~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/s390/kernel/ptrace.c

Version: ~ [ linux-5.18-rc6 ] ~ [ linux-5.17.6 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.38 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.114 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.192 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.241 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.277 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.312 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  Ptrace user space interface.
  4  *
  5  *    Copyright IBM Corp. 1999, 2010
  6  *    Author(s): Denis Joseph Barrow
  7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
  8  */
  9 
 10 #include <linux/kernel.h>
 11 #include <linux/sched.h>
 12 #include <linux/sched/task_stack.h>
 13 #include <linux/mm.h>
 14 #include <linux/smp.h>
 15 #include <linux/errno.h>
 16 #include <linux/ptrace.h>
 17 #include <linux/user.h>
 18 #include <linux/security.h>
 19 #include <linux/audit.h>
 20 #include <linux/signal.h>
 21 #include <linux/elf.h>
 22 #include <linux/regset.h>
 23 #include <linux/tracehook.h>
 24 #include <linux/seccomp.h>
 25 #include <linux/compat.h>
 26 #include <trace/syscall.h>
 27 #include <asm/segment.h>
 28 #include <asm/page.h>
 29 #include <asm/pgtable.h>
 30 #include <asm/pgalloc.h>
 31 #include <linux/uaccess.h>
 32 #include <asm/unistd.h>
 33 #include <asm/switch_to.h>
 34 #include <asm/runtime_instr.h>
 35 #include <asm/facility.h>
 36 
 37 #include "entry.h"
 38 
 39 #ifdef CONFIG_COMPAT
 40 #include "compat_ptrace.h"
 41 #endif
 42 
 43 #define CREATE_TRACE_POINTS
 44 #include <trace/events/syscalls.h>
 45 
 46 void update_cr_regs(struct task_struct *task)
 47 {
 48         struct pt_regs *regs = task_pt_regs(task);
 49         struct thread_struct *thread = &task->thread;
 50         struct per_regs old, new;
 51         union ctlreg0 cr0_old, cr0_new;
 52         union ctlreg2 cr2_old, cr2_new;
 53         int cr0_changed, cr2_changed;
 54 
 55         __ctl_store(cr0_old.val, 0, 0);
 56         __ctl_store(cr2_old.val, 2, 2);
 57         cr0_new = cr0_old;
 58         cr2_new = cr2_old;
 59         /* Take care of the enable/disable of transactional execution. */
 60         if (MACHINE_HAS_TE) {
 61                 /* Set or clear transaction execution TXC bit 8. */
 62                 cr0_new.tcx = 1;
 63                 if (task->thread.per_flags & PER_FLAG_NO_TE)
 64                         cr0_new.tcx = 0;
 65                 /* Set or clear transaction execution TDC bits 62 and 63. */
 66                 cr2_new.tdc = 0;
 67                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
 68                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
 69                                 cr2_new.tdc = 1;
 70                         else
 71                                 cr2_new.tdc = 2;
 72                 }
 73         }
 74         /* Take care of enable/disable of guarded storage. */
 75         if (MACHINE_HAS_GS) {
 76                 cr2_new.gse = 0;
 77                 if (task->thread.gs_cb)
 78                         cr2_new.gse = 1;
 79         }
 80         /* Load control register 0/2 iff changed */
 81         cr0_changed = cr0_new.val != cr0_old.val;
 82         cr2_changed = cr2_new.val != cr2_old.val;
 83         if (cr0_changed)
 84                 __ctl_load(cr0_new.val, 0, 0);
 85         if (cr2_changed)
 86                 __ctl_load(cr2_new.val, 2, 2);
 87         /* Copy user specified PER registers */
 88         new.control = thread->per_user.control;
 89         new.start = thread->per_user.start;
 90         new.end = thread->per_user.end;
 91 
 92         /* merge TIF_SINGLE_STEP into user specified PER registers. */
 93         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
 94             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
 95                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
 96                         new.control |= PER_EVENT_BRANCH;
 97                 else
 98                         new.control |= PER_EVENT_IFETCH;
 99                 new.control |= PER_CONTROL_SUSPENSION;
100                 new.control |= PER_EVENT_TRANSACTION_END;
101                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
102                         new.control |= PER_EVENT_IFETCH;
103                 new.start = 0;
104                 new.end = -1UL;
105         }
106 
107         /* Take care of the PER enablement bit in the PSW. */
108         if (!(new.control & PER_EVENT_MASK)) {
109                 regs->psw.mask &= ~PSW_MASK_PER;
110                 return;
111         }
112         regs->psw.mask |= PSW_MASK_PER;
113         __ctl_store(old, 9, 11);
114         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
115                 __ctl_load(new, 9, 11);
116 }
117 
118 void user_enable_single_step(struct task_struct *task)
119 {
120         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
121         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
122 }
123 
124 void user_disable_single_step(struct task_struct *task)
125 {
126         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
127         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
128 }
129 
130 void user_enable_block_step(struct task_struct *task)
131 {
132         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
133         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
134 }
135 
136 /*
137  * Called by kernel/ptrace.c when detaching..
138  *
139  * Clear all debugging related fields.
140  */
141 void ptrace_disable(struct task_struct *task)
142 {
143         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
144         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
145         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
146         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
147         task->thread.per_flags = 0;
148 }
149 
150 #define __ADDR_MASK 7
151 
152 static inline unsigned long __peek_user_per(struct task_struct *child,
153                                             addr_t addr)
154 {
155         struct per_struct_kernel *dummy = NULL;
156 
157         if (addr == (addr_t) &dummy->cr9)
158                 /* Control bits of the active per set. */
159                 return test_thread_flag(TIF_SINGLE_STEP) ?
160                         PER_EVENT_IFETCH : child->thread.per_user.control;
161         else if (addr == (addr_t) &dummy->cr10)
162                 /* Start address of the active per set. */
163                 return test_thread_flag(TIF_SINGLE_STEP) ?
164                         0 : child->thread.per_user.start;
165         else if (addr == (addr_t) &dummy->cr11)
166                 /* End address of the active per set. */
167                 return test_thread_flag(TIF_SINGLE_STEP) ?
168                         -1UL : child->thread.per_user.end;
169         else if (addr == (addr_t) &dummy->bits)
170                 /* Single-step bit. */
171                 return test_thread_flag(TIF_SINGLE_STEP) ?
172                         (1UL << (BITS_PER_LONG - 1)) : 0;
173         else if (addr == (addr_t) &dummy->starting_addr)
174                 /* Start address of the user specified per set. */
175                 return child->thread.per_user.start;
176         else if (addr == (addr_t) &dummy->ending_addr)
177                 /* End address of the user specified per set. */
178                 return child->thread.per_user.end;
179         else if (addr == (addr_t) &dummy->perc_atmid)
180                 /* PER code, ATMID and AI of the last PER trap */
181                 return (unsigned long)
182                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
183         else if (addr == (addr_t) &dummy->address)
184                 /* Address of the last PER trap */
185                 return child->thread.per_event.address;
186         else if (addr == (addr_t) &dummy->access_id)
187                 /* Access id of the last PER trap */
188                 return (unsigned long)
189                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
190         return 0;
191 }
192 
193 /*
194  * Read the word at offset addr from the user area of a process. The
195  * trouble here is that the information is littered over different
196  * locations. The process registers are found on the kernel stack,
197  * the floating point stuff and the trace settings are stored in
198  * the task structure. In addition the different structures in
199  * struct user contain pad bytes that should be read as zeroes.
200  * Lovely...
201  */
202 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
203 {
204         struct user *dummy = NULL;
205         addr_t offset, tmp;
206 
207         if (addr < (addr_t) &dummy->regs.acrs) {
208                 /*
209                  * psw and gprs are stored on the stack
210                  */
211                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
212                 if (addr == (addr_t) &dummy->regs.psw.mask) {
213                         /* Return a clean psw mask. */
214                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
215                         tmp |= PSW_USER_BITS;
216                 }
217 
218         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
219                 /*
220                  * access registers are stored in the thread structure
221                  */
222                 offset = addr - (addr_t) &dummy->regs.acrs;
223                 /*
224                  * Very special case: old & broken 64 bit gdb reading
225                  * from acrs[15]. Result is a 64 bit value. Read the
226                  * 32 bit acrs[15] value and shift it by 32. Sick...
227                  */
228                 if (addr == (addr_t) &dummy->regs.acrs[15])
229                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
230                 else
231                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
232 
233         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
234                 /*
235                  * orig_gpr2 is stored on the kernel stack
236                  */
237                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
238 
239         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
240                 /*
241                  * prevent reads of padding hole between
242                  * orig_gpr2 and fp_regs on s390.
243                  */
244                 tmp = 0;
245 
246         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
247                 /*
248                  * floating point control reg. is in the thread structure
249                  */
250                 tmp = child->thread.fpu.fpc;
251                 tmp <<= BITS_PER_LONG - 32;
252 
253         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
254                 /*
255                  * floating point regs. are either in child->thread.fpu
256                  * or the child->thread.fpu.vxrs array
257                  */
258                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
259                 if (MACHINE_HAS_VX)
260                         tmp = *(addr_t *)
261                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
262                 else
263                         tmp = *(addr_t *)
264                                ((addr_t) child->thread.fpu.fprs + offset);
265 
266         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
267                 /*
268                  * Handle access to the per_info structure.
269                  */
270                 addr -= (addr_t) &dummy->regs.per_info;
271                 tmp = __peek_user_per(child, addr);
272 
273         } else
274                 tmp = 0;
275 
276         return tmp;
277 }
278 
279 static int
280 peek_user(struct task_struct *child, addr_t addr, addr_t data)
281 {
282         addr_t tmp, mask;
283 
284         /*
285          * Stupid gdb peeks/pokes the access registers in 64 bit with
286          * an alignment of 4. Programmers from hell...
287          */
288         mask = __ADDR_MASK;
289         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
290             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
291                 mask = 3;
292         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
293                 return -EIO;
294 
295         tmp = __peek_user(child, addr);
296         return put_user(tmp, (addr_t __user *) data);
297 }
298 
299 static inline void __poke_user_per(struct task_struct *child,
300                                    addr_t addr, addr_t data)
301 {
302         struct per_struct_kernel *dummy = NULL;
303 
304         /*
305          * There are only three fields in the per_info struct that the
306          * debugger user can write to.
307          * 1) cr9: the debugger wants to set a new PER event mask
308          * 2) starting_addr: the debugger wants to set a new starting
309          *    address to use with the PER event mask.
310          * 3) ending_addr: the debugger wants to set a new ending
311          *    address to use with the PER event mask.
312          * The user specified PER event mask and the start and end
313          * addresses are used only if single stepping is not in effect.
314          * Writes to any other field in per_info are ignored.
315          */
316         if (addr == (addr_t) &dummy->cr9)
317                 /* PER event mask of the user specified per set. */
318                 child->thread.per_user.control =
319                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
320         else if (addr == (addr_t) &dummy->starting_addr)
321                 /* Starting address of the user specified per set. */
322                 child->thread.per_user.start = data;
323         else if (addr == (addr_t) &dummy->ending_addr)
324                 /* Ending address of the user specified per set. */
325                 child->thread.per_user.end = data;
326 }
327 
328 /*
329  * Write a word to the user area of a process at location addr. This
330  * operation does have an additional problem compared to peek_user.
331  * Stores to the program status word and on the floating point
332  * control register needs to get checked for validity.
333  */
334 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
335 {
336         struct user *dummy = NULL;
337         addr_t offset;
338 
339         if (addr < (addr_t) &dummy->regs.acrs) {
340                 /*
341                  * psw and gprs are stored on the stack
342                  */
343                 if (addr == (addr_t) &dummy->regs.psw.mask) {
344                         unsigned long mask = PSW_MASK_USER;
345 
346                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
347                         if ((data ^ PSW_USER_BITS) & ~mask)
348                                 /* Invalid psw mask. */
349                                 return -EINVAL;
350                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
351                                 /* Invalid address-space-control bits */
352                                 return -EINVAL;
353                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
354                                 /* Invalid addressing mode bits */
355                                 return -EINVAL;
356                 }
357                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
358 
359         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
360                 /*
361                  * access registers are stored in the thread structure
362                  */
363                 offset = addr - (addr_t) &dummy->regs.acrs;
364                 /*
365                  * Very special case: old & broken 64 bit gdb writing
366                  * to acrs[15] with a 64 bit value. Ignore the lower
367                  * half of the value and write the upper 32 bit to
368                  * acrs[15]. Sick...
369                  */
370                 if (addr == (addr_t) &dummy->regs.acrs[15])
371                         child->thread.acrs[15] = (unsigned int) (data >> 32);
372                 else
373                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
374 
375         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
376                 /*
377                  * orig_gpr2 is stored on the kernel stack
378                  */
379                 task_pt_regs(child)->orig_gpr2 = data;
380 
381         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
382                 /*
383                  * prevent writes of padding hole between
384                  * orig_gpr2 and fp_regs on s390.
385                  */
386                 return 0;
387 
388         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
389                 /*
390                  * floating point control reg. is in the thread structure
391                  */
392                 if ((unsigned int) data != 0 ||
393                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
394                         return -EINVAL;
395                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
396 
397         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
398                 /*
399                  * floating point regs. are either in child->thread.fpu
400                  * or the child->thread.fpu.vxrs array
401                  */
402                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
403                 if (MACHINE_HAS_VX)
404                         *(addr_t *)((addr_t)
405                                 child->thread.fpu.vxrs + 2*offset) = data;
406                 else
407                         *(addr_t *)((addr_t)
408                                 child->thread.fpu.fprs + offset) = data;
409 
410         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
411                 /*
412                  * Handle access to the per_info structure.
413                  */
414                 addr -= (addr_t) &dummy->regs.per_info;
415                 __poke_user_per(child, addr, data);
416 
417         }
418 
419         return 0;
420 }
421 
422 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
423 {
424         addr_t mask;
425 
426         /*
427          * Stupid gdb peeks/pokes the access registers in 64 bit with
428          * an alignment of 4. Programmers from hell indeed...
429          */
430         mask = __ADDR_MASK;
431         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
432             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
433                 mask = 3;
434         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
435                 return -EIO;
436 
437         return __poke_user(child, addr, data);
438 }
439 
440 long arch_ptrace(struct task_struct *child, long request,
441                  unsigned long addr, unsigned long data)
442 {
443         ptrace_area parea; 
444         int copied, ret;
445 
446         switch (request) {
447         case PTRACE_PEEKUSR:
448                 /* read the word at location addr in the USER area. */
449                 return peek_user(child, addr, data);
450 
451         case PTRACE_POKEUSR:
452                 /* write the word at location addr in the USER area */
453                 return poke_user(child, addr, data);
454 
455         case PTRACE_PEEKUSR_AREA:
456         case PTRACE_POKEUSR_AREA:
457                 if (copy_from_user(&parea, (void __force __user *) addr,
458                                                         sizeof(parea)))
459                         return -EFAULT;
460                 addr = parea.kernel_addr;
461                 data = parea.process_addr;
462                 copied = 0;
463                 while (copied < parea.len) {
464                         if (request == PTRACE_PEEKUSR_AREA)
465                                 ret = peek_user(child, addr, data);
466                         else {
467                                 addr_t utmp;
468                                 if (get_user(utmp,
469                                              (addr_t __force __user *) data))
470                                         return -EFAULT;
471                                 ret = poke_user(child, addr, utmp);
472                         }
473                         if (ret)
474                                 return ret;
475                         addr += sizeof(unsigned long);
476                         data += sizeof(unsigned long);
477                         copied += sizeof(unsigned long);
478                 }
479                 return 0;
480         case PTRACE_GET_LAST_BREAK:
481                 put_user(child->thread.last_break,
482                          (unsigned long __user *) data);
483                 return 0;
484         case PTRACE_ENABLE_TE:
485                 if (!MACHINE_HAS_TE)
486                         return -EIO;
487                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
488                 return 0;
489         case PTRACE_DISABLE_TE:
490                 if (!MACHINE_HAS_TE)
491                         return -EIO;
492                 child->thread.per_flags |= PER_FLAG_NO_TE;
493                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
494                 return 0;
495         case PTRACE_TE_ABORT_RAND:
496                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
497                         return -EIO;
498                 switch (data) {
499                 case 0UL:
500                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
501                         break;
502                 case 1UL:
503                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
504                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
505                         break;
506                 case 2UL:
507                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
508                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
509                         break;
510                 default:
511                         return -EINVAL;
512                 }
513                 return 0;
514         default:
515                 return ptrace_request(child, request, addr, data);
516         }
517 }
518 
519 #ifdef CONFIG_COMPAT
520 /*
521  * Now the fun part starts... a 31 bit program running in the
522  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
523  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
524  * to handle, the difference to the 64 bit versions of the requests
525  * is that the access is done in multiples of 4 byte instead of
526  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
527  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
528  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
529  * is a 31 bit program too, the content of struct user can be
530  * emulated. A 31 bit program peeking into the struct user of
531  * a 64 bit program is a no-no.
532  */
533 
534 /*
535  * Same as peek_user_per but for a 31 bit program.
536  */
537 static inline __u32 __peek_user_per_compat(struct task_struct *child,
538                                            addr_t addr)
539 {
540         struct compat_per_struct_kernel *dummy32 = NULL;
541 
542         if (addr == (addr_t) &dummy32->cr9)
543                 /* Control bits of the active per set. */
544                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
545                         PER_EVENT_IFETCH : child->thread.per_user.control;
546         else if (addr == (addr_t) &dummy32->cr10)
547                 /* Start address of the active per set. */
548                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
549                         0 : child->thread.per_user.start;
550         else if (addr == (addr_t) &dummy32->cr11)
551                 /* End address of the active per set. */
552                 return test_thread_flag(TIF_SINGLE_STEP) ?
553                         PSW32_ADDR_INSN : child->thread.per_user.end;
554         else if (addr == (addr_t) &dummy32->bits)
555                 /* Single-step bit. */
556                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
557                         0x80000000 : 0;
558         else if (addr == (addr_t) &dummy32->starting_addr)
559                 /* Start address of the user specified per set. */
560                 return (__u32) child->thread.per_user.start;
561         else if (addr == (addr_t) &dummy32->ending_addr)
562                 /* End address of the user specified per set. */
563                 return (__u32) child->thread.per_user.end;
564         else if (addr == (addr_t) &dummy32->perc_atmid)
565                 /* PER code, ATMID and AI of the last PER trap */
566                 return (__u32) child->thread.per_event.cause << 16;
567         else if (addr == (addr_t) &dummy32->address)
568                 /* Address of the last PER trap */
569                 return (__u32) child->thread.per_event.address;
570         else if (addr == (addr_t) &dummy32->access_id)
571                 /* Access id of the last PER trap */
572                 return (__u32) child->thread.per_event.paid << 24;
573         return 0;
574 }
575 
576 /*
577  * Same as peek_user but for a 31 bit program.
578  */
579 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
580 {
581         struct compat_user *dummy32 = NULL;
582         addr_t offset;
583         __u32 tmp;
584 
585         if (addr < (addr_t) &dummy32->regs.acrs) {
586                 struct pt_regs *regs = task_pt_regs(child);
587                 /*
588                  * psw and gprs are stored on the stack
589                  */
590                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
591                         /* Fake a 31 bit psw mask. */
592                         tmp = (__u32)(regs->psw.mask >> 32);
593                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
594                         tmp |= PSW32_USER_BITS;
595                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
596                         /* Fake a 31 bit psw address. */
597                         tmp = (__u32) regs->psw.addr |
598                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
599                 } else {
600                         /* gpr 0-15 */
601                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
602                 }
603         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
604                 /*
605                  * access registers are stored in the thread structure
606                  */
607                 offset = addr - (addr_t) &dummy32->regs.acrs;
608                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
609 
610         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
611                 /*
612                  * orig_gpr2 is stored on the kernel stack
613                  */
614                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
615 
616         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
617                 /*
618                  * prevent reads of padding hole between
619                  * orig_gpr2 and fp_regs on s390.
620                  */
621                 tmp = 0;
622 
623         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
624                 /*
625                  * floating point control reg. is in the thread structure
626                  */
627                 tmp = child->thread.fpu.fpc;
628 
629         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
630                 /*
631                  * floating point regs. are either in child->thread.fpu
632                  * or the child->thread.fpu.vxrs array
633                  */
634                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
635                 if (MACHINE_HAS_VX)
636                         tmp = *(__u32 *)
637                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
638                 else
639                         tmp = *(__u32 *)
640                                ((addr_t) child->thread.fpu.fprs + offset);
641 
642         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
643                 /*
644                  * Handle access to the per_info structure.
645                  */
646                 addr -= (addr_t) &dummy32->regs.per_info;
647                 tmp = __peek_user_per_compat(child, addr);
648 
649         } else
650                 tmp = 0;
651 
652         return tmp;
653 }
654 
655 static int peek_user_compat(struct task_struct *child,
656                             addr_t addr, addr_t data)
657 {
658         __u32 tmp;
659 
660         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
661                 return -EIO;
662 
663         tmp = __peek_user_compat(child, addr);
664         return put_user(tmp, (__u32 __user *) data);
665 }
666 
667 /*
668  * Same as poke_user_per but for a 31 bit program.
669  */
670 static inline void __poke_user_per_compat(struct task_struct *child,
671                                           addr_t addr, __u32 data)
672 {
673         struct compat_per_struct_kernel *dummy32 = NULL;
674 
675         if (addr == (addr_t) &dummy32->cr9)
676                 /* PER event mask of the user specified per set. */
677                 child->thread.per_user.control =
678                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
679         else if (addr == (addr_t) &dummy32->starting_addr)
680                 /* Starting address of the user specified per set. */
681                 child->thread.per_user.start = data;
682         else if (addr == (addr_t) &dummy32->ending_addr)
683                 /* Ending address of the user specified per set. */
684                 child->thread.per_user.end = data;
685 }
686 
687 /*
688  * Same as poke_user but for a 31 bit program.
689  */
690 static int __poke_user_compat(struct task_struct *child,
691                               addr_t addr, addr_t data)
692 {
693         struct compat_user *dummy32 = NULL;
694         __u32 tmp = (__u32) data;
695         addr_t offset;
696 
697         if (addr < (addr_t) &dummy32->regs.acrs) {
698                 struct pt_regs *regs = task_pt_regs(child);
699                 /*
700                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
701                  */
702                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
703                         __u32 mask = PSW32_MASK_USER;
704 
705                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
706                         /* Build a 64 bit psw mask from 31 bit mask. */
707                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
708                                 /* Invalid psw mask. */
709                                 return -EINVAL;
710                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
711                                 /* Invalid address-space-control bits */
712                                 return -EINVAL;
713                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
714                                 (regs->psw.mask & PSW_MASK_BA) |
715                                 (__u64)(tmp & mask) << 32;
716                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
717                         /* Build a 64 bit psw address from 31 bit address. */
718                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
719                         /* Transfer 31 bit amode bit to psw mask. */
720                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
721                                 (__u64)(tmp & PSW32_ADDR_AMODE);
722                 } else {
723                         /* gpr 0-15 */
724                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
725                 }
726         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
727                 /*
728                  * access registers are stored in the thread structure
729                  */
730                 offset = addr - (addr_t) &dummy32->regs.acrs;
731                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
732 
733         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
734                 /*
735                  * orig_gpr2 is stored on the kernel stack
736                  */
737                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
738 
739         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
740                 /*
741                  * prevent writess of padding hole between
742                  * orig_gpr2 and fp_regs on s390.
743                  */
744                 return 0;
745 
746         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
747                 /*
748                  * floating point control reg. is in the thread structure
749                  */
750                 if (test_fp_ctl(tmp))
751                         return -EINVAL;
752                 child->thread.fpu.fpc = data;
753 
754         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
755                 /*
756                  * floating point regs. are either in child->thread.fpu
757                  * or the child->thread.fpu.vxrs array
758                  */
759                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
760                 if (MACHINE_HAS_VX)
761                         *(__u32 *)((addr_t)
762                                 child->thread.fpu.vxrs + 2*offset) = tmp;
763                 else
764                         *(__u32 *)((addr_t)
765                                 child->thread.fpu.fprs + offset) = tmp;
766 
767         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
768                 /*
769                  * Handle access to the per_info structure.
770                  */
771                 addr -= (addr_t) &dummy32->regs.per_info;
772                 __poke_user_per_compat(child, addr, data);
773         }
774 
775         return 0;
776 }
777 
778 static int poke_user_compat(struct task_struct *child,
779                             addr_t addr, addr_t data)
780 {
781         if (!is_compat_task() || (addr & 3) ||
782             addr > sizeof(struct compat_user) - 3)
783                 return -EIO;
784 
785         return __poke_user_compat(child, addr, data);
786 }
787 
788 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
789                         compat_ulong_t caddr, compat_ulong_t cdata)
790 {
791         unsigned long addr = caddr;
792         unsigned long data = cdata;
793         compat_ptrace_area parea;
794         int copied, ret;
795 
796         switch (request) {
797         case PTRACE_PEEKUSR:
798                 /* read the word at location addr in the USER area. */
799                 return peek_user_compat(child, addr, data);
800 
801         case PTRACE_POKEUSR:
802                 /* write the word at location addr in the USER area */
803                 return poke_user_compat(child, addr, data);
804 
805         case PTRACE_PEEKUSR_AREA:
806         case PTRACE_POKEUSR_AREA:
807                 if (copy_from_user(&parea, (void __force __user *) addr,
808                                                         sizeof(parea)))
809                         return -EFAULT;
810                 addr = parea.kernel_addr;
811                 data = parea.process_addr;
812                 copied = 0;
813                 while (copied < parea.len) {
814                         if (request == PTRACE_PEEKUSR_AREA)
815                                 ret = peek_user_compat(child, addr, data);
816                         else {
817                                 __u32 utmp;
818                                 if (get_user(utmp,
819                                              (__u32 __force __user *) data))
820                                         return -EFAULT;
821                                 ret = poke_user_compat(child, addr, utmp);
822                         }
823                         if (ret)
824                                 return ret;
825                         addr += sizeof(unsigned int);
826                         data += sizeof(unsigned int);
827                         copied += sizeof(unsigned int);
828                 }
829                 return 0;
830         case PTRACE_GET_LAST_BREAK:
831                 put_user(child->thread.last_break,
832                          (unsigned int __user *) data);
833                 return 0;
834         }
835         return compat_ptrace_request(child, request, addr, data);
836 }
837 #endif
838 
839 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
840 {
841         unsigned long mask = -1UL;
842 
843         /*
844          * The sysc_tracesys code in entry.S stored the system
845          * call number to gprs[2].
846          */
847         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
848             (tracehook_report_syscall_entry(regs) ||
849              regs->gprs[2] >= NR_syscalls)) {
850                 /*
851                  * Tracing decided this syscall should not happen or the
852                  * debugger stored an invalid system call number. Skip
853                  * the system call and the system call restart handling.
854                  */
855                 clear_pt_regs_flag(regs, PIF_SYSCALL);
856                 return -1;
857         }
858 
859         /* Do the secure computing check after ptrace. */
860         if (secure_computing(NULL)) {
861                 /* seccomp failures shouldn't expose any additional code. */
862                 return -1;
863         }
864 
865         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
866                 trace_sys_enter(regs, regs->gprs[2]);
867 
868         if (is_compat_task())
869                 mask = 0xffffffff;
870 
871         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
872                             regs->gprs[3] &mask, regs->gprs[4] &mask,
873                             regs->gprs[5] &mask);
874 
875         return regs->gprs[2];
876 }
877 
878 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
879 {
880         audit_syscall_exit(regs);
881 
882         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
883                 trace_sys_exit(regs, regs->gprs[2]);
884 
885         if (test_thread_flag(TIF_SYSCALL_TRACE))
886                 tracehook_report_syscall_exit(regs, 0);
887 }
888 
889 /*
890  * user_regset definitions.
891  */
892 
893 static int s390_regs_get(struct task_struct *target,
894                          const struct user_regset *regset,
895                          unsigned int pos, unsigned int count,
896                          void *kbuf, void __user *ubuf)
897 {
898         if (target == current)
899                 save_access_regs(target->thread.acrs);
900 
901         if (kbuf) {
902                 unsigned long *k = kbuf;
903                 while (count > 0) {
904                         *k++ = __peek_user(target, pos);
905                         count -= sizeof(*k);
906                         pos += sizeof(*k);
907                 }
908         } else {
909                 unsigned long __user *u = ubuf;
910                 while (count > 0) {
911                         if (__put_user(__peek_user(target, pos), u++))
912                                 return -EFAULT;
913                         count -= sizeof(*u);
914                         pos += sizeof(*u);
915                 }
916         }
917         return 0;
918 }
919 
920 static int s390_regs_set(struct task_struct *target,
921                          const struct user_regset *regset,
922                          unsigned int pos, unsigned int count,
923                          const void *kbuf, const void __user *ubuf)
924 {
925         int rc = 0;
926 
927         if (target == current)
928                 save_access_regs(target->thread.acrs);
929 
930         if (kbuf) {
931                 const unsigned long *k = kbuf;
932                 while (count > 0 && !rc) {
933                         rc = __poke_user(target, pos, *k++);
934                         count -= sizeof(*k);
935                         pos += sizeof(*k);
936                 }
937         } else {
938                 const unsigned long  __user *u = ubuf;
939                 while (count > 0 && !rc) {
940                         unsigned long word;
941                         rc = __get_user(word, u++);
942                         if (rc)
943                                 break;
944                         rc = __poke_user(target, pos, word);
945                         count -= sizeof(*u);
946                         pos += sizeof(*u);
947                 }
948         }
949 
950         if (rc == 0 && target == current)
951                 restore_access_regs(target->thread.acrs);
952 
953         return rc;
954 }
955 
956 static int s390_fpregs_get(struct task_struct *target,
957                            const struct user_regset *regset, unsigned int pos,
958                            unsigned int count, void *kbuf, void __user *ubuf)
959 {
960         _s390_fp_regs fp_regs;
961 
962         if (target == current)
963                 save_fpu_regs();
964 
965         fp_regs.fpc = target->thread.fpu.fpc;
966         fpregs_store(&fp_regs, &target->thread.fpu);
967 
968         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
969                                    &fp_regs, 0, -1);
970 }
971 
972 static int s390_fpregs_set(struct task_struct *target,
973                            const struct user_regset *regset, unsigned int pos,
974                            unsigned int count, const void *kbuf,
975                            const void __user *ubuf)
976 {
977         int rc = 0;
978         freg_t fprs[__NUM_FPRS];
979 
980         if (target == current)
981                 save_fpu_regs();
982 
983         if (MACHINE_HAS_VX)
984                 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
985         else
986                 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
987 
988         /* If setting FPC, must validate it first. */
989         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
990                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
991                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
992                                         0, offsetof(s390_fp_regs, fprs));
993                 if (rc)
994                         return rc;
995                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
996                         return -EINVAL;
997                 target->thread.fpu.fpc = ufpc[0];
998         }
999 
1000         if (rc == 0 && count > 0)
1001                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1002                                         fprs, offsetof(s390_fp_regs, fprs), -1);
1003         if (rc)
1004                 return rc;
1005 
1006         if (MACHINE_HAS_VX)
1007                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1008         else
1009                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1010 
1011         return rc;
1012 }
1013 
1014 static int s390_last_break_get(struct task_struct *target,
1015                                const struct user_regset *regset,
1016                                unsigned int pos, unsigned int count,
1017                                void *kbuf, void __user *ubuf)
1018 {
1019         if (count > 0) {
1020                 if (kbuf) {
1021                         unsigned long *k = kbuf;
1022                         *k = target->thread.last_break;
1023                 } else {
1024                         unsigned long  __user *u = ubuf;
1025                         if (__put_user(target->thread.last_break, u))
1026                                 return -EFAULT;
1027                 }
1028         }
1029         return 0;
1030 }
1031 
1032 static int s390_last_break_set(struct task_struct *target,
1033                                const struct user_regset *regset,
1034                                unsigned int pos, unsigned int count,
1035                                const void *kbuf, const void __user *ubuf)
1036 {
1037         return 0;
1038 }
1039 
1040 static int s390_tdb_get(struct task_struct *target,
1041                         const struct user_regset *regset,
1042                         unsigned int pos, unsigned int count,
1043                         void *kbuf, void __user *ubuf)
1044 {
1045         struct pt_regs *regs = task_pt_regs(target);
1046         unsigned char *data;
1047 
1048         if (!(regs->int_code & 0x200))
1049                 return -ENODATA;
1050         data = target->thread.trap_tdb;
1051         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1052 }
1053 
1054 static int s390_tdb_set(struct task_struct *target,
1055                         const struct user_regset *regset,
1056                         unsigned int pos, unsigned int count,
1057                         const void *kbuf, const void __user *ubuf)
1058 {
1059         return 0;
1060 }
1061 
1062 static int s390_vxrs_low_get(struct task_struct *target,
1063                              const struct user_regset *regset,
1064                              unsigned int pos, unsigned int count,
1065                              void *kbuf, void __user *ubuf)
1066 {
1067         __u64 vxrs[__NUM_VXRS_LOW];
1068         int i;
1069 
1070         if (!MACHINE_HAS_VX)
1071                 return -ENODEV;
1072         if (target == current)
1073                 save_fpu_regs();
1074         for (i = 0; i < __NUM_VXRS_LOW; i++)
1075                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1076         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1077 }
1078 
1079 static int s390_vxrs_low_set(struct task_struct *target,
1080                              const struct user_regset *regset,
1081                              unsigned int pos, unsigned int count,
1082                              const void *kbuf, const void __user *ubuf)
1083 {
1084         __u64 vxrs[__NUM_VXRS_LOW];
1085         int i, rc;
1086 
1087         if (!MACHINE_HAS_VX)
1088                 return -ENODEV;
1089         if (target == current)
1090                 save_fpu_regs();
1091 
1092         for (i = 0; i < __NUM_VXRS_LOW; i++)
1093                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1094 
1095         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1096         if (rc == 0)
1097                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1098                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1099 
1100         return rc;
1101 }
1102 
1103 static int s390_vxrs_high_get(struct task_struct *target,
1104                               const struct user_regset *regset,
1105                               unsigned int pos, unsigned int count,
1106                               void *kbuf, void __user *ubuf)
1107 {
1108         __vector128 vxrs[__NUM_VXRS_HIGH];
1109 
1110         if (!MACHINE_HAS_VX)
1111                 return -ENODEV;
1112         if (target == current)
1113                 save_fpu_regs();
1114         memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1115 
1116         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1117 }
1118 
1119 static int s390_vxrs_high_set(struct task_struct *target,
1120                               const struct user_regset *regset,
1121                               unsigned int pos, unsigned int count,
1122                               const void *kbuf, const void __user *ubuf)
1123 {
1124         int rc;
1125 
1126         if (!MACHINE_HAS_VX)
1127                 return -ENODEV;
1128         if (target == current)
1129                 save_fpu_regs();
1130 
1131         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1132                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1133         return rc;
1134 }
1135 
1136 static int s390_system_call_get(struct task_struct *target,
1137                                 const struct user_regset *regset,
1138                                 unsigned int pos, unsigned int count,
1139                                 void *kbuf, void __user *ubuf)
1140 {
1141         unsigned int *data = &target->thread.system_call;
1142         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1143                                    data, 0, sizeof(unsigned int));
1144 }
1145 
1146 static int s390_system_call_set(struct task_struct *target,
1147                                 const struct user_regset *regset,
1148                                 unsigned int pos, unsigned int count,
1149                                 const void *kbuf, const void __user *ubuf)
1150 {
1151         unsigned int *data = &target->thread.system_call;
1152         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1153                                   data, 0, sizeof(unsigned int));
1154 }
1155 
1156 static int s390_gs_cb_get(struct task_struct *target,
1157                           const struct user_regset *regset,
1158                           unsigned int pos, unsigned int count,
1159                           void *kbuf, void __user *ubuf)
1160 {
1161         struct gs_cb *data = target->thread.gs_cb;
1162 
1163         if (!MACHINE_HAS_GS)
1164                 return -ENODEV;
1165         if (!data)
1166                 return -ENODATA;
1167         if (target == current)
1168                 save_gs_cb(data);
1169         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1170                                    data, 0, sizeof(struct gs_cb));
1171 }
1172 
1173 static int s390_gs_cb_set(struct task_struct *target,
1174                           const struct user_regset *regset,
1175                           unsigned int pos, unsigned int count,
1176                           const void *kbuf, const void __user *ubuf)
1177 {
1178         struct gs_cb gs_cb = { }, *data = NULL;
1179         int rc;
1180 
1181         if (!MACHINE_HAS_GS)
1182                 return -ENODEV;
1183         if (!target->thread.gs_cb) {
1184                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1185                 if (!data)
1186                         return -ENOMEM;
1187         }
1188         if (!target->thread.gs_cb)
1189                 gs_cb.gsd = 25;
1190         else if (target == current)
1191                 save_gs_cb(&gs_cb);
1192         else
1193                 gs_cb = *target->thread.gs_cb;
1194         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1195                                 &gs_cb, 0, sizeof(gs_cb));
1196         if (rc) {
1197                 kfree(data);
1198                 return -EFAULT;
1199         }
1200         preempt_disable();
1201         if (!target->thread.gs_cb)
1202                 target->thread.gs_cb = data;
1203         *target->thread.gs_cb = gs_cb;
1204         if (target == current) {
1205                 __ctl_set_bit(2, 4);
1206                 restore_gs_cb(target->thread.gs_cb);
1207         }
1208         preempt_enable();
1209         return rc;
1210 }
1211 
1212 static int s390_gs_bc_get(struct task_struct *target,
1213                           const struct user_regset *regset,
1214                           unsigned int pos, unsigned int count,
1215                           void *kbuf, void __user *ubuf)
1216 {
1217         struct gs_cb *data = target->thread.gs_bc_cb;
1218 
1219         if (!MACHINE_HAS_GS)
1220                 return -ENODEV;
1221         if (!data)
1222                 return -ENODATA;
1223         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1224                                    data, 0, sizeof(struct gs_cb));
1225 }
1226 
1227 static int s390_gs_bc_set(struct task_struct *target,
1228                           const struct user_regset *regset,
1229                           unsigned int pos, unsigned int count,
1230                           const void *kbuf, const void __user *ubuf)
1231 {
1232         struct gs_cb *data = target->thread.gs_bc_cb;
1233 
1234         if (!MACHINE_HAS_GS)
1235                 return -ENODEV;
1236         if (!data) {
1237                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1238                 if (!data)
1239                         return -ENOMEM;
1240                 target->thread.gs_bc_cb = data;
1241         }
1242         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1243                                   data, 0, sizeof(struct gs_cb));
1244 }
1245 
1246 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1247 {
1248         return (cb->rca & 0x1f) == 0 &&
1249                 (cb->roa & 0xfff) == 0 &&
1250                 (cb->rla & 0xfff) == 0xfff &&
1251                 cb->s == 1 &&
1252                 cb->k == 1 &&
1253                 cb->h == 0 &&
1254                 cb->reserved1 == 0 &&
1255                 cb->ps == 1 &&
1256                 cb->qs == 0 &&
1257                 cb->pc == 1 &&
1258                 cb->qc == 0 &&
1259                 cb->reserved2 == 0 &&
1260                 cb->key == PAGE_DEFAULT_KEY &&
1261                 cb->reserved3 == 0 &&
1262                 cb->reserved4 == 0 &&
1263                 cb->reserved5 == 0 &&
1264                 cb->reserved6 == 0 &&
1265                 cb->reserved7 == 0 &&
1266                 cb->reserved8 == 0 &&
1267                 cb->rla >= cb->roa &&
1268                 cb->rca >= cb->roa &&
1269                 cb->rca <= cb->rla+1 &&
1270                 cb->m < 3;
1271 }
1272 
1273 static int s390_runtime_instr_get(struct task_struct *target,
1274                                 const struct user_regset *regset,
1275                                 unsigned int pos, unsigned int count,
1276                                 void *kbuf, void __user *ubuf)
1277 {
1278         struct runtime_instr_cb *data = target->thread.ri_cb;
1279 
1280         if (!test_facility(64))
1281                 return -ENODEV;
1282         if (!data)
1283                 return -ENODATA;
1284 
1285         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1286                                    data, 0, sizeof(struct runtime_instr_cb));
1287 }
1288 
1289 static int s390_runtime_instr_set(struct task_struct *target,
1290                                   const struct user_regset *regset,
1291                                   unsigned int pos, unsigned int count,
1292                                   const void *kbuf, const void __user *ubuf)
1293 {
1294         struct runtime_instr_cb ri_cb = { }, *data = NULL;
1295         int rc;
1296 
1297         if (!test_facility(64))
1298                 return -ENODEV;
1299 
1300         if (!target->thread.ri_cb) {
1301                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1302                 if (!data)
1303                         return -ENOMEM;
1304         }
1305 
1306         if (target->thread.ri_cb) {
1307                 if (target == current)
1308                         store_runtime_instr_cb(&ri_cb);
1309                 else
1310                         ri_cb = *target->thread.ri_cb;
1311         }
1312 
1313         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1314                                 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1315         if (rc) {
1316                 kfree(data);
1317                 return -EFAULT;
1318         }
1319 
1320         if (!is_ri_cb_valid(&ri_cb)) {
1321                 kfree(data);
1322                 return -EINVAL;
1323         }
1324 
1325         preempt_disable();
1326         if (!target->thread.ri_cb)
1327                 target->thread.ri_cb = data;
1328         *target->thread.ri_cb = ri_cb;
1329         if (target == current)
1330                 load_runtime_instr_cb(target->thread.ri_cb);
1331         preempt_enable();
1332 
1333         return 0;
1334 }
1335 
1336 static const struct user_regset s390_regsets[] = {
1337         {
1338                 .core_note_type = NT_PRSTATUS,
1339                 .n = sizeof(s390_regs) / sizeof(long),
1340                 .size = sizeof(long),
1341                 .align = sizeof(long),
1342                 .get = s390_regs_get,
1343                 .set = s390_regs_set,
1344         },
1345         {
1346                 .core_note_type = NT_PRFPREG,
1347                 .n = sizeof(s390_fp_regs) / sizeof(long),
1348                 .size = sizeof(long),
1349                 .align = sizeof(long),
1350                 .get = s390_fpregs_get,
1351                 .set = s390_fpregs_set,
1352         },
1353         {
1354                 .core_note_type = NT_S390_SYSTEM_CALL,
1355                 .n = 1,
1356                 .size = sizeof(unsigned int),
1357                 .align = sizeof(unsigned int),
1358                 .get = s390_system_call_get,
1359                 .set = s390_system_call_set,
1360         },
1361         {
1362                 .core_note_type = NT_S390_LAST_BREAK,
1363                 .n = 1,
1364                 .size = sizeof(long),
1365                 .align = sizeof(long),
1366                 .get = s390_last_break_get,
1367                 .set = s390_last_break_set,
1368         },
1369         {
1370                 .core_note_type = NT_S390_TDB,
1371                 .n = 1,
1372                 .size = 256,
1373                 .align = 1,
1374                 .get = s390_tdb_get,
1375                 .set = s390_tdb_set,
1376         },
1377         {
1378                 .core_note_type = NT_S390_VXRS_LOW,
1379                 .n = __NUM_VXRS_LOW,
1380                 .size = sizeof(__u64),
1381                 .align = sizeof(__u64),
1382                 .get = s390_vxrs_low_get,
1383                 .set = s390_vxrs_low_set,
1384         },
1385         {
1386                 .core_note_type = NT_S390_VXRS_HIGH,
1387                 .n = __NUM_VXRS_HIGH,
1388                 .size = sizeof(__vector128),
1389                 .align = sizeof(__vector128),
1390                 .get = s390_vxrs_high_get,
1391                 .set = s390_vxrs_high_set,
1392         },
1393         {
1394                 .core_note_type = NT_S390_GS_CB,
1395                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1396                 .size = sizeof(__u64),
1397                 .align = sizeof(__u64),
1398                 .get = s390_gs_cb_get,
1399                 .set = s390_gs_cb_set,
1400         },
1401         {
1402                 .core_note_type = NT_S390_GS_BC,
1403                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1404                 .size = sizeof(__u64),
1405                 .align = sizeof(__u64),
1406                 .get = s390_gs_bc_get,
1407                 .set = s390_gs_bc_set,
1408         },
1409         {
1410                 .core_note_type = NT_S390_RI_CB,
1411                 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1412                 .size = sizeof(__u64),
1413                 .align = sizeof(__u64),
1414                 .get = s390_runtime_instr_get,
1415                 .set = s390_runtime_instr_set,
1416         },
1417 };
1418 
1419 static const struct user_regset_view user_s390_view = {
1420         .name = UTS_MACHINE,
1421         .e_machine = EM_S390,
1422         .regsets = s390_regsets,
1423         .n = ARRAY_SIZE(s390_regsets)
1424 };
1425 
1426 #ifdef CONFIG_COMPAT
1427 static int s390_compat_regs_get(struct task_struct *target,
1428                                 const struct user_regset *regset,
1429                                 unsigned int pos, unsigned int count,
1430                                 void *kbuf, void __user *ubuf)
1431 {
1432         if (target == current)
1433                 save_access_regs(target->thread.acrs);
1434 
1435         if (kbuf) {
1436                 compat_ulong_t *k = kbuf;
1437                 while (count > 0) {
1438                         *k++ = __peek_user_compat(target, pos);
1439                         count -= sizeof(*k);
1440                         pos += sizeof(*k);
1441                 }
1442         } else {
1443                 compat_ulong_t __user *u = ubuf;
1444                 while (count > 0) {
1445                         if (__put_user(__peek_user_compat(target, pos), u++))
1446                                 return -EFAULT;
1447                         count -= sizeof(*u);
1448                         pos += sizeof(*u);
1449                 }
1450         }
1451         return 0;
1452 }
1453 
1454 static int s390_compat_regs_set(struct task_struct *target,
1455                                 const struct user_regset *regset,
1456                                 unsigned int pos, unsigned int count,
1457                                 const void *kbuf, const void __user *ubuf)
1458 {
1459         int rc = 0;
1460 
1461         if (target == current)
1462                 save_access_regs(target->thread.acrs);
1463 
1464         if (kbuf) {
1465                 const compat_ulong_t *k = kbuf;
1466                 while (count > 0 && !rc) {
1467                         rc = __poke_user_compat(target, pos, *k++);
1468                         count -= sizeof(*k);
1469                         pos += sizeof(*k);
1470                 }
1471         } else {
1472                 const compat_ulong_t  __user *u = ubuf;
1473                 while (count > 0 && !rc) {
1474                         compat_ulong_t word;
1475                         rc = __get_user(word, u++);
1476                         if (rc)
1477                                 break;
1478                         rc = __poke_user_compat(target, pos, word);
1479                         count -= sizeof(*u);
1480                         pos += sizeof(*u);
1481                 }
1482         }
1483 
1484         if (rc == 0 && target == current)
1485                 restore_access_regs(target->thread.acrs);
1486 
1487         return rc;
1488 }
1489 
1490 static int s390_compat_regs_high_get(struct task_struct *target,
1491                                      const struct user_regset *regset,
1492                                      unsigned int pos, unsigned int count,
1493                                      void *kbuf, void __user *ubuf)
1494 {
1495         compat_ulong_t *gprs_high;
1496 
1497         gprs_high = (compat_ulong_t *)
1498                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1499         if (kbuf) {
1500                 compat_ulong_t *k = kbuf;
1501                 while (count > 0) {
1502                         *k++ = *gprs_high;
1503                         gprs_high += 2;
1504                         count -= sizeof(*k);
1505                 }
1506         } else {
1507                 compat_ulong_t __user *u = ubuf;
1508                 while (count > 0) {
1509                         if (__put_user(*gprs_high, u++))
1510                                 return -EFAULT;
1511                         gprs_high += 2;
1512                         count -= sizeof(*u);
1513                 }
1514         }
1515         return 0;
1516 }
1517 
1518 static int s390_compat_regs_high_set(struct task_struct *target,
1519                                      const struct user_regset *regset,
1520                                      unsigned int pos, unsigned int count,
1521                                      const void *kbuf, const void __user *ubuf)
1522 {
1523         compat_ulong_t *gprs_high;
1524         int rc = 0;
1525 
1526         gprs_high = (compat_ulong_t *)
1527                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1528         if (kbuf) {
1529                 const compat_ulong_t *k = kbuf;
1530                 while (count > 0) {
1531                         *gprs_high = *k++;
1532                         *gprs_high += 2;
1533                         count -= sizeof(*k);
1534                 }
1535         } else {
1536                 const compat_ulong_t  __user *u = ubuf;
1537                 while (count > 0 && !rc) {
1538                         unsigned long word;
1539                         rc = __get_user(word, u++);
1540                         if (rc)
1541                                 break;
1542                         *gprs_high = word;
1543                         *gprs_high += 2;
1544                         count -= sizeof(*u);
1545                 }
1546         }
1547 
1548         return rc;
1549 }
1550 
1551 static int s390_compat_last_break_get(struct task_struct *target,
1552                                       const struct user_regset *regset,
1553                                       unsigned int pos, unsigned int count,
1554                                       void *kbuf, void __user *ubuf)
1555 {
1556         compat_ulong_t last_break;
1557 
1558         if (count > 0) {
1559                 last_break = target->thread.last_break;
1560                 if (kbuf) {
1561                         unsigned long *k = kbuf;
1562                         *k = last_break;
1563                 } else {
1564                         unsigned long  __user *u = ubuf;
1565                         if (__put_user(last_break, u))
1566                                 return -EFAULT;
1567                 }
1568         }
1569         return 0;
1570 }
1571 
1572 static int s390_compat_last_break_set(struct task_struct *target,
1573                                       const struct user_regset *regset,
1574                                       unsigned int pos, unsigned int count,
1575                                       const void *kbuf, const void __user *ubuf)
1576 {
1577         return 0;
1578 }
1579 
1580 static const struct user_regset s390_compat_regsets[] = {
1581         {
1582                 .core_note_type = NT_PRSTATUS,
1583                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1584                 .size = sizeof(compat_long_t),
1585                 .align = sizeof(compat_long_t),
1586                 .get = s390_compat_regs_get,
1587                 .set = s390_compat_regs_set,
1588         },
1589         {
1590                 .core_note_type = NT_PRFPREG,
1591                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1592                 .size = sizeof(compat_long_t),
1593                 .align = sizeof(compat_long_t),
1594                 .get = s390_fpregs_get,
1595                 .set = s390_fpregs_set,
1596         },
1597         {
1598                 .core_note_type = NT_S390_SYSTEM_CALL,
1599                 .n = 1,
1600                 .size = sizeof(compat_uint_t),
1601                 .align = sizeof(compat_uint_t),
1602                 .get = s390_system_call_get,
1603                 .set = s390_system_call_set,
1604         },
1605         {
1606                 .core_note_type = NT_S390_LAST_BREAK,
1607                 .n = 1,
1608                 .size = sizeof(long),
1609                 .align = sizeof(long),
1610                 .get = s390_compat_last_break_get,
1611                 .set = s390_compat_last_break_set,
1612         },
1613         {
1614                 .core_note_type = NT_S390_TDB,
1615                 .n = 1,
1616                 .size = 256,
1617                 .align = 1,
1618                 .get = s390_tdb_get,
1619                 .set = s390_tdb_set,
1620         },
1621         {
1622                 .core_note_type = NT_S390_VXRS_LOW,
1623                 .n = __NUM_VXRS_LOW,
1624                 .size = sizeof(__u64),
1625                 .align = sizeof(__u64),
1626                 .get = s390_vxrs_low_get,
1627                 .set = s390_vxrs_low_set,
1628         },
1629         {
1630                 .core_note_type = NT_S390_VXRS_HIGH,
1631                 .n = __NUM_VXRS_HIGH,
1632                 .size = sizeof(__vector128),
1633                 .align = sizeof(__vector128),
1634                 .get = s390_vxrs_high_get,
1635                 .set = s390_vxrs_high_set,
1636         },
1637         {
1638                 .core_note_type = NT_S390_HIGH_GPRS,
1639                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1640                 .size = sizeof(compat_long_t),
1641                 .align = sizeof(compat_long_t),
1642                 .get = s390_compat_regs_high_get,
1643                 .set = s390_compat_regs_high_set,
1644         },
1645         {
1646                 .core_note_type = NT_S390_GS_CB,
1647                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1648                 .size = sizeof(__u64),
1649                 .align = sizeof(__u64),
1650                 .get = s390_gs_cb_get,
1651                 .set = s390_gs_cb_set,
1652         },
1653         {
1654                 .core_note_type = NT_S390_GS_BC,
1655                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1656                 .size = sizeof(__u64),
1657                 .align = sizeof(__u64),
1658                 .get = s390_gs_bc_get,
1659                 .set = s390_gs_bc_set,
1660         },
1661         {
1662                 .core_note_type = NT_S390_RI_CB,
1663                 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1664                 .size = sizeof(__u64),
1665                 .align = sizeof(__u64),
1666                 .get = s390_runtime_instr_get,
1667                 .set = s390_runtime_instr_set,
1668         },
1669 };
1670 
1671 static const struct user_regset_view user_s390_compat_view = {
1672         .name = "s390",
1673         .e_machine = EM_S390,
1674         .regsets = s390_compat_regsets,
1675         .n = ARRAY_SIZE(s390_compat_regsets)
1676 };
1677 #endif
1678 
1679 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1680 {
1681 #ifdef CONFIG_COMPAT
1682         if (test_tsk_thread_flag(task, TIF_31BIT))
1683                 return &user_s390_compat_view;
1684 #endif
1685         return &user_s390_view;
1686 }
1687 
1688 static const char *gpr_names[NUM_GPRS] = {
1689         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1690         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1691 };
1692 
1693 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1694 {
1695         if (offset >= NUM_GPRS)
1696                 return 0;
1697         return regs->gprs[offset];
1698 }
1699 
1700 int regs_query_register_offset(const char *name)
1701 {
1702         unsigned long offset;
1703 
1704         if (!name || *name != 'r')
1705                 return -EINVAL;
1706         if (kstrtoul(name + 1, 10, &offset))
1707                 return -EINVAL;
1708         if (offset >= NUM_GPRS)
1709                 return -EINVAL;
1710         return offset;
1711 }
1712 
1713 const char *regs_query_register_name(unsigned int offset)
1714 {
1715         if (offset >= NUM_GPRS)
1716                 return NULL;
1717         return gpr_names[offset];
1718 }
1719 
1720 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1721 {
1722         unsigned long ksp = kernel_stack_pointer(regs);
1723 
1724         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1725 }
1726 
1727 /**
1728  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1729  * @regs:pt_regs which contains kernel stack pointer.
1730  * @n:stack entry number.
1731  *
1732  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1733  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1734  * this returns 0.
1735  */
1736 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1737 {
1738         unsigned long addr;
1739 
1740         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1741         if (!regs_within_kernel_stack(regs, addr))
1742                 return 0;
1743         return *(unsigned long *)addr;
1744 }
1745 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp