1 /* 2 * The file intends to implement the platform dependent EEH operations on 3 * powernv platform. Actually, the powernv was created in order to fully 4 * hypervisor support. 5 * 6 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/atomic.h> 15 #include <linux/debugfs.h> 16 #include <linux/delay.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/interrupt.h> 20 #include <linux/list.h> 21 #include <linux/msi.h> 22 #include <linux/of.h> 23 #include <linux/pci.h> 24 #include <linux/proc_fs.h> 25 #include <linux/rbtree.h> 26 #include <linux/sched.h> 27 #include <linux/seq_file.h> 28 #include <linux/spinlock.h> 29 30 #include <asm/eeh.h> 31 #include <asm/eeh_event.h> 32 #include <asm/firmware.h> 33 #include <asm/io.h> 34 #include <asm/iommu.h> 35 #include <asm/machdep.h> 36 #include <asm/msi_bitmap.h> 37 #include <asm/opal.h> 38 #include <asm/ppc-pci.h> 39 #include <asm/pnv-pci.h> 40 41 #include "powernv.h" 42 #include "pci.h" 43 44 static bool pnv_eeh_nb_init = false; 45 static int eeh_event_irq = -EINVAL; 46 47 static int pnv_eeh_init(void) 48 { 49 struct pci_controller *hose; 50 struct pnv_phb *phb; 51 52 if (!firmware_has_feature(FW_FEATURE_OPAL)) { 53 pr_warn("%s: OPAL is required !\n", 54 __func__); 55 return -EINVAL; 56 } 57 58 /* Set probe mode */ 59 eeh_add_flag(EEH_PROBE_MODE_DEV); 60 61 /* 62 * P7IOC blocks PCI config access to frozen PE, but PHB3 63 * doesn't do that. So we have to selectively enable I/O 64 * prior to collecting error log. 65 */ 66 list_for_each_entry(hose, &hose_list, list_node) { 67 phb = hose->private_data; 68 69 if (phb->model == PNV_PHB_MODEL_P7IOC) 70 eeh_add_flag(EEH_ENABLE_IO_FOR_LOG); 71 72 /* 73 * PE#0 should be regarded as valid by EEH core 74 * if it's not the reserved one. Currently, we 75 * have the reserved PE#255 and PE#127 for PHB3 76 * and P7IOC separately. So we should regard 77 * PE#0 as valid for PHB3 and P7IOC. 78 */ 79 if (phb->ioda.reserved_pe_idx != 0) 80 eeh_add_flag(EEH_VALID_PE_ZERO); 81 82 break; 83 } 84 85 return 0; 86 } 87 88 static irqreturn_t pnv_eeh_event(int irq, void *data) 89 { 90 /* 91 * We simply send a special EEH event if EEH has been 92 * enabled. We don't care about EEH events until we've 93 * finished processing the outstanding ones. Event processing 94 * gets unmasked in next_error() if EEH is enabled. 95 */ 96 disable_irq_nosync(irq); 97 98 if (eeh_enabled()) 99 eeh_send_failure_event(NULL); 100 101 return IRQ_HANDLED; 102 } 103 104 #ifdef CONFIG_DEBUG_FS 105 static ssize_t pnv_eeh_ei_write(struct file *filp, 106 const char __user *user_buf, 107 size_t count, loff_t *ppos) 108 { 109 struct pci_controller *hose = filp->private_data; 110 struct eeh_dev *edev; 111 struct eeh_pe *pe; 112 int pe_no, type, func; 113 unsigned long addr, mask; 114 char buf[50]; 115 int ret; 116 117 if (!eeh_ops || !eeh_ops->err_inject) 118 return -ENXIO; 119 120 /* Copy over argument buffer */ 121 ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count); 122 if (!ret) 123 return -EFAULT; 124 125 /* Retrieve parameters */ 126 ret = sscanf(buf, "%x:%x:%x:%lx:%lx", 127 &pe_no, &type, &func, &addr, &mask); 128 if (ret != 5) 129 return -EINVAL; 130 131 /* Retrieve PE */ 132 edev = kzalloc(sizeof(*edev), GFP_KERNEL); 133 if (!edev) 134 return -ENOMEM; 135 edev->phb = hose; 136 edev->pe_config_addr = pe_no; 137 pe = eeh_pe_get(edev); 138 kfree(edev); 139 if (!pe) 140 return -ENODEV; 141 142 /* Do error injection */ 143 ret = eeh_ops->err_inject(pe, type, func, addr, mask); 144 return ret < 0 ? ret : count; 145 } 146 147 static const struct file_operations pnv_eeh_ei_fops = { 148 .open = simple_open, 149 .llseek = no_llseek, 150 .write = pnv_eeh_ei_write, 151 }; 152 153 static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val) 154 { 155 struct pci_controller *hose = data; 156 struct pnv_phb *phb = hose->private_data; 157 158 out_be64(phb->regs + offset, val); 159 return 0; 160 } 161 162 static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val) 163 { 164 struct pci_controller *hose = data; 165 struct pnv_phb *phb = hose->private_data; 166 167 *val = in_be64(phb->regs + offset); 168 return 0; 169 } 170 171 #define PNV_EEH_DBGFS_ENTRY(name, reg) \ 172 static int pnv_eeh_dbgfs_set_##name(void *data, u64 val) \ 173 { \ 174 return pnv_eeh_dbgfs_set(data, reg, val); \ 175 } \ 176 \ 177 static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val) \ 178 { \ 179 return pnv_eeh_dbgfs_get(data, reg, val); \ 180 } \ 181 \ 182 DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name, \ 183 pnv_eeh_dbgfs_get_##name, \ 184 pnv_eeh_dbgfs_set_##name, \ 185 "0x%llx\n") 186 187 PNV_EEH_DBGFS_ENTRY(outb, 0xD10); 188 PNV_EEH_DBGFS_ENTRY(inbA, 0xD90); 189 PNV_EEH_DBGFS_ENTRY(inbB, 0xE10); 190 191 #endif /* CONFIG_DEBUG_FS */ 192 193 /** 194 * pnv_eeh_post_init - EEH platform dependent post initialization 195 * 196 * EEH platform dependent post initialization on powernv. When 197 * the function is called, the EEH PEs and devices should have 198 * been built. If the I/O cache staff has been built, EEH is 199 * ready to supply service. 200 */ 201 static int pnv_eeh_post_init(void) 202 { 203 struct pci_controller *hose; 204 struct pnv_phb *phb; 205 int ret = 0; 206 207 /* Register OPAL event notifier */ 208 if (!pnv_eeh_nb_init) { 209 eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR)); 210 if (eeh_event_irq < 0) { 211 pr_err("%s: Can't register OPAL event interrupt (%d)\n", 212 __func__, eeh_event_irq); 213 return eeh_event_irq; 214 } 215 216 ret = request_irq(eeh_event_irq, pnv_eeh_event, 217 IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL); 218 if (ret < 0) { 219 irq_dispose_mapping(eeh_event_irq); 220 pr_err("%s: Can't request OPAL event interrupt (%d)\n", 221 __func__, eeh_event_irq); 222 return ret; 223 } 224 225 pnv_eeh_nb_init = true; 226 } 227 228 if (!eeh_enabled()) 229 disable_irq(eeh_event_irq); 230 231 list_for_each_entry(hose, &hose_list, list_node) { 232 phb = hose->private_data; 233 234 /* 235 * If EEH is enabled, we're going to rely on that. 236 * Otherwise, we restore to conventional mechanism 237 * to clear frozen PE during PCI config access. 238 */ 239 if (eeh_enabled()) 240 phb->flags |= PNV_PHB_FLAG_EEH; 241 else 242 phb->flags &= ~PNV_PHB_FLAG_EEH; 243 244 /* Create debugfs entries */ 245 #ifdef CONFIG_DEBUG_FS 246 if (phb->has_dbgfs || !phb->dbgfs) 247 continue; 248 249 phb->has_dbgfs = 1; 250 debugfs_create_file("err_injct", 0200, 251 phb->dbgfs, hose, 252 &pnv_eeh_ei_fops); 253 254 debugfs_create_file("err_injct_outbound", 0600, 255 phb->dbgfs, hose, 256 &pnv_eeh_dbgfs_ops_outb); 257 debugfs_create_file("err_injct_inboundA", 0600, 258 phb->dbgfs, hose, 259 &pnv_eeh_dbgfs_ops_inbA); 260 debugfs_create_file("err_injct_inboundB", 0600, 261 phb->dbgfs, hose, 262 &pnv_eeh_dbgfs_ops_inbB); 263 #endif /* CONFIG_DEBUG_FS */ 264 } 265 266 return ret; 267 } 268 269 static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap) 270 { 271 int pos = PCI_CAPABILITY_LIST; 272 int cnt = 48; /* Maximal number of capabilities */ 273 u32 status, id; 274 275 if (!pdn) 276 return 0; 277 278 /* Check if the device supports capabilities */ 279 pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status); 280 if (!(status & PCI_STATUS_CAP_LIST)) 281 return 0; 282 283 while (cnt--) { 284 pnv_pci_cfg_read(pdn, pos, 1, &pos); 285 if (pos < 0x40) 286 break; 287 288 pos &= ~3; 289 pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id); 290 if (id == 0xff) 291 break; 292 293 /* Found */ 294 if (id == cap) 295 return pos; 296 297 /* Next one */ 298 pos += PCI_CAP_LIST_NEXT; 299 } 300 301 return 0; 302 } 303 304 static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap) 305 { 306 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 307 u32 header; 308 int pos = 256, ttl = (4096 - 256) / 8; 309 310 if (!edev || !edev->pcie_cap) 311 return 0; 312 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) 313 return 0; 314 else if (!header) 315 return 0; 316 317 while (ttl-- > 0) { 318 if (PCI_EXT_CAP_ID(header) == cap && pos) 319 return pos; 320 321 pos = PCI_EXT_CAP_NEXT(header); 322 if (pos < 256) 323 break; 324 325 if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL) 326 break; 327 } 328 329 return 0; 330 } 331 332 /** 333 * pnv_eeh_probe - Do probe on PCI device 334 * @pdn: PCI device node 335 * @data: unused 336 * 337 * When EEH module is installed during system boot, all PCI devices 338 * are checked one by one to see if it supports EEH. The function 339 * is introduced for the purpose. By default, EEH has been enabled 340 * on all PCI devices. That's to say, we only need do necessary 341 * initialization on the corresponding eeh device and create PE 342 * accordingly. 343 * 344 * It's notable that's unsafe to retrieve the EEH device through 345 * the corresponding PCI device. During the PCI device hotplug, which 346 * was possiblly triggered by EEH core, the binding between EEH device 347 * and the PCI device isn't built yet. 348 */ 349 static void *pnv_eeh_probe(struct pci_dn *pdn, void *data) 350 { 351 struct pci_controller *hose = pdn->phb; 352 struct pnv_phb *phb = hose->private_data; 353 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 354 uint32_t pcie_flags; 355 int ret; 356 357 /* 358 * When probing the root bridge, which doesn't have any 359 * subordinate PCI devices. We don't have OF node for 360 * the root bridge. So it's not reasonable to continue 361 * the probing. 362 */ 363 if (!edev || edev->pe) 364 return NULL; 365 366 /* Skip for PCI-ISA bridge */ 367 if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA) 368 return NULL; 369 370 /* Initialize eeh device */ 371 edev->class_code = pdn->class_code; 372 edev->mode &= 0xFFFFFF00; 373 edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX); 374 edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP); 375 edev->af_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF); 376 edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR); 377 if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) { 378 edev->mode |= EEH_DEV_BRIDGE; 379 if (edev->pcie_cap) { 380 pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS, 381 2, &pcie_flags); 382 pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4; 383 if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT) 384 edev->mode |= EEH_DEV_ROOT_PORT; 385 else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM) 386 edev->mode |= EEH_DEV_DS_PORT; 387 } 388 } 389 390 edev->config_addr = (pdn->busno << 8) | (pdn->devfn); 391 edev->pe_config_addr = phb->ioda.pe_rmap[edev->config_addr]; 392 393 /* Create PE */ 394 ret = eeh_add_to_parent_pe(edev); 395 if (ret) { 396 pr_warn("%s: Can't add PCI dev %04x:%02x:%02x.%01x to parent PE (%d)\n", 397 __func__, hose->global_number, pdn->busno, 398 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn), ret); 399 return NULL; 400 } 401 402 /* 403 * If the PE contains any one of following adapters, the 404 * PCI config space can't be accessed when dumping EEH log. 405 * Otherwise, we will run into fenced PHB caused by shortage 406 * of outbound credits in the adapter. The PCI config access 407 * should be blocked until PE reset. MMIO access is dropped 408 * by hardware certainly. In order to drop PCI config requests, 409 * one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which 410 * will be checked in the backend for PE state retrival. If 411 * the PE becomes frozen for the first time and the flag has 412 * been set for the PE, we will set EEH_PE_CFG_BLOCKED for 413 * that PE to block its config space. 414 * 415 * Broadcom Austin 4-ports NICs (14e4:1657) 416 * Broadcom Shiner 4-ports 1G NICs (14e4:168a) 417 * Broadcom Shiner 2-ports 10G NICs (14e4:168e) 418 */ 419 if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 420 pdn->device_id == 0x1657) || 421 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 422 pdn->device_id == 0x168a) || 423 (pdn->vendor_id == PCI_VENDOR_ID_BROADCOM && 424 pdn->device_id == 0x168e)) 425 edev->pe->state |= EEH_PE_CFG_RESTRICTED; 426 427 /* 428 * Cache the PE primary bus, which can't be fetched when 429 * full hotplug is in progress. In that case, all child 430 * PCI devices of the PE are expected to be removed prior 431 * to PE reset. 432 */ 433 if (!(edev->pe->state & EEH_PE_PRI_BUS)) { 434 edev->pe->bus = pci_find_bus(hose->global_number, 435 pdn->busno); 436 if (edev->pe->bus) 437 edev->pe->state |= EEH_PE_PRI_BUS; 438 } 439 440 /* 441 * Enable EEH explicitly so that we will do EEH check 442 * while accessing I/O stuff 443 */ 444 eeh_add_flag(EEH_ENABLED); 445 446 /* Save memory bars */ 447 eeh_save_bars(edev); 448 449 return NULL; 450 } 451 452 /** 453 * pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable 454 * @pe: EEH PE 455 * @option: operation to be issued 456 * 457 * The function is used to control the EEH functionality globally. 458 * Currently, following options are support according to PAPR: 459 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA 460 */ 461 static int pnv_eeh_set_option(struct eeh_pe *pe, int option) 462 { 463 struct pci_controller *hose = pe->phb; 464 struct pnv_phb *phb = hose->private_data; 465 bool freeze_pe = false; 466 int opt; 467 s64 rc; 468 469 switch (option) { 470 case EEH_OPT_DISABLE: 471 return -EPERM; 472 case EEH_OPT_ENABLE: 473 return 0; 474 case EEH_OPT_THAW_MMIO: 475 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO; 476 break; 477 case EEH_OPT_THAW_DMA: 478 opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA; 479 break; 480 case EEH_OPT_FREEZE_PE: 481 freeze_pe = true; 482 opt = OPAL_EEH_ACTION_SET_FREEZE_ALL; 483 break; 484 default: 485 pr_warn("%s: Invalid option %d\n", __func__, option); 486 return -EINVAL; 487 } 488 489 /* Freeze master and slave PEs if PHB supports compound PEs */ 490 if (freeze_pe) { 491 if (phb->freeze_pe) { 492 phb->freeze_pe(phb, pe->addr); 493 return 0; 494 } 495 496 rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt); 497 if (rc != OPAL_SUCCESS) { 498 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n", 499 __func__, rc, phb->hose->global_number, 500 pe->addr); 501 return -EIO; 502 } 503 504 return 0; 505 } 506 507 /* Unfreeze master and slave PEs if PHB supports */ 508 if (phb->unfreeze_pe) 509 return phb->unfreeze_pe(phb, pe->addr, opt); 510 511 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt); 512 if (rc != OPAL_SUCCESS) { 513 pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n", 514 __func__, rc, option, phb->hose->global_number, 515 pe->addr); 516 return -EIO; 517 } 518 519 return 0; 520 } 521 522 /** 523 * pnv_eeh_get_pe_addr - Retrieve PE address 524 * @pe: EEH PE 525 * 526 * Retrieve the PE address according to the given tranditional 527 * PCI BDF (Bus/Device/Function) address. 528 */ 529 static int pnv_eeh_get_pe_addr(struct eeh_pe *pe) 530 { 531 return pe->addr; 532 } 533 534 static void pnv_eeh_get_phb_diag(struct eeh_pe *pe) 535 { 536 struct pnv_phb *phb = pe->phb->private_data; 537 s64 rc; 538 539 rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data, 540 PNV_PCI_DIAG_BUF_SIZE); 541 if (rc != OPAL_SUCCESS) 542 pr_warn("%s: Failure %lld getting PHB#%x diag-data\n", 543 __func__, rc, pe->phb->global_number); 544 } 545 546 static int pnv_eeh_get_phb_state(struct eeh_pe *pe) 547 { 548 struct pnv_phb *phb = pe->phb->private_data; 549 u8 fstate; 550 __be16 pcierr; 551 s64 rc; 552 int result = 0; 553 554 rc = opal_pci_eeh_freeze_status(phb->opal_id, 555 pe->addr, 556 &fstate, 557 &pcierr, 558 NULL); 559 if (rc != OPAL_SUCCESS) { 560 pr_warn("%s: Failure %lld getting PHB#%x state\n", 561 __func__, rc, phb->hose->global_number); 562 return EEH_STATE_NOT_SUPPORT; 563 } 564 565 /* 566 * Check PHB state. If the PHB is frozen for the 567 * first time, to dump the PHB diag-data. 568 */ 569 if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) { 570 result = (EEH_STATE_MMIO_ACTIVE | 571 EEH_STATE_DMA_ACTIVE | 572 EEH_STATE_MMIO_ENABLED | 573 EEH_STATE_DMA_ENABLED); 574 } else if (!(pe->state & EEH_PE_ISOLATED)) { 575 eeh_pe_state_mark(pe, EEH_PE_ISOLATED); 576 pnv_eeh_get_phb_diag(pe); 577 578 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 579 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 580 } 581 582 return result; 583 } 584 585 static int pnv_eeh_get_pe_state(struct eeh_pe *pe) 586 { 587 struct pnv_phb *phb = pe->phb->private_data; 588 u8 fstate; 589 __be16 pcierr; 590 s64 rc; 591 int result; 592 593 /* 594 * We don't clobber hardware frozen state until PE 595 * reset is completed. In order to keep EEH core 596 * moving forward, we have to return operational 597 * state during PE reset. 598 */ 599 if (pe->state & EEH_PE_RESET) { 600 result = (EEH_STATE_MMIO_ACTIVE | 601 EEH_STATE_DMA_ACTIVE | 602 EEH_STATE_MMIO_ENABLED | 603 EEH_STATE_DMA_ENABLED); 604 return result; 605 } 606 607 /* 608 * Fetch PE state from hardware. If the PHB 609 * supports compound PE, let it handle that. 610 */ 611 if (phb->get_pe_state) { 612 fstate = phb->get_pe_state(phb, pe->addr); 613 } else { 614 rc = opal_pci_eeh_freeze_status(phb->opal_id, 615 pe->addr, 616 &fstate, 617 &pcierr, 618 NULL); 619 if (rc != OPAL_SUCCESS) { 620 pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n", 621 __func__, rc, phb->hose->global_number, 622 pe->addr); 623 return EEH_STATE_NOT_SUPPORT; 624 } 625 } 626 627 /* Figure out state */ 628 switch (fstate) { 629 case OPAL_EEH_STOPPED_NOT_FROZEN: 630 result = (EEH_STATE_MMIO_ACTIVE | 631 EEH_STATE_DMA_ACTIVE | 632 EEH_STATE_MMIO_ENABLED | 633 EEH_STATE_DMA_ENABLED); 634 break; 635 case OPAL_EEH_STOPPED_MMIO_FREEZE: 636 result = (EEH_STATE_DMA_ACTIVE | 637 EEH_STATE_DMA_ENABLED); 638 break; 639 case OPAL_EEH_STOPPED_DMA_FREEZE: 640 result = (EEH_STATE_MMIO_ACTIVE | 641 EEH_STATE_MMIO_ENABLED); 642 break; 643 case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE: 644 result = 0; 645 break; 646 case OPAL_EEH_STOPPED_RESET: 647 result = EEH_STATE_RESET_ACTIVE; 648 break; 649 case OPAL_EEH_STOPPED_TEMP_UNAVAIL: 650 result = EEH_STATE_UNAVAILABLE; 651 break; 652 case OPAL_EEH_STOPPED_PERM_UNAVAIL: 653 result = EEH_STATE_NOT_SUPPORT; 654 break; 655 default: 656 result = EEH_STATE_NOT_SUPPORT; 657 pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n", 658 __func__, phb->hose->global_number, 659 pe->addr, fstate); 660 } 661 662 /* 663 * If PHB supports compound PE, to freeze all 664 * slave PEs for consistency. 665 * 666 * If the PE is switching to frozen state for the 667 * first time, to dump the PHB diag-data. 668 */ 669 if (!(result & EEH_STATE_NOT_SUPPORT) && 670 !(result & EEH_STATE_UNAVAILABLE) && 671 !(result & EEH_STATE_MMIO_ACTIVE) && 672 !(result & EEH_STATE_DMA_ACTIVE) && 673 !(pe->state & EEH_PE_ISOLATED)) { 674 if (phb->freeze_pe) 675 phb->freeze_pe(phb, pe->addr); 676 677 eeh_pe_state_mark(pe, EEH_PE_ISOLATED); 678 pnv_eeh_get_phb_diag(pe); 679 680 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 681 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 682 } 683 684 return result; 685 } 686 687 /** 688 * pnv_eeh_get_state - Retrieve PE state 689 * @pe: EEH PE 690 * @delay: delay while PE state is temporarily unavailable 691 * 692 * Retrieve the state of the specified PE. For IODA-compitable 693 * platform, it should be retrieved from IODA table. Therefore, 694 * we prefer passing down to hardware implementation to handle 695 * it. 696 */ 697 static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay) 698 { 699 int ret; 700 701 if (pe->type & EEH_PE_PHB) 702 ret = pnv_eeh_get_phb_state(pe); 703 else 704 ret = pnv_eeh_get_pe_state(pe); 705 706 if (!delay) 707 return ret; 708 709 /* 710 * If the PE state is temporarily unavailable, 711 * to inform the EEH core delay for default 712 * period (1 second) 713 */ 714 *delay = 0; 715 if (ret & EEH_STATE_UNAVAILABLE) 716 *delay = 1000; 717 718 return ret; 719 } 720 721 static s64 pnv_eeh_poll(unsigned long id) 722 { 723 s64 rc = OPAL_HARDWARE; 724 725 while (1) { 726 rc = opal_pci_poll(id); 727 if (rc <= 0) 728 break; 729 730 if (system_state < SYSTEM_RUNNING) 731 udelay(1000 * rc); 732 else 733 msleep(rc); 734 } 735 736 return rc; 737 } 738 739 int pnv_eeh_phb_reset(struct pci_controller *hose, int option) 740 { 741 struct pnv_phb *phb = hose->private_data; 742 s64 rc = OPAL_HARDWARE; 743 744 pr_debug("%s: Reset PHB#%x, option=%d\n", 745 __func__, hose->global_number, option); 746 747 /* Issue PHB complete reset request */ 748 if (option == EEH_RESET_FUNDAMENTAL || 749 option == EEH_RESET_HOT) 750 rc = opal_pci_reset(phb->opal_id, 751 OPAL_RESET_PHB_COMPLETE, 752 OPAL_ASSERT_RESET); 753 else if (option == EEH_RESET_DEACTIVATE) 754 rc = opal_pci_reset(phb->opal_id, 755 OPAL_RESET_PHB_COMPLETE, 756 OPAL_DEASSERT_RESET); 757 if (rc < 0) 758 goto out; 759 760 /* 761 * Poll state of the PHB until the request is done 762 * successfully. The PHB reset is usually PHB complete 763 * reset followed by hot reset on root bus. So we also 764 * need the PCI bus settlement delay. 765 */ 766 rc = pnv_eeh_poll(phb->opal_id); 767 if (option == EEH_RESET_DEACTIVATE) { 768 if (system_state < SYSTEM_RUNNING) 769 udelay(1000 * EEH_PE_RST_SETTLE_TIME); 770 else 771 msleep(EEH_PE_RST_SETTLE_TIME); 772 } 773 out: 774 if (rc != OPAL_SUCCESS) 775 return -EIO; 776 777 return 0; 778 } 779 780 static int pnv_eeh_root_reset(struct pci_controller *hose, int option) 781 { 782 struct pnv_phb *phb = hose->private_data; 783 s64 rc = OPAL_HARDWARE; 784 785 pr_debug("%s: Reset PHB#%x, option=%d\n", 786 __func__, hose->global_number, option); 787 788 /* 789 * During the reset deassert time, we needn't care 790 * the reset scope because the firmware does nothing 791 * for fundamental or hot reset during deassert phase. 792 */ 793 if (option == EEH_RESET_FUNDAMENTAL) 794 rc = opal_pci_reset(phb->opal_id, 795 OPAL_RESET_PCI_FUNDAMENTAL, 796 OPAL_ASSERT_RESET); 797 else if (option == EEH_RESET_HOT) 798 rc = opal_pci_reset(phb->opal_id, 799 OPAL_RESET_PCI_HOT, 800 OPAL_ASSERT_RESET); 801 else if (option == EEH_RESET_DEACTIVATE) 802 rc = opal_pci_reset(phb->opal_id, 803 OPAL_RESET_PCI_HOT, 804 OPAL_DEASSERT_RESET); 805 if (rc < 0) 806 goto out; 807 808 /* Poll state of the PHB until the request is done */ 809 rc = pnv_eeh_poll(phb->opal_id); 810 if (option == EEH_RESET_DEACTIVATE) 811 msleep(EEH_PE_RST_SETTLE_TIME); 812 out: 813 if (rc != OPAL_SUCCESS) 814 return -EIO; 815 816 return 0; 817 } 818 819 static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option) 820 { 821 struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn); 822 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 823 int aer = edev ? edev->aer_cap : 0; 824 u32 ctrl; 825 826 pr_debug("%s: Reset PCI bus %04x:%02x with option %d\n", 827 __func__, pci_domain_nr(dev->bus), 828 dev->bus->number, option); 829 830 switch (option) { 831 case EEH_RESET_FUNDAMENTAL: 832 case EEH_RESET_HOT: 833 /* Don't report linkDown event */ 834 if (aer) { 835 eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK, 836 4, &ctrl); 837 ctrl |= PCI_ERR_UNC_SURPDN; 838 eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK, 839 4, ctrl); 840 } 841 842 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl); 843 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 844 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl); 845 846 msleep(EEH_PE_RST_HOLD_TIME); 847 break; 848 case EEH_RESET_DEACTIVATE: 849 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &ctrl); 850 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 851 eeh_ops->write_config(pdn, PCI_BRIDGE_CONTROL, 2, ctrl); 852 853 msleep(EEH_PE_RST_SETTLE_TIME); 854 855 /* Continue reporting linkDown event */ 856 if (aer) { 857 eeh_ops->read_config(pdn, aer + PCI_ERR_UNCOR_MASK, 858 4, &ctrl); 859 ctrl &= ~PCI_ERR_UNC_SURPDN; 860 eeh_ops->write_config(pdn, aer + PCI_ERR_UNCOR_MASK, 861 4, ctrl); 862 } 863 864 break; 865 } 866 867 return 0; 868 } 869 870 static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option) 871 { 872 struct pci_controller *hose = pci_bus_to_host(pdev->bus); 873 struct pnv_phb *phb = hose->private_data; 874 struct device_node *dn = pci_device_to_OF_node(pdev); 875 uint64_t id = PCI_SLOT_ID(phb->opal_id, 876 (pdev->bus->number << 8) | pdev->devfn); 877 uint8_t scope; 878 int64_t rc; 879 880 /* Hot reset to the bus if firmware cannot handle */ 881 if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL)) 882 return __pnv_eeh_bridge_reset(pdev, option); 883 884 switch (option) { 885 case EEH_RESET_FUNDAMENTAL: 886 scope = OPAL_RESET_PCI_FUNDAMENTAL; 887 break; 888 case EEH_RESET_HOT: 889 scope = OPAL_RESET_PCI_HOT; 890 break; 891 case EEH_RESET_DEACTIVATE: 892 return 0; 893 default: 894 dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n", 895 __func__, option); 896 return -EINVAL; 897 } 898 899 rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET); 900 if (rc <= OPAL_SUCCESS) 901 goto out; 902 903 rc = pnv_eeh_poll(id); 904 out: 905 return (rc == OPAL_SUCCESS) ? 0 : -EIO; 906 } 907 908 void pnv_pci_reset_secondary_bus(struct pci_dev *dev) 909 { 910 struct pci_controller *hose; 911 912 if (pci_is_root_bus(dev->bus)) { 913 hose = pci_bus_to_host(dev->bus); 914 pnv_eeh_root_reset(hose, EEH_RESET_HOT); 915 pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE); 916 } else { 917 pnv_eeh_bridge_reset(dev, EEH_RESET_HOT); 918 pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE); 919 } 920 } 921 922 static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type, 923 int pos, u16 mask) 924 { 925 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 926 int i, status = 0; 927 928 /* Wait for Transaction Pending bit to be cleared */ 929 for (i = 0; i < 4; i++) { 930 eeh_ops->read_config(pdn, pos, 2, &status); 931 if (!(status & mask)) 932 return; 933 934 msleep((1 << i) * 100); 935 } 936 937 pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n", 938 __func__, type, 939 edev->phb->global_number, pdn->busno, 940 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn)); 941 } 942 943 static int pnv_eeh_do_flr(struct pci_dn *pdn, int option) 944 { 945 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 946 u32 reg = 0; 947 948 if (WARN_ON(!edev->pcie_cap)) 949 return -ENOTTY; 950 951 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP, 4, ®); 952 if (!(reg & PCI_EXP_DEVCAP_FLR)) 953 return -ENOTTY; 954 955 switch (option) { 956 case EEH_RESET_HOT: 957 case EEH_RESET_FUNDAMENTAL: 958 pnv_eeh_wait_for_pending(pdn, "", 959 edev->pcie_cap + PCI_EXP_DEVSTA, 960 PCI_EXP_DEVSTA_TRPND); 961 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 962 4, ®); 963 reg |= PCI_EXP_DEVCTL_BCR_FLR; 964 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 965 4, reg); 966 msleep(EEH_PE_RST_HOLD_TIME); 967 break; 968 case EEH_RESET_DEACTIVATE: 969 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 970 4, ®); 971 reg &= ~PCI_EXP_DEVCTL_BCR_FLR; 972 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 973 4, reg); 974 msleep(EEH_PE_RST_SETTLE_TIME); 975 break; 976 } 977 978 return 0; 979 } 980 981 static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option) 982 { 983 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 984 u32 cap = 0; 985 986 if (WARN_ON(!edev->af_cap)) 987 return -ENOTTY; 988 989 eeh_ops->read_config(pdn, edev->af_cap + PCI_AF_CAP, 1, &cap); 990 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 991 return -ENOTTY; 992 993 switch (option) { 994 case EEH_RESET_HOT: 995 case EEH_RESET_FUNDAMENTAL: 996 /* 997 * Wait for Transaction Pending bit to clear. A word-aligned 998 * test is used, so we use the conrol offset rather than status 999 * and shift the test bit to match. 1000 */ 1001 pnv_eeh_wait_for_pending(pdn, "AF", 1002 edev->af_cap + PCI_AF_CTRL, 1003 PCI_AF_STATUS_TP << 8); 1004 eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1005 1, PCI_AF_CTRL_FLR); 1006 msleep(EEH_PE_RST_HOLD_TIME); 1007 break; 1008 case EEH_RESET_DEACTIVATE: 1009 eeh_ops->write_config(pdn, edev->af_cap + PCI_AF_CTRL, 1, 0); 1010 msleep(EEH_PE_RST_SETTLE_TIME); 1011 break; 1012 } 1013 1014 return 0; 1015 } 1016 1017 static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option) 1018 { 1019 struct eeh_dev *edev; 1020 struct pci_dn *pdn; 1021 int ret; 1022 1023 /* The VF PE should have only one child device */ 1024 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list); 1025 pdn = eeh_dev_to_pdn(edev); 1026 if (!pdn) 1027 return -ENXIO; 1028 1029 ret = pnv_eeh_do_flr(pdn, option); 1030 if (!ret) 1031 return ret; 1032 1033 return pnv_eeh_do_af_flr(pdn, option); 1034 } 1035 1036 /** 1037 * pnv_eeh_reset - Reset the specified PE 1038 * @pe: EEH PE 1039 * @option: reset option 1040 * 1041 * Do reset on the indicated PE. For PCI bus sensitive PE, 1042 * we need to reset the parent p2p bridge. The PHB has to 1043 * be reinitialized if the p2p bridge is root bridge. For 1044 * PCI device sensitive PE, we will try to reset the device 1045 * through FLR. For now, we don't have OPAL APIs to do HARD 1046 * reset yet, so all reset would be SOFT (HOT) reset. 1047 */ 1048 static int pnv_eeh_reset(struct eeh_pe *pe, int option) 1049 { 1050 struct pci_controller *hose = pe->phb; 1051 struct pnv_phb *phb; 1052 struct pci_bus *bus; 1053 int64_t rc; 1054 1055 /* 1056 * For PHB reset, we always have complete reset. For those PEs whose 1057 * primary bus derived from root complex (root bus) or root port 1058 * (usually bus#1), we apply hot or fundamental reset on the root port. 1059 * For other PEs, we always have hot reset on the PE primary bus. 1060 * 1061 * Here, we have different design to pHyp, which always clear the 1062 * frozen state during PE reset. However, the good idea here from 1063 * benh is to keep frozen state before we get PE reset done completely 1064 * (until BAR restore). With the frozen state, HW drops illegal IO 1065 * or MMIO access, which can incur recrusive frozen PE during PE 1066 * reset. The side effect is that EEH core has to clear the frozen 1067 * state explicitly after BAR restore. 1068 */ 1069 if (pe->type & EEH_PE_PHB) 1070 return pnv_eeh_phb_reset(hose, option); 1071 1072 /* 1073 * The frozen PE might be caused by PAPR error injection 1074 * registers, which are expected to be cleared after hitting 1075 * frozen PE as stated in the hardware spec. Unfortunately, 1076 * that's not true on P7IOC. So we have to clear it manually 1077 * to avoid recursive EEH errors during recovery. 1078 */ 1079 phb = hose->private_data; 1080 if (phb->model == PNV_PHB_MODEL_P7IOC && 1081 (option == EEH_RESET_HOT || 1082 option == EEH_RESET_FUNDAMENTAL)) { 1083 rc = opal_pci_reset(phb->opal_id, 1084 OPAL_RESET_PHB_ERROR, 1085 OPAL_ASSERT_RESET); 1086 if (rc != OPAL_SUCCESS) { 1087 pr_warn("%s: Failure %lld clearing error injection registers\n", 1088 __func__, rc); 1089 return -EIO; 1090 } 1091 } 1092 1093 bus = eeh_pe_bus_get(pe); 1094 if (!bus) { 1095 pr_err("%s: Cannot find PCI bus for PHB#%d-PE#%x\n", 1096 __func__, pe->phb->global_number, pe->addr); 1097 return -EIO; 1098 } 1099 if (pe->type & EEH_PE_VF) 1100 return pnv_eeh_reset_vf_pe(pe, option); 1101 1102 if (pci_is_root_bus(bus) || 1103 pci_is_root_bus(bus->parent)) 1104 return pnv_eeh_root_reset(hose, option); 1105 1106 return pnv_eeh_bridge_reset(bus->self, option); 1107 } 1108 1109 /** 1110 * pnv_eeh_wait_state - Wait for PE state 1111 * @pe: EEH PE 1112 * @max_wait: maximal period in millisecond 1113 * 1114 * Wait for the state of associated PE. It might take some time 1115 * to retrieve the PE's state. 1116 */ 1117 static int pnv_eeh_wait_state(struct eeh_pe *pe, int max_wait) 1118 { 1119 int ret; 1120 int mwait; 1121 1122 while (1) { 1123 ret = pnv_eeh_get_state(pe, &mwait); 1124 1125 /* 1126 * If the PE's state is temporarily unavailable, 1127 * we have to wait for the specified time. Otherwise, 1128 * the PE's state will be returned immediately. 1129 */ 1130 if (ret != EEH_STATE_UNAVAILABLE) 1131 return ret; 1132 1133 if (max_wait <= 0) { 1134 pr_warn("%s: Timeout getting PE#%x's state (%d)\n", 1135 __func__, pe->addr, max_wait); 1136 return EEH_STATE_NOT_SUPPORT; 1137 } 1138 1139 max_wait -= mwait; 1140 msleep(mwait); 1141 } 1142 1143 return EEH_STATE_NOT_SUPPORT; 1144 } 1145 1146 /** 1147 * pnv_eeh_get_log - Retrieve error log 1148 * @pe: EEH PE 1149 * @severity: temporary or permanent error log 1150 * @drv_log: driver log to be combined with retrieved error log 1151 * @len: length of driver log 1152 * 1153 * Retrieve the temporary or permanent error from the PE. 1154 */ 1155 static int pnv_eeh_get_log(struct eeh_pe *pe, int severity, 1156 char *drv_log, unsigned long len) 1157 { 1158 if (!eeh_has_flag(EEH_EARLY_DUMP_LOG)) 1159 pnv_pci_dump_phb_diag_data(pe->phb, pe->data); 1160 1161 return 0; 1162 } 1163 1164 /** 1165 * pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE 1166 * @pe: EEH PE 1167 * 1168 * The function will be called to reconfigure the bridges included 1169 * in the specified PE so that the mulfunctional PE would be recovered 1170 * again. 1171 */ 1172 static int pnv_eeh_configure_bridge(struct eeh_pe *pe) 1173 { 1174 return 0; 1175 } 1176 1177 /** 1178 * pnv_pe_err_inject - Inject specified error to the indicated PE 1179 * @pe: the indicated PE 1180 * @type: error type 1181 * @func: specific error type 1182 * @addr: address 1183 * @mask: address mask 1184 * 1185 * The routine is called to inject specified error, which is 1186 * determined by @type and @func, to the indicated PE for 1187 * testing purpose. 1188 */ 1189 static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func, 1190 unsigned long addr, unsigned long mask) 1191 { 1192 struct pci_controller *hose = pe->phb; 1193 struct pnv_phb *phb = hose->private_data; 1194 s64 rc; 1195 1196 if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR && 1197 type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) { 1198 pr_warn("%s: Invalid error type %d\n", 1199 __func__, type); 1200 return -ERANGE; 1201 } 1202 1203 if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR || 1204 func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) { 1205 pr_warn("%s: Invalid error function %d\n", 1206 __func__, func); 1207 return -ERANGE; 1208 } 1209 1210 /* Firmware supports error injection ? */ 1211 if (!opal_check_token(OPAL_PCI_ERR_INJECT)) { 1212 pr_warn("%s: Firmware doesn't support error injection\n", 1213 __func__); 1214 return -ENXIO; 1215 } 1216 1217 /* Do error injection */ 1218 rc = opal_pci_err_inject(phb->opal_id, pe->addr, 1219 type, func, addr, mask); 1220 if (rc != OPAL_SUCCESS) { 1221 pr_warn("%s: Failure %lld injecting error " 1222 "%d-%d to PHB#%x-PE#%x\n", 1223 __func__, rc, type, func, 1224 hose->global_number, pe->addr); 1225 return -EIO; 1226 } 1227 1228 return 0; 1229 } 1230 1231 static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn) 1232 { 1233 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 1234 1235 if (!edev || !edev->pe) 1236 return false; 1237 1238 /* 1239 * We will issue FLR or AF FLR to all VFs, which are contained 1240 * in VF PE. It relies on the EEH PCI config accessors. So we 1241 * can't block them during the window. 1242 */ 1243 if (edev->physfn && (edev->pe->state & EEH_PE_RESET)) 1244 return false; 1245 1246 if (edev->pe->state & EEH_PE_CFG_BLOCKED) 1247 return true; 1248 1249 return false; 1250 } 1251 1252 static int pnv_eeh_read_config(struct pci_dn *pdn, 1253 int where, int size, u32 *val) 1254 { 1255 if (!pdn) 1256 return PCIBIOS_DEVICE_NOT_FOUND; 1257 1258 if (pnv_eeh_cfg_blocked(pdn)) { 1259 *val = 0xFFFFFFFF; 1260 return PCIBIOS_SET_FAILED; 1261 } 1262 1263 return pnv_pci_cfg_read(pdn, where, size, val); 1264 } 1265 1266 static int pnv_eeh_write_config(struct pci_dn *pdn, 1267 int where, int size, u32 val) 1268 { 1269 if (!pdn) 1270 return PCIBIOS_DEVICE_NOT_FOUND; 1271 1272 if (pnv_eeh_cfg_blocked(pdn)) 1273 return PCIBIOS_SET_FAILED; 1274 1275 return pnv_pci_cfg_write(pdn, where, size, val); 1276 } 1277 1278 static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data) 1279 { 1280 /* GEM */ 1281 if (data->gemXfir || data->gemRfir || 1282 data->gemRirqfir || data->gemMask || data->gemRwof) 1283 pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n", 1284 be64_to_cpu(data->gemXfir), 1285 be64_to_cpu(data->gemRfir), 1286 be64_to_cpu(data->gemRirqfir), 1287 be64_to_cpu(data->gemMask), 1288 be64_to_cpu(data->gemRwof)); 1289 1290 /* LEM */ 1291 if (data->lemFir || data->lemErrMask || 1292 data->lemAction0 || data->lemAction1 || data->lemWof) 1293 pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n", 1294 be64_to_cpu(data->lemFir), 1295 be64_to_cpu(data->lemErrMask), 1296 be64_to_cpu(data->lemAction0), 1297 be64_to_cpu(data->lemAction1), 1298 be64_to_cpu(data->lemWof)); 1299 } 1300 1301 static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose) 1302 { 1303 struct pnv_phb *phb = hose->private_data; 1304 struct OpalIoP7IOCErrorData *data = &phb->diag.hub_diag; 1305 long rc; 1306 1307 rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data)); 1308 if (rc != OPAL_SUCCESS) { 1309 pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n", 1310 __func__, phb->hub_id, rc); 1311 return; 1312 } 1313 1314 switch (be16_to_cpu(data->type)) { 1315 case OPAL_P7IOC_DIAG_TYPE_RGC: 1316 pr_info("P7IOC diag-data for RGC\n\n"); 1317 pnv_eeh_dump_hub_diag_common(data); 1318 if (data->rgc.rgcStatus || data->rgc.rgcLdcp) 1319 pr_info(" RGC: %016llx %016llx\n", 1320 be64_to_cpu(data->rgc.rgcStatus), 1321 be64_to_cpu(data->rgc.rgcLdcp)); 1322 break; 1323 case OPAL_P7IOC_DIAG_TYPE_BI: 1324 pr_info("P7IOC diag-data for BI %s\n\n", 1325 data->bi.biDownbound ? "Downbound" : "Upbound"); 1326 pnv_eeh_dump_hub_diag_common(data); 1327 if (data->bi.biLdcp0 || data->bi.biLdcp1 || 1328 data->bi.biLdcp2 || data->bi.biFenceStatus) 1329 pr_info(" BI: %016llx %016llx %016llx %016llx\n", 1330 be64_to_cpu(data->bi.biLdcp0), 1331 be64_to_cpu(data->bi.biLdcp1), 1332 be64_to_cpu(data->bi.biLdcp2), 1333 be64_to_cpu(data->bi.biFenceStatus)); 1334 break; 1335 case OPAL_P7IOC_DIAG_TYPE_CI: 1336 pr_info("P7IOC diag-data for CI Port %d\n\n", 1337 data->ci.ciPort); 1338 pnv_eeh_dump_hub_diag_common(data); 1339 if (data->ci.ciPortStatus || data->ci.ciPortLdcp) 1340 pr_info(" CI: %016llx %016llx\n", 1341 be64_to_cpu(data->ci.ciPortStatus), 1342 be64_to_cpu(data->ci.ciPortLdcp)); 1343 break; 1344 case OPAL_P7IOC_DIAG_TYPE_MISC: 1345 pr_info("P7IOC diag-data for MISC\n\n"); 1346 pnv_eeh_dump_hub_diag_common(data); 1347 break; 1348 case OPAL_P7IOC_DIAG_TYPE_I2C: 1349 pr_info("P7IOC diag-data for I2C\n\n"); 1350 pnv_eeh_dump_hub_diag_common(data); 1351 break; 1352 default: 1353 pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n", 1354 __func__, phb->hub_id, data->type); 1355 } 1356 } 1357 1358 static int pnv_eeh_get_pe(struct pci_controller *hose, 1359 u16 pe_no, struct eeh_pe **pe) 1360 { 1361 struct pnv_phb *phb = hose->private_data; 1362 struct pnv_ioda_pe *pnv_pe; 1363 struct eeh_pe *dev_pe; 1364 struct eeh_dev edev; 1365 1366 /* 1367 * If PHB supports compound PE, to fetch 1368 * the master PE because slave PE is invisible 1369 * to EEH core. 1370 */ 1371 pnv_pe = &phb->ioda.pe_array[pe_no]; 1372 if (pnv_pe->flags & PNV_IODA_PE_SLAVE) { 1373 pnv_pe = pnv_pe->master; 1374 WARN_ON(!pnv_pe || 1375 !(pnv_pe->flags & PNV_IODA_PE_MASTER)); 1376 pe_no = pnv_pe->pe_number; 1377 } 1378 1379 /* Find the PE according to PE# */ 1380 memset(&edev, 0, sizeof(struct eeh_dev)); 1381 edev.phb = hose; 1382 edev.pe_config_addr = pe_no; 1383 dev_pe = eeh_pe_get(&edev); 1384 if (!dev_pe) 1385 return -EEXIST; 1386 1387 /* Freeze the (compound) PE */ 1388 *pe = dev_pe; 1389 if (!(dev_pe->state & EEH_PE_ISOLATED)) 1390 phb->freeze_pe(phb, pe_no); 1391 1392 /* 1393 * At this point, we're sure the (compound) PE should 1394 * have been frozen. However, we still need poke until 1395 * hitting the frozen PE on top level. 1396 */ 1397 dev_pe = dev_pe->parent; 1398 while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) { 1399 int ret; 1400 int active_flags = (EEH_STATE_MMIO_ACTIVE | 1401 EEH_STATE_DMA_ACTIVE); 1402 1403 ret = eeh_ops->get_state(dev_pe, NULL); 1404 if (ret <= 0 || (ret & active_flags) == active_flags) { 1405 dev_pe = dev_pe->parent; 1406 continue; 1407 } 1408 1409 /* Frozen parent PE */ 1410 *pe = dev_pe; 1411 if (!(dev_pe->state & EEH_PE_ISOLATED)) 1412 phb->freeze_pe(phb, dev_pe->addr); 1413 1414 /* Next one */ 1415 dev_pe = dev_pe->parent; 1416 } 1417 1418 return 0; 1419 } 1420 1421 /** 1422 * pnv_eeh_next_error - Retrieve next EEH error to handle 1423 * @pe: Affected PE 1424 * 1425 * The function is expected to be called by EEH core while it gets 1426 * special EEH event (without binding PE). The function calls to 1427 * OPAL APIs for next error to handle. The informational error is 1428 * handled internally by platform. However, the dead IOC, dead PHB, 1429 * fenced PHB and frozen PE should be handled by EEH core eventually. 1430 */ 1431 static int pnv_eeh_next_error(struct eeh_pe **pe) 1432 { 1433 struct pci_controller *hose; 1434 struct pnv_phb *phb; 1435 struct eeh_pe *phb_pe, *parent_pe; 1436 __be64 frozen_pe_no; 1437 __be16 err_type, severity; 1438 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE); 1439 long rc; 1440 int state, ret = EEH_NEXT_ERR_NONE; 1441 1442 /* 1443 * While running here, it's safe to purge the event queue. The 1444 * event should still be masked. 1445 */ 1446 eeh_remove_event(NULL, false); 1447 1448 list_for_each_entry(hose, &hose_list, list_node) { 1449 /* 1450 * If the subordinate PCI buses of the PHB has been 1451 * removed or is exactly under error recovery, we 1452 * needn't take care of it any more. 1453 */ 1454 phb = hose->private_data; 1455 phb_pe = eeh_phb_pe_get(hose); 1456 if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED)) 1457 continue; 1458 1459 rc = opal_pci_next_error(phb->opal_id, 1460 &frozen_pe_no, &err_type, &severity); 1461 if (rc != OPAL_SUCCESS) { 1462 pr_devel("%s: Invalid return value on " 1463 "PHB#%x (0x%lx) from opal_pci_next_error", 1464 __func__, hose->global_number, rc); 1465 continue; 1466 } 1467 1468 /* If the PHB doesn't have error, stop processing */ 1469 if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR || 1470 be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) { 1471 pr_devel("%s: No error found on PHB#%x\n", 1472 __func__, hose->global_number); 1473 continue; 1474 } 1475 1476 /* 1477 * Processing the error. We're expecting the error with 1478 * highest priority reported upon multiple errors on the 1479 * specific PHB. 1480 */ 1481 pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n", 1482 __func__, be16_to_cpu(err_type), 1483 be16_to_cpu(severity), be64_to_cpu(frozen_pe_no), 1484 hose->global_number); 1485 switch (be16_to_cpu(err_type)) { 1486 case OPAL_EEH_IOC_ERROR: 1487 if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) { 1488 pr_err("EEH: dead IOC detected\n"); 1489 ret = EEH_NEXT_ERR_DEAD_IOC; 1490 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { 1491 pr_info("EEH: IOC informative error " 1492 "detected\n"); 1493 pnv_eeh_get_and_dump_hub_diag(hose); 1494 ret = EEH_NEXT_ERR_NONE; 1495 } 1496 1497 break; 1498 case OPAL_EEH_PHB_ERROR: 1499 if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) { 1500 *pe = phb_pe; 1501 pr_err("EEH: dead PHB#%x detected, " 1502 "location: %s\n", 1503 hose->global_number, 1504 eeh_pe_loc_get(phb_pe)); 1505 ret = EEH_NEXT_ERR_DEAD_PHB; 1506 } else if (be16_to_cpu(severity) == 1507 OPAL_EEH_SEV_PHB_FENCED) { 1508 *pe = phb_pe; 1509 pr_err("EEH: Fenced PHB#%x detected, " 1510 "location: %s\n", 1511 hose->global_number, 1512 eeh_pe_loc_get(phb_pe)); 1513 ret = EEH_NEXT_ERR_FENCED_PHB; 1514 } else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) { 1515 pr_info("EEH: PHB#%x informative error " 1516 "detected, location: %s\n", 1517 hose->global_number, 1518 eeh_pe_loc_get(phb_pe)); 1519 pnv_eeh_get_phb_diag(phb_pe); 1520 pnv_pci_dump_phb_diag_data(hose, phb_pe->data); 1521 ret = EEH_NEXT_ERR_NONE; 1522 } 1523 1524 break; 1525 case OPAL_EEH_PE_ERROR: 1526 /* 1527 * If we can't find the corresponding PE, we 1528 * just try to unfreeze. 1529 */ 1530 if (pnv_eeh_get_pe(hose, 1531 be64_to_cpu(frozen_pe_no), pe)) { 1532 pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n", 1533 hose->global_number, be64_to_cpu(frozen_pe_no)); 1534 pr_info("EEH: PHB location: %s\n", 1535 eeh_pe_loc_get(phb_pe)); 1536 1537 /* Dump PHB diag-data */ 1538 rc = opal_pci_get_phb_diag_data2(phb->opal_id, 1539 phb->diag.blob, PNV_PCI_DIAG_BUF_SIZE); 1540 if (rc == OPAL_SUCCESS) 1541 pnv_pci_dump_phb_diag_data(hose, 1542 phb->diag.blob); 1543 1544 /* Try best to clear it */ 1545 opal_pci_eeh_freeze_clear(phb->opal_id, 1546 be64_to_cpu(frozen_pe_no), 1547 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL); 1548 ret = EEH_NEXT_ERR_NONE; 1549 } else if ((*pe)->state & EEH_PE_ISOLATED || 1550 eeh_pe_passed(*pe)) { 1551 ret = EEH_NEXT_ERR_NONE; 1552 } else { 1553 pr_err("EEH: Frozen PE#%x " 1554 "on PHB#%x detected\n", 1555 (*pe)->addr, 1556 (*pe)->phb->global_number); 1557 pr_err("EEH: PE location: %s, " 1558 "PHB location: %s\n", 1559 eeh_pe_loc_get(*pe), 1560 eeh_pe_loc_get(phb_pe)); 1561 ret = EEH_NEXT_ERR_FROZEN_PE; 1562 } 1563 1564 break; 1565 default: 1566 pr_warn("%s: Unexpected error type %d\n", 1567 __func__, be16_to_cpu(err_type)); 1568 } 1569 1570 /* 1571 * EEH core will try recover from fenced PHB or 1572 * frozen PE. In the time for frozen PE, EEH core 1573 * enable IO path for that before collecting logs, 1574 * but it ruins the site. So we have to dump the 1575 * log in advance here. 1576 */ 1577 if ((ret == EEH_NEXT_ERR_FROZEN_PE || 1578 ret == EEH_NEXT_ERR_FENCED_PHB) && 1579 !((*pe)->state & EEH_PE_ISOLATED)) { 1580 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); 1581 pnv_eeh_get_phb_diag(*pe); 1582 1583 if (eeh_has_flag(EEH_EARLY_DUMP_LOG)) 1584 pnv_pci_dump_phb_diag_data((*pe)->phb, 1585 (*pe)->data); 1586 } 1587 1588 /* 1589 * We probably have the frozen parent PE out there and 1590 * we need have to handle frozen parent PE firstly. 1591 */ 1592 if (ret == EEH_NEXT_ERR_FROZEN_PE) { 1593 parent_pe = (*pe)->parent; 1594 while (parent_pe) { 1595 /* Hit the ceiling ? */ 1596 if (parent_pe->type & EEH_PE_PHB) 1597 break; 1598 1599 /* Frozen parent PE ? */ 1600 state = eeh_ops->get_state(parent_pe, NULL); 1601 if (state > 0 && 1602 (state & active_flags) != active_flags) 1603 *pe = parent_pe; 1604 1605 /* Next parent level */ 1606 parent_pe = parent_pe->parent; 1607 } 1608 1609 /* We possibly migrate to another PE */ 1610 eeh_pe_state_mark(*pe, EEH_PE_ISOLATED); 1611 } 1612 1613 /* 1614 * If we have no errors on the specific PHB or only 1615 * informative error there, we continue poking it. 1616 * Otherwise, we need actions to be taken by upper 1617 * layer. 1618 */ 1619 if (ret > EEH_NEXT_ERR_INF) 1620 break; 1621 } 1622 1623 /* Unmask the event */ 1624 if (ret == EEH_NEXT_ERR_NONE && eeh_enabled()) 1625 enable_irq(eeh_event_irq); 1626 1627 return ret; 1628 } 1629 1630 static int pnv_eeh_restore_vf_config(struct pci_dn *pdn) 1631 { 1632 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 1633 u32 devctl, cmd, cap2, aer_capctl; 1634 int old_mps; 1635 1636 if (edev->pcie_cap) { 1637 /* Restore MPS */ 1638 old_mps = (ffs(pdn->mps) - 8) << 5; 1639 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 1640 2, &devctl); 1641 devctl &= ~PCI_EXP_DEVCTL_PAYLOAD; 1642 devctl |= old_mps; 1643 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 1644 2, devctl); 1645 1646 /* Disable Completion Timeout */ 1647 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCAP2, 1648 4, &cap2); 1649 if (cap2 & 0x10) { 1650 eeh_ops->read_config(pdn, 1651 edev->pcie_cap + PCI_EXP_DEVCTL2, 1652 4, &cap2); 1653 cap2 |= 0x10; 1654 eeh_ops->write_config(pdn, 1655 edev->pcie_cap + PCI_EXP_DEVCTL2, 1656 4, cap2); 1657 } 1658 } 1659 1660 /* Enable SERR and parity checking */ 1661 eeh_ops->read_config(pdn, PCI_COMMAND, 2, &cmd); 1662 cmd |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); 1663 eeh_ops->write_config(pdn, PCI_COMMAND, 2, cmd); 1664 1665 /* Enable report various errors */ 1666 if (edev->pcie_cap) { 1667 eeh_ops->read_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 1668 2, &devctl); 1669 devctl &= ~PCI_EXP_DEVCTL_CERE; 1670 devctl |= (PCI_EXP_DEVCTL_NFERE | 1671 PCI_EXP_DEVCTL_FERE | 1672 PCI_EXP_DEVCTL_URRE); 1673 eeh_ops->write_config(pdn, edev->pcie_cap + PCI_EXP_DEVCTL, 1674 2, devctl); 1675 } 1676 1677 /* Enable ECRC generation and check */ 1678 if (edev->pcie_cap && edev->aer_cap) { 1679 eeh_ops->read_config(pdn, edev->aer_cap + PCI_ERR_CAP, 1680 4, &aer_capctl); 1681 aer_capctl |= (PCI_ERR_CAP_ECRC_GENE | PCI_ERR_CAP_ECRC_CHKE); 1682 eeh_ops->write_config(pdn, edev->aer_cap + PCI_ERR_CAP, 1683 4, aer_capctl); 1684 } 1685 1686 return 0; 1687 } 1688 1689 static int pnv_eeh_restore_config(struct pci_dn *pdn) 1690 { 1691 struct eeh_dev *edev = pdn_to_eeh_dev(pdn); 1692 struct pnv_phb *phb; 1693 s64 ret; 1694 1695 if (!edev) 1696 return -EEXIST; 1697 1698 /* 1699 * We have to restore the PCI config space after reset since the 1700 * firmware can't see SRIOV VFs. 1701 * 1702 * FIXME: The MPS, error routing rules, timeout setting are worthy 1703 * to be exported by firmware in extendible way. 1704 */ 1705 if (edev->physfn) { 1706 ret = pnv_eeh_restore_vf_config(pdn); 1707 } else { 1708 phb = edev->phb->private_data; 1709 ret = opal_pci_reinit(phb->opal_id, 1710 OPAL_REINIT_PCI_DEV, edev->config_addr); 1711 } 1712 1713 if (ret) { 1714 pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n", 1715 __func__, edev->config_addr, ret); 1716 return -EIO; 1717 } 1718 1719 return 0; 1720 } 1721 1722 static struct eeh_ops pnv_eeh_ops = { 1723 .name = "powernv", 1724 .init = pnv_eeh_init, 1725 .post_init = pnv_eeh_post_init, 1726 .probe = pnv_eeh_probe, 1727 .set_option = pnv_eeh_set_option, 1728 .get_pe_addr = pnv_eeh_get_pe_addr, 1729 .get_state = pnv_eeh_get_state, 1730 .reset = pnv_eeh_reset, 1731 .wait_state = pnv_eeh_wait_state, 1732 .get_log = pnv_eeh_get_log, 1733 .configure_bridge = pnv_eeh_configure_bridge, 1734 .err_inject = pnv_eeh_err_inject, 1735 .read_config = pnv_eeh_read_config, 1736 .write_config = pnv_eeh_write_config, 1737 .next_error = pnv_eeh_next_error, 1738 .restore_config = pnv_eeh_restore_config 1739 }; 1740 1741 void pcibios_bus_add_device(struct pci_dev *pdev) 1742 { 1743 struct pci_dn *pdn = pci_get_pdn(pdev); 1744 1745 if (!pdev->is_virtfn) 1746 return; 1747 1748 /* 1749 * The following operations will fail if VF's sysfs files 1750 * aren't created or its resources aren't finalized. 1751 */ 1752 eeh_add_device_early(pdn); 1753 eeh_add_device_late(pdev); 1754 eeh_sysfs_add_device(pdev); 1755 } 1756 1757 #ifdef CONFIG_PCI_IOV 1758 static void pnv_pci_fixup_vf_mps(struct pci_dev *pdev) 1759 { 1760 struct pci_dn *pdn = pci_get_pdn(pdev); 1761 int parent_mps; 1762 1763 if (!pdev->is_virtfn) 1764 return; 1765 1766 /* Synchronize MPS for VF and PF */ 1767 parent_mps = pcie_get_mps(pdev->physfn); 1768 if ((128 << pdev->pcie_mpss) >= parent_mps) 1769 pcie_set_mps(pdev, parent_mps); 1770 pdn->mps = pcie_get_mps(pdev); 1771 } 1772 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pnv_pci_fixup_vf_mps); 1773 #endif /* CONFIG_PCI_IOV */ 1774 1775 /** 1776 * eeh_powernv_init - Register platform dependent EEH operations 1777 * 1778 * EEH initialization on powernv platform. This function should be 1779 * called before any EEH related functions. 1780 */ 1781 static int __init eeh_powernv_init(void) 1782 { 1783 int ret = -EINVAL; 1784 1785 eeh_set_pe_aux_size(PNV_PCI_DIAG_BUF_SIZE); 1786 ret = eeh_ops_register(&pnv_eeh_ops); 1787 if (!ret) 1788 pr_info("EEH: PowerNV platform initialized\n"); 1789 else 1790 pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret); 1791 1792 return ret; 1793 } 1794 machine_early_initcall(powernv, eeh_powernv_init); 1795
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.