos + len;
1567         return len;
1568 }
1569 
1570 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1571                                      size_t len, loff_t *ppos)
1572 {
1573         return -EACCES;
1574 }
1575 
1576 static const struct file_operations debugfs_timings_ops = {
1577         .owner   = THIS_MODULE,
1578         .open    = debugfs_timings_open,
1579         .release = debugfs_timings_release,
1580         .read    = debugfs_timings_read,
1581         .write   = debugfs_timings_write,
1582         .llseek  = generic_file_llseek,
1583 };
1584 
1585 /* Create a debugfs directory for the vcpu */
1586 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1587 {
1588         char buf[16];
1589         struct kvm *kvm = vcpu->kvm;
1590 
1591         snprintf(buf, sizeof(buf), "vcpu%u", id);
1592         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1593                 return;
1594         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1595         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1596                 return;
1597         vcpu->arch.debugfs_timings =
1598                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1599                                     vcpu, &debugfs_timings_ops);
1600 }
1601 
1602 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1603 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1604 {
1605 }
1606 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1607 
1608 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1609                                                    unsigned int id)
1610 {
1611         struct kvm_vcpu *vcpu;
1612         int err = -EINVAL;
1613         int core;
1614         struct kvmppc_vcore *vcore;
1615 
1616         core = id / threads_per_subcore;
1617         if (core >= KVM_MAX_VCORES)
1618                 goto out;
1619 
1620         err = -ENOMEM;
1621         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1622         if (!vcpu)
1623                 goto out;
1624 
1625         err = kvm_vcpu_init(vcpu, kvm, id);
1626         if (err)
1627                 goto free_vcpu;
1628 
1629         vcpu->arch.shared = &vcpu->arch.shregs;
1630 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1631         /*
1632          * The shared struct is never shared on HV,
1633          * so we can always use host endianness
1634          */
1635 #ifdef __BIG_ENDIAN__
1636         vcpu->arch.shared_big_endian = true;
1637 #else
1638         vcpu->arch.shared_big_endian = false;
1639 #endif
1640 #endif
1641         vcpu->arch.mmcr[0] = MMCR0_FC;
1642         vcpu->arch.ctrl = CTRL_RUNLATCH;
1643         /* default to host PVR, since we can't spoof it */
1644         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1645         spin_lock_init(&vcpu->arch.vpa_update_lock);
1646         spin_lock_init(&vcpu->arch.tbacct_lock);
1647         vcpu->arch.busy_preempt = TB_NIL;
1648         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1649 
1650         kvmppc_mmu_book3s_hv_init(vcpu);
1651 
1652         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1653 
1654         init_waitqueue_head(&vcpu->arch.cpu_run);
1655 
1656         mutex_lock(&kvm->lock);
1657         vcore = kvm->arch.vcores[core];
1658         if (!vcore) {
1659                 vcore = kvmppc_vcore_create(kvm, core);
1660                 kvm->arch.vcores[core] = vcore;
1661                 kvm->arch.online_vcores++;
1662         }
1663         mutex_unlock(&kvm->lock);
1664 
1665         if (!vcore)
1666                 goto free_vcpu;
1667 
1668         spin_lock(&vcore->lock);
1669         ++vcore->num_threads;
1670         spin_unlock(&vcore->lock);
1671         vcpu->arch.vcore = vcore;
1672         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1673         vcpu->arch.thread_cpu = -1;
1674 
1675         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1676         kvmppc_sanity_check(vcpu);
1677 
1678         debugfs_vcpu_init(vcpu, id);
1679 
1680         return vcpu;
1681 
1682 free_vcpu:
1683         kmem_cache_free(kvm_vcpu_cache, vcpu);
1684 out:
1685         return ERR_PTR(err);
1686 }
1687 
1688 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1689 {
1690         if (vpa->pinned_addr)
1691                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1692                                         vpa->dirty);
1693 }
1694 
1695 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1696 {
1697         spin_lock(&vcpu->arch.vpa_update_lock);
1698         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1699         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1700         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1701         spin_unlock(&vcpu->arch.vpa_update_lock);
1702         kvm_vcpu_uninit(vcpu);
1703         kmem_cache_free(kvm_vcpu_cache, vcpu);
1704 }
1705 
1706 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1707 {
1708         /* Indicate we want to get back into the guest */
1709         return 1;
1710 }
1711 
1712 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1713 {
1714         unsigned long dec_nsec, now;
1715 
1716         now = get_tb();
1717         if (now > vcpu->arch.dec_expires) {
1718                 /* decrementer has already gone negative */
1719                 kvmppc_core_queue_dec(vcpu);
1720                 kvmppc_core_prepare_to_enter(vcpu);
1721                 return;
1722         }
1723         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1724                    / tb_ticks_per_sec;
1725         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1726                       HRTIMER_MODE_REL);
1727         vcpu->arch.timer_running = 1;
1728 }
1729 
1730 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1731 {
1732         vcpu->arch.ceded = 0;
1733         if (vcpu->arch.timer_running) {
1734                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1735                 vcpu->arch.timer_running = 0;
1736         }
1737 }
1738 
1739 extern void __kvmppc_vcore_entry(void);
1740 
1741 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1742                                    struct kvm_vcpu *vcpu)
1743 {
1744         u64 now;
1745 
1746         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1747                 return;
1748         spin_lock_irq(&vcpu->arch.tbacct_lock);
1749         now = mftb();
1750         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1751                 vcpu->arch.stolen_logged;
1752         vcpu->arch.busy_preempt = now;
1753         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1754         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1755         --vc->n_runnable;
1756         list_del(&vcpu->arch.run_list);
1757 }
1758 
1759 static int kvmppc_grab_hwthread(int cpu)
1760 {
1761         struct paca_struct *tpaca;
1762         long timeout = 10000;
1763 
1764         tpaca = &paca[cpu];
1765 
1766         /* Ensure the thread won't go into the kernel if it wakes */
1767         tpaca->kvm_hstate.kvm_vcpu = NULL;
1768         tpaca->kvm_hstate.kvm_vcore = NULL;
1769         tpaca->kvm_hstate.napping = 0;
1770         smp_wmb();
1771         tpaca->kvm_hstate.hwthread_req = 1;
1772 
1773         /*
1774          * If the thread is already executing in the kernel (e.g. handling
1775          * a stray interrupt), wait for it to get back to nap mode.
1776          * The smp_mb() is to ensure that our setting of hwthread_req
1777          * is visible before we look at hwthread_state, so if this
1778          * races with the code at system_reset_pSeries and the thread
1779          * misses our setting of hwthread_req, we are sure to see its
1780          * setting of hwthread_state, and vice versa.
1781          */
1782         smp_mb();
1783         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1784                 if (--timeout <= 0) {
1785                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1786                         return -EBUSY;
1787                 }
1788                 udelay(1);
1789         }
1790         return 0;
1791 }
1792 
1793 static void kvmppc_release_hwthread(int cpu)
1794 {
1795         struct paca_struct *tpaca;
1796 
1797         tpaca = &paca[cpu];
1798         tpaca->kvm_hstate.hwthread_req = 0;
1799         tpaca->kvm_hstate.kvm_vcpu = NULL;
1800         tpaca->kvm_hstate.kvm_vcore = NULL;
1801         tpaca->kvm_hstate.kvm_split_mode = NULL;
1802 }
1803 
1804 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1805 {
1806         int cpu;
1807         struct paca_struct *tpaca;
1808         struct kvmppc_vcore *mvc = vc->master_vcore;
1809 
1810         cpu = vc->pcpu;
1811         if (vcpu) {
1812                 if (vcpu->arch.timer_running) {
1813                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1814                         vcpu->arch.timer_running = 0;
1815                 }
1816                 cpu += vcpu->arch.ptid;
1817                 vcpu->cpu = mvc->pcpu;
1818                 vcpu->arch.thread_cpu = cpu;
1819         }
1820         tpaca = &paca[cpu];
1821         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1822         tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1823         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1824         smp_wmb();
1825         tpaca->kvm_hstate.kvm_vcore = mvc;
1826         if (cpu != smp_processor_id())
1827                 kvmppc_ipi_thread(cpu);
1828 }
1829 
1830 static void kvmppc_wait_for_nap(void)
1831 {
1832         int cpu = smp_processor_id();
1833         int i, loops;
1834 
1835         for (loops = 0; loops < 1000000; ++loops) {
1836                 /*
1837                  * Check if all threads are finished.
1838                  * We set the vcore pointer when starting a thread
1839                  * and the thread clears it when finished, so we look
1840                  * for any threads that still have a non-NULL vcore ptr.
1841                  */
1842                 for (i = 1; i < threads_per_subcore; ++i)
1843                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
1844                                 break;
1845                 if (i == threads_per_subcore) {
1846                         HMT_medium();
1847                         return;
1848                 }
1849                 HMT_low();
1850         }
1851         HMT_medium();
1852         for (i = 1; i < threads_per_subcore; ++i)
1853                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1854                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1855 }
1856 
1857 /*
1858  * Check that we are on thread 0 and that any other threads in
1859  * this core are off-line.  Then grab the threads so they can't
1860  * enter the kernel.
1861  */
1862 static int on_primary_thread(void)
1863 {
1864         int cpu = smp_processor_id();
1865         int thr;
1866 
1867         /* Are we on a primary subcore? */
1868         if (cpu_thread_in_subcore(cpu))
1869                 return 0;
1870 
1871         thr = 0;
1872         while (++thr < threads_per_subcore)
1873                 if (cpu_online(cpu + thr))
1874                         return 0;
1875 
1876         /* Grab all hw threads so they can't go into the kernel */
1877         for (thr = 1; thr < threads_per_subcore; ++thr) {
1878                 if (kvmppc_grab_hwthread(cpu + thr)) {
1879                         /* Couldn't grab one; let the others go */
1880                         do {
1881                                 kvmppc_release_hwthread(cpu + thr);
1882                         } while (--thr > 0);
1883                         return 0;
1884                 }
1885         }
1886         return 1;
1887 }
1888 
1889 /*
1890  * A list of virtual cores for each physical CPU.
1891  * These are vcores that could run but their runner VCPU tasks are
1892  * (or may be) preempted.
1893  */
1894 struct preempted_vcore_list {
1895         struct list_head        list;
1896         spinlock_t              lock;
1897 };
1898 
1899 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1900 
1901 static void init_vcore_lists(void)
1902 {
1903         int cpu;
1904 
1905         for_each_possible_cpu(cpu) {
1906                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1907                 spin_lock_init(&lp->lock);
1908                 INIT_LIST_HEAD(&lp->list);
1909         }
1910 }
1911 
1912 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1913 {
1914         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1915 
1916         vc->vcore_state = VCORE_PREEMPT;
1917         vc->pcpu = smp_processor_id();
1918         if (vc->num_threads < threads_per_subcore) {
1919                 spin_lock(&lp->lock);
1920                 list_add_tail(&vc->preempt_list, &lp->list);
1921                 spin_unlock(&lp->lock);
1922         }
1923 
1924         /* Start accumulating stolen time */
1925         kvmppc_core_start_stolen(vc);
1926 }
1927 
1928 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1929 {
1930         struct preempted_vcore_list *lp;
1931 
1932         kvmppc_core_end_stolen(vc);
1933         if (!list_empty(&vc->preempt_list)) {
1934                 lp = &per_cpu(preempted_vcores, vc->pcpu);
1935                 spin_lock(&lp->lock);
1936                 list_del_init(&vc->preempt_list);
1937                 spin_unlock(&lp->lock);
1938         }
1939         vc->vcore_state = VCORE_INACTIVE;
1940 }
1941 
1942 /*
1943  * This stores information about the virtual cores currently
1944  * assigned to a physical core.
1945  */
1946 struct core_info {
1947         int             n_subcores;
1948         int             max_subcore_threads;
1949         int             total_threads;
1950         int             subcore_threads[MAX_SUBCORES];
1951         struct kvm      *subcore_vm[MAX_SUBCORES];
1952         struct list_head vcs[MAX_SUBCORES];
1953 };
1954 
1955 /*
1956  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1957  * respectively in 2-way micro-threading (split-core) mode.
1958  */
1959 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
1960 
1961 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
1962 {
1963         int sub;
1964 
1965         memset(cip, 0, sizeof(*cip));
1966         cip->n_subcores = 1;
1967         cip->max_subcore_threads = vc->num_threads;
1968         cip->total_threads = vc->num_threads;
1969         cip->subcore_threads[0] = vc->num_threads;
1970         cip->subcore_vm[0] = vc->kvm;
1971         for (sub = 0; sub < MAX_SUBCORES; ++sub)
1972                 INIT_LIST_HEAD(&cip->vcs[sub]);
1973         list_add_tail(&vc->preempt_list, &cip->vcs[0]);
1974 }
1975 
1976 static bool subcore_config_ok(int n_subcores, int n_threads)
1977 {
1978         /* Can only dynamically split if unsplit to begin with */
1979         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
1980                 return false;
1981         if (n_subcores > MAX_SUBCORES)
1982                 return false;
1983         if (n_subcores > 1) {
1984                 if (!(dynamic_mt_modes & 2))
1985                         n_subcores = 4;
1986                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
1987                         return false;
1988         }
1989 
1990         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
1991 }
1992 
1993 static void init_master_vcore(struct kvmppc_vcore *vc)
1994 {
1995         vc->master_vcore = vc;
1996         vc->entry_exit_map = 0;
1997         vc->in_guest = 0;
1998         vc->napping_threads = 0;
1999         vc->conferring_threads = 0;
2000 }
2001 
2002 /*
2003  * See if the existing subcores can be split into 3 (or fewer) subcores
2004  * of at most two threads each, so we can fit in another vcore.  This
2005  * assumes there are at most two subcores and at most 6 threads in total.
2006  */
2007 static bool can_split_piggybacked_subcores(struct core_info *cip)
2008 {
2009         int sub, new_sub;
2010         int large_sub = -1;
2011         int thr;
2012         int n_subcores = cip->n_subcores;
2013         struct kvmppc_vcore *vc, *vcnext;
2014         struct kvmppc_vcore *master_vc = NULL;
2015 
2016         for (sub = 0; sub < cip->n_subcores; ++sub) {
2017                 if (cip->subcore_threads[sub] <= 2)
2018                         continue;
2019                 if (large_sub >= 0)
2020                         return false;
2021                 large_sub = sub;
2022                 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2023                                       preempt_list);
2024                 if (vc->num_threads > 2)
2025                         return false;
2026                 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2027         }
2028         if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2029                 return false;
2030 
2031         /*
2032          * Seems feasible, so go through and move vcores to new subcores.
2033          * Note that when we have two or more vcores in one subcore,
2034          * all those vcores must have only one thread each.
2035          */
2036         new_sub = cip->n_subcores;
2037         thr = 0;
2038         sub = large_sub;
2039         list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2040                 if (thr >= 2) {
2041                         list_del(&vc->preempt_list);
2042                         list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2043                         /* vc->num_threads must be 1 */
2044                         if (++cip->subcore_threads[new_sub] == 1) {
2045                                 cip->subcore_vm[new_sub] = vc->kvm;
2046                                 init_master_vcore(vc);
2047                                 master_vc = vc;
2048                                 ++cip->n_subcores;
2049                         } else {
2050                                 vc->master_vcore = master_vc;
2051                                 ++new_sub;
2052                         }
2053                 }
2054                 thr += vc->num_threads;
2055         }
2056         cip->subcore_threads[large_sub] = 2;
2057         cip->max_subcore_threads = 2;
2058 
2059         return true;
2060 }
2061 
2062 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2063 {
2064         int n_threads = vc->num_threads;
2065         int sub;
2066 
2067         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2068                 return false;
2069 
2070         if (n_threads < cip->max_subcore_threads)
2071                 n_threads = cip->max_subcore_threads;
2072         if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2073                 cip->max_subcore_threads = n_threads;
2074         } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2075                    vc->num_threads <= 2) {
2076                 /*
2077                  * We may be able to fit another subcore in by
2078                  * splitting an existing subcore with 3 or 4
2079                  * threads into two 2-thread subcores, or one
2080                  * with 5 or 6 threads into three subcores.
2081                  * We can only do this if those subcores have
2082                  * piggybacked virtual cores.
2083                  */
2084                 if (!can_split_piggybacked_subcores(cip))
2085                         return false;
2086         } else {
2087                 return false;
2088         }
2089 
2090         sub = cip->n_subcores;
2091         ++cip->n_subcores;
2092         cip->total_threads += vc->num_threads;
2093         cip->subcore_threads[sub] = vc->num_threads;
2094         cip->subcore_vm[sub] = vc->kvm;
2095         init_master_vcore(vc);
2096         list_del(&vc->preempt_list);
2097         list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2098 
2099         return true;
2100 }
2101 
2102 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2103                                   struct core_info *cip, int sub)
2104 {
2105         struct kvmppc_vcore *vc;
2106         int n_thr;
2107 
2108         vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2109                               preempt_list);
2110 
2111         /* require same VM and same per-core reg values */
2112         if (pvc->kvm != vc->kvm ||
2113             pvc->tb_offset != vc->tb_offset ||
2114             pvc->pcr != vc->pcr ||
2115             pvc->lpcr != vc->lpcr)
2116                 return false;
2117 
2118         /* P8 guest with > 1 thread per core would see wrong TIR value */
2119         if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2120             (vc->num_threads > 1 || pvc->num_threads > 1))
2121                 return false;
2122 
2123         n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2124         if (n_thr > cip->max_subcore_threads) {
2125                 if (!subcore_config_ok(cip->n_subcores, n_thr))
2126                         return false;
2127                 cip->max_subcore_threads = n_thr;
2128         }
2129 
2130         cip->total_threads += pvc->num_threads;
2131         cip->subcore_threads[sub] = n_thr;
2132         pvc->master_vcore = vc;
2133         list_del(&pvc->preempt_list);
2134         list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2135 
2136         return true;
2137 }
2138 
2139 /*
2140  * Work out whether it is possible to piggyback the execution of
2141  * vcore *pvc onto the execution of the other vcores described in *cip.
2142  */
2143 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2144                           int target_threads)
2145 {
2146         int sub;
2147 
2148         if (cip->total_threads + pvc->num_threads > target_threads)
2149                 return false;
2150         for (sub = 0; sub < cip->n_subcores; ++sub)
2151                 if (cip->subcore_threads[sub] &&
2152                     can_piggyback_subcore(pvc, cip, sub))
2153                         return true;
2154 
2155         if (can_dynamic_split(pvc, cip))
2156                 return true;
2157 
2158         return false;
2159 }
2160 
2161 static void prepare_threads(struct kvmppc_vcore *vc)
2162 {
2163         struct kvm_vcpu *vcpu, *vnext;
2164 
2165         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2166                                  arch.run_list) {
2167                 if (signal_pending(vcpu->arch.run_task))
2168                         vcpu->arch.ret = -EINTR;
2169                 else if (vcpu->arch.vpa.update_pending ||
2170                          vcpu->arch.slb_shadow.update_pending ||
2171                          vcpu->arch.dtl.update_pending)
2172                         vcpu->arch.ret = RESUME_GUEST;
2173                 else
2174                         continue;
2175                 kvmppc_remove_runnable(vc, vcpu);
2176                 wake_up(&vcpu->arch.cpu_run);
2177         }
2178 }
2179 
2180 static void collect_piggybacks(struct core_info *cip, int target_threads)
2181 {
2182         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2183         struct kvmppc_vcore *pvc, *vcnext;
2184 
2185         spin_lock(&lp->lock);
2186         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2187                 if (!spin_trylock(&pvc->lock))
2188                         continue;
2189                 prepare_threads(pvc);
2190                 if (!pvc->n_runnable) {
2191                         list_del_init(&pvc->preempt_list);
2192                         if (pvc->runner == NULL) {
2193                                 pvc->vcore_state = VCORE_INACTIVE;
2194                                 kvmppc_core_end_stolen(pvc);
2195                         }
2196                         spin_unlock(&pvc->lock);
2197                         continue;
2198                 }
2199                 if (!can_piggyback(pvc, cip, target_threads)) {
2200                         spin_unlock(&pvc->lock);
2201                         continue;
2202                 }
2203                 kvmppc_core_end_stolen(pvc);
2204                 pvc->vcore_state = VCORE_PIGGYBACK;
2205                 if (cip->total_threads >= target_threads)
2206                         break;
2207         }
2208         spin_unlock(&lp->lock);
2209 }
2210 
2211 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2212 {
2213         int still_running = 0;
2214         u64 now;
2215         long ret;
2216         struct kvm_vcpu *vcpu, *vnext;
2217 
2218         spin_lock(&vc->lock);
2219         now = get_tb();
2220         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2221                                  arch.run_list) {
2222                 /* cancel pending dec exception if dec is positive */
2223                 if (now < vcpu->arch.dec_expires &&
2224                     kvmppc_core_pending_dec(vcpu))
2225                         kvmppc_core_dequeue_dec(vcpu);
2226 
2227                 trace_kvm_guest_exit(vcpu);
2228 
2229                 ret = RESUME_GUEST;
2230                 if (vcpu->arch.trap)
2231                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2232                                                     vcpu->arch.run_task);
2233 
2234                 vcpu->arch.ret = ret;
2235                 vcpu->arch.trap = 0;
2236 
2237                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2238                         if (vcpu->arch.pending_exceptions)
2239                                 kvmppc_core_prepare_to_enter(vcpu);
2240                         if (vcpu->arch.ceded)
2241                                 kvmppc_set_timer(vcpu);
2242                         else
2243                                 ++still_running;
2244                 } else {
2245                         kvmppc_remove_runnable(vc, vcpu);
2246                         wake_up(&vcpu->arch.cpu_run);
2247                 }
2248         }
2249         list_del_init(&vc->preempt_list);
2250         if (!is_master) {
2251                 if (still_running > 0) {
2252                         kvmppc_vcore_preempt(vc);
2253                 } else if (vc->runner) {
2254                         vc->vcore_state = VCORE_PREEMPT;
2255                         kvmppc_core_start_stolen(vc);
2256                 } else {
2257                         vc->vcore_state = VCORE_INACTIVE;
2258                 }
2259                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2260                         /* make sure there's a candidate runner awake */
2261                         vcpu = list_first_entry(&vc->runnable_threads,
2262                                                 struct kvm_vcpu, arch.run_list);
2263                         wake_up(&vcpu->arch.cpu_run);
2264                 }
2265         }
2266         spin_unlock(&vc->lock);
2267 }
2268 
2269 /*
2270  * Run a set of guest threads on a physical core.
2271  * Called with vc->lock held.
2272  */
2273 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2274 {
2275         struct kvm_vcpu *vcpu, *vnext;
2276         int i;
2277         int srcu_idx;
2278         struct core_info core_info;
2279         struct kvmppc_vcore *pvc, *vcnext;
2280         struct kvm_split_mode split_info, *sip;
2281         int split, subcore_size, active;
2282         int sub;
2283         bool thr0_done;
2284         unsigned long cmd_bit, stat_bit;
2285         int pcpu, thr;
2286         int target_threads;
2287 
2288         /*
2289          * Remove from the list any threads that have a signal pending
2290          * or need a VPA update done
2291          */
2292         prepare_threads(vc);
2293 
2294         /* if the runner is no longer runnable, let the caller pick a new one */
2295         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2296                 return;
2297 
2298         /*
2299          * Initialize *vc.
2300          */
2301         init_master_vcore(vc);
2302         vc->preempt_tb = TB_NIL;
2303 
2304         /*
2305          * Make sure we are running on primary threads, and that secondary
2306          * threads are offline.  Also check if the number of threads in this
2307          * guest are greater than the current system threads per guest.
2308          */
2309         if ((threads_per_core > 1) &&
2310             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2311                 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2312                                          arch.run_list) {
2313                         vcpu->arch.ret = -EBUSY;
2314                         kvmppc_remove_runnable(vc, vcpu);
2315                         wake_up(&vcpu->arch.cpu_run);
2316                 }
2317                 goto out;
2318         }
2319 
2320         /*
2321          * See if we could run any other vcores on the physical core
2322          * along with this one.
2323          */
2324         init_core_info(&core_info, vc);
2325         pcpu = smp_processor_id();
2326         target_threads = threads_per_subcore;
2327         if (target_smt_mode && target_smt_mode < target_threads)
2328                 target_threads = target_smt_mode;
2329         if (vc->num_threads < target_threads)
2330                 collect_piggybacks(&core_info, target_threads);
2331 
2332         /* Decide on micro-threading (split-core) mode */
2333         subcore_size = threads_per_subcore;
2334         cmd_bit = stat_bit = 0;
2335         split = core_info.n_subcores;
2336         sip = NULL;
2337         if (split > 1) {
2338                 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2339                 if (split == 2 && (dynamic_mt_modes & 2)) {
2340                         cmd_bit = HID0_POWER8_1TO2LPAR;
2341                         stat_bit = HID0_POWER8_2LPARMODE;
2342                 } else {
2343                         split = 4;
2344                         cmd_bit = HID0_POWER8_1TO4LPAR;
2345                         stat_bit = HID0_POWER8_4LPARMODE;
2346                 }
2347                 subcore_size = MAX_SMT_THREADS / split;
2348                 sip = &split_info;
2349                 memset(&split_info, 0, sizeof(split_info));
2350                 split_info.rpr = mfspr(SPRN_RPR);
2351                 split_info.pmmar = mfspr(SPRN_PMMAR);
2352                 split_info.ldbar = mfspr(SPRN_LDBAR);
2353                 split_info.subcore_size = subcore_size;
2354                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2355                         split_info.master_vcs[sub] =
2356                                 list_first_entry(&core_info.vcs[sub],
2357                                         struct kvmppc_vcore, preempt_list);
2358                 /* order writes to split_info before kvm_split_mode pointer */
2359                 smp_wmb();
2360         }
2361         pcpu = smp_processor_id();
2362         for (thr = 0; thr < threads_per_subcore; ++thr)
2363                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2364 
2365         /* Initiate micro-threading (split-core) if required */
2366         if (cmd_bit) {
2367                 unsigned long hid0 = mfspr(SPRN_HID0);
2368 
2369                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2370                 mb();
2371                 mtspr(SPRN_HID0, hid0);
2372                 isync();
2373                 for (;;) {
2374                         hid0 = mfspr(SPRN_HID0);
2375                         if (hid0 & stat_bit)
2376                                 break;
2377                         cpu_relax();
2378                 }
2379         }
2380 
2381         /* Start all the threads */
2382         active = 0;
2383         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2384                 thr = subcore_thread_map[sub];
2385                 thr0_done = false;
2386                 active |= 1 << thr;
2387                 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2388                         pvc->pcpu = pcpu + thr;
2389                         list_for_each_entry(vcpu, &pvc->runnable_threads,
2390                                             arch.run_list) {
2391                                 kvmppc_start_thread(vcpu, pvc);
2392                                 kvmppc_create_dtl_entry(vcpu, pvc);
2393                                 trace_kvm_guest_enter(vcpu);
2394                                 if (!vcpu->arch.ptid)
2395                                         thr0_done = true;
2396                                 active |= 1 << (thr + vcpu->arch.ptid);
2397                         }
2398                         /*
2399                          * We need to start the first thread of each subcore
2400                          * even if it doesn't have a vcpu.
2401                          */
2402                         if (pvc->master_vcore == pvc && !thr0_done)
2403                                 kvmppc_start_thread(NULL, pvc);
2404                         thr += pvc->num_threads;
2405                 }
2406         }
2407 
2408         /*
2409          * Ensure that split_info.do_nap is set after setting
2410          * the vcore pointer in the PACA of the secondaries.
2411          */
2412         smp_mb();
2413         if (cmd_bit)
2414                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2415 
2416         /*
2417          * When doing micro-threading, poke the inactive threads as well.
2418          * This gets them to the nap instruction after kvm_do_nap,
2419          * which reduces the time taken to unsplit later.
2420          */
2421         if (split > 1)
2422                 for (thr = 1; thr < threads_per_subcore; ++thr)
2423                         if (!(active & (1 << thr)))
2424                                 kvmppc_ipi_thread(pcpu + thr);
2425 
2426         vc->vcore_state = VCORE_RUNNING;
2427         preempt_disable();
2428 
2429         trace_kvmppc_run_core(vc, 0);
2430 
2431         for (sub = 0; sub < core_info.n_subcores; ++sub)
2432                 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2433                         spin_unlock(&pvc->lock);
2434 
2435         kvm_guest_enter();
2436 
2437         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2438 
2439         __kvmppc_vcore_entry();
2440 
2441         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2442 
2443         spin_lock(&vc->lock);
2444         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2445         vc->vcore_state = VCORE_EXITING;
2446 
2447         /* wait for secondary threads to finish writing their state to memory */
2448         kvmppc_wait_for_nap();
2449 
2450         /* Return to whole-core mode if we split the core earlier */
2451         if (split > 1) {
2452                 unsigned long hid0 = mfspr(SPRN_HID0);
2453                 unsigned long loops = 0;
2454 
2455                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2456                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2457                 mb();
2458                 mtspr(SPRN_HID0, hid0);
2459                 isync();
2460                 for (;;) {
2461                         hid0 = mfspr(SPRN_HID0);
2462                         if (!(hid0 & stat_bit))
2463                                 break;
2464                         cpu_relax();
2465                         ++loops;
2466                 }
2467                 split_info.do_nap = 0;
2468         }
2469 
2470         /* Let secondaries go back to the offline loop */
2471         for (i = 0; i < threads_per_subcore; ++i) {
2472                 kvmppc_release_hwthread(pcpu + i);
2473                 if (sip && sip->napped[i])
2474                         kvmppc_ipi_thread(pcpu + i);
2475         }
2476 
2477         spin_unlock(&vc->lock);
2478 
2479         /* make sure updates to secondary vcpu structs are visible now */
2480         smp_mb();
2481         kvm_guest_exit();
2482 
2483         for (sub = 0; sub < core_info.n_subcores; ++sub)
2484                 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2485                                          preempt_list)
2486                         post_guest_process(pvc, pvc == vc);
2487 
2488         spin_lock(&vc->lock);
2489         preempt_enable();
2490 
2491  out:
2492         vc->vcore_state = VCORE_INACTIVE;
2493         trace_kvmppc_run_core(vc, 1);
2494 }
2495 
2496 /*
2497  * Wait for some other vcpu thread to execute us, and
2498  * wake us up when we need to handle something in the host.
2499  */
2500 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2501                                  struct kvm_vcpu *vcpu, int wait_state)
2502 {
2503         DEFINE_WAIT(wait);
2504 
2505         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2506         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2507                 spin_unlock(&vc->lock);
2508                 schedule();
2509                 spin_lock(&vc->lock);
2510         }
2511         finish_wait(&vcpu->arch.cpu_run, &wait);
2512 }
2513 
2514 /*
2515  * All the vcpus in this vcore are idle, so wait for a decrementer
2516  * or external interrupt to one of the vcpus.  vc->lock is held.
2517  */
2518 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2519 {
2520         struct kvm_vcpu *vcpu;
2521         int do_sleep = 1;
2522 
2523         DEFINE_WAIT(wait);
2524 
2525         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2526 
2527         /*
2528          * Check one last time for pending exceptions and ceded state after
2529          * we put ourselves on the wait queue
2530          */
2531         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2532                 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2533                         do_sleep = 0;
2534                         break;
2535                 }
2536         }
2537 
2538         if (!do_sleep) {
2539                 finish_wait(&vc->wq, &wait);
2540                 return;
2541         }
2542 
2543         vc->vcore_state = VCORE_SLEEPING;
2544         trace_kvmppc_vcore_blocked(vc, 0);
2545         spin_unlock(&vc->lock);
2546         schedule();
2547         finish_wait(&vc->wq, &wait);
2548         spin_lock(&vc->lock);
2549         vc->vcore_state = VCORE_INACTIVE;
2550         trace_kvmppc_vcore_blocked(vc, 1);
2551 }
2552 
2553 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2554 {
2555         int n_ceded;
2556         struct kvmppc_vcore *vc;
2557         struct kvm_vcpu *v, *vn;
2558 
2559         trace_kvmppc_run_vcpu_enter(vcpu);
2560 
2561         kvm_run->exit_reason = 0;
2562         vcpu->arch.ret = RESUME_GUEST;
2563         vcpu->arch.trap = 0;
2564         kvmppc_update_vpas(vcpu);
2565 
2566         /*
2567          * Synchronize with other threads in this virtual core
2568          */
2569         vc = vcpu->arch.vcore;
2570         spin_lock(&vc->lock);
2571         vcpu->arch.ceded = 0;
2572         vcpu->arch.run_task = current;
2573         vcpu->arch.kvm_run = kvm_run;
2574         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2575         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2576         vcpu->arch.busy_preempt = TB_NIL;
2577         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2578         ++vc->n_runnable;
2579 
2580         /*
2581          * This happens the first time this is called for a vcpu.
2582          * If the vcore is already running, we may be able to start
2583          * this thread straight away and have it join in.
2584          */
2585         if (!signal_pending(current)) {
2586                 if (vc->vcore_state == VCORE_PIGGYBACK) {
2587                         struct kvmppc_vcore *mvc = vc->master_vcore;
2588                         if (spin_trylock(&mvc->lock)) {
2589                                 if (mvc->vcore_state == VCORE_RUNNING &&
2590                                     !VCORE_IS_EXITING(mvc)) {
2591                                         kvmppc_create_dtl_entry(vcpu, vc);
2592                                         kvmppc_start_thread(vcpu, vc);
2593                                         trace_kvm_guest_enter(vcpu);
2594                                 }
2595                                 spin_unlock(&mvc->lock);
2596                         }
2597                 } else if (vc->vcore_state == VCORE_RUNNING &&
2598                            !VCORE_IS_EXITING(vc)) {
2599                         kvmppc_create_dtl_entry(vcpu, vc);
2600                         kvmppc_start_thread(vcpu, vc);
2601                         trace_kvm_guest_enter(vcpu);
2602                 } else if (vc->vcore_state == VCORE_SLEEPING) {
2603                         wake_up(&vc->wq);
2604                 }
2605 
2606         }
2607 
2608         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2609                !signal_pending(current)) {
2610                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2611                         kvmppc_vcore_end_preempt(vc);
2612 
2613                 if (vc->vcore_state != VCORE_INACTIVE) {
2614                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2615                         continue;
2616                 }
2617                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2618                                          arch.run_list) {
2619                         kvmppc_core_prepare_to_enter(v);
2620                         if (signal_pending(v->arch.run_task)) {
2621                                 kvmppc_remove_runnable(vc, v);
2622                                 v->stat.signal_exits++;
2623                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2624                                 v->arch.ret = -EINTR;
2625                                 wake_up(&v->arch.cpu_run);
2626                         }
2627                 }
2628                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2629                         break;
2630                 n_ceded = 0;
2631                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2632                         if (!v->arch.pending_exceptions)
2633                                 n_ceded += v->arch.ceded;
2634                         else
2635                                 v->arch.ceded = 0;
2636                 }
2637                 vc->runner = vcpu;
2638                 if (n_ceded == vc->n_runnable) {
2639                         kvmppc_vcore_blocked(vc);
2640                 } else if (need_resched()) {
2641                         kvmppc_vcore_preempt(vc);
2642                         /* Let something else run */
2643                         cond_resched_lock(&vc->lock);
2644                         if (vc->vcore_state == VCORE_PREEMPT)
2645                                 kvmppc_vcore_end_preempt(vc);
2646                 } else {
2647                         kvmppc_run_core(vc);
2648                 }
2649                 vc->runner = NULL;
2650         }
2651 
2652         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2653                (vc->vcore_state == VCORE_RUNNING ||
2654                 vc->vcore_state == VCORE_EXITING ||
2655                 vc->vcore_state == VCORE_PIGGYBACK))
2656                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2657 
2658         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2659                 kvmppc_vcore_end_preempt(vc);
2660 
2661         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2662                 kvmppc_remove_runnable(vc, vcpu);
2663                 vcpu->stat.signal_exits++;
2664                 kvm_run->exit_reason = KVM_EXIT_INTR;
2665                 vcpu->arch.ret = -EINTR;
2666         }
2667 
2668         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2669                 /* Wake up some vcpu to run the core */
2670                 v = list_first_entry(&vc->runnable_threads,
2671                                      struct kvm_vcpu, arch.run_list);
2672                 wake_up(&v->arch.cpu_run);
2673         }
2674 
2675         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2676         spin_unlock(&vc->lock);
2677         return vcpu->arch.ret;
2678 }
2679 
2680 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2681 {
2682         int r;
2683         int srcu_idx;
2684 
2685         if (!vcpu->arch.sane) {
2686                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2687                 return -EINVAL;
2688         }
2689 
2690         kvmppc_core_prepare_to_enter(vcpu);
2691 
2692         /* No need to go into the guest when all we'll do is come back out */
2693         if (signal_pending(current)) {
2694                 run->exit_reason = KVM_EXIT_INTR;
2695                 return -EINTR;
2696         }
2697 
2698         atomic_inc(&vcpu->kvm->arch.vcpus_running);
2699         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2700         smp_mb();
2701 
2702         /* On the first time here, set up HTAB and VRMA */
2703         if (!vcpu->kvm->arch.hpte_setup_done) {
2704                 r = kvmppc_hv_setup_htab_rma(vcpu);
2705                 if (r)
2706                         goto out;
2707         }
2708 
2709         flush_fp_to_thread(current);
2710         flush_altivec_to_thread(current);
2711         flush_vsx_to_thread(current);
2712         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2713         vcpu->arch.pgdir = current->mm->pgd;
2714         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2715 
2716         do {
2717                 r = kvmppc_run_vcpu(run, vcpu);
2718 
2719                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2720                     !(vcpu->arch.shregs.msr & MSR_PR)) {
2721                         trace_kvm_hcall_enter(vcpu);
2722                         r = kvmppc_pseries_do_hcall(vcpu);
2723                         trace_kvm_hcall_exit(vcpu, r);
2724                         kvmppc_core_prepare_to_enter(vcpu);
2725                 } else if (r == RESUME_PAGE_FAULT) {
2726                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2727                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
2728                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2729                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2730                 }
2731         } while (is_kvmppc_resume_guest(r));
2732 
2733  out:
2734         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2735         atomic_dec(&vcpu->kvm->arch.vcpus_running);
2736         return r;
2737 }
2738 
2739 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2740                                      int linux_psize)
2741 {
2742         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2743 
2744         if (!def->shift)
2745                 return;
2746         (*sps)->page_shift = def->shift;
2747         (*sps)->slb_enc = def->sllp;
2748         (*sps)->enc[0].page_shift = def->shift;
2749         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2750         /*
2751          * Add 16MB MPSS support if host supports it
2752          */
2753         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2754                 (*sps)->enc[1].page_shift = 24;
2755                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2756         }
2757         (*sps)++;
2758 }
2759 
2760 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2761                                          struct kvm_ppc_smmu_info *info)
2762 {
2763         struct kvm_ppc_one_seg_page_size *sps;
2764 
2765         info->flags = KVM_PPC_PAGE_SIZES_REAL;
2766         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2767                 info->flags |= KVM_PPC_1T_SEGMENTS;
2768         info->slb_size = mmu_slb_size;
2769 
2770         /* We only support these sizes for now, and no muti-size segments */
2771         sps = &info->sps[0];
2772         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2773         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2774         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2775 
2776         return 0;
2777 }
2778 
2779 /*
2780  * Get (and clear) the dirty memory log for a memory slot.
2781  */
2782 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2783                                          struct kvm_dirty_log *log)
2784 {
2785         struct kvm_memslots *slots;
2786         struct kvm_memory_slot *memslot;
2787         int r;
2788         unsigned long n;
2789 
2790         mutex_lock(&kvm->slots_lock);
2791 
2792         r = -EINVAL;
2793         if (log->slot >= KVM_USER_MEM_SLOTS)
2794                 goto out;
2795 
2796         slots = kvm_memslots(kvm);
2797         memslot = id_to_memslot(slots, log->slot);
2798         r = -ENOENT;
2799         if (!memslot->dirty_bitmap)
2800                 goto out;
2801 
2802         n = kvm_dirty_bitmap_bytes(memslot);
2803         memset(memslot->dirty_bitmap, 0, n);
2804 
2805         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2806         if (r)
2807                 goto out;
2808 
2809         r = -EFAULT;
2810         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2811                 goto out;
2812 
2813         r = 0;
2814 out:
2815         mutex_unlock(&kvm->slots_lock);
2816         return r;
2817 }
2818 
2819 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2820                                         struct kvm_memory_slot *dont)
2821 {
2822         if (!dont || free->arch.rmap != dont->arch.rmap) {
2823                 vfree(free->arch.rmap);
2824                 free->arch.rmap = NULL;
2825         }
2826 }
2827 
2828 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2829                                          unsigned long npages)
2830 {
2831         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2832         if (!slot->arch.rmap)
2833                 return -ENOMEM;
2834 
2835         return 0;
2836 }
2837 
2838 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2839                                         struct kvm_memory_slot *memslot,
2840                                         const struct kvm_userspace_memory_region *mem)
2841 {
2842         return 0;
2843 }
2844 
2845 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2846                                 const struct kvm_userspace_memory_region *mem,
2847                                 const struct kvm_memory_slot *old,
2848                                 const struct kvm_memory_slot *new)
2849 {
2850         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2851         struct kvm_memslots *slots;
2852         struct kvm_memory_slot *memslot;
2853 
2854         if (npages && old->npages) {
2855                 /*
2856                  * If modifying a memslot, reset all the rmap dirty bits.
2857                  * If this is a new memslot, we don't need to do anything
2858                  * since the rmap array starts out as all zeroes,
2859                  * i.e. no pages are dirty.
2860                  */
2861                 slots = kvm_memslots(kvm);
2862                 memslot = id_to_memslot(slots, mem->slot);
2863                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2864         }
2865 }
2866 
2867 /*
2868  * Update LPCR values in kvm->arch and in vcores.
2869  * Caller must hold kvm->lock.
2870  */
2871 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2872 {
2873         long int i;
2874         u32 cores_done = 0;
2875 
2876         if ((kvm->arch.lpcr & mask) == lpcr)
2877                 return;
2878 
2879         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2880 
2881         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2882                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2883                 if (!vc)
2884                         continue;
2885                 spin_lock(&vc->lock);
2886                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2887                 spin_unlock(&vc->lock);
2888                 if (++cores_done >= kvm->arch.online_vcores)
2889                         break;
2890         }
2891 }
2892 
2893 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2894 {
2895         return;
2896 }
2897 
2898 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2899 {
2900         int err = 0;
2901         struct kvm *kvm = vcpu->kvm;
2902         unsigned long hva;
2903         struct kvm_memory_slot *memslot;
2904         struct vm_area_struct *vma;
2905         unsigned long lpcr = 0, senc;
2906         unsigned long psize, porder;
2907         int srcu_idx;
2908 
2909         mutex_lock(&kvm->lock);
2910         if (kvm->arch.hpte_setup_done)
2911                 goto out;       /* another vcpu beat us to it */
2912 
2913         /* Allocate hashed page table (if not done already) and reset it */
2914         if (!kvm->arch.hpt_virt) {
2915                 err = kvmppc_alloc_hpt(kvm, NULL);
2916                 if (err) {
2917                         pr_err("KVM: Couldn't alloc HPT\n");
2918                         goto out;
2919                 }
2920         }
2921 
2922         /* Look up the memslot for guest physical address 0 */
2923         srcu_idx = srcu_read_lock(&kvm->srcu);
2924         memslot = gfn_to_memslot(kvm, 0);
2925 
2926         /* We must have some memory at 0 by now */
2927         err = -EINVAL;
2928         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2929                 goto out_srcu;
2930 
2931         /* Look up the VMA for the start of this memory slot */
2932         hva = memslot->userspace_addr;
2933         down_read(&current->mm->mmap_sem);
2934         vma = find_vma(current->mm, hva);
2935         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2936                 goto up_out;
2937 
2938         psize = vma_kernel_pagesize(vma);
2939         porder = __ilog2(psize);
2940 
2941         up_read(&current->mm->mmap_sem);
2942 
2943         /* We can handle 4k, 64k or 16M pages in the VRMA */
2944         err = -EINVAL;
2945         if (!(psize == 0x1000 || psize == 0x10000 ||
2946               psize == 0x1000000))
2947                 goto out_srcu;
2948 
2949         /* Update VRMASD field in the LPCR */
2950         senc = slb_pgsize_encoding(psize);
2951         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2952                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2953         /* the -4 is to account for senc values starting at 0x10 */
2954         lpcr = senc << (LPCR_VRMASD_SH - 4);
2955 
2956         /* Create HPTEs in the hash page table for the VRMA */
2957         kvmppc_map_vrma(vcpu, memslot, porder);
2958 
2959         kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2960 
2961         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2962         smp_wmb();
2963         kvm->arch.hpte_setup_done = 1;
2964         err = 0;
2965  out_srcu:
2966         srcu_read_unlock(&kvm->srcu, srcu_idx);
2967  out:
2968         mutex_unlock(&kvm->lock);
2969         return err;
2970 
2971  up_out:
2972         up_read(&current->mm->mmap_sem);
2973         goto out_srcu;
2974 }
2975 
2976 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2977 {
2978         unsigned long lpcr, lpid;
2979         char buf[32];
2980 
2981         /* Allocate the guest's logical partition ID */
2982 
2983         lpid = kvmppc_alloc_lpid();
2984         if ((long)lpid < 0)
2985                 return -ENOMEM;
2986         kvm->arch.lpid = lpid;
2987 
2988         /*
2989          * Since we don't flush the TLB when tearing down a VM,
2990          * and this lpid might have previously been used,
2991          * make sure we flush on each core before running the new VM.
2992          */
2993         cpumask_setall(&kvm->arch.need_tlb_flush);
2994 
2995         /* Start out with the default set of hcalls enabled */
2996         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
2997                sizeof(kvm->arch.enabled_hcalls));
2998 
2999         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3000 
3001         /* Init LPCR for virtual RMA mode */
3002         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3003         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3004         lpcr &= LPCR_PECE | LPCR_LPES;
3005         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3006                 LPCR_VPM0 | LPCR_VPM1;
3007         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3008                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3009         /* On POWER8 turn on online bit to enable PURR/SPURR */
3010         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3011                 lpcr |= LPCR_ONL;
3012         kvm->arch.lpcr = lpcr;
3013 
3014         /*
3015          * Track that we now have a HV mode VM active. This blocks secondary
3016          * CPU threads from coming online.
3017          */
3018         kvm_hv_vm_activated();
3019 
3020         /*
3021          * Create a debugfs directory for the VM
3022          */
3023         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3024         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3025         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3026                 kvmppc_mmu_debugfs_init(kvm);
3027 
3028         return 0;
3029 }
3030 
3031 static void kvmppc_free_vcores(struct kvm *kvm)
3032 {
3033         long int i;
3034 
3035         for (i = 0; i < KVM_MAX_VCORES; ++i)
3036                 kfree(kvm->arch.vcores[i]);
3037         kvm->arch.online_vcores = 0;
3038 }
3039 
3040 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3041 {
3042         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3043 
3044         kvm_hv_vm_deactivated();
3045 
3046         kvmppc_free_vcores(kvm);
3047 
3048         kvmppc_free_hpt(kvm);
3049 }
3050 
3051 /* We don't need to emulate any privileged instructions or dcbz */
3052 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3053                                      unsigned int inst, int *advance)
3054 {
3055         return EMULATE_FAIL;
3056 }
3057 
3058 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3059                                         ulong spr_val)
3060 {
3061         return EMULATE_FAIL;
3062 }
3063 
3064 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3065                                         ulong *spr_val)
3066 {
3067         return EMULATE_FAIL;
3068 }
3069 
3070 static int kvmppc_core_check_processor_compat_hv(void)
3071 {
3072         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3073             !cpu_has_feature(CPU_FTR_ARCH_206))
3074                 return -EIO;
3075         return 0;
3076 }
3077 
3078 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3079                                  unsigned int ioctl, unsigned long arg)
3080 {
3081         struct kvm *kvm __maybe_unused = filp->private_data;
3082         void __user *argp = (void __user *)arg;
3083         long r;
3084 
3085         switch (ioctl) {
3086 
3087         case KVM_PPC_ALLOCATE_HTAB: {
3088                 u32 htab_order;
3089 
3090                 r = -EFAULT;
3091                 if (get_user(htab_order, (u32 __user *)argp))
3092                         break;
3093                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3094                 if (r)
3095                         break;
3096                 r = -EFAULT;
3097                 if (put_user(htab_order, (u32 __user *)argp))
3098                         break;
3099                 r = 0;
3100                 break;
3101         }
3102 
3103         case KVM_PPC_GET_HTAB_FD: {
3104                 struct kvm_get_htab_fd ghf;
3105 
3106                 r = -EFAULT;
3107                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3108                         break;
3109                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3110                 break;
3111         }
3112 
3113         default:
3114                 r = -ENOTTY;
3115         }
3116 
3117         return r;
3118 }
3119 
3120 /*
3121  * List of hcall numbers to enable by default.
3122  * For compatibility with old userspace, we enable by default
3123  * all hcalls that were implemented before the hcall-enabling
3124  * facility was added.  Note this list should not include H_RTAS.
3125  */
3126 static unsigned int default_hcall_list[] = {
3127         H_REMOVE,
3128         H_ENTER,
3129         H_READ,
3130         H_PROTECT,
3131         H_BULK_REMOVE,
3132         H_GET_TCE,
3133         H_PUT_TCE,
3134         H_SET_DABR,
3135         H_SET_XDABR,
3136         H_CEDE,
3137         H_PROD,
3138         H_CONFER,
3139         H_REGISTER_VPA,
3140 #ifdef CONFIG_KVM_XICS
3141         H_EOI,
3142         H_CPPR,
3143         H_IPI,
3144         H_IPOLL,
3145         H_XIRR,
3146         H_XIRR_X,
3147 #endif
3148         0
3149 };
3150 
3151 static void init_default_hcalls(void)
3152 {
3153         int i;
3154         unsigned int hcall;
3155 
3156         for (i = 0; default_hcall_list[i]; ++i) {
3157                 hcall = default_hcall_list[i];
3158                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3159                 __set_bit(hcall / 4, default_enabled_hcalls);
3160         }
3161 }
3162 
3163 static struct kvmppc_ops kvm_ops_hv = {
3164         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3165         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3166         .get_one_reg = kvmppc_get_one_reg_hv,
3167         .set_one_reg = kvmppc_set_one_reg_hv,
3168         .vcpu_load   = kvmppc_core_vcpu_load_hv,
3169         .vcpu_put    = kvmppc_core_vcpu_put_hv,
3170         .set_msr     = kvmppc_set_msr_hv,
3171         .vcpu_run    = kvmppc_vcpu_run_hv,
3172         .vcpu_create = kvmppc_core_vcpu_create_hv,
3173         .vcpu_free   = kvmppc_core_vcpu_free_hv,
3174         .check_requests = kvmppc_core_check_requests_hv,
3175         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3176         .flush_memslot  = kvmppc_core_flush_memslot_hv,
3177         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3178         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3179         .unmap_hva = kvm_unmap_hva_hv,
3180         .unmap_hva_range = kvm_unmap_hva_range_hv,
3181         .age_hva  = kvm_age_hva_hv,
3182         .test_age_hva = kvm_test_age_hva_hv,
3183         .set_spte_hva = kvm_set_spte_hva_hv,
3184         .mmu_destroy  = kvmppc_mmu_destroy_hv,
3185         .free_memslot = kvmppc_core_free_memslot_hv,
3186         .create_memslot = kvmppc_core_create_memslot_hv,
3187         .init_vm =  kvmppc_core_init_vm_hv,
3188         .destroy_vm = kvmppc_core_destroy_vm_hv,
3189         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3190         .emulate_op = kvmppc_core_emulate_op_hv,
3191         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3192         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3193         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3194         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3195         .hcall_implemented = kvmppc_hcall_impl_hv,
3196 };
3197 
3198 static int kvmppc_book3s_init_hv(void)
3199 {
3200         int r;
3201         /*
3202          * FIXME!! Do we need to check on all cpus ?
3203          */
3204         r = kvmppc_core_check_processor_compat_hv();
3205         if (r < 0)
3206                 return -ENODEV;
3207 
3208         kvm_ops_hv.owner = THIS_MODULE;
3209         kvmppc_hv_ops = &kvm_ops_hv;
3210 
3211         init_default_hcalls();
3212 
3213         init_vcore_lists();
3214 
3215         r = kvmppc_mmu_hv_init();
3216         return r;
3217 }
3218 
3219 static void kvmppc_book3s_exit_hv(void)
3220 {
3221         kvmppc_hv_ops = NULL;
3222 }
3223 
3224 module_init(kvmppc_book3s_init_hv);
3225 module_exit(kvmppc_book3s_exit_hv);
3226 MODULE_LICENSE("GPL");
3227 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3228 MODULE_ALIAS("devname:kvm");
3229 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp