~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/kvm/e500.c

Version: ~ [ linux-5.18 ] ~ [ linux-5.17.9 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.41 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.117 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.195 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.244 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.280 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.315 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
  3  *
  4  * Author: Yu Liu, <yu.liu@freescale.com>
  5  *
  6  * Description:
  7  * This file is derived from arch/powerpc/kvm/44x.c,
  8  * by Hollis Blanchard <hollisb@us.ibm.com>.
  9  *
 10  * This program is free software; you can redistribute it and/or modify
 11  * it under the terms of the GNU General Public License, version 2, as
 12  * published by the Free Software Foundation.
 13  */
 14 
 15 #include <linux/kvm_host.h>
 16 #include <linux/slab.h>
 17 #include <linux/err.h>
 18 #include <linux/export.h>
 19 #include <linux/module.h>
 20 #include <linux/miscdevice.h>
 21 
 22 #include <asm/reg.h>
 23 #include <asm/cputable.h>
 24 #include <asm/tlbflush.h>
 25 #include <asm/kvm_ppc.h>
 26 
 27 #include "../mm/mmu_decl.h"
 28 #include "booke.h"
 29 #include "e500.h"
 30 
 31 struct id {
 32         unsigned long val;
 33         struct id **pentry;
 34 };
 35 
 36 #define NUM_TIDS 256
 37 
 38 /*
 39  * This table provide mappings from:
 40  * (guestAS,guestTID,guestPR) --> ID of physical cpu
 41  * guestAS      [0..1]
 42  * guestTID     [0..255]
 43  * guestPR      [0..1]
 44  * ID           [1..255]
 45  * Each vcpu keeps one vcpu_id_table.
 46  */
 47 struct vcpu_id_table {
 48         struct id id[2][NUM_TIDS][2];
 49 };
 50 
 51 /*
 52  * This table provide reversed mappings of vcpu_id_table:
 53  * ID --> address of vcpu_id_table item.
 54  * Each physical core has one pcpu_id_table.
 55  */
 56 struct pcpu_id_table {
 57         struct id *entry[NUM_TIDS];
 58 };
 59 
 60 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
 61 
 62 /* This variable keeps last used shadow ID on local core.
 63  * The valid range of shadow ID is [1..255] */
 64 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
 65 
 66 /*
 67  * Allocate a free shadow id and setup a valid sid mapping in given entry.
 68  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
 69  *
 70  * The caller must have preemption disabled, and keep it that way until
 71  * it has finished with the returned shadow id (either written into the
 72  * TLB or arch.shadow_pid, or discarded).
 73  */
 74 static inline int local_sid_setup_one(struct id *entry)
 75 {
 76         unsigned long sid;
 77         int ret = -1;
 78 
 79         sid = __this_cpu_inc_return(pcpu_last_used_sid);
 80         if (sid < NUM_TIDS) {
 81                 __this_cpu_write(pcpu_sids.entry[sid], entry);
 82                 entry->val = sid;
 83                 entry->pentry = this_cpu_ptr(&pcpu_sids.entry[sid]);
 84                 ret = sid;
 85         }
 86 
 87         /*
 88          * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
 89          * the caller will invalidate everything and start over.
 90          *
 91          * sid > NUM_TIDS indicates a race, which we disable preemption to
 92          * avoid.
 93          */
 94         WARN_ON(sid > NUM_TIDS);
 95 
 96         return ret;
 97 }
 98 
 99 /*
100  * Check if given entry contain a valid shadow id mapping.
101  * An ID mapping is considered valid only if
102  * both vcpu and pcpu know this mapping.
103  *
104  * The caller must have preemption disabled, and keep it that way until
105  * it has finished with the returned shadow id (either written into the
106  * TLB or arch.shadow_pid, or discarded).
107  */
108 static inline int local_sid_lookup(struct id *entry)
109 {
110         if (entry && entry->val != 0 &&
111             __this_cpu_read(pcpu_sids.entry[entry->val]) == entry &&
112             entry->pentry == this_cpu_ptr(&pcpu_sids.entry[entry->val]))
113                 return entry->val;
114         return -1;
115 }
116 
117 /* Invalidate all id mappings on local core -- call with preempt disabled */
118 static inline void local_sid_destroy_all(void)
119 {
120         __this_cpu_write(pcpu_last_used_sid, 0);
121         memset(this_cpu_ptr(&pcpu_sids), 0, sizeof(pcpu_sids));
122 }
123 
124 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
125 {
126         vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
127         return vcpu_e500->idt;
128 }
129 
130 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
131 {
132         kfree(vcpu_e500->idt);
133         vcpu_e500->idt = NULL;
134 }
135 
136 /* Map guest pid to shadow.
137  * We use PID to keep shadow of current guest non-zero PID,
138  * and use PID1 to keep shadow of guest zero PID.
139  * So that guest tlbe with TID=0 can be accessed at any time */
140 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
141 {
142         preempt_disable();
143         vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
144                         get_cur_as(&vcpu_e500->vcpu),
145                         get_cur_pid(&vcpu_e500->vcpu),
146                         get_cur_pr(&vcpu_e500->vcpu), 1);
147         vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
148                         get_cur_as(&vcpu_e500->vcpu), 0,
149                         get_cur_pr(&vcpu_e500->vcpu), 1);
150         preempt_enable();
151 }
152 
153 /* Invalidate all mappings on vcpu */
154 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
155 {
156         memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
157 
158         /* Update shadow pid when mappings are changed */
159         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
160 }
161 
162 /* Invalidate one ID mapping on vcpu */
163 static inline void kvmppc_e500_id_table_reset_one(
164                                struct kvmppc_vcpu_e500 *vcpu_e500,
165                                int as, int pid, int pr)
166 {
167         struct vcpu_id_table *idt = vcpu_e500->idt;
168 
169         BUG_ON(as >= 2);
170         BUG_ON(pid >= NUM_TIDS);
171         BUG_ON(pr >= 2);
172 
173         idt->id[as][pid][pr].val = 0;
174         idt->id[as][pid][pr].pentry = NULL;
175 
176         /* Update shadow pid when mappings are changed */
177         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
178 }
179 
180 /*
181  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
182  * This function first lookup if a valid mapping exists,
183  * if not, then creates a new one.
184  *
185  * The caller must have preemption disabled, and keep it that way until
186  * it has finished with the returned shadow id (either written into the
187  * TLB or arch.shadow_pid, or discarded).
188  */
189 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
190                                  unsigned int as, unsigned int gid,
191                                  unsigned int pr, int avoid_recursion)
192 {
193         struct vcpu_id_table *idt = vcpu_e500->idt;
194         int sid;
195 
196         BUG_ON(as >= 2);
197         BUG_ON(gid >= NUM_TIDS);
198         BUG_ON(pr >= 2);
199 
200         sid = local_sid_lookup(&idt->id[as][gid][pr]);
201 
202         while (sid <= 0) {
203                 /* No mapping yet */
204                 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
205                 if (sid <= 0) {
206                         _tlbil_all();
207                         local_sid_destroy_all();
208                 }
209 
210                 /* Update shadow pid when mappings are changed */
211                 if (!avoid_recursion)
212                         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
213         }
214 
215         return sid;
216 }
217 
218 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
219                                       struct kvm_book3e_206_tlb_entry *gtlbe)
220 {
221         return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
222                                    get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
223 }
224 
225 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
226 {
227         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
228 
229         if (vcpu->arch.pid != pid) {
230                 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
231                 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
232         }
233 }
234 
235 /* gtlbe must not be mapped by more than one host tlbe */
236 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
237                            struct kvm_book3e_206_tlb_entry *gtlbe)
238 {
239         struct vcpu_id_table *idt = vcpu_e500->idt;
240         unsigned int pr, tid, ts;
241         int pid;
242         u32 val, eaddr;
243         unsigned long flags;
244 
245         ts = get_tlb_ts(gtlbe);
246         tid = get_tlb_tid(gtlbe);
247 
248         preempt_disable();
249 
250         /* One guest ID may be mapped to two shadow IDs */
251         for (pr = 0; pr < 2; pr++) {
252                 /*
253                  * The shadow PID can have a valid mapping on at most one
254                  * host CPU.  In the common case, it will be valid on this
255                  * CPU, in which case we do a local invalidation of the
256                  * specific address.
257                  *
258                  * If the shadow PID is not valid on the current host CPU,
259                  * we invalidate the entire shadow PID.
260                  */
261                 pid = local_sid_lookup(&idt->id[ts][tid][pr]);
262                 if (pid <= 0) {
263                         kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
264                         continue;
265                 }
266 
267                 /*
268                  * The guest is invalidating a 4K entry which is in a PID
269                  * that has a valid shadow mapping on this host CPU.  We
270                  * search host TLB to invalidate it's shadow TLB entry,
271                  * similar to __tlbil_va except that we need to look in AS1.
272                  */
273                 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
274                 eaddr = get_tlb_eaddr(gtlbe);
275 
276                 local_irq_save(flags);
277 
278                 mtspr(SPRN_MAS6, val);
279                 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
280                 val = mfspr(SPRN_MAS1);
281                 if (val & MAS1_VALID) {
282                         mtspr(SPRN_MAS1, val & ~MAS1_VALID);
283                         asm volatile("tlbwe");
284                 }
285 
286                 local_irq_restore(flags);
287         }
288 
289         preempt_enable();
290 }
291 
292 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
293 {
294         kvmppc_e500_id_table_reset_all(vcpu_e500);
295 }
296 
297 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
298 {
299         /* Recalc shadow pid since MSR changes */
300         kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
301 }
302 
303 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
304 {
305         kvmppc_booke_vcpu_load(vcpu, cpu);
306 
307         /* Shadow PID may be expired on local core */
308         kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
309 }
310 
311 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
312 {
313 #ifdef CONFIG_SPE
314         if (vcpu->arch.shadow_msr & MSR_SPE)
315                 kvmppc_vcpu_disable_spe(vcpu);
316 #endif
317 
318         kvmppc_booke_vcpu_put(vcpu);
319 }
320 
321 int kvmppc_core_check_processor_compat(void)
322 {
323         int r;
324 
325         if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
326                 r = 0;
327         else
328                 r = -ENOTSUPP;
329 
330         return r;
331 }
332 
333 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
334 {
335         struct kvm_book3e_206_tlb_entry *tlbe;
336 
337         /* Insert large initial mapping for guest. */
338         tlbe = get_entry(vcpu_e500, 1, 0);
339         tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
340         tlbe->mas2 = 0;
341         tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
342 
343         /* 4K map for serial output. Used by kernel wrapper. */
344         tlbe = get_entry(vcpu_e500, 1, 1);
345         tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
346         tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
347         tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
348 }
349 
350 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
351 {
352         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
353 
354         kvmppc_e500_tlb_setup(vcpu_e500);
355 
356         /* Registers init */
357         vcpu->arch.pvr = mfspr(SPRN_PVR);
358         vcpu_e500->svr = mfspr(SPRN_SVR);
359 
360         vcpu->arch.cpu_type = KVM_CPU_E500V2;
361 
362         return 0;
363 }
364 
365 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
366                                       struct kvm_sregs *sregs)
367 {
368         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
369 
370         sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
371                                KVM_SREGS_E_PM;
372         sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
373 
374         sregs->u.e.impl.fsl.features = 0;
375         sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
376         sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
377         sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
378 
379         sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
380         sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
381         sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
382         sregs->u.e.ivor_high[3] =
383                 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
384 
385         kvmppc_get_sregs_ivor(vcpu, sregs);
386         kvmppc_get_sregs_e500_tlb(vcpu, sregs);
387         return 0;
388 }
389 
390 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
391                                       struct kvm_sregs *sregs)
392 {
393         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
394         int ret;
395 
396         if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
397                 vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
398                 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
399                 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
400         }
401 
402         ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
403         if (ret < 0)
404                 return ret;
405 
406         if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
407                 return 0;
408 
409         if (sregs->u.e.features & KVM_SREGS_E_SPE) {
410                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
411                         sregs->u.e.ivor_high[0];
412                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
413                         sregs->u.e.ivor_high[1];
414                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
415                         sregs->u.e.ivor_high[2];
416         }
417 
418         if (sregs->u.e.features & KVM_SREGS_E_PM) {
419                 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
420                         sregs->u.e.ivor_high[3];
421         }
422 
423         return kvmppc_set_sregs_ivor(vcpu, sregs);
424 }
425 
426 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
427                                    union kvmppc_one_reg *val)
428 {
429         int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
430         return r;
431 }
432 
433 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
434                                    union kvmppc_one_reg *val)
435 {
436         int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
437         return r;
438 }
439 
440 static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
441                                                      unsigned int id)
442 {
443         struct kvmppc_vcpu_e500 *vcpu_e500;
444         struct kvm_vcpu *vcpu;
445         int err;
446 
447         vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
448         if (!vcpu_e500) {
449                 err = -ENOMEM;
450                 goto out;
451         }
452 
453         vcpu = &vcpu_e500->vcpu;
454         err = kvm_vcpu_init(vcpu, kvm, id);
455         if (err)
456                 goto free_vcpu;
457 
458         if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
459                 goto uninit_vcpu;
460 
461         err = kvmppc_e500_tlb_init(vcpu_e500);
462         if (err)
463                 goto uninit_id;
464 
465         vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
466         if (!vcpu->arch.shared)
467                 goto uninit_tlb;
468 
469         return vcpu;
470 
471 uninit_tlb:
472         kvmppc_e500_tlb_uninit(vcpu_e500);
473 uninit_id:
474         kvmppc_e500_id_table_free(vcpu_e500);
475 uninit_vcpu:
476         kvm_vcpu_uninit(vcpu);
477 free_vcpu:
478         kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
479 out:
480         return ERR_PTR(err);
481 }
482 
483 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
484 {
485         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
486 
487         free_page((unsigned long)vcpu->arch.shared);
488         kvmppc_e500_tlb_uninit(vcpu_e500);
489         kvmppc_e500_id_table_free(vcpu_e500);
490         kvm_vcpu_uninit(vcpu);
491         kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
492 }
493 
494 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
495 {
496         return 0;
497 }
498 
499 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
500 {
501 }
502 
503 static struct kvmppc_ops kvm_ops_e500 = {
504         .get_sregs = kvmppc_core_get_sregs_e500,
505         .set_sregs = kvmppc_core_set_sregs_e500,
506         .get_one_reg = kvmppc_get_one_reg_e500,
507         .set_one_reg = kvmppc_set_one_reg_e500,
508         .vcpu_load   = kvmppc_core_vcpu_load_e500,
509         .vcpu_put    = kvmppc_core_vcpu_put_e500,
510         .vcpu_create = kvmppc_core_vcpu_create_e500,
511         .vcpu_free   = kvmppc_core_vcpu_free_e500,
512         .mmu_destroy  = kvmppc_mmu_destroy_e500,
513         .init_vm = kvmppc_core_init_vm_e500,
514         .destroy_vm = kvmppc_core_destroy_vm_e500,
515         .emulate_op = kvmppc_core_emulate_op_e500,
516         .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
517         .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
518 };
519 
520 static int __init kvmppc_e500_init(void)
521 {
522         int r, i;
523         unsigned long ivor[3];
524         /* Process remaining handlers above the generic first 16 */
525         unsigned long *handler = &kvmppc_booke_handler_addr[16];
526         unsigned long handler_len;
527         unsigned long max_ivor = 0;
528 
529         r = kvmppc_core_check_processor_compat();
530         if (r)
531                 goto err_out;
532 
533         r = kvmppc_booke_init();
534         if (r)
535                 goto err_out;
536 
537         /* copy extra E500 exception handlers */
538         ivor[0] = mfspr(SPRN_IVOR32);
539         ivor[1] = mfspr(SPRN_IVOR33);
540         ivor[2] = mfspr(SPRN_IVOR34);
541         for (i = 0; i < 3; i++) {
542                 if (ivor[i] > ivor[max_ivor])
543                         max_ivor = i;
544 
545                 handler_len = handler[i + 1] - handler[i];
546                 memcpy((void *)kvmppc_booke_handlers + ivor[i],
547                        (void *)handler[i], handler_len);
548         }
549         handler_len = handler[max_ivor + 1] - handler[max_ivor];
550         flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
551                            ivor[max_ivor] + handler_len);
552 
553         r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
554         if (r)
555                 goto err_out;
556         kvm_ops_e500.owner = THIS_MODULE;
557         kvmppc_pr_ops = &kvm_ops_e500;
558 
559 err_out:
560         return r;
561 }
562 
563 static void __exit kvmppc_e500_exit(void)
564 {
565         kvmppc_pr_ops = NULL;
566         kvmppc_booke_exit();
567 }
568 
569 module_init(kvmppc_e500_init);
570 module_exit(kvmppc_e500_exit);
571 MODULE_ALIAS_MISCDEV(KVM_MINOR);
572 MODULE_ALIAS("devname:kvm");
573 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp