~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/powerpc/lib/sstep.c

Version: ~ [ linux-5.9 ] ~ [ linux-5.8.14 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.70 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.150 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.200 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.238 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.238 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Single-step support.
  4  *
  5  * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM
  6  */
  7 #include <linux/kernel.h>
  8 #include <linux/kprobes.h>
  9 #include <linux/ptrace.h>
 10 #include <linux/prefetch.h>
 11 #include <asm/sstep.h>
 12 #include <asm/processor.h>
 13 #include <linux/uaccess.h>
 14 #include <asm/cpu_has_feature.h>
 15 #include <asm/cputable.h>
 16 
 17 extern char system_call_common[];
 18 
 19 #ifdef CONFIG_PPC64
 20 /* Bits in SRR1 that are copied from MSR */
 21 #define MSR_MASK        0xffffffff87c0ffffUL
 22 #else
 23 #define MSR_MASK        0x87c0ffff
 24 #endif
 25 
 26 /* Bits in XER */
 27 #define XER_SO          0x80000000U
 28 #define XER_OV          0x40000000U
 29 #define XER_CA          0x20000000U
 30 #define XER_OV32        0x00080000U
 31 #define XER_CA32        0x00040000U
 32 
 33 #ifdef CONFIG_PPC_FPU
 34 /*
 35  * Functions in ldstfp.S
 36  */
 37 extern void get_fpr(int rn, double *p);
 38 extern void put_fpr(int rn, const double *p);
 39 extern void get_vr(int rn, __vector128 *p);
 40 extern void put_vr(int rn, __vector128 *p);
 41 extern void load_vsrn(int vsr, const void *p);
 42 extern void store_vsrn(int vsr, void *p);
 43 extern void conv_sp_to_dp(const float *sp, double *dp);
 44 extern void conv_dp_to_sp(const double *dp, float *sp);
 45 #endif
 46 
 47 #ifdef __powerpc64__
 48 /*
 49  * Functions in quad.S
 50  */
 51 extern int do_lq(unsigned long ea, unsigned long *regs);
 52 extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1);
 53 extern int do_lqarx(unsigned long ea, unsigned long *regs);
 54 extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1,
 55                     unsigned int *crp);
 56 #endif
 57 
 58 #ifdef __LITTLE_ENDIAN__
 59 #define IS_LE   1
 60 #define IS_BE   0
 61 #else
 62 #define IS_LE   0
 63 #define IS_BE   1
 64 #endif
 65 
 66 /*
 67  * Emulate the truncation of 64 bit values in 32-bit mode.
 68  */
 69 static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr,
 70                                                         unsigned long val)
 71 {
 72 #ifdef __powerpc64__
 73         if ((msr & MSR_64BIT) == 0)
 74                 val &= 0xffffffffUL;
 75 #endif
 76         return val;
 77 }
 78 
 79 /*
 80  * Determine whether a conditional branch instruction would branch.
 81  */
 82 static nokprobe_inline int branch_taken(unsigned int instr,
 83                                         const struct pt_regs *regs,
 84                                         struct instruction_op *op)
 85 {
 86         unsigned int bo = (instr >> 21) & 0x1f;
 87         unsigned int bi;
 88 
 89         if ((bo & 4) == 0) {
 90                 /* decrement counter */
 91                 op->type |= DECCTR;
 92                 if (((bo >> 1) & 1) ^ (regs->ctr == 1))
 93                         return 0;
 94         }
 95         if ((bo & 0x10) == 0) {
 96                 /* check bit from CR */
 97                 bi = (instr >> 16) & 0x1f;
 98                 if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1))
 99                         return 0;
100         }
101         return 1;
102 }
103 
104 static nokprobe_inline long address_ok(struct pt_regs *regs,
105                                        unsigned long ea, int nb)
106 {
107         if (!user_mode(regs))
108                 return 1;
109         if (__access_ok(ea, nb, USER_DS))
110                 return 1;
111         if (__access_ok(ea, 1, USER_DS))
112                 /* Access overlaps the end of the user region */
113                 regs->dar = USER_DS.seg;
114         else
115                 regs->dar = ea;
116         return 0;
117 }
118 
119 /*
120  * Calculate effective address for a D-form instruction
121  */
122 static nokprobe_inline unsigned long dform_ea(unsigned int instr,
123                                               const struct pt_regs *regs)
124 {
125         int ra;
126         unsigned long ea;
127 
128         ra = (instr >> 16) & 0x1f;
129         ea = (signed short) instr;              /* sign-extend */
130         if (ra)
131                 ea += regs->gpr[ra];
132 
133         return ea;
134 }
135 
136 #ifdef __powerpc64__
137 /*
138  * Calculate effective address for a DS-form instruction
139  */
140 static nokprobe_inline unsigned long dsform_ea(unsigned int instr,
141                                                const struct pt_regs *regs)
142 {
143         int ra;
144         unsigned long ea;
145 
146         ra = (instr >> 16) & 0x1f;
147         ea = (signed short) (instr & ~3);       /* sign-extend */
148         if (ra)
149                 ea += regs->gpr[ra];
150 
151         return ea;
152 }
153 
154 /*
155  * Calculate effective address for a DQ-form instruction
156  */
157 static nokprobe_inline unsigned long dqform_ea(unsigned int instr,
158                                                const struct pt_regs *regs)
159 {
160         int ra;
161         unsigned long ea;
162 
163         ra = (instr >> 16) & 0x1f;
164         ea = (signed short) (instr & ~0xf);     /* sign-extend */
165         if (ra)
166                 ea += regs->gpr[ra];
167 
168         return ea;
169 }
170 #endif /* __powerpc64 */
171 
172 /*
173  * Calculate effective address for an X-form instruction
174  */
175 static nokprobe_inline unsigned long xform_ea(unsigned int instr,
176                                               const struct pt_regs *regs)
177 {
178         int ra, rb;
179         unsigned long ea;
180 
181         ra = (instr >> 16) & 0x1f;
182         rb = (instr >> 11) & 0x1f;
183         ea = regs->gpr[rb];
184         if (ra)
185                 ea += regs->gpr[ra];
186 
187         return ea;
188 }
189 
190 /*
191  * Return the largest power of 2, not greater than sizeof(unsigned long),
192  * such that x is a multiple of it.
193  */
194 static nokprobe_inline unsigned long max_align(unsigned long x)
195 {
196         x |= sizeof(unsigned long);
197         return x & -x;          /* isolates rightmost bit */
198 }
199 
200 static nokprobe_inline unsigned long byterev_2(unsigned long x)
201 {
202         return ((x >> 8) & 0xff) | ((x & 0xff) << 8);
203 }
204 
205 static nokprobe_inline unsigned long byterev_4(unsigned long x)
206 {
207         return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) |
208                 ((x & 0xff00) << 8) | ((x & 0xff) << 24);
209 }
210 
211 #ifdef __powerpc64__
212 static nokprobe_inline unsigned long byterev_8(unsigned long x)
213 {
214         return (byterev_4(x) << 32) | byterev_4(x >> 32);
215 }
216 #endif
217 
218 static nokprobe_inline void do_byte_reverse(void *ptr, int nb)
219 {
220         switch (nb) {
221         case 2:
222                 *(u16 *)ptr = byterev_2(*(u16 *)ptr);
223                 break;
224         case 4:
225                 *(u32 *)ptr = byterev_4(*(u32 *)ptr);
226                 break;
227 #ifdef __powerpc64__
228         case 8:
229                 *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr);
230                 break;
231         case 16: {
232                 unsigned long *up = (unsigned long *)ptr;
233                 unsigned long tmp;
234                 tmp = byterev_8(up[0]);
235                 up[0] = byterev_8(up[1]);
236                 up[1] = tmp;
237                 break;
238         }
239 #endif
240         default:
241                 WARN_ON_ONCE(1);
242         }
243 }
244 
245 static nokprobe_inline int read_mem_aligned(unsigned long *dest,
246                                             unsigned long ea, int nb,
247                                             struct pt_regs *regs)
248 {
249         int err = 0;
250         unsigned long x = 0;
251 
252         switch (nb) {
253         case 1:
254                 err = __get_user(x, (unsigned char __user *) ea);
255                 break;
256         case 2:
257                 err = __get_user(x, (unsigned short __user *) ea);
258                 break;
259         case 4:
260                 err = __get_user(x, (unsigned int __user *) ea);
261                 break;
262 #ifdef __powerpc64__
263         case 8:
264                 err = __get_user(x, (unsigned long __user *) ea);
265                 break;
266 #endif
267         }
268         if (!err)
269                 *dest = x;
270         else
271                 regs->dar = ea;
272         return err;
273 }
274 
275 /*
276  * Copy from userspace to a buffer, using the largest possible
277  * aligned accesses, up to sizeof(long).
278  */
279 static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb,
280                                        struct pt_regs *regs)
281 {
282         int err = 0;
283         int c;
284 
285         for (; nb > 0; nb -= c) {
286                 c = max_align(ea);
287                 if (c > nb)
288                         c = max_align(nb);
289                 switch (c) {
290                 case 1:
291                         err = __get_user(*dest, (unsigned char __user *) ea);
292                         break;
293                 case 2:
294                         err = __get_user(*(u16 *)dest,
295                                          (unsigned short __user *) ea);
296                         break;
297                 case 4:
298                         err = __get_user(*(u32 *)dest,
299                                          (unsigned int __user *) ea);
300                         break;
301 #ifdef __powerpc64__
302                 case 8:
303                         err = __get_user(*(unsigned long *)dest,
304                                          (unsigned long __user *) ea);
305                         break;
306 #endif
307                 }
308                 if (err) {
309                         regs->dar = ea;
310                         return err;
311                 }
312                 dest += c;
313                 ea += c;
314         }
315         return 0;
316 }
317 
318 static nokprobe_inline int read_mem_unaligned(unsigned long *dest,
319                                               unsigned long ea, int nb,
320                                               struct pt_regs *regs)
321 {
322         union {
323                 unsigned long ul;
324                 u8 b[sizeof(unsigned long)];
325         } u;
326         int i;
327         int err;
328 
329         u.ul = 0;
330         i = IS_BE ? sizeof(unsigned long) - nb : 0;
331         err = copy_mem_in(&u.b[i], ea, nb, regs);
332         if (!err)
333                 *dest = u.ul;
334         return err;
335 }
336 
337 /*
338  * Read memory at address ea for nb bytes, return 0 for success
339  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
340  * If nb < sizeof(long), the result is right-justified on BE systems.
341  */
342 static int read_mem(unsigned long *dest, unsigned long ea, int nb,
343                               struct pt_regs *regs)
344 {
345         if (!address_ok(regs, ea, nb))
346                 return -EFAULT;
347         if ((ea & (nb - 1)) == 0)
348                 return read_mem_aligned(dest, ea, nb, regs);
349         return read_mem_unaligned(dest, ea, nb, regs);
350 }
351 NOKPROBE_SYMBOL(read_mem);
352 
353 static nokprobe_inline int write_mem_aligned(unsigned long val,
354                                              unsigned long ea, int nb,
355                                              struct pt_regs *regs)
356 {
357         int err = 0;
358 
359         switch (nb) {
360         case 1:
361                 err = __put_user(val, (unsigned char __user *) ea);
362                 break;
363         case 2:
364                 err = __put_user(val, (unsigned short __user *) ea);
365                 break;
366         case 4:
367                 err = __put_user(val, (unsigned int __user *) ea);
368                 break;
369 #ifdef __powerpc64__
370         case 8:
371                 err = __put_user(val, (unsigned long __user *) ea);
372                 break;
373 #endif
374         }
375         if (err)
376                 regs->dar = ea;
377         return err;
378 }
379 
380 /*
381  * Copy from a buffer to userspace, using the largest possible
382  * aligned accesses, up to sizeof(long).
383  */
384 static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb,
385                                         struct pt_regs *regs)
386 {
387         int err = 0;
388         int c;
389 
390         for (; nb > 0; nb -= c) {
391                 c = max_align(ea);
392                 if (c > nb)
393                         c = max_align(nb);
394                 switch (c) {
395                 case 1:
396                         err = __put_user(*dest, (unsigned char __user *) ea);
397                         break;
398                 case 2:
399                         err = __put_user(*(u16 *)dest,
400                                          (unsigned short __user *) ea);
401                         break;
402                 case 4:
403                         err = __put_user(*(u32 *)dest,
404                                          (unsigned int __user *) ea);
405                         break;
406 #ifdef __powerpc64__
407                 case 8:
408                         err = __put_user(*(unsigned long *)dest,
409                                          (unsigned long __user *) ea);
410                         break;
411 #endif
412                 }
413                 if (err) {
414                         regs->dar = ea;
415                         return err;
416                 }
417                 dest += c;
418                 ea += c;
419         }
420         return 0;
421 }
422 
423 static nokprobe_inline int write_mem_unaligned(unsigned long val,
424                                                unsigned long ea, int nb,
425                                                struct pt_regs *regs)
426 {
427         union {
428                 unsigned long ul;
429                 u8 b[sizeof(unsigned long)];
430         } u;
431         int i;
432 
433         u.ul = val;
434         i = IS_BE ? sizeof(unsigned long) - nb : 0;
435         return copy_mem_out(&u.b[i], ea, nb, regs);
436 }
437 
438 /*
439  * Write memory at address ea for nb bytes, return 0 for success
440  * or -EFAULT if an error occurred.  N.B. nb must be 1, 2, 4 or 8.
441  */
442 static int write_mem(unsigned long val, unsigned long ea, int nb,
443                                struct pt_regs *regs)
444 {
445         if (!address_ok(regs, ea, nb))
446                 return -EFAULT;
447         if ((ea & (nb - 1)) == 0)
448                 return write_mem_aligned(val, ea, nb, regs);
449         return write_mem_unaligned(val, ea, nb, regs);
450 }
451 NOKPROBE_SYMBOL(write_mem);
452 
453 #ifdef CONFIG_PPC_FPU
454 /*
455  * These access either the real FP register or the image in the
456  * thread_struct, depending on regs->msr & MSR_FP.
457  */
458 static int do_fp_load(struct instruction_op *op, unsigned long ea,
459                       struct pt_regs *regs, bool cross_endian)
460 {
461         int err, rn, nb;
462         union {
463                 int i;
464                 unsigned int u;
465                 float f;
466                 double d[2];
467                 unsigned long l[2];
468                 u8 b[2 * sizeof(double)];
469         } u;
470 
471         nb = GETSIZE(op->type);
472         if (!address_ok(regs, ea, nb))
473                 return -EFAULT;
474         rn = op->reg;
475         err = copy_mem_in(u.b, ea, nb, regs);
476         if (err)
477                 return err;
478         if (unlikely(cross_endian)) {
479                 do_byte_reverse(u.b, min(nb, 8));
480                 if (nb == 16)
481                         do_byte_reverse(&u.b[8], 8);
482         }
483         preempt_disable();
484         if (nb == 4) {
485                 if (op->type & FPCONV)
486                         conv_sp_to_dp(&u.f, &u.d[0]);
487                 else if (op->type & SIGNEXT)
488                         u.l[0] = u.i;
489                 else
490                         u.l[0] = u.u;
491         }
492         if (regs->msr & MSR_FP)
493                 put_fpr(rn, &u.d[0]);
494         else
495                 current->thread.TS_FPR(rn) = u.l[0];
496         if (nb == 16) {
497                 /* lfdp */
498                 rn |= 1;
499                 if (regs->msr & MSR_FP)
500                         put_fpr(rn, &u.d[1]);
501                 else
502                         current->thread.TS_FPR(rn) = u.l[1];
503         }
504         preempt_enable();
505         return 0;
506 }
507 NOKPROBE_SYMBOL(do_fp_load);
508 
509 static int do_fp_store(struct instruction_op *op, unsigned long ea,
510                        struct pt_regs *regs, bool cross_endian)
511 {
512         int rn, nb;
513         union {
514                 unsigned int u;
515                 float f;
516                 double d[2];
517                 unsigned long l[2];
518                 u8 b[2 * sizeof(double)];
519         } u;
520 
521         nb = GETSIZE(op->type);
522         if (!address_ok(regs, ea, nb))
523                 return -EFAULT;
524         rn = op->reg;
525         preempt_disable();
526         if (regs->msr & MSR_FP)
527                 get_fpr(rn, &u.d[0]);
528         else
529                 u.l[0] = current->thread.TS_FPR(rn);
530         if (nb == 4) {
531                 if (op->type & FPCONV)
532                         conv_dp_to_sp(&u.d[0], &u.f);
533                 else
534                         u.u = u.l[0];
535         }
536         if (nb == 16) {
537                 rn |= 1;
538                 if (regs->msr & MSR_FP)
539                         get_fpr(rn, &u.d[1]);
540                 else
541                         u.l[1] = current->thread.TS_FPR(rn);
542         }
543         preempt_enable();
544         if (unlikely(cross_endian)) {
545                 do_byte_reverse(u.b, min(nb, 8));
546                 if (nb == 16)
547                         do_byte_reverse(&u.b[8], 8);
548         }
549         return copy_mem_out(u.b, ea, nb, regs);
550 }
551 NOKPROBE_SYMBOL(do_fp_store);
552 #endif
553 
554 #ifdef CONFIG_ALTIVEC
555 /* For Altivec/VMX, no need to worry about alignment */
556 static nokprobe_inline int do_vec_load(int rn, unsigned long ea,
557                                        int size, struct pt_regs *regs,
558                                        bool cross_endian)
559 {
560         int err;
561         union {
562                 __vector128 v;
563                 u8 b[sizeof(__vector128)];
564         } u = {};
565 
566         if (!address_ok(regs, ea & ~0xfUL, 16))
567                 return -EFAULT;
568         /* align to multiple of size */
569         ea &= ~(size - 1);
570         err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs);
571         if (err)
572                 return err;
573         if (unlikely(cross_endian))
574                 do_byte_reverse(&u.b[ea & 0xf], size);
575         preempt_disable();
576         if (regs->msr & MSR_VEC)
577                 put_vr(rn, &u.v);
578         else
579                 current->thread.vr_state.vr[rn] = u.v;
580         preempt_enable();
581         return 0;
582 }
583 
584 static nokprobe_inline int do_vec_store(int rn, unsigned long ea,
585                                         int size, struct pt_regs *regs,
586                                         bool cross_endian)
587 {
588         union {
589                 __vector128 v;
590                 u8 b[sizeof(__vector128)];
591         } u;
592 
593         if (!address_ok(regs, ea & ~0xfUL, 16))
594                 return -EFAULT;
595         /* align to multiple of size */
596         ea &= ~(size - 1);
597 
598         preempt_disable();
599         if (regs->msr & MSR_VEC)
600                 get_vr(rn, &u.v);
601         else
602                 u.v = current->thread.vr_state.vr[rn];
603         preempt_enable();
604         if (unlikely(cross_endian))
605                 do_byte_reverse(&u.b[ea & 0xf], size);
606         return copy_mem_out(&u.b[ea & 0xf], ea, size, regs);
607 }
608 #endif /* CONFIG_ALTIVEC */
609 
610 #ifdef __powerpc64__
611 static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea,
612                                       int reg, bool cross_endian)
613 {
614         int err;
615 
616         if (!address_ok(regs, ea, 16))
617                 return -EFAULT;
618         /* if aligned, should be atomic */
619         if ((ea & 0xf) == 0) {
620                 err = do_lq(ea, &regs->gpr[reg]);
621         } else {
622                 err = read_mem(&regs->gpr[reg + IS_LE], ea, 8, regs);
623                 if (!err)
624                         err = read_mem(&regs->gpr[reg + IS_BE], ea + 8, 8, regs);
625         }
626         if (!err && unlikely(cross_endian))
627                 do_byte_reverse(&regs->gpr[reg], 16);
628         return err;
629 }
630 
631 static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea,
632                                        int reg, bool cross_endian)
633 {
634         int err;
635         unsigned long vals[2];
636 
637         if (!address_ok(regs, ea, 16))
638                 return -EFAULT;
639         vals[0] = regs->gpr[reg];
640         vals[1] = regs->gpr[reg + 1];
641         if (unlikely(cross_endian))
642                 do_byte_reverse(vals, 16);
643 
644         /* if aligned, should be atomic */
645         if ((ea & 0xf) == 0)
646                 return do_stq(ea, vals[0], vals[1]);
647 
648         err = write_mem(vals[IS_LE], ea, 8, regs);
649         if (!err)
650                 err = write_mem(vals[IS_BE], ea + 8, 8, regs);
651         return err;
652 }
653 #endif /* __powerpc64 */
654 
655 #ifdef CONFIG_VSX
656 void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg,
657                       const void *mem, bool rev)
658 {
659         int size, read_size;
660         int i, j;
661         const unsigned int *wp;
662         const unsigned short *hp;
663         const unsigned char *bp;
664 
665         size = GETSIZE(op->type);
666         reg->d[0] = reg->d[1] = 0;
667 
668         switch (op->element_size) {
669         case 16:
670                 /* whole vector; lxv[x] or lxvl[l] */
671                 if (size == 0)
672                         break;
673                 memcpy(reg, mem, size);
674                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
675                         rev = !rev;
676                 if (rev)
677                         do_byte_reverse(reg, 16);
678                 break;
679         case 8:
680                 /* scalar loads, lxvd2x, lxvdsx */
681                 read_size = (size >= 8) ? 8 : size;
682                 i = IS_LE ? 8 : 8 - read_size;
683                 memcpy(&reg->b[i], mem, read_size);
684                 if (rev)
685                         do_byte_reverse(&reg->b[i], 8);
686                 if (size < 8) {
687                         if (op->type & SIGNEXT) {
688                                 /* size == 4 is the only case here */
689                                 reg->d[IS_LE] = (signed int) reg->d[IS_LE];
690                         } else if (op->vsx_flags & VSX_FPCONV) {
691                                 preempt_disable();
692                                 conv_sp_to_dp(&reg->fp[1 + IS_LE],
693                                               &reg->dp[IS_LE]);
694                                 preempt_enable();
695                         }
696                 } else {
697                         if (size == 16) {
698                                 unsigned long v = *(unsigned long *)(mem + 8);
699                                 reg->d[IS_BE] = !rev ? v : byterev_8(v);
700                         } else if (op->vsx_flags & VSX_SPLAT)
701                                 reg->d[IS_BE] = reg->d[IS_LE];
702                 }
703                 break;
704         case 4:
705                 /* lxvw4x, lxvwsx */
706                 wp = mem;
707                 for (j = 0; j < size / 4; ++j) {
708                         i = IS_LE ? 3 - j : j;
709                         reg->w[i] = !rev ? *wp++ : byterev_4(*wp++);
710                 }
711                 if (op->vsx_flags & VSX_SPLAT) {
712                         u32 val = reg->w[IS_LE ? 3 : 0];
713                         for (; j < 4; ++j) {
714                                 i = IS_LE ? 3 - j : j;
715                                 reg->w[i] = val;
716                         }
717                 }
718                 break;
719         case 2:
720                 /* lxvh8x */
721                 hp = mem;
722                 for (j = 0; j < size / 2; ++j) {
723                         i = IS_LE ? 7 - j : j;
724                         reg->h[i] = !rev ? *hp++ : byterev_2(*hp++);
725                 }
726                 break;
727         case 1:
728                 /* lxvb16x */
729                 bp = mem;
730                 for (j = 0; j < size; ++j) {
731                         i = IS_LE ? 15 - j : j;
732                         reg->b[i] = *bp++;
733                 }
734                 break;
735         }
736 }
737 EXPORT_SYMBOL_GPL(emulate_vsx_load);
738 NOKPROBE_SYMBOL(emulate_vsx_load);
739 
740 void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg,
741                        void *mem, bool rev)
742 {
743         int size, write_size;
744         int i, j;
745         union vsx_reg buf;
746         unsigned int *wp;
747         unsigned short *hp;
748         unsigned char *bp;
749 
750         size = GETSIZE(op->type);
751 
752         switch (op->element_size) {
753         case 16:
754                 /* stxv, stxvx, stxvl, stxvll */
755                 if (size == 0)
756                         break;
757                 if (IS_LE && (op->vsx_flags & VSX_LDLEFT))
758                         rev = !rev;
759                 if (rev) {
760                         /* reverse 16 bytes */
761                         buf.d[0] = byterev_8(reg->d[1]);
762                         buf.d[1] = byterev_8(reg->d[0]);
763                         reg = &buf;
764                 }
765                 memcpy(mem, reg, size);
766                 break;
767         case 8:
768                 /* scalar stores, stxvd2x */
769                 write_size = (size >= 8) ? 8 : size;
770                 i = IS_LE ? 8 : 8 - write_size;
771                 if (size < 8 && op->vsx_flags & VSX_FPCONV) {
772                         buf.d[0] = buf.d[1] = 0;
773                         preempt_disable();
774                         conv_dp_to_sp(&reg->dp[IS_LE], &buf.fp[1 + IS_LE]);
775                         preempt_enable();
776                         reg = &buf;
777                 }
778                 memcpy(mem, &reg->b[i], write_size);
779                 if (size == 16)
780                         memcpy(mem + 8, &reg->d[IS_BE], 8);
781                 if (unlikely(rev)) {
782                         do_byte_reverse(mem, write_size);
783                         if (size == 16)
784                                 do_byte_reverse(mem + 8, 8);
785                 }
786                 break;
787         case 4:
788                 /* stxvw4x */
789                 wp = mem;
790                 for (j = 0; j < size / 4; ++j) {
791                         i = IS_LE ? 3 - j : j;
792                         *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]);
793                 }
794                 break;
795         case 2:
796                 /* stxvh8x */
797                 hp = mem;
798                 for (j = 0; j < size / 2; ++j) {
799                         i = IS_LE ? 7 - j : j;
800                         *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]);
801                 }
802                 break;
803         case 1:
804                 /* stvxb16x */
805                 bp = mem;
806                 for (j = 0; j < size; ++j) {
807                         i = IS_LE ? 15 - j : j;
808                         *bp++ = reg->b[i];
809                 }
810                 break;
811         }
812 }
813 EXPORT_SYMBOL_GPL(emulate_vsx_store);
814 NOKPROBE_SYMBOL(emulate_vsx_store);
815 
816 static nokprobe_inline int do_vsx_load(struct instruction_op *op,
817                                        unsigned long ea, struct pt_regs *regs,
818                                        bool cross_endian)
819 {
820         int reg = op->reg;
821         u8 mem[16];
822         union vsx_reg buf;
823         int size = GETSIZE(op->type);
824 
825         if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs))
826                 return -EFAULT;
827 
828         emulate_vsx_load(op, &buf, mem, cross_endian);
829         preempt_disable();
830         if (reg < 32) {
831                 /* FP regs + extensions */
832                 if (regs->msr & MSR_FP) {
833                         load_vsrn(reg, &buf);
834                 } else {
835                         current->thread.fp_state.fpr[reg][0] = buf.d[0];
836                         current->thread.fp_state.fpr[reg][1] = buf.d[1];
837                 }
838         } else {
839                 if (regs->msr & MSR_VEC)
840                         load_vsrn(reg, &buf);
841                 else
842                         current->thread.vr_state.vr[reg - 32] = buf.v;
843         }
844         preempt_enable();
845         return 0;
846 }
847 
848 static nokprobe_inline int do_vsx_store(struct instruction_op *op,
849                                         unsigned long ea, struct pt_regs *regs,
850                                         bool cross_endian)
851 {
852         int reg = op->reg;
853         u8 mem[16];
854         union vsx_reg buf;
855         int size = GETSIZE(op->type);
856 
857         if (!address_ok(regs, ea, size))
858                 return -EFAULT;
859 
860         preempt_disable();
861         if (reg < 32) {
862                 /* FP regs + extensions */
863                 if (regs->msr & MSR_FP) {
864                         store_vsrn(reg, &buf);
865                 } else {
866                         buf.d[0] = current->thread.fp_state.fpr[reg][0];
867                         buf.d[1] = current->thread.fp_state.fpr[reg][1];
868                 }
869         } else {
870                 if (regs->msr & MSR_VEC)
871                         store_vsrn(reg, &buf);
872                 else
873                         buf.v = current->thread.vr_state.vr[reg - 32];
874         }
875         preempt_enable();
876         emulate_vsx_store(op, &buf, mem, cross_endian);
877         return  copy_mem_out(mem, ea, size, regs);
878 }
879 #endif /* CONFIG_VSX */
880 
881 int emulate_dcbz(unsigned long ea, struct pt_regs *regs)
882 {
883         int err;
884         unsigned long i, size;
885 
886 #ifdef __powerpc64__
887         size = ppc64_caches.l1d.block_size;
888         if (!(regs->msr & MSR_64BIT))
889                 ea &= 0xffffffffUL;
890 #else
891         size = L1_CACHE_BYTES;
892 #endif
893         ea &= ~(size - 1);
894         if (!address_ok(regs, ea, size))
895                 return -EFAULT;
896         for (i = 0; i < size; i += sizeof(long)) {
897                 err = __put_user(0, (unsigned long __user *) (ea + i));
898                 if (err) {
899                         regs->dar = ea;
900                         return err;
901                 }
902         }
903         return 0;
904 }
905 NOKPROBE_SYMBOL(emulate_dcbz);
906 
907 #define __put_user_asmx(x, addr, err, op, cr)           \
908         __asm__ __volatile__(                           \
909                 "1:     " op " %2,0,%3\n"               \
910                 "       mfcr    %1\n"                   \
911                 "2:\n"                                  \
912                 ".section .fixup,\"ax\"\n"              \
913                 "3:     li      %0,%4\n"                \
914                 "       b       2b\n"                   \
915                 ".previous\n"                           \
916                 EX_TABLE(1b, 3b)                        \
917                 : "=r" (err), "=r" (cr)                 \
918                 : "r" (x), "r" (addr), "i" (-EFAULT), "" (err))
919 
920 #define __get_user_asmx(x, addr, err, op)               \
921         __asm__ __volatile__(                           \
922                 "1:     "op" %1,0,%2\n"                 \
923                 "2:\n"                                  \
924                 ".section .fixup,\"ax\"\n"              \
925                 "3:     li      %0,%3\n"                \
926                 "       b       2b\n"                   \
927                 ".previous\n"                           \
928                 EX_TABLE(1b, 3b)                        \
929                 : "=r" (err), "=r" (x)                  \
930                 : "r" (addr), "i" (-EFAULT), "" (err))
931 
932 #define __cacheop_user_asmx(addr, err, op)              \
933         __asm__ __volatile__(                           \
934                 "1:     "op" 0,%1\n"                    \
935                 "2:\n"                                  \
936                 ".section .fixup,\"ax\"\n"              \
937                 "3:     li      %0,%3\n"                \
938                 "       b       2b\n"                   \
939                 ".previous\n"                           \
940                 EX_TABLE(1b, 3b)                        \
941                 : "=r" (err)                            \
942                 : "r" (addr), "i" (-EFAULT), "" (err))
943 
944 static nokprobe_inline void set_cr0(const struct pt_regs *regs,
945                                     struct instruction_op *op)
946 {
947         long val = op->val;
948 
949         op->type |= SETCC;
950         op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000);
951 #ifdef __powerpc64__
952         if (!(regs->msr & MSR_64BIT))
953                 val = (int) val;
954 #endif
955         if (val < 0)
956                 op->ccval |= 0x80000000;
957         else if (val > 0)
958                 op->ccval |= 0x40000000;
959         else
960                 op->ccval |= 0x20000000;
961 }
962 
963 static nokprobe_inline void set_ca32(struct instruction_op *op, bool val)
964 {
965         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
966                 if (val)
967                         op->xerval |= XER_CA32;
968                 else
969                         op->xerval &= ~XER_CA32;
970         }
971 }
972 
973 static nokprobe_inline void add_with_carry(const struct pt_regs *regs,
974                                      struct instruction_op *op, int rd,
975                                      unsigned long val1, unsigned long val2,
976                                      unsigned long carry_in)
977 {
978         unsigned long val = val1 + val2;
979 
980         if (carry_in)
981                 ++val;
982         op->type = COMPUTE + SETREG + SETXER;
983         op->reg = rd;
984         op->val = val;
985 #ifdef __powerpc64__
986         if (!(regs->msr & MSR_64BIT)) {
987                 val = (unsigned int) val;
988                 val1 = (unsigned int) val1;
989         }
990 #endif
991         op->xerval = regs->xer;
992         if (val < val1 || (carry_in && val == val1))
993                 op->xerval |= XER_CA;
994         else
995                 op->xerval &= ~XER_CA;
996 
997         set_ca32(op, (unsigned int)val < (unsigned int)val1 ||
998                         (carry_in && (unsigned int)val == (unsigned int)val1));
999 }
1000 
1001 static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs,
1002                                           struct instruction_op *op,
1003                                           long v1, long v2, int crfld)
1004 {
1005         unsigned int crval, shift;
1006 
1007         op->type = COMPUTE + SETCC;
1008         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1009         if (v1 < v2)
1010                 crval |= 8;
1011         else if (v1 > v2)
1012                 crval |= 4;
1013         else
1014                 crval |= 2;
1015         shift = (7 - crfld) * 4;
1016         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1017 }
1018 
1019 static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs,
1020                                             struct instruction_op *op,
1021                                             unsigned long v1,
1022                                             unsigned long v2, int crfld)
1023 {
1024         unsigned int crval, shift;
1025 
1026         op->type = COMPUTE + SETCC;
1027         crval = (regs->xer >> 31) & 1;          /* get SO bit */
1028         if (v1 < v2)
1029                 crval |= 8;
1030         else if (v1 > v2)
1031                 crval |= 4;
1032         else
1033                 crval |= 2;
1034         shift = (7 - crfld) * 4;
1035         op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift);
1036 }
1037 
1038 static nokprobe_inline void do_cmpb(const struct pt_regs *regs,
1039                                     struct instruction_op *op,
1040                                     unsigned long v1, unsigned long v2)
1041 {
1042         unsigned long long out_val, mask;
1043         int i;
1044 
1045         out_val = 0;
1046         for (i = 0; i < 8; i++) {
1047                 mask = 0xffUL << (i * 8);
1048                 if ((v1 & mask) == (v2 & mask))
1049                         out_val |= mask;
1050         }
1051         op->val = out_val;
1052 }
1053 
1054 /*
1055  * The size parameter is used to adjust the equivalent popcnt instruction.
1056  * popcntb = 8, popcntw = 32, popcntd = 64
1057  */
1058 static nokprobe_inline void do_popcnt(const struct pt_regs *regs,
1059                                       struct instruction_op *op,
1060                                       unsigned long v1, int size)
1061 {
1062         unsigned long long out = v1;
1063 
1064         out -= (out >> 1) & 0x5555555555555555ULL;
1065         out = (0x3333333333333333ULL & out) +
1066               (0x3333333333333333ULL & (out >> 2));
1067         out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1068 
1069         if (size == 8) {        /* popcntb */
1070                 op->val = out;
1071                 return;
1072         }
1073         out += out >> 8;
1074         out += out >> 16;
1075         if (size == 32) {       /* popcntw */
1076                 op->val = out & 0x0000003f0000003fULL;
1077                 return;
1078         }
1079 
1080         out = (out + (out >> 32)) & 0x7f;
1081         op->val = out;  /* popcntd */
1082 }
1083 
1084 #ifdef CONFIG_PPC64
1085 static nokprobe_inline void do_bpermd(const struct pt_regs *regs,
1086                                       struct instruction_op *op,
1087                                       unsigned long v1, unsigned long v2)
1088 {
1089         unsigned char perm, idx;
1090         unsigned int i;
1091 
1092         perm = 0;
1093         for (i = 0; i < 8; i++) {
1094                 idx = (v1 >> (i * 8)) & 0xff;
1095                 if (idx < 64)
1096                         if (v2 & PPC_BIT(idx))
1097                                 perm |= 1 << i;
1098         }
1099         op->val = perm;
1100 }
1101 #endif /* CONFIG_PPC64 */
1102 /*
1103  * The size parameter adjusts the equivalent prty instruction.
1104  * prtyw = 32, prtyd = 64
1105  */
1106 static nokprobe_inline void do_prty(const struct pt_regs *regs,
1107                                     struct instruction_op *op,
1108                                     unsigned long v, int size)
1109 {
1110         unsigned long long res = v ^ (v >> 8);
1111 
1112         res ^= res >> 16;
1113         if (size == 32) {               /* prtyw */
1114                 op->val = res & 0x0000000100000001ULL;
1115                 return;
1116         }
1117 
1118         res ^= res >> 32;
1119         op->val = res & 1;      /*prtyd */
1120 }
1121 
1122 static nokprobe_inline int trap_compare(long v1, long v2)
1123 {
1124         int ret = 0;
1125 
1126         if (v1 < v2)
1127                 ret |= 0x10;
1128         else if (v1 > v2)
1129                 ret |= 0x08;
1130         else
1131                 ret |= 0x04;
1132         if ((unsigned long)v1 < (unsigned long)v2)
1133                 ret |= 0x02;
1134         else if ((unsigned long)v1 > (unsigned long)v2)
1135                 ret |= 0x01;
1136         return ret;
1137 }
1138 
1139 /*
1140  * Elements of 32-bit rotate and mask instructions.
1141  */
1142 #define MASK32(mb, me)  ((0xffffffffUL >> (mb)) + \
1143                          ((signed long)-0x80000000L >> (me)) + ((me) >= (mb)))
1144 #ifdef __powerpc64__
1145 #define MASK64_L(mb)    (~0UL >> (mb))
1146 #define MASK64_R(me)    ((signed long)-0x8000000000000000L >> (me))
1147 #define MASK64(mb, me)  (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb)))
1148 #define DATA32(x)       (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32))
1149 #else
1150 #define DATA32(x)       (x)
1151 #endif
1152 #define ROTATE(x, n)    ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x))
1153 
1154 /*
1155  * Decode an instruction, and return information about it in *op
1156  * without changing *regs.
1157  * Integer arithmetic and logical instructions, branches, and barrier
1158  * instructions can be emulated just using the information in *op.
1159  *
1160  * Return value is 1 if the instruction can be emulated just by
1161  * updating *regs with the information in *op, -1 if we need the
1162  * GPRs but *regs doesn't contain the full register set, or 0
1163  * otherwise.
1164  */
1165 int analyse_instr(struct instruction_op *op, const struct pt_regs *regs,
1166                   unsigned int instr)
1167 {
1168         unsigned int opcode, ra, rb, rc, rd, spr, u;
1169         unsigned long int imm;
1170         unsigned long int val, val2;
1171         unsigned int mb, me, sh;
1172         long ival;
1173 
1174         op->type = COMPUTE;
1175 
1176         opcode = instr >> 26;
1177         switch (opcode) {
1178         case 16:        /* bc */
1179                 op->type = BRANCH;
1180                 imm = (signed short)(instr & 0xfffc);
1181                 if ((instr & 2) == 0)
1182                         imm += regs->nip;
1183                 op->val = truncate_if_32bit(regs->msr, imm);
1184                 if (instr & 1)
1185                         op->type |= SETLK;
1186                 if (branch_taken(instr, regs, op))
1187                         op->type |= BRTAKEN;
1188                 return 1;
1189 #ifdef CONFIG_PPC64
1190         case 17:        /* sc */
1191                 if ((instr & 0xfe2) == 2)
1192                         op->type = SYSCALL;
1193                 else
1194                         op->type = UNKNOWN;
1195                 return 0;
1196 #endif
1197         case 18:        /* b */
1198                 op->type = BRANCH | BRTAKEN;
1199                 imm = instr & 0x03fffffc;
1200                 if (imm & 0x02000000)
1201                         imm -= 0x04000000;
1202                 if ((instr & 2) == 0)
1203                         imm += regs->nip;
1204                 op->val = truncate_if_32bit(regs->msr, imm);
1205                 if (instr & 1)
1206                         op->type |= SETLK;
1207                 return 1;
1208         case 19:
1209                 switch ((instr >> 1) & 0x3ff) {
1210                 case 0:         /* mcrf */
1211                         op->type = COMPUTE + SETCC;
1212                         rd = 7 - ((instr >> 23) & 0x7);
1213                         ra = 7 - ((instr >> 18) & 0x7);
1214                         rd *= 4;
1215                         ra *= 4;
1216                         val = (regs->ccr >> ra) & 0xf;
1217                         op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd);
1218                         return 1;
1219 
1220                 case 16:        /* bclr */
1221                 case 528:       /* bcctr */
1222                         op->type = BRANCH;
1223                         imm = (instr & 0x400)? regs->ctr: regs->link;
1224                         op->val = truncate_if_32bit(regs->msr, imm);
1225                         if (instr & 1)
1226                                 op->type |= SETLK;
1227                         if (branch_taken(instr, regs, op))
1228                                 op->type |= BRTAKEN;
1229                         return 1;
1230 
1231                 case 18:        /* rfid, scary */
1232                         if (regs->msr & MSR_PR)
1233                                 goto priv;
1234                         op->type = RFI;
1235                         return 0;
1236 
1237                 case 150:       /* isync */
1238                         op->type = BARRIER | BARRIER_ISYNC;
1239                         return 1;
1240 
1241                 case 33:        /* crnor */
1242                 case 129:       /* crandc */
1243                 case 193:       /* crxor */
1244                 case 225:       /* crnand */
1245                 case 257:       /* crand */
1246                 case 289:       /* creqv */
1247                 case 417:       /* crorc */
1248                 case 449:       /* cror */
1249                         op->type = COMPUTE + SETCC;
1250                         ra = (instr >> 16) & 0x1f;
1251                         rb = (instr >> 11) & 0x1f;
1252                         rd = (instr >> 21) & 0x1f;
1253                         ra = (regs->ccr >> (31 - ra)) & 1;
1254                         rb = (regs->ccr >> (31 - rb)) & 1;
1255                         val = (instr >> (6 + ra * 2 + rb)) & 1;
1256                         op->ccval = (regs->ccr & ~(1UL << (31 - rd))) |
1257                                 (val << (31 - rd));
1258                         return 1;
1259                 }
1260                 break;
1261         case 31:
1262                 switch ((instr >> 1) & 0x3ff) {
1263                 case 598:       /* sync */
1264                         op->type = BARRIER + BARRIER_SYNC;
1265 #ifdef __powerpc64__
1266                         switch ((instr >> 21) & 3) {
1267                         case 1:         /* lwsync */
1268                                 op->type = BARRIER + BARRIER_LWSYNC;
1269                                 break;
1270                         case 2:         /* ptesync */
1271                                 op->type = BARRIER + BARRIER_PTESYNC;
1272                                 break;
1273                         }
1274 #endif
1275                         return 1;
1276 
1277                 case 854:       /* eieio */
1278                         op->type = BARRIER + BARRIER_EIEIO;
1279                         return 1;
1280                 }
1281                 break;
1282         }
1283 
1284         /* Following cases refer to regs->gpr[], so we need all regs */
1285         if (!FULL_REGS(regs))
1286                 return -1;
1287 
1288         rd = (instr >> 21) & 0x1f;
1289         ra = (instr >> 16) & 0x1f;
1290         rb = (instr >> 11) & 0x1f;
1291         rc = (instr >> 6) & 0x1f;
1292 
1293         switch (opcode) {
1294 #ifdef __powerpc64__
1295         case 2:         /* tdi */
1296                 if (rd & trap_compare(regs->gpr[ra], (short) instr))
1297                         goto trap;
1298                 return 1;
1299 #endif
1300         case 3:         /* twi */
1301                 if (rd & trap_compare((int)regs->gpr[ra], (short) instr))
1302                         goto trap;
1303                 return 1;
1304 
1305 #ifdef __powerpc64__
1306         case 4:
1307                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1308                         return -1;
1309 
1310                 switch (instr & 0x3f) {
1311                 case 48:        /* maddhd */
1312                         asm volatile(PPC_MADDHD(%0, %1, %2, %3) :
1313                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1314                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1315                         goto compute_done;
1316 
1317                 case 49:        /* maddhdu */
1318                         asm volatile(PPC_MADDHDU(%0, %1, %2, %3) :
1319                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1320                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1321                         goto compute_done;
1322 
1323                 case 51:        /* maddld */
1324                         asm volatile(PPC_MADDLD(%0, %1, %2, %3) :
1325                                      "=r" (op->val) : "r" (regs->gpr[ra]),
1326                                      "r" (regs->gpr[rb]), "r" (regs->gpr[rc]));
1327                         goto compute_done;
1328                 }
1329 
1330                 /*
1331                  * There are other instructions from ISA 3.0 with the same
1332                  * primary opcode which do not have emulation support yet.
1333                  */
1334                 return -1;
1335 #endif
1336 
1337         case 7:         /* mulli */
1338                 op->val = regs->gpr[ra] * (short) instr;
1339                 goto compute_done;
1340 
1341         case 8:         /* subfic */
1342                 imm = (short) instr;
1343                 add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1);
1344                 return 1;
1345 
1346         case 10:        /* cmpli */
1347                 imm = (unsigned short) instr;
1348                 val = regs->gpr[ra];
1349 #ifdef __powerpc64__
1350                 if ((rd & 1) == 0)
1351                         val = (unsigned int) val;
1352 #endif
1353                 do_cmp_unsigned(regs, op, val, imm, rd >> 2);
1354                 return 1;
1355 
1356         case 11:        /* cmpi */
1357                 imm = (short) instr;
1358                 val = regs->gpr[ra];
1359 #ifdef __powerpc64__
1360                 if ((rd & 1) == 0)
1361                         val = (int) val;
1362 #endif
1363                 do_cmp_signed(regs, op, val, imm, rd >> 2);
1364                 return 1;
1365 
1366         case 12:        /* addic */
1367                 imm = (short) instr;
1368                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1369                 return 1;
1370 
1371         case 13:        /* addic. */
1372                 imm = (short) instr;
1373                 add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0);
1374                 set_cr0(regs, op);
1375                 return 1;
1376 
1377         case 14:        /* addi */
1378                 imm = (short) instr;
1379                 if (ra)
1380                         imm += regs->gpr[ra];
1381                 op->val = imm;
1382                 goto compute_done;
1383 
1384         case 15:        /* addis */
1385                 imm = ((short) instr) << 16;
1386                 if (ra)
1387                         imm += regs->gpr[ra];
1388                 op->val = imm;
1389                 goto compute_done;
1390 
1391         case 19:
1392                 if (((instr >> 1) & 0x1f) == 2) {
1393                         /* addpcis */
1394                         imm = (short) (instr & 0xffc1); /* d0 + d2 fields */
1395                         imm |= (instr >> 15) & 0x3e;    /* d1 field */
1396                         op->val = regs->nip + (imm << 16) + 4;
1397                         goto compute_done;
1398                 }
1399                 op->type = UNKNOWN;
1400                 return 0;
1401 
1402         case 20:        /* rlwimi */
1403                 mb = (instr >> 6) & 0x1f;
1404                 me = (instr >> 1) & 0x1f;
1405                 val = DATA32(regs->gpr[rd]);
1406                 imm = MASK32(mb, me);
1407                 op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm);
1408                 goto logical_done;
1409 
1410         case 21:        /* rlwinm */
1411                 mb = (instr >> 6) & 0x1f;
1412                 me = (instr >> 1) & 0x1f;
1413                 val = DATA32(regs->gpr[rd]);
1414                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1415                 goto logical_done;
1416 
1417         case 23:        /* rlwnm */
1418                 mb = (instr >> 6) & 0x1f;
1419                 me = (instr >> 1) & 0x1f;
1420                 rb = regs->gpr[rb] & 0x1f;
1421                 val = DATA32(regs->gpr[rd]);
1422                 op->val = ROTATE(val, rb) & MASK32(mb, me);
1423                 goto logical_done;
1424 
1425         case 24:        /* ori */
1426                 op->val = regs->gpr[rd] | (unsigned short) instr;
1427                 goto logical_done_nocc;
1428 
1429         case 25:        /* oris */
1430                 imm = (unsigned short) instr;
1431                 op->val = regs->gpr[rd] | (imm << 16);
1432                 goto logical_done_nocc;
1433 
1434         case 26:        /* xori */
1435                 op->val = regs->gpr[rd] ^ (unsigned short) instr;
1436                 goto logical_done_nocc;
1437 
1438         case 27:        /* xoris */
1439                 imm = (unsigned short) instr;
1440                 op->val = regs->gpr[rd] ^ (imm << 16);
1441                 goto logical_done_nocc;
1442 
1443         case 28:        /* andi. */
1444                 op->val = regs->gpr[rd] & (unsigned short) instr;
1445                 set_cr0(regs, op);
1446                 goto logical_done_nocc;
1447 
1448         case 29:        /* andis. */
1449                 imm = (unsigned short) instr;
1450                 op->val = regs->gpr[rd] & (imm << 16);
1451                 set_cr0(regs, op);
1452                 goto logical_done_nocc;
1453 
1454 #ifdef __powerpc64__
1455         case 30:        /* rld* */
1456                 mb = ((instr >> 6) & 0x1f) | (instr & 0x20);
1457                 val = regs->gpr[rd];
1458                 if ((instr & 0x10) == 0) {
1459                         sh = rb | ((instr & 2) << 4);
1460                         val = ROTATE(val, sh);
1461                         switch ((instr >> 2) & 3) {
1462                         case 0:         /* rldicl */
1463                                 val &= MASK64_L(mb);
1464                                 break;
1465                         case 1:         /* rldicr */
1466                                 val &= MASK64_R(mb);
1467                                 break;
1468                         case 2:         /* rldic */
1469                                 val &= MASK64(mb, 63 - sh);
1470                                 break;
1471                         case 3:         /* rldimi */
1472                                 imm = MASK64(mb, 63 - sh);
1473                                 val = (regs->gpr[ra] & ~imm) |
1474                                         (val & imm);
1475                         }
1476                         op->val = val;
1477                         goto logical_done;
1478                 } else {
1479                         sh = regs->gpr[rb] & 0x3f;
1480                         val = ROTATE(val, sh);
1481                         switch ((instr >> 1) & 7) {
1482                         case 0:         /* rldcl */
1483                                 op->val = val & MASK64_L(mb);
1484                                 goto logical_done;
1485                         case 1:         /* rldcr */
1486                                 op->val = val & MASK64_R(mb);
1487                                 goto logical_done;
1488                         }
1489                 }
1490 #endif
1491                 op->type = UNKNOWN;     /* illegal instruction */
1492                 return 0;
1493 
1494         case 31:
1495                 /* isel occupies 32 minor opcodes */
1496                 if (((instr >> 1) & 0x1f) == 15) {
1497                         mb = (instr >> 6) & 0x1f; /* bc field */
1498                         val = (regs->ccr >> (31 - mb)) & 1;
1499                         val2 = (ra) ? regs->gpr[ra] : 0;
1500 
1501                         op->val = (val) ? val2 : regs->gpr[rb];
1502                         goto compute_done;
1503                 }
1504 
1505                 switch ((instr >> 1) & 0x3ff) {
1506                 case 4:         /* tw */
1507                         if (rd == 0x1f ||
1508                             (rd & trap_compare((int)regs->gpr[ra],
1509                                                (int)regs->gpr[rb])))
1510                                 goto trap;
1511                         return 1;
1512 #ifdef __powerpc64__
1513                 case 68:        /* td */
1514                         if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb]))
1515                                 goto trap;
1516                         return 1;
1517 #endif
1518                 case 83:        /* mfmsr */
1519                         if (regs->msr & MSR_PR)
1520                                 goto priv;
1521                         op->type = MFMSR;
1522                         op->reg = rd;
1523                         return 0;
1524                 case 146:       /* mtmsr */
1525                         if (regs->msr & MSR_PR)
1526                                 goto priv;
1527                         op->type = MTMSR;
1528                         op->reg = rd;
1529                         op->val = 0xffffffff & ~(MSR_ME | MSR_LE);
1530                         return 0;
1531 #ifdef CONFIG_PPC64
1532                 case 178:       /* mtmsrd */
1533                         if (regs->msr & MSR_PR)
1534                                 goto priv;
1535                         op->type = MTMSR;
1536                         op->reg = rd;
1537                         /* only MSR_EE and MSR_RI get changed if bit 15 set */
1538                         /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */
1539                         imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL;
1540                         op->val = imm;
1541                         return 0;
1542 #endif
1543 
1544                 case 19:        /* mfcr */
1545                         imm = 0xffffffffUL;
1546                         if ((instr >> 20) & 1) {
1547                                 imm = 0xf0000000UL;
1548                                 for (sh = 0; sh < 8; ++sh) {
1549                                         if (instr & (0x80000 >> sh))
1550                                                 break;
1551                                         imm >>= 4;
1552                                 }
1553                         }
1554                         op->val = regs->ccr & imm;
1555                         goto compute_done;
1556 
1557                 case 144:       /* mtcrf */
1558                         op->type = COMPUTE + SETCC;
1559                         imm = 0xf0000000UL;
1560                         val = regs->gpr[rd];
1561                         op->ccval = regs->ccr;
1562                         for (sh = 0; sh < 8; ++sh) {
1563                                 if (instr & (0x80000 >> sh))
1564                                         op->ccval = (op->ccval & ~imm) |
1565                                                 (val & imm);
1566                                 imm >>= 4;
1567                         }
1568                         return 1;
1569 
1570                 case 339:       /* mfspr */
1571                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1572                         op->type = MFSPR;
1573                         op->reg = rd;
1574                         op->spr = spr;
1575                         if (spr == SPRN_XER || spr == SPRN_LR ||
1576                             spr == SPRN_CTR)
1577                                 return 1;
1578                         return 0;
1579 
1580                 case 467:       /* mtspr */
1581                         spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0);
1582                         op->type = MTSPR;
1583                         op->val = regs->gpr[rd];
1584                         op->spr = spr;
1585                         if (spr == SPRN_XER || spr == SPRN_LR ||
1586                             spr == SPRN_CTR)
1587                                 return 1;
1588                         return 0;
1589 
1590 /*
1591  * Compare instructions
1592  */
1593                 case 0: /* cmp */
1594                         val = regs->gpr[ra];
1595                         val2 = regs->gpr[rb];
1596 #ifdef __powerpc64__
1597                         if ((rd & 1) == 0) {
1598                                 /* word (32-bit) compare */
1599                                 val = (int) val;
1600                                 val2 = (int) val2;
1601                         }
1602 #endif
1603                         do_cmp_signed(regs, op, val, val2, rd >> 2);
1604                         return 1;
1605 
1606                 case 32:        /* cmpl */
1607                         val = regs->gpr[ra];
1608                         val2 = regs->gpr[rb];
1609 #ifdef __powerpc64__
1610                         if ((rd & 1) == 0) {
1611                                 /* word (32-bit) compare */
1612                                 val = (unsigned int) val;
1613                                 val2 = (unsigned int) val2;
1614                         }
1615 #endif
1616                         do_cmp_unsigned(regs, op, val, val2, rd >> 2);
1617                         return 1;
1618 
1619                 case 508: /* cmpb */
1620                         do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]);
1621                         goto logical_done_nocc;
1622 
1623 /*
1624  * Arithmetic instructions
1625  */
1626                 case 8: /* subfc */
1627                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1628                                        regs->gpr[rb], 1);
1629                         goto arith_done;
1630 #ifdef __powerpc64__
1631                 case 9: /* mulhdu */
1632                         asm("mulhdu %0,%1,%2" : "=r" (op->val) :
1633                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1634                         goto arith_done;
1635 #endif
1636                 case 10:        /* addc */
1637                         add_with_carry(regs, op, rd, regs->gpr[ra],
1638                                        regs->gpr[rb], 0);
1639                         goto arith_done;
1640 
1641                 case 11:        /* mulhwu */
1642                         asm("mulhwu %0,%1,%2" : "=r" (op->val) :
1643                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1644                         goto arith_done;
1645 
1646                 case 40:        /* subf */
1647                         op->val = regs->gpr[rb] - regs->gpr[ra];
1648                         goto arith_done;
1649 #ifdef __powerpc64__
1650                 case 73:        /* mulhd */
1651                         asm("mulhd %0,%1,%2" : "=r" (op->val) :
1652                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1653                         goto arith_done;
1654 #endif
1655                 case 75:        /* mulhw */
1656                         asm("mulhw %0,%1,%2" : "=r" (op->val) :
1657                             "r" (regs->gpr[ra]), "r" (regs->gpr[rb]));
1658                         goto arith_done;
1659 
1660                 case 104:       /* neg */
1661                         op->val = -regs->gpr[ra];
1662                         goto arith_done;
1663 
1664                 case 136:       /* subfe */
1665                         add_with_carry(regs, op, rd, ~regs->gpr[ra],
1666                                        regs->gpr[rb], regs->xer & XER_CA);
1667                         goto arith_done;
1668 
1669                 case 138:       /* adde */
1670                         add_with_carry(regs, op, rd, regs->gpr[ra],
1671                                        regs->gpr[rb], regs->xer & XER_CA);
1672                         goto arith_done;
1673 
1674                 case 200:       /* subfze */
1675                         add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L,
1676                                        regs->xer & XER_CA);
1677                         goto arith_done;
1678 
1679                 case 202:       /* addze */
1680                         add_with_carry(regs, op, rd, regs->gpr[ra], 0L,
1681                                        regs->xer & XER_CA);
1682                         goto arith_done;
1683 
1684                 case 232:       /* subfme */
1685                         add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L,
1686                                        regs->xer & XER_CA);
1687                         goto arith_done;
1688 #ifdef __powerpc64__
1689                 case 233:       /* mulld */
1690                         op->val = regs->gpr[ra] * regs->gpr[rb];
1691                         goto arith_done;
1692 #endif
1693                 case 234:       /* addme */
1694                         add_with_carry(regs, op, rd, regs->gpr[ra], -1L,
1695                                        regs->xer & XER_CA);
1696                         goto arith_done;
1697 
1698                 case 235:       /* mullw */
1699                         op->val = (long)(int) regs->gpr[ra] *
1700                                 (int) regs->gpr[rb];
1701 
1702                         goto arith_done;
1703 #ifdef __powerpc64__
1704                 case 265:       /* modud */
1705                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1706                                 return -1;
1707                         op->val = regs->gpr[ra] % regs->gpr[rb];
1708                         goto compute_done;
1709 #endif
1710                 case 266:       /* add */
1711                         op->val = regs->gpr[ra] + regs->gpr[rb];
1712                         goto arith_done;
1713 
1714                 case 267:       /* moduw */
1715                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1716                                 return -1;
1717                         op->val = (unsigned int) regs->gpr[ra] %
1718                                 (unsigned int) regs->gpr[rb];
1719                         goto compute_done;
1720 #ifdef __powerpc64__
1721                 case 457:       /* divdu */
1722                         op->val = regs->gpr[ra] / regs->gpr[rb];
1723                         goto arith_done;
1724 #endif
1725                 case 459:       /* divwu */
1726                         op->val = (unsigned int) regs->gpr[ra] /
1727                                 (unsigned int) regs->gpr[rb];
1728                         goto arith_done;
1729 #ifdef __powerpc64__
1730                 case 489:       /* divd */
1731                         op->val = (long int) regs->gpr[ra] /
1732                                 (long int) regs->gpr[rb];
1733                         goto arith_done;
1734 #endif
1735                 case 491:       /* divw */
1736                         op->val = (int) regs->gpr[ra] /
1737                                 (int) regs->gpr[rb];
1738                         goto arith_done;
1739 
1740                 case 755:       /* darn */
1741                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1742                                 return -1;
1743                         switch (ra & 0x3) {
1744                         case 0:
1745                                 /* 32-bit conditioned */
1746                                 asm volatile(PPC_DARN(%0, 0) : "=r" (op->val));
1747                                 goto compute_done;
1748 
1749                         case 1:
1750                                 /* 64-bit conditioned */
1751                                 asm volatile(PPC_DARN(%0, 1) : "=r" (op->val));
1752                                 goto compute_done;
1753 
1754                         case 2:
1755                                 /* 64-bit raw */
1756                                 asm volatile(PPC_DARN(%0, 2) : "=r" (op->val));
1757                                 goto compute_done;
1758                         }
1759 
1760                         return -1;
1761 #ifdef __powerpc64__
1762                 case 777:       /* modsd */
1763                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1764                                 return -1;
1765                         op->val = (long int) regs->gpr[ra] %
1766                                 (long int) regs->gpr[rb];
1767                         goto compute_done;
1768 #endif
1769                 case 779:       /* modsw */
1770                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1771                                 return -1;
1772                         op->val = (int) regs->gpr[ra] %
1773                                 (int) regs->gpr[rb];
1774                         goto compute_done;
1775 
1776 
1777 /*
1778  * Logical instructions
1779  */
1780                 case 26:        /* cntlzw */
1781                         val = (unsigned int) regs->gpr[rd];
1782                         op->val = ( val ? __builtin_clz(val) : 32 );
1783                         goto logical_done;
1784 #ifdef __powerpc64__
1785                 case 58:        /* cntlzd */
1786                         val = regs->gpr[rd];
1787                         op->val = ( val ? __builtin_clzl(val) : 64 );
1788                         goto logical_done;
1789 #endif
1790                 case 28:        /* and */
1791                         op->val = regs->gpr[rd] & regs->gpr[rb];
1792                         goto logical_done;
1793 
1794                 case 60:        /* andc */
1795                         op->val = regs->gpr[rd] & ~regs->gpr[rb];
1796                         goto logical_done;
1797 
1798                 case 122:       /* popcntb */
1799                         do_popcnt(regs, op, regs->gpr[rd], 8);
1800                         goto logical_done_nocc;
1801 
1802                 case 124:       /* nor */
1803                         op->val = ~(regs->gpr[rd] | regs->gpr[rb]);
1804                         goto logical_done;
1805 
1806                 case 154:       /* prtyw */
1807                         do_prty(regs, op, regs->gpr[rd], 32);
1808                         goto logical_done_nocc;
1809 
1810                 case 186:       /* prtyd */
1811                         do_prty(regs, op, regs->gpr[rd], 64);
1812                         goto logical_done_nocc;
1813 #ifdef CONFIG_PPC64
1814                 case 252:       /* bpermd */
1815                         do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]);
1816                         goto logical_done_nocc;
1817 #endif
1818                 case 284:       /* xor */
1819                         op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]);
1820                         goto logical_done;
1821 
1822                 case 316:       /* xor */
1823                         op->val = regs->gpr[rd] ^ regs->gpr[rb];
1824                         goto logical_done;
1825 
1826                 case 378:       /* popcntw */
1827                         do_popcnt(regs, op, regs->gpr[rd], 32);
1828                         goto logical_done_nocc;
1829 
1830                 case 412:       /* orc */
1831                         op->val = regs->gpr[rd] | ~regs->gpr[rb];
1832                         goto logical_done;
1833 
1834                 case 444:       /* or */
1835                         op->val = regs->gpr[rd] | regs->gpr[rb];
1836                         goto logical_done;
1837 
1838                 case 476:       /* nand */
1839                         op->val = ~(regs->gpr[rd] & regs->gpr[rb]);
1840                         goto logical_done;
1841 #ifdef CONFIG_PPC64
1842                 case 506:       /* popcntd */
1843                         do_popcnt(regs, op, regs->gpr[rd], 64);
1844                         goto logical_done_nocc;
1845 #endif
1846                 case 538:       /* cnttzw */
1847                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1848                                 return -1;
1849                         val = (unsigned int) regs->gpr[rd];
1850                         op->val = (val ? __builtin_ctz(val) : 32);
1851                         goto logical_done;
1852 #ifdef __powerpc64__
1853                 case 570:       /* cnttzd */
1854                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1855                                 return -1;
1856                         val = regs->gpr[rd];
1857                         op->val = (val ? __builtin_ctzl(val) : 64);
1858                         goto logical_done;
1859 #endif
1860                 case 922:       /* extsh */
1861                         op->val = (signed short) regs->gpr[rd];
1862                         goto logical_done;
1863 
1864                 case 954:       /* extsb */
1865                         op->val = (signed char) regs->gpr[rd];
1866                         goto logical_done;
1867 #ifdef __powerpc64__
1868                 case 986:       /* extsw */
1869                         op->val = (signed int) regs->gpr[rd];
1870                         goto logical_done;
1871 #endif
1872 
1873 /*
1874  * Shift instructions
1875  */
1876                 case 24:        /* slw */
1877                         sh = regs->gpr[rb] & 0x3f;
1878                         if (sh < 32)
1879                                 op->val = (regs->gpr[rd] << sh) & 0xffffffffUL;
1880                         else
1881                                 op->val = 0;
1882                         goto logical_done;
1883 
1884                 case 536:       /* srw */
1885                         sh = regs->gpr[rb] & 0x3f;
1886                         if (sh < 32)
1887                                 op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh;
1888                         else
1889                                 op->val = 0;
1890                         goto logical_done;
1891 
1892                 case 792:       /* sraw */
1893                         op->type = COMPUTE + SETREG + SETXER;
1894                         sh = regs->gpr[rb] & 0x3f;
1895                         ival = (signed int) regs->gpr[rd];
1896                         op->val = ival >> (sh < 32 ? sh : 31);
1897                         op->xerval = regs->xer;
1898                         if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0))
1899                                 op->xerval |= XER_CA;
1900                         else
1901                                 op->xerval &= ~XER_CA;
1902                         set_ca32(op, op->xerval & XER_CA);
1903                         goto logical_done;
1904 
1905                 case 824:       /* srawi */
1906                         op->type = COMPUTE + SETREG + SETXER;
1907                         sh = rb;
1908                         ival = (signed int) regs->gpr[rd];
1909                         op->val = ival >> sh;
1910                         op->xerval = regs->xer;
1911                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1912                                 op->xerval |= XER_CA;
1913                         else
1914                                 op->xerval &= ~XER_CA;
1915                         set_ca32(op, op->xerval & XER_CA);
1916                         goto logical_done;
1917 
1918 #ifdef __powerpc64__
1919                 case 27:        /* sld */
1920                         sh = regs->gpr[rb] & 0x7f;
1921                         if (sh < 64)
1922                                 op->val = regs->gpr[rd] << sh;
1923                         else
1924                                 op->val = 0;
1925                         goto logical_done;
1926 
1927                 case 539:       /* srd */
1928                         sh = regs->gpr[rb] & 0x7f;
1929                         if (sh < 64)
1930                                 op->val = regs->gpr[rd] >> sh;
1931                         else
1932                                 op->val = 0;
1933                         goto logical_done;
1934 
1935                 case 794:       /* srad */
1936                         op->type = COMPUTE + SETREG + SETXER;
1937                         sh = regs->gpr[rb] & 0x7f;
1938                         ival = (signed long int) regs->gpr[rd];
1939                         op->val = ival >> (sh < 64 ? sh : 63);
1940                         op->xerval = regs->xer;
1941                         if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0))
1942                                 op->xerval |= XER_CA;
1943                         else
1944                                 op->xerval &= ~XER_CA;
1945                         set_ca32(op, op->xerval & XER_CA);
1946                         goto logical_done;
1947 
1948                 case 826:       /* sradi with sh_5 = 0 */
1949                 case 827:       /* sradi with sh_5 = 1 */
1950                         op->type = COMPUTE + SETREG + SETXER;
1951                         sh = rb | ((instr & 2) << 4);
1952                         ival = (signed long int) regs->gpr[rd];
1953                         op->val = ival >> sh;
1954                         op->xerval = regs->xer;
1955                         if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0)
1956                                 op->xerval |= XER_CA;
1957                         else
1958                                 op->xerval &= ~XER_CA;
1959                         set_ca32(op, op->xerval & XER_CA);
1960                         goto logical_done;
1961 
1962                 case 890:       /* extswsli with sh_5 = 0 */
1963                 case 891:       /* extswsli with sh_5 = 1 */
1964                         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1965                                 return -1;
1966                         op->type = COMPUTE + SETREG;
1967                         sh = rb | ((instr & 2) << 4);
1968                         val = (signed int) regs->gpr[rd];
1969                         if (sh)
1970                                 op->val = ROTATE(val, sh) & MASK64(0, 63 - sh);
1971                         else
1972                                 op->val = val;
1973                         goto logical_done;
1974 
1975 #endif /* __powerpc64__ */
1976 
1977 /*
1978  * Cache instructions
1979  */
1980                 case 54:        /* dcbst */
1981                         op->type = MKOP(CACHEOP, DCBST, 0);
1982                         op->ea = xform_ea(instr, regs);
1983                         return 0;
1984 
1985                 case 86:        /* dcbf */
1986                         op->type = MKOP(CACHEOP, DCBF, 0);
1987                         op->ea = xform_ea(instr, regs);
1988                         return 0;
1989 
1990                 case 246:       /* dcbtst */
1991                         op->type = MKOP(CACHEOP, DCBTST, 0);
1992                         op->ea = xform_ea(instr, regs);
1993                         op->reg = rd;
1994                         return 0;
1995 
1996                 case 278:       /* dcbt */
1997                         op->type = MKOP(CACHEOP, DCBTST, 0);
1998                         op->ea = xform_ea(instr, regs);
1999                         op->reg = rd;
2000                         return 0;
2001 
2002                 case 982:       /* icbi */
2003                         op->type = MKOP(CACHEOP, ICBI, 0);
2004                         op->ea = xform_ea(instr, regs);
2005                         return 0;
2006 
2007                 case 1014:      /* dcbz */
2008                         op->type = MKOP(CACHEOP, DCBZ, 0);
2009                         op->ea = xform_ea(instr, regs);
2010                         return 0;
2011                 }
2012                 break;
2013         }
2014 
2015 /*
2016  * Loads and stores.
2017  */
2018         op->type = UNKNOWN;
2019         op->update_reg = ra;
2020         op->reg = rd;
2021         op->val = regs->gpr[rd];
2022         u = (instr >> 20) & UPDATE;
2023         op->vsx_flags = 0;
2024 
2025         switch (opcode) {
2026         case 31:
2027                 u = instr & UPDATE;
2028                 op->ea = xform_ea(instr, regs);
2029                 switch ((instr >> 1) & 0x3ff) {
2030                 case 20:        /* lwarx */
2031                         op->type = MKOP(LARX, 0, 4);
2032                         break;
2033 
2034                 case 150:       /* stwcx. */
2035                         op->type = MKOP(STCX, 0, 4);
2036                         break;
2037 
2038 #ifdef __powerpc64__
2039                 case 84:        /* ldarx */
2040                         op->type = MKOP(LARX, 0, 8);
2041                         break;
2042 
2043                 case 214:       /* stdcx. */
2044                         op->type = MKOP(STCX, 0, 8);
2045                         break;
2046 
2047                 case 52:        /* lbarx */
2048                         op->type = MKOP(LARX, 0, 1);
2049                         break;
2050 
2051                 case 694:       /* stbcx. */
2052                         op->type = MKOP(STCX, 0, 1);
2053                         break;
2054 
2055                 case 116:       /* lharx */
2056                         op->type = MKOP(LARX, 0, 2);
2057                         break;
2058 
2059                 case 726:       /* sthcx. */
2060                         op->type = MKOP(STCX, 0, 2);
2061                         break;
2062 
2063                 case 276:       /* lqarx */
2064                         if (!((rd & 1) || rd == ra || rd == rb))
2065                                 op->type = MKOP(LARX, 0, 16);
2066                         break;
2067 
2068                 case 182:       /* stqcx. */
2069                         if (!(rd & 1))
2070                                 op->type = MKOP(STCX, 0, 16);
2071                         break;
2072 #endif
2073 
2074                 case 23:        /* lwzx */
2075                 case 55:        /* lwzux */
2076                         op->type = MKOP(LOAD, u, 4);
2077                         break;
2078 
2079                 case 87:        /* lbzx */
2080                 case 119:       /* lbzux */
2081                         op->type = MKOP(LOAD, u, 1);
2082                         break;
2083 
2084 #ifdef CONFIG_ALTIVEC
2085                 /*
2086                  * Note: for the load/store vector element instructions,
2087                  * bits of the EA say which field of the VMX register to use.
2088                  */
2089                 case 7:         /* lvebx */
2090                         op->type = MKOP(LOAD_VMX, 0, 1);
2091                         op->element_size = 1;
2092                         break;
2093 
2094                 case 39:        /* lvehx */
2095                         op->type = MKOP(LOAD_VMX, 0, 2);
2096                         op->element_size = 2;
2097                         break;
2098 
2099                 case 71:        /* lvewx */
2100                         op->type = MKOP(LOAD_VMX, 0, 4);
2101                         op->element_size = 4;
2102                         break;
2103 
2104                 case 103:       /* lvx */
2105                 case 359:       /* lvxl */
2106                         op->type = MKOP(LOAD_VMX, 0, 16);
2107                         op->element_size = 16;
2108                         break;
2109 
2110                 case 135:       /* stvebx */
2111                         op->type = MKOP(STORE_VMX, 0, 1);
2112                         op->element_size = 1;
2113                         break;
2114 
2115                 case 167:       /* stvehx */
2116                         op->type = MKOP(STORE_VMX, 0, 2);
2117                         op->element_size = 2;
2118                         break;
2119 
2120                 case 199:       /* stvewx */
2121                         op->type = MKOP(STORE_VMX, 0, 4);
2122                         op->element_size = 4;
2123                         break;
2124 
2125                 case 231:       /* stvx */
2126                 case 487:       /* stvxl */
2127                         op->type = MKOP(STORE_VMX, 0, 16);
2128                         break;
2129 #endif /* CONFIG_ALTIVEC */
2130 
2131 #ifdef __powerpc64__
2132                 case 21:        /* ldx */
2133                 case 53:        /* ldux */
2134                         op->type = MKOP(LOAD, u, 8);
2135                         break;
2136 
2137                 case 149:       /* stdx */
2138                 case 181:       /* stdux */
2139                         op->type = MKOP(STORE, u, 8);
2140                         break;
2141 #endif
2142 
2143                 case 151:       /* stwx */
2144                 case 183:       /* stwux */
2145                         op->type = MKOP(STORE, u, 4);
2146                         break;
2147 
2148                 case 215:       /* stbx */
2149                 case 247:       /* stbux */
2150                         op->type = MKOP(STORE, u, 1);
2151                         break;
2152 
2153                 case 279:       /* lhzx */
2154                 case 311:       /* lhzux */
2155                         op->type = MKOP(LOAD, u, 2);
2156                         break;
2157 
2158 #ifdef __powerpc64__
2159                 case 341:       /* lwax */
2160                 case 373:       /* lwaux */
2161                         op->type = MKOP(LOAD, SIGNEXT | u, 4);
2162                         break;
2163 #endif
2164 
2165                 case 343:       /* lhax */
2166                 case 375:       /* lhaux */
2167                         op->type = MKOP(LOAD, SIGNEXT | u, 2);
2168                         break;
2169 
2170                 case 407:       /* sthx */
2171                 case 439:       /* sthux */
2172                         op->type = MKOP(STORE, u, 2);
2173                         break;
2174 
2175 #ifdef __powerpc64__
2176                 case 532:       /* ldbrx */
2177                         op->type = MKOP(LOAD, BYTEREV, 8);
2178                         break;
2179 
2180 #endif
2181                 case 533:       /* lswx */
2182                         op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f);
2183                         break;
2184 
2185                 case 534:       /* lwbrx */
2186                         op->type = MKOP(LOAD, BYTEREV, 4);
2187                         break;
2188 
2189                 case 597:       /* lswi */
2190                         if (rb == 0)
2191                                 rb = 32;        /* # bytes to load */
2192                         op->type = MKOP(LOAD_MULTI, 0, rb);
2193                         op->ea = ra ? regs->gpr[ra] : 0;
2194                         break;
2195 
2196 #ifdef CONFIG_PPC_FPU
2197                 case 535:       /* lfsx */
2198                 case 567:       /* lfsux */
2199                         op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2200                         break;
2201 
2202                 case 599:       /* lfdx */
2203                 case 631:       /* lfdux */
2204                         op->type = MKOP(LOAD_FP, u, 8);
2205                         break;
2206 
2207                 case 663:       /* stfsx */
2208                 case 695:       /* stfsux */
2209                         op->type = MKOP(STORE_FP, u | FPCONV, 4);
2210                         break;
2211 
2212                 case 727:       /* stfdx */
2213                 case 759:       /* stfdux */
2214                         op->type = MKOP(STORE_FP, u, 8);
2215                         break;
2216 
2217 #ifdef __powerpc64__
2218                 case 791:       /* lfdpx */
2219                         op->type = MKOP(LOAD_FP, 0, 16);
2220                         break;
2221 
2222                 case 855:       /* lfiwax */
2223                         op->type = MKOP(LOAD_FP, SIGNEXT, 4);
2224                         break;
2225 
2226                 case 887:       /* lfiwzx */
2227                         op->type = MKOP(LOAD_FP, 0, 4);
2228                         break;
2229 
2230                 case 919:       /* stfdpx */
2231                         op->type = MKOP(STORE_FP, 0, 16);
2232                         break;
2233 
2234                 case 983:       /* stfiwx */
2235                         op->type = MKOP(STORE_FP, 0, 4);
2236                         break;
2237 #endif /* __powerpc64 */
2238 #endif /* CONFIG_PPC_FPU */
2239 
2240 #ifdef __powerpc64__
2241                 case 660:       /* stdbrx */
2242                         op->type = MKOP(STORE, BYTEREV, 8);
2243                         op->val = byterev_8(regs->gpr[rd]);
2244                         break;
2245 
2246 #endif
2247                 case 661:       /* stswx */
2248                         op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f);
2249                         break;
2250 
2251                 case 662:       /* stwbrx */
2252                         op->type = MKOP(STORE, BYTEREV, 4);
2253                         op->val = byterev_4(regs->gpr[rd]);
2254                         break;
2255 
2256                 case 725:       /* stswi */
2257                         if (rb == 0)
2258                                 rb = 32;        /* # bytes to store */
2259                         op->type = MKOP(STORE_MULTI, 0, rb);
2260                         op->ea = ra ? regs->gpr[ra] : 0;
2261                         break;
2262 
2263                 case 790:       /* lhbrx */
2264                         op->type = MKOP(LOAD, BYTEREV, 2);
2265                         break;
2266 
2267                 case 918:       /* sthbrx */
2268                         op->type = MKOP(STORE, BYTEREV, 2);
2269                         op->val = byterev_2(regs->gpr[rd]);
2270                         break;
2271 
2272 #ifdef CONFIG_VSX
2273                 case 12:        /* lxsiwzx */
2274                         op->reg = rd | ((instr & 1) << 5);
2275                         op->type = MKOP(LOAD_VSX, 0, 4);
2276                         op->element_size = 8;
2277                         break;
2278 
2279                 case 76:        /* lxsiwax */
2280                         op->reg = rd | ((instr & 1) << 5);
2281                         op->type = MKOP(LOAD_VSX, SIGNEXT, 4);
2282                         op->element_size = 8;
2283                         break;
2284 
2285                 case 140:       /* stxsiwx */
2286                         op->reg = rd | ((instr & 1) << 5);
2287                         op->type = MKOP(STORE_VSX, 0, 4);
2288                         op->element_size = 8;
2289                         break;
2290 
2291                 case 268:       /* lxvx */
2292                         op->reg = rd | ((instr & 1) << 5);
2293                         op->type = MKOP(LOAD_VSX, 0, 16);
2294                         op->element_size = 16;
2295                         op->vsx_flags = VSX_CHECK_VEC;
2296                         break;
2297 
2298                 case 269:       /* lxvl */
2299                 case 301: {     /* lxvll */
2300                         int nb;
2301                         op->reg = rd | ((instr & 1) << 5);
2302                         op->ea = ra ? regs->gpr[ra] : 0;
2303                         nb = regs->gpr[rb] & 0xff;
2304                         if (nb > 16)
2305                                 nb = 16;
2306                         op->type = MKOP(LOAD_VSX, 0, nb);
2307                         op->element_size = 16;
2308                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2309                                 VSX_CHECK_VEC;
2310                         break;
2311                 }
2312                 case 332:       /* lxvdsx */
2313                         op->reg = rd | ((instr & 1) << 5);
2314                         op->type = MKOP(LOAD_VSX, 0, 8);
2315                         op->element_size = 8;
2316                         op->vsx_flags = VSX_SPLAT;
2317                         break;
2318 
2319                 case 364:       /* lxvwsx */
2320                         op->reg = rd | ((instr & 1) << 5);
2321                         op->type = MKOP(LOAD_VSX, 0, 4);
2322                         op->element_size = 4;
2323                         op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC;
2324                         break;
2325 
2326                 case 396:       /* stxvx */
2327                         op->reg = rd | ((instr & 1) << 5);
2328                         op->type = MKOP(STORE_VSX, 0, 16);
2329                         op->element_size = 16;
2330                         op->vsx_flags = VSX_CHECK_VEC;
2331                         break;
2332 
2333                 case 397:       /* stxvl */
2334                 case 429: {     /* stxvll */
2335                         int nb;
2336                         op->reg = rd | ((instr & 1) << 5);
2337                         op->ea = ra ? regs->gpr[ra] : 0;
2338                         nb = regs->gpr[rb] & 0xff;
2339                         if (nb > 16)
2340                                 nb = 16;
2341                         op->type = MKOP(STORE_VSX, 0, nb);
2342                         op->element_size = 16;
2343                         op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) |
2344                                 VSX_CHECK_VEC;
2345                         break;
2346                 }
2347                 case 524:       /* lxsspx */
2348                         op->reg = rd | ((instr & 1) << 5);
2349                         op->type = MKOP(LOAD_VSX, 0, 4);
2350                         op->element_size = 8;
2351                         op->vsx_flags = VSX_FPCONV;
2352                         break;
2353 
2354                 case 588:       /* lxsdx */
2355                         op->reg = rd | ((instr & 1) << 5);
2356                         op->type = MKOP(LOAD_VSX, 0, 8);
2357                         op->element_size = 8;
2358                         break;
2359 
2360                 case 652:       /* stxsspx */
2361                         op->reg = rd | ((instr & 1) << 5);
2362                         op->type = MKOP(STORE_VSX, 0, 4);
2363                         op->element_size = 8;
2364                         op->vsx_flags = VSX_FPCONV;
2365                         break;
2366 
2367                 case 716:       /* stxsdx */
2368                         op->reg = rd | ((instr & 1) << 5);
2369                         op->type = MKOP(STORE_VSX, 0, 8);
2370                         op->element_size = 8;
2371                         break;
2372 
2373                 case 780:       /* lxvw4x */
2374                         op->reg = rd | ((instr & 1) << 5);
2375                         op->type = MKOP(LOAD_VSX, 0, 16);
2376                         op->element_size = 4;
2377                         break;
2378 
2379                 case 781:       /* lxsibzx */
2380                         op->reg = rd | ((instr & 1) << 5);
2381                         op->type = MKOP(LOAD_VSX, 0, 1);
2382                         op->element_size = 8;
2383                         op->vsx_flags = VSX_CHECK_VEC;
2384                         break;
2385 
2386                 case 812:       /* lxvh8x */
2387                         op->reg = rd | ((instr & 1) << 5);
2388                         op->type = MKOP(LOAD_VSX, 0, 16);
2389                         op->element_size = 2;
2390                         op->vsx_flags = VSX_CHECK_VEC;
2391                         break;
2392 
2393                 case 813:       /* lxsihzx */
2394                         op->reg = rd | ((instr & 1) << 5);
2395                         op->type = MKOP(LOAD_VSX, 0, 2);
2396                         op->element_size = 8;
2397                         op->vsx_flags = VSX_CHECK_VEC;
2398                         break;
2399 
2400                 case 844:       /* lxvd2x */
2401                         op->reg = rd | ((instr & 1) << 5);
2402                         op->type = MKOP(LOAD_VSX, 0, 16);
2403                         op->element_size = 8;
2404                         break;
2405 
2406                 case 876:       /* lxvb16x */
2407                         op->reg = rd | ((instr & 1) << 5);
2408                         op->type = MKOP(LOAD_VSX, 0, 16);
2409                         op->element_size = 1;
2410                         op->vsx_flags = VSX_CHECK_VEC;
2411                         break;
2412 
2413                 case 908:       /* stxvw4x */
2414                         op->reg = rd | ((instr & 1) << 5);
2415                         op->type = MKOP(STORE_VSX, 0, 16);
2416                         op->element_size = 4;
2417                         break;
2418 
2419                 case 909:       /* stxsibx */
2420                         op->reg = rd | ((instr & 1) << 5);
2421                         op->type = MKOP(STORE_VSX, 0, 1);
2422                         op->element_size = 8;
2423                         op->vsx_flags = VSX_CHECK_VEC;
2424                         break;
2425 
2426                 case 940:       /* stxvh8x */
2427                         op->reg = rd | ((instr & 1) << 5);
2428                         op->type = MKOP(STORE_VSX, 0, 16);
2429                         op->element_size = 2;
2430                         op->vsx_flags = VSX_CHECK_VEC;
2431                         break;
2432 
2433                 case 941:       /* stxsihx */
2434                         op->reg = rd | ((instr & 1) << 5);
2435                         op->type = MKOP(STORE_VSX, 0, 2);
2436                         op->element_size = 8;
2437                         op->vsx_flags = VSX_CHECK_VEC;
2438                         break;
2439 
2440                 case 972:       /* stxvd2x */
2441                         op->reg = rd | ((instr & 1) << 5);
2442                         op->type = MKOP(STORE_VSX, 0, 16);
2443                         op->element_size = 8;
2444                         break;
2445 
2446                 case 1004:      /* stxvb16x */
2447                         op->reg = rd | ((instr & 1) << 5);
2448                         op->type = MKOP(STORE_VSX, 0, 16);
2449                         op->element_size = 1;
2450                         op->vsx_flags = VSX_CHECK_VEC;
2451                         break;
2452 
2453 #endif /* CONFIG_VSX */
2454                 }
2455                 break;
2456 
2457         case 32:        /* lwz */
2458         case 33:        /* lwzu */
2459                 op->type = MKOP(LOAD, u, 4);
2460                 op->ea = dform_ea(instr, regs);
2461                 break;
2462 
2463         case 34:        /* lbz */
2464         case 35:        /* lbzu */
2465                 op->type = MKOP(LOAD, u, 1);
2466                 op->ea = dform_ea(instr, regs);
2467                 break;
2468 
2469         case 36:        /* stw */
2470         case 37:        /* stwu */
2471                 op->type = MKOP(STORE, u, 4);
2472                 op->ea = dform_ea(instr, regs);
2473                 break;
2474 
2475         case 38:        /* stb */
2476         case 39:        /* stbu */
2477                 op->type = MKOP(STORE, u, 1);
2478                 op->ea = dform_ea(instr, regs);
2479                 break;
2480 
2481         case 40:        /* lhz */
2482         case 41:        /* lhzu */
2483                 op->type = MKOP(LOAD, u, 2);
2484                 op->ea = dform_ea(instr, regs);
2485                 break;
2486 
2487         case 42:        /* lha */
2488         case 43:        /* lhau */
2489                 op->type = MKOP(LOAD, SIGNEXT | u, 2);
2490                 op->ea = dform_ea(instr, regs);
2491                 break;
2492 
2493         case 44:        /* sth */
2494         case 45:        /* sthu */
2495                 op->type = MKOP(STORE, u, 2);
2496                 op->ea = dform_ea(instr, regs);
2497                 break;
2498 
2499         case 46:        /* lmw */
2500                 if (ra >= rd)
2501                         break;          /* invalid form, ra in range to load */
2502                 op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd));
2503                 op->ea = dform_ea(instr, regs);
2504                 break;
2505 
2506         case 47:        /* stmw */
2507                 op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd));
2508                 op->ea = dform_ea(instr, regs);
2509                 break;
2510 
2511 #ifdef CONFIG_PPC_FPU
2512         case 48:        /* lfs */
2513         case 49:        /* lfsu */
2514                 op->type = MKOP(LOAD_FP, u | FPCONV, 4);
2515                 op->ea = dform_ea(instr, regs);
2516                 break;
2517 
2518         case 50:        /* lfd */
2519         case 51:        /* lfdu */
2520                 op->type = MKOP(LOAD_FP, u, 8);
2521                 op->ea = dform_ea(instr, regs);
2522                 break;
2523 
2524         case 52:        /* stfs */
2525         case 53:        /* stfsu */
2526                 op->type = MKOP(STORE_FP, u | FPCONV, 4);
2527                 op->ea = dform_ea(instr, regs);
2528                 break;
2529 
2530         case 54:        /* stfd */
2531         case 55:        /* stfdu */
2532                 op->type = MKOP(STORE_FP, u, 8);
2533                 op->ea = dform_ea(instr, regs);
2534                 break;
2535 #endif
2536 
2537 #ifdef __powerpc64__
2538         case 56:        /* lq */
2539                 if (!((rd & 1) || (rd == ra)))
2540                         op->type = MKOP(LOAD, 0, 16);
2541                 op->ea = dqform_ea(instr, regs);
2542                 break;
2543 #endif
2544 
2545 #ifdef CONFIG_VSX
2546         case 57:        /* lfdp, lxsd, lxssp */
2547                 op->ea = dsform_ea(instr, regs);
2548                 switch (instr & 3) {
2549                 case 0:         /* lfdp */
2550                         if (rd & 1)
2551                                 break;          /* reg must be even */
2552                         op->type = MKOP(LOAD_FP, 0, 16);
2553                         break;
2554                 case 2:         /* lxsd */
2555                         op->reg = rd + 32;
2556                         op->type = MKOP(LOAD_VSX, 0, 8);
2557                         op->element_size = 8;
2558                         op->vsx_flags = VSX_CHECK_VEC;
2559                         break;
2560                 case 3:         /* lxssp */
2561                         op->reg = rd + 32;
2562                         op->type = MKOP(LOAD_VSX, 0, 4);
2563                         op->element_size = 8;
2564                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2565                         break;
2566                 }
2567                 break;
2568 #endif /* CONFIG_VSX */
2569 
2570 #ifdef __powerpc64__
2571         case 58:        /* ld[u], lwa */
2572                 op->ea = dsform_ea(instr, regs);
2573                 switch (instr & 3) {
2574                 case 0:         /* ld */
2575                         op->type = MKOP(LOAD, 0, 8);
2576                         break;
2577                 case 1:         /* ldu */
2578                         op->type = MKOP(LOAD, UPDATE, 8);
2579                         break;
2580                 case 2:         /* lwa */
2581                         op->type = MKOP(LOAD, SIGNEXT, 4);
2582                         break;
2583                 }
2584                 break;
2585 #endif
2586 
2587 #ifdef CONFIG_VSX
2588         case 61:        /* stfdp, lxv, stxsd, stxssp, stxv */
2589                 switch (instr & 7) {
2590                 case 0:         /* stfdp with LSB of DS field = 0 */
2591                 case 4:         /* stfdp with LSB of DS field = 1 */
2592                         op->ea = dsform_ea(instr, regs);
2593                         op->type = MKOP(STORE_FP, 0, 16);
2594                         break;
2595 
2596                 case 1:         /* lxv */
2597                         op->ea = dqform_ea(instr, regs);
2598                         if (instr & 8)
2599                                 op->reg = rd + 32;
2600                         op->type = MKOP(LOAD_VSX, 0, 16);
2601                         op->element_size = 16;
2602                         op->vsx_flags = VSX_CHECK_VEC;
2603                         break;
2604 
2605                 case 2:         /* stxsd with LSB of DS field = 0 */
2606                 case 6:         /* stxsd with LSB of DS field = 1 */
2607                         op->ea = dsform_ea(instr, regs);
2608                         op->reg = rd + 32;
2609                         op->type = MKOP(STORE_VSX, 0, 8);
2610                         op->element_size = 8;
2611                         op->vsx_flags = VSX_CHECK_VEC;
2612                         break;
2613 
2614                 case 3:         /* stxssp with LSB of DS field = 0 */
2615                 case 7:         /* stxssp with LSB of DS field = 1 */
2616                         op->ea = dsform_ea(instr, regs);
2617                         op->reg = rd + 32;
2618                         op->type = MKOP(STORE_VSX, 0, 4);
2619                         op->element_size = 8;
2620                         op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC;
2621                         break;
2622 
2623                 case 5:         /* stxv */
2624                         op->ea = dqform_ea(instr, regs);
2625                         if (instr & 8)
2626                                 op->reg = rd + 32;
2627                         op->type = MKOP(STORE_VSX, 0, 16);
2628                         op->element_size = 16;
2629                         op->vsx_flags = VSX_CHECK_VEC;
2630                         break;
2631                 }
2632                 break;
2633 #endif /* CONFIG_VSX */
2634 
2635 #ifdef __powerpc64__
2636         case 62:        /* std[u] */
2637                 op->ea = dsform_ea(instr, regs);
2638                 switch (instr & 3) {
2639                 case 0:         /* std */
2640                         op->type = MKOP(STORE, 0, 8);
2641                         break;
2642                 case 1:         /* stdu */
2643                         op->type = MKOP(STORE, UPDATE, 8);
2644                         break;
2645                 case 2:         /* stq */
2646                         if (!(rd & 1))
2647                                 op->type = MKOP(STORE, 0, 16);
2648                         break;
2649                 }
2650                 break;
2651 #endif /* __powerpc64__ */
2652 
2653         }
2654 
2655 #ifdef CONFIG_VSX
2656         if ((GETTYPE(op->type) == LOAD_VSX ||
2657              GETTYPE(op->type) == STORE_VSX) &&
2658             !cpu_has_feature(CPU_FTR_VSX)) {
2659                 return -1;
2660         }
2661 #endif /* CONFIG_VSX */
2662 
2663         return 0;
2664 
2665  logical_done:
2666         if (instr & 1)
2667                 set_cr0(regs, op);
2668  logical_done_nocc:
2669         op->reg = ra;
2670         op->type |= SETREG;
2671         return 1;
2672 
2673  arith_done:
2674         if (instr & 1)
2675                 set_cr0(regs, op);
2676  compute_done:
2677         op->reg = rd;
2678         op->type |= SETREG;
2679         return 1;
2680 
2681  priv:
2682         op->type = INTERRUPT | 0x700;
2683         op->val = SRR1_PROGPRIV;
2684         return 0;
2685 
2686  trap:
2687         op->type = INTERRUPT | 0x700;
2688         op->val = SRR1_PROGTRAP;
2689         return 0;
2690 }
2691 EXPORT_SYMBOL_GPL(analyse_instr);
2692 NOKPROBE_SYMBOL(analyse_instr);
2693 
2694 /*
2695  * For PPC32 we always use stwu with r1 to change the stack pointer.
2696  * So this emulated store may corrupt the exception frame, now we
2697  * have to provide the exception frame trampoline, which is pushed
2698  * below the kprobed function stack. So we only update gpr[1] but
2699  * don't emulate the real store operation. We will do real store
2700  * operation safely in exception return code by checking this flag.
2701  */
2702 static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs)
2703 {
2704 #ifdef CONFIG_PPC32
2705         /*
2706          * Check if we will touch kernel stack overflow
2707          */
2708         if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) {
2709                 printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n");
2710                 return -EINVAL;
2711         }
2712 #endif /* CONFIG_PPC32 */
2713         /*
2714          * Check if we already set since that means we'll
2715          * lose the previous value.
2716          */
2717         WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE));
2718         set_thread_flag(TIF_EMULATE_STACK_STORE);
2719         return 0;
2720 }
2721 
2722 static nokprobe_inline void do_signext(unsigned long *valp, int size)
2723 {
2724         switch (size) {
2725         case 2:
2726                 *valp = (signed short) *valp;
2727                 break;
2728         case 4:
2729                 *valp = (signed int) *valp;
2730                 break;
2731         }
2732 }
2733 
2734 static nokprobe_inline void do_byterev(unsigned long *valp, int size)
2735 {
2736         switch (size) {
2737         case 2:
2738                 *valp = byterev_2(*valp);
2739                 break;
2740         case 4:
2741                 *valp = byterev_4(*valp);
2742                 break;
2743 #ifdef __powerpc64__
2744         case 8:
2745                 *valp = byterev_8(*valp);
2746                 break;
2747 #endif
2748         }
2749 }
2750 
2751 /*
2752  * Emulate an instruction that can be executed just by updating
2753  * fields in *regs.
2754  */
2755 void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op)
2756 {
2757         unsigned long next_pc;
2758 
2759         next_pc = truncate_if_32bit(regs->msr, regs->nip + 4);
2760         switch (GETTYPE(op->type)) {
2761         case COMPUTE:
2762                 if (op->type & SETREG)
2763                         regs->gpr[op->reg] = op->val;
2764                 if (op->type & SETCC)
2765                         regs->ccr = op->ccval;
2766                 if (op->type & SETXER)
2767                         regs->xer = op->xerval;
2768                 break;
2769 
2770         case BRANCH:
2771                 if (op->type & SETLK)
2772                         regs->link = next_pc;
2773                 if (op->type & BRTAKEN)
2774                         next_pc = op->val;
2775                 if (op->type & DECCTR)
2776                         --regs->ctr;
2777                 break;
2778 
2779         case BARRIER:
2780                 switch (op->type & BARRIER_MASK) {
2781                 case BARRIER_SYNC:
2782                         mb();
2783                         break;
2784                 case BARRIER_ISYNC:
2785                         isync();
2786                         break;
2787                 case BARRIER_EIEIO:
2788                         eieio();
2789                         break;
2790                 case BARRIER_LWSYNC:
2791                         asm volatile("lwsync" : : : "memory");
2792                         break;
2793                 case BARRIER_PTESYNC:
2794                         asm volatile("ptesync" : : : "memory");
2795                         break;
2796                 }
2797                 break;
2798 
2799         case MFSPR:
2800                 switch (op->spr) {
2801                 case SPRN_XER:
2802                         regs->gpr[op->reg] = regs->xer & 0xffffffffUL;
2803                         break;
2804                 case SPRN_LR:
2805                         regs->gpr[op->reg] = regs->link;
2806                         break;
2807                 case SPRN_CTR:
2808                         regs->gpr[op->reg] = regs->ctr;
2809                         break;
2810                 default:
2811                         WARN_ON_ONCE(1);
2812                 }
2813                 break;
2814 
2815         case MTSPR:
2816                 switch (op->spr) {
2817                 case SPRN_XER:
2818                         regs->xer = op->val & 0xffffffffUL;
2819                         break;
2820                 case SPRN_LR:
2821                         regs->link = op->val;
2822                         break;
2823                 case SPRN_CTR:
2824                         regs->ctr = op->val;
2825                         break;
2826                 default:
2827                         WARN_ON_ONCE(1);
2828                 }
2829                 break;
2830 
2831         default:
2832                 WARN_ON_ONCE(1);
2833         }
2834         regs->nip = next_pc;
2835 }
2836 NOKPROBE_SYMBOL(emulate_update_regs);
2837 
2838 /*
2839  * Emulate a previously-analysed load or store instruction.
2840  * Return values are:
2841  * 0 = instruction emulated successfully
2842  * -EFAULT = address out of range or access faulted (regs->dar
2843  *           contains the faulting address)
2844  * -EACCES = misaligned access, instruction requires alignment
2845  * -EINVAL = unknown operation in *op
2846  */
2847 int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op)
2848 {
2849         int err, size, type;
2850         int i, rd, nb;
2851         unsigned int cr;
2852         unsigned long val;
2853         unsigned long ea;
2854         bool cross_endian;
2855 
2856         err = 0;
2857         size = GETSIZE(op->type);
2858         type = GETTYPE(op->type);
2859         cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
2860         ea = truncate_if_32bit(regs->msr, op->ea);
2861 
2862         switch (type) {
2863         case LARX:
2864                 if (ea & (size - 1))
2865                         return -EACCES;         /* can't handle misaligned */
2866                 if (!address_ok(regs, ea, size))
2867                         return -EFAULT;
2868                 err = 0;
2869                 val = 0;
2870                 switch (size) {
2871 #ifdef __powerpc64__
2872                 case 1:
2873                         __get_user_asmx(val, ea, err, "lbarx");
2874                         break;
2875                 case 2:
2876                         __get_user_asmx(val, ea, err, "lharx");
2877                         break;
2878 #endif
2879                 case 4:
2880                         __get_user_asmx(val, ea, err, "lwarx");
2881                         break;
2882 #ifdef __powerpc64__
2883                 case 8:
2884                         __get_user_asmx(val, ea, err, "ldarx");
2885                         break;
2886                 case 16:
2887                         err = do_lqarx(ea, &regs->gpr[op->reg]);
2888                         break;
2889 #endif
2890                 default:
2891                         return -EINVAL;
2892                 }
2893                 if (err) {
2894                         regs->dar = ea;
2895                         break;
2896                 }
2897                 if (size < 16)
2898                         regs->gpr[op->reg] = val;
2899                 break;
2900 
2901         case STCX:
2902                 if (ea & (size - 1))
2903                         return -EACCES;         /* can't handle misaligned */
2904                 if (!address_ok(regs, ea, size))
2905                         return -EFAULT;
2906                 err = 0;
2907                 switch (size) {
2908 #ifdef __powerpc64__
2909                 case 1:
2910                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2911                         break;
2912                 case 2:
2913                         __put_user_asmx(op->val, ea, err, "stbcx.", cr);
2914                         break;
2915 #endif
2916                 case 4:
2917                         __put_user_asmx(op->val, ea, err, "stwcx.", cr);
2918                         break;
2919 #ifdef __powerpc64__
2920                 case 8:
2921                         __put_user_asmx(op->val, ea, err, "stdcx.", cr);
2922                         break;
2923                 case 16:
2924                         err = do_stqcx(ea, regs->gpr[op->reg],
2925                                        regs->gpr[op->reg + 1], &cr);
2926                         break;
2927 #endif
2928                 default:
2929                         return -EINVAL;
2930                 }
2931                 if (!err)
2932                         regs->ccr = (regs->ccr & 0x0fffffff) |
2933                                 (cr & 0xe0000000) |
2934                                 ((regs->xer >> 3) & 0x10000000);
2935                 else
2936                         regs->dar = ea;
2937                 break;
2938 
2939         case LOAD:
2940 #ifdef __powerpc64__
2941                 if (size == 16) {
2942                         err = emulate_lq(regs, ea, op->reg, cross_endian);
2943                         break;
2944                 }
2945 #endif
2946                 err = read_mem(&regs->gpr[op->reg], ea, size, regs);
2947                 if (!err) {
2948                         if (op->type & SIGNEXT)
2949                                 do_signext(&regs->gpr[op->reg], size);
2950                         if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV))
2951                                 do_byterev(&regs->gpr[op->reg], size);
2952                 }
2953                 break;
2954 
2955 #ifdef CONFIG_PPC_FPU
2956         case LOAD_FP:
2957                 /*
2958                  * If the instruction is in userspace, we can emulate it even
2959                  * if the VMX state is not live, because we have the state
2960                  * stored in the thread_struct.  If the instruction is in
2961                  * the kernel, we must not touch the state in the thread_struct.
2962                  */
2963                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
2964                         return 0;
2965                 err = do_fp_load(op, ea, regs, cross_endian);
2966                 break;
2967 #endif
2968 #ifdef CONFIG_ALTIVEC
2969         case LOAD_VMX:
2970                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
2971                         return 0;
2972                 err = do_vec_load(op->reg, ea, size, regs, cross_endian);
2973                 break;
2974 #endif
2975 #ifdef CONFIG_VSX
2976         case LOAD_VSX: {
2977                 unsigned long msrbit = MSR_VSX;
2978 
2979                 /*
2980                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
2981                  * when the target of the instruction is a vector register.
2982                  */
2983                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
2984                         msrbit = MSR_VEC;
2985                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
2986                         return 0;
2987                 err = do_vsx_load(op, ea, regs, cross_endian);
2988                 break;
2989         }
2990 #endif
2991         case LOAD_MULTI:
2992                 if (!address_ok(regs, ea, size))
2993                         return -EFAULT;
2994                 rd = op->reg;
2995                 for (i = 0; i < size; i += 4) {
2996                         unsigned int v32 = 0;
2997 
2998                         nb = size - i;
2999                         if (nb > 4)
3000                                 nb = 4;
3001                         err = copy_mem_in((u8 *) &v32, ea, nb, regs);
3002                         if (err)
3003                                 break;
3004                         if (unlikely(cross_endian))
3005                                 v32 = byterev_4(v32);
3006                         regs->gpr[rd] = v32;
3007                         ea += 4;
3008                         /* reg number wraps from 31 to 0 for lsw[ix] */
3009                         rd = (rd + 1) & 0x1f;
3010                 }
3011                 break;
3012 
3013         case STORE:
3014 #ifdef __powerpc64__
3015                 if (size == 16) {
3016                         err = emulate_stq(regs, ea, op->reg, cross_endian);
3017                         break;
3018                 }
3019 #endif
3020                 if ((op->type & UPDATE) && size == sizeof(long) &&
3021                     op->reg == 1 && op->update_reg == 1 &&
3022                     !(regs->msr & MSR_PR) &&
3023                     ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) {
3024                         err = handle_stack_update(ea, regs);
3025                         break;
3026                 }
3027                 if (unlikely(cross_endian))
3028                         do_byterev(&op->val, size);
3029                 err = write_mem(op->val, ea, size, regs);
3030                 break;
3031 
3032 #ifdef CONFIG_PPC_FPU
3033         case STORE_FP:
3034                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP))
3035                         return 0;
3036                 err = do_fp_store(op, ea, regs, cross_endian);
3037                 break;
3038 #endif
3039 #ifdef CONFIG_ALTIVEC
3040         case STORE_VMX:
3041                 if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC))
3042                         return 0;
3043                 err = do_vec_store(op->reg, ea, size, regs, cross_endian);
3044                 break;
3045 #endif
3046 #ifdef CONFIG_VSX
3047         case STORE_VSX: {
3048                 unsigned long msrbit = MSR_VSX;
3049 
3050                 /*
3051                  * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX
3052                  * when the target of the instruction is a vector register.
3053                  */
3054                 if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC))
3055                         msrbit = MSR_VEC;
3056                 if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit))
3057                         return 0;
3058                 err = do_vsx_store(op, ea, regs, cross_endian);
3059                 break;
3060         }
3061 #endif
3062         case STORE_MULTI:
3063                 if (!address_ok(regs, ea, size))
3064                         return -EFAULT;
3065                 rd = op->reg;
3066                 for (i = 0; i < size; i += 4) {
3067                         unsigned int v32 = regs->gpr[rd];
3068 
3069                         nb = size - i;
3070                         if (nb > 4)
3071                                 nb = 4;
3072                         if (unlikely(cross_endian))
3073                                 v32 = byterev_4(v32);
3074                         err = copy_mem_out((u8 *) &v32, ea, nb, regs);
3075                         if (err)
3076                                 break;
3077                         ea += 4;
3078                         /* reg number wraps from 31 to 0 for stsw[ix] */
3079                         rd = (rd + 1) & 0x1f;
3080                 }
3081                 break;
3082 
3083         default:
3084                 return -EINVAL;
3085         }
3086 
3087         if (err)
3088                 return err;
3089 
3090         if (op->type & UPDATE)
3091                 regs->gpr[op->update_reg] = op->ea;
3092 
3093         return 0;
3094 }
3095 NOKPROBE_SYMBOL(emulate_loadstore);
3096 
3097 /*
3098  * Emulate instructions that cause a transfer of control,
3099  * loads and stores, and a few other instructions.
3100  * Returns 1 if the step was emulated, 0 if not,
3101  * or -1 if the instruction is one that should not be stepped,
3102  * such as an rfid, or a mtmsrd that would clear MSR_RI.
3103  */
3104 int emulate_step(struct pt_regs *regs, unsigned int instr)
3105 {
3106         struct instruction_op op;
3107         int r, err, type;
3108         unsigned long val;
3109         unsigned long ea;
3110 
3111         r = analyse_instr(&op, regs, instr);
3112         if (r < 0)
3113                 return r;
3114         if (r > 0) {
3115                 emulate_update_regs(regs, &op);
3116                 return 1;
3117         }
3118 
3119         err = 0;
3120         type = GETTYPE(op.type);
3121 
3122         if (OP_IS_LOAD_STORE(type)) {
3123                 err = emulate_loadstore(regs, &op);
3124                 if (err)
3125                         return 0;
3126                 goto instr_done;
3127         }
3128 
3129         switch (type) {
3130         case CACHEOP:
3131                 ea = truncate_if_32bit(regs->msr, op.ea);
3132                 if (!address_ok(regs, ea, 8))
3133                         return 0;
3134                 switch (op.type & CACHEOP_MASK) {
3135                 case DCBST:
3136                         __cacheop_user_asmx(ea, err, "dcbst");
3137                         break;
3138                 case DCBF:
3139                         __cacheop_user_asmx(ea, err, "dcbf");
3140                         break;
3141                 case DCBTST:
3142                         if (op.reg == 0)
3143                                 prefetchw((void *) ea);
3144                         break;
3145                 case DCBT:
3146                         if (op.reg == 0)
3147                                 prefetch((void *) ea);
3148                         break;
3149                 case ICBI:
3150                         __cacheop_user_asmx(ea, err, "icbi");
3151                         break;
3152                 case DCBZ:
3153                         err = emulate_dcbz(ea, regs);
3154                         break;
3155                 }
3156                 if (err) {
3157                         regs->dar = ea;
3158                         return 0;
3159                 }
3160                 goto instr_done;
3161 
3162         case MFMSR:
3163                 regs->gpr[op.reg] = regs->msr & MSR_MASK;
3164                 goto instr_done;
3165 
3166         case MTMSR:
3167                 val = regs->gpr[op.reg];
3168                 if ((val & MSR_RI) == 0)
3169                         /* can't step mtmsr[d] that would clear MSR_RI */
3170                         return -1;
3171                 /* here op.val is the mask of bits to change */
3172                 regs->msr = (regs->msr & ~op.val) | (val & op.val);
3173                 goto instr_done;
3174 
3175 #ifdef CONFIG_PPC64
3176         case SYSCALL:   /* sc */
3177                 /*
3178                  * N.B. this uses knowledge about how the syscall
3179                  * entry code works.  If that is changed, this will
3180                  * need to be changed also.
3181                  */
3182                 if (regs->gpr[0] == 0x1ebe &&
3183                     cpu_has_feature(CPU_FTR_REAL_LE)) {
3184                         regs->msr ^= MSR_LE;
3185                         goto instr_done;
3186                 }
3187                 regs->gpr[9] = regs->gpr[13];
3188                 regs->gpr[10] = MSR_KERNEL;
3189                 regs->gpr[11] = regs->nip + 4;
3190                 regs->gpr[12] = regs->msr & MSR_MASK;
3191                 regs->gpr[13] = (unsigned long) get_paca();
3192                 regs->nip = (unsigned long) &system_call_common;
3193                 regs->msr = MSR_KERNEL;
3194                 return 1;
3195 
3196         case RFI:
3197                 return -1;
3198 #endif
3199         }
3200         return 0;
3201 
3202  instr_done:
3203         regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4);
3204         return 1;
3205 }
3206 NOKPROBE_SYMBOL(emulate_step);
3207 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp