~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/s390/kernel/ptrace.c

Version: ~ [ linux-5.19-rc3 ] ~ [ linux-5.18.5 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.48 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.123 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.199 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.248 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.284 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.319 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  Ptrace user space interface.
  4  *
  5  *    Copyright IBM Corp. 1999, 2010
  6  *    Author(s): Denis Joseph Barrow
  7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
  8  */
  9 
 10 #include <linux/kernel.h>
 11 #include <linux/sched.h>
 12 #include <linux/sched/task_stack.h>
 13 #include <linux/mm.h>
 14 #include <linux/smp.h>
 15 #include <linux/errno.h>
 16 #include <linux/ptrace.h>
 17 #include <linux/user.h>
 18 #include <linux/security.h>
 19 #include <linux/audit.h>
 20 #include <linux/signal.h>
 21 #include <linux/elf.h>
 22 #include <linux/regset.h>
 23 #include <linux/tracehook.h>
 24 #include <linux/seccomp.h>
 25 #include <linux/compat.h>
 26 #include <trace/syscall.h>
 27 #include <asm/page.h>
 28 #include <asm/pgtable.h>
 29 #include <asm/pgalloc.h>
 30 #include <linux/uaccess.h>
 31 #include <asm/unistd.h>
 32 #include <asm/switch_to.h>
 33 #include <asm/runtime_instr.h>
 34 #include <asm/facility.h>
 35 
 36 #include "entry.h"
 37 
 38 #ifdef CONFIG_COMPAT
 39 #include "compat_ptrace.h"
 40 #endif
 41 
 42 #define CREATE_TRACE_POINTS
 43 #include <trace/events/syscalls.h>
 44 
 45 void update_cr_regs(struct task_struct *task)
 46 {
 47         struct pt_regs *regs = task_pt_regs(task);
 48         struct thread_struct *thread = &task->thread;
 49         struct per_regs old, new;
 50         union ctlreg0 cr0_old, cr0_new;
 51         union ctlreg2 cr2_old, cr2_new;
 52         int cr0_changed, cr2_changed;
 53 
 54         __ctl_store(cr0_old.val, 0, 0);
 55         __ctl_store(cr2_old.val, 2, 2);
 56         cr0_new = cr0_old;
 57         cr2_new = cr2_old;
 58         /* Take care of the enable/disable of transactional execution. */
 59         if (MACHINE_HAS_TE) {
 60                 /* Set or clear transaction execution TXC bit 8. */
 61                 cr0_new.tcx = 1;
 62                 if (task->thread.per_flags & PER_FLAG_NO_TE)
 63                         cr0_new.tcx = 0;
 64                 /* Set or clear transaction execution TDC bits 62 and 63. */
 65                 cr2_new.tdc = 0;
 66                 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
 67                         if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
 68                                 cr2_new.tdc = 1;
 69                         else
 70                                 cr2_new.tdc = 2;
 71                 }
 72         }
 73         /* Take care of enable/disable of guarded storage. */
 74         if (MACHINE_HAS_GS) {
 75                 cr2_new.gse = 0;
 76                 if (task->thread.gs_cb)
 77                         cr2_new.gse = 1;
 78         }
 79         /* Load control register 0/2 iff changed */
 80         cr0_changed = cr0_new.val != cr0_old.val;
 81         cr2_changed = cr2_new.val != cr2_old.val;
 82         if (cr0_changed)
 83                 __ctl_load(cr0_new.val, 0, 0);
 84         if (cr2_changed)
 85                 __ctl_load(cr2_new.val, 2, 2);
 86         /* Copy user specified PER registers */
 87         new.control = thread->per_user.control;
 88         new.start = thread->per_user.start;
 89         new.end = thread->per_user.end;
 90 
 91         /* merge TIF_SINGLE_STEP into user specified PER registers. */
 92         if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
 93             test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
 94                 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
 95                         new.control |= PER_EVENT_BRANCH;
 96                 else
 97                         new.control |= PER_EVENT_IFETCH;
 98                 new.control |= PER_CONTROL_SUSPENSION;
 99                 new.control |= PER_EVENT_TRANSACTION_END;
100                 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
101                         new.control |= PER_EVENT_IFETCH;
102                 new.start = 0;
103                 new.end = -1UL;
104         }
105 
106         /* Take care of the PER enablement bit in the PSW. */
107         if (!(new.control & PER_EVENT_MASK)) {
108                 regs->psw.mask &= ~PSW_MASK_PER;
109                 return;
110         }
111         regs->psw.mask |= PSW_MASK_PER;
112         __ctl_store(old, 9, 11);
113         if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
114                 __ctl_load(new, 9, 11);
115 }
116 
117 void user_enable_single_step(struct task_struct *task)
118 {
119         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
121 }
122 
123 void user_disable_single_step(struct task_struct *task)
124 {
125         clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
126         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
127 }
128 
129 void user_enable_block_step(struct task_struct *task)
130 {
131         set_tsk_thread_flag(task, TIF_SINGLE_STEP);
132         set_tsk_thread_flag(task, TIF_BLOCK_STEP);
133 }
134 
135 /*
136  * Called by kernel/ptrace.c when detaching..
137  *
138  * Clear all debugging related fields.
139  */
140 void ptrace_disable(struct task_struct *task)
141 {
142         memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
143         memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
144         clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
145         clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
146         task->thread.per_flags = 0;
147 }
148 
149 #define __ADDR_MASK 7
150 
151 static inline unsigned long __peek_user_per(struct task_struct *child,
152                                             addr_t addr)
153 {
154         struct per_struct_kernel *dummy = NULL;
155 
156         if (addr == (addr_t) &dummy->cr9)
157                 /* Control bits of the active per set. */
158                 return test_thread_flag(TIF_SINGLE_STEP) ?
159                         PER_EVENT_IFETCH : child->thread.per_user.control;
160         else if (addr == (addr_t) &dummy->cr10)
161                 /* Start address of the active per set. */
162                 return test_thread_flag(TIF_SINGLE_STEP) ?
163                         0 : child->thread.per_user.start;
164         else if (addr == (addr_t) &dummy->cr11)
165                 /* End address of the active per set. */
166                 return test_thread_flag(TIF_SINGLE_STEP) ?
167                         -1UL : child->thread.per_user.end;
168         else if (addr == (addr_t) &dummy->bits)
169                 /* Single-step bit. */
170                 return test_thread_flag(TIF_SINGLE_STEP) ?
171                         (1UL << (BITS_PER_LONG - 1)) : 0;
172         else if (addr == (addr_t) &dummy->starting_addr)
173                 /* Start address of the user specified per set. */
174                 return child->thread.per_user.start;
175         else if (addr == (addr_t) &dummy->ending_addr)
176                 /* End address of the user specified per set. */
177                 return child->thread.per_user.end;
178         else if (addr == (addr_t) &dummy->perc_atmid)
179                 /* PER code, ATMID and AI of the last PER trap */
180                 return (unsigned long)
181                         child->thread.per_event.cause << (BITS_PER_LONG - 16);
182         else if (addr == (addr_t) &dummy->address)
183                 /* Address of the last PER trap */
184                 return child->thread.per_event.address;
185         else if (addr == (addr_t) &dummy->access_id)
186                 /* Access id of the last PER trap */
187                 return (unsigned long)
188                         child->thread.per_event.paid << (BITS_PER_LONG - 8);
189         return 0;
190 }
191 
192 /*
193  * Read the word at offset addr from the user area of a process. The
194  * trouble here is that the information is littered over different
195  * locations. The process registers are found on the kernel stack,
196  * the floating point stuff and the trace settings are stored in
197  * the task structure. In addition the different structures in
198  * struct user contain pad bytes that should be read as zeroes.
199  * Lovely...
200  */
201 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
202 {
203         struct user *dummy = NULL;
204         addr_t offset, tmp;
205 
206         if (addr < (addr_t) &dummy->regs.acrs) {
207                 /*
208                  * psw and gprs are stored on the stack
209                  */
210                 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
211                 if (addr == (addr_t) &dummy->regs.psw.mask) {
212                         /* Return a clean psw mask. */
213                         tmp &= PSW_MASK_USER | PSW_MASK_RI;
214                         tmp |= PSW_USER_BITS;
215                 }
216 
217         } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
218                 /*
219                  * access registers are stored in the thread structure
220                  */
221                 offset = addr - (addr_t) &dummy->regs.acrs;
222                 /*
223                  * Very special case: old & broken 64 bit gdb reading
224                  * from acrs[15]. Result is a 64 bit value. Read the
225                  * 32 bit acrs[15] value and shift it by 32. Sick...
226                  */
227                 if (addr == (addr_t) &dummy->regs.acrs[15])
228                         tmp = ((unsigned long) child->thread.acrs[15]) << 32;
229                 else
230                         tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
231 
232         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
233                 /*
234                  * orig_gpr2 is stored on the kernel stack
235                  */
236                 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
237 
238         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
239                 /*
240                  * prevent reads of padding hole between
241                  * orig_gpr2 and fp_regs on s390.
242                  */
243                 tmp = 0;
244 
245         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
246                 /*
247                  * floating point control reg. is in the thread structure
248                  */
249                 tmp = child->thread.fpu.fpc;
250                 tmp <<= BITS_PER_LONG - 32;
251 
252         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
253                 /*
254                  * floating point regs. are either in child->thread.fpu
255                  * or the child->thread.fpu.vxrs array
256                  */
257                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
258                 if (MACHINE_HAS_VX)
259                         tmp = *(addr_t *)
260                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
261                 else
262                         tmp = *(addr_t *)
263                                ((addr_t) child->thread.fpu.fprs + offset);
264 
265         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
266                 /*
267                  * Handle access to the per_info structure.
268                  */
269                 addr -= (addr_t) &dummy->regs.per_info;
270                 tmp = __peek_user_per(child, addr);
271 
272         } else
273                 tmp = 0;
274 
275         return tmp;
276 }
277 
278 static int
279 peek_user(struct task_struct *child, addr_t addr, addr_t data)
280 {
281         addr_t tmp, mask;
282 
283         /*
284          * Stupid gdb peeks/pokes the access registers in 64 bit with
285          * an alignment of 4. Programmers from hell...
286          */
287         mask = __ADDR_MASK;
288         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
289             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
290                 mask = 3;
291         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
292                 return -EIO;
293 
294         tmp = __peek_user(child, addr);
295         return put_user(tmp, (addr_t __user *) data);
296 }
297 
298 static inline void __poke_user_per(struct task_struct *child,
299                                    addr_t addr, addr_t data)
300 {
301         struct per_struct_kernel *dummy = NULL;
302 
303         /*
304          * There are only three fields in the per_info struct that the
305          * debugger user can write to.
306          * 1) cr9: the debugger wants to set a new PER event mask
307          * 2) starting_addr: the debugger wants to set a new starting
308          *    address to use with the PER event mask.
309          * 3) ending_addr: the debugger wants to set a new ending
310          *    address to use with the PER event mask.
311          * The user specified PER event mask and the start and end
312          * addresses are used only if single stepping is not in effect.
313          * Writes to any other field in per_info are ignored.
314          */
315         if (addr == (addr_t) &dummy->cr9)
316                 /* PER event mask of the user specified per set. */
317                 child->thread.per_user.control =
318                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
319         else if (addr == (addr_t) &dummy->starting_addr)
320                 /* Starting address of the user specified per set. */
321                 child->thread.per_user.start = data;
322         else if (addr == (addr_t) &dummy->ending_addr)
323                 /* Ending address of the user specified per set. */
324                 child->thread.per_user.end = data;
325 }
326 
327 /*
328  * Write a word to the user area of a process at location addr. This
329  * operation does have an additional problem compared to peek_user.
330  * Stores to the program status word and on the floating point
331  * control register needs to get checked for validity.
332  */
333 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
334 {
335         struct user *dummy = NULL;
336         addr_t offset;
337 
338         if (addr < (addr_t) &dummy->regs.acrs) {
339                 /*
340                  * psw and gprs are stored on the stack
341                  */
342                 if (addr == (addr_t) &dummy->regs.psw.mask) {
343                         unsigned long mask = PSW_MASK_USER;
344 
345                         mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
346                         if ((data ^ PSW_USER_BITS) & ~mask)
347                                 /* Invalid psw mask. */
348                                 return -EINVAL;
349                         if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
350                                 /* Invalid address-space-control bits */
351                                 return -EINVAL;
352                         if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
353                                 /* Invalid addressing mode bits */
354                                 return -EINVAL;
355                 }
356                 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
357 
358         } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
359                 /*
360                  * access registers are stored in the thread structure
361                  */
362                 offset = addr - (addr_t) &dummy->regs.acrs;
363                 /*
364                  * Very special case: old & broken 64 bit gdb writing
365                  * to acrs[15] with a 64 bit value. Ignore the lower
366                  * half of the value and write the upper 32 bit to
367                  * acrs[15]. Sick...
368                  */
369                 if (addr == (addr_t) &dummy->regs.acrs[15])
370                         child->thread.acrs[15] = (unsigned int) (data >> 32);
371                 else
372                         *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
373 
374         } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
375                 /*
376                  * orig_gpr2 is stored on the kernel stack
377                  */
378                 task_pt_regs(child)->orig_gpr2 = data;
379 
380         } else if (addr < (addr_t) &dummy->regs.fp_regs) {
381                 /*
382                  * prevent writes of padding hole between
383                  * orig_gpr2 and fp_regs on s390.
384                  */
385                 return 0;
386 
387         } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
388                 /*
389                  * floating point control reg. is in the thread structure
390                  */
391                 if ((unsigned int) data != 0 ||
392                     test_fp_ctl(data >> (BITS_PER_LONG - 32)))
393                         return -EINVAL;
394                 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
395 
396         } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
397                 /*
398                  * floating point regs. are either in child->thread.fpu
399                  * or the child->thread.fpu.vxrs array
400                  */
401                 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
402                 if (MACHINE_HAS_VX)
403                         *(addr_t *)((addr_t)
404                                 child->thread.fpu.vxrs + 2*offset) = data;
405                 else
406                         *(addr_t *)((addr_t)
407                                 child->thread.fpu.fprs + offset) = data;
408 
409         } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
410                 /*
411                  * Handle access to the per_info structure.
412                  */
413                 addr -= (addr_t) &dummy->regs.per_info;
414                 __poke_user_per(child, addr, data);
415 
416         }
417 
418         return 0;
419 }
420 
421 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
422 {
423         addr_t mask;
424 
425         /*
426          * Stupid gdb peeks/pokes the access registers in 64 bit with
427          * an alignment of 4. Programmers from hell indeed...
428          */
429         mask = __ADDR_MASK;
430         if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
431             addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
432                 mask = 3;
433         if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
434                 return -EIO;
435 
436         return __poke_user(child, addr, data);
437 }
438 
439 long arch_ptrace(struct task_struct *child, long request,
440                  unsigned long addr, unsigned long data)
441 {
442         ptrace_area parea; 
443         int copied, ret;
444 
445         switch (request) {
446         case PTRACE_PEEKUSR:
447                 /* read the word at location addr in the USER area. */
448                 return peek_user(child, addr, data);
449 
450         case PTRACE_POKEUSR:
451                 /* write the word at location addr in the USER area */
452                 return poke_user(child, addr, data);
453 
454         case PTRACE_PEEKUSR_AREA:
455         case PTRACE_POKEUSR_AREA:
456                 if (copy_from_user(&parea, (void __force __user *) addr,
457                                                         sizeof(parea)))
458                         return -EFAULT;
459                 addr = parea.kernel_addr;
460                 data = parea.process_addr;
461                 copied = 0;
462                 while (copied < parea.len) {
463                         if (request == PTRACE_PEEKUSR_AREA)
464                                 ret = peek_user(child, addr, data);
465                         else {
466                                 addr_t utmp;
467                                 if (get_user(utmp,
468                                              (addr_t __force __user *) data))
469                                         return -EFAULT;
470                                 ret = poke_user(child, addr, utmp);
471                         }
472                         if (ret)
473                                 return ret;
474                         addr += sizeof(unsigned long);
475                         data += sizeof(unsigned long);
476                         copied += sizeof(unsigned long);
477                 }
478                 return 0;
479         case PTRACE_GET_LAST_BREAK:
480                 put_user(child->thread.last_break,
481                          (unsigned long __user *) data);
482                 return 0;
483         case PTRACE_ENABLE_TE:
484                 if (!MACHINE_HAS_TE)
485                         return -EIO;
486                 child->thread.per_flags &= ~PER_FLAG_NO_TE;
487                 return 0;
488         case PTRACE_DISABLE_TE:
489                 if (!MACHINE_HAS_TE)
490                         return -EIO;
491                 child->thread.per_flags |= PER_FLAG_NO_TE;
492                 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
493                 return 0;
494         case PTRACE_TE_ABORT_RAND:
495                 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
496                         return -EIO;
497                 switch (data) {
498                 case 0UL:
499                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
500                         break;
501                 case 1UL:
502                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
503                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
504                         break;
505                 case 2UL:
506                         child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
507                         child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
508                         break;
509                 default:
510                         return -EINVAL;
511                 }
512                 return 0;
513         default:
514                 return ptrace_request(child, request, addr, data);
515         }
516 }
517 
518 #ifdef CONFIG_COMPAT
519 /*
520  * Now the fun part starts... a 31 bit program running in the
521  * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
522  * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
523  * to handle, the difference to the 64 bit versions of the requests
524  * is that the access is done in multiples of 4 byte instead of
525  * 8 bytes (sizeof(unsigned long) on 31/64 bit).
526  * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
527  * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
528  * is a 31 bit program too, the content of struct user can be
529  * emulated. A 31 bit program peeking into the struct user of
530  * a 64 bit program is a no-no.
531  */
532 
533 /*
534  * Same as peek_user_per but for a 31 bit program.
535  */
536 static inline __u32 __peek_user_per_compat(struct task_struct *child,
537                                            addr_t addr)
538 {
539         struct compat_per_struct_kernel *dummy32 = NULL;
540 
541         if (addr == (addr_t) &dummy32->cr9)
542                 /* Control bits of the active per set. */
543                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
544                         PER_EVENT_IFETCH : child->thread.per_user.control;
545         else if (addr == (addr_t) &dummy32->cr10)
546                 /* Start address of the active per set. */
547                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548                         0 : child->thread.per_user.start;
549         else if (addr == (addr_t) &dummy32->cr11)
550                 /* End address of the active per set. */
551                 return test_thread_flag(TIF_SINGLE_STEP) ?
552                         PSW32_ADDR_INSN : child->thread.per_user.end;
553         else if (addr == (addr_t) &dummy32->bits)
554                 /* Single-step bit. */
555                 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
556                         0x80000000 : 0;
557         else if (addr == (addr_t) &dummy32->starting_addr)
558                 /* Start address of the user specified per set. */
559                 return (__u32) child->thread.per_user.start;
560         else if (addr == (addr_t) &dummy32->ending_addr)
561                 /* End address of the user specified per set. */
562                 return (__u32) child->thread.per_user.end;
563         else if (addr == (addr_t) &dummy32->perc_atmid)
564                 /* PER code, ATMID and AI of the last PER trap */
565                 return (__u32) child->thread.per_event.cause << 16;
566         else if (addr == (addr_t) &dummy32->address)
567                 /* Address of the last PER trap */
568                 return (__u32) child->thread.per_event.address;
569         else if (addr == (addr_t) &dummy32->access_id)
570                 /* Access id of the last PER trap */
571                 return (__u32) child->thread.per_event.paid << 24;
572         return 0;
573 }
574 
575 /*
576  * Same as peek_user but for a 31 bit program.
577  */
578 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
579 {
580         struct compat_user *dummy32 = NULL;
581         addr_t offset;
582         __u32 tmp;
583 
584         if (addr < (addr_t) &dummy32->regs.acrs) {
585                 struct pt_regs *regs = task_pt_regs(child);
586                 /*
587                  * psw and gprs are stored on the stack
588                  */
589                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
590                         /* Fake a 31 bit psw mask. */
591                         tmp = (__u32)(regs->psw.mask >> 32);
592                         tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
593                         tmp |= PSW32_USER_BITS;
594                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
595                         /* Fake a 31 bit psw address. */
596                         tmp = (__u32) regs->psw.addr |
597                                 (__u32)(regs->psw.mask & PSW_MASK_BA);
598                 } else {
599                         /* gpr 0-15 */
600                         tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
601                 }
602         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
603                 /*
604                  * access registers are stored in the thread structure
605                  */
606                 offset = addr - (addr_t) &dummy32->regs.acrs;
607                 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
608 
609         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
610                 /*
611                  * orig_gpr2 is stored on the kernel stack
612                  */
613                 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
614 
615         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
616                 /*
617                  * prevent reads of padding hole between
618                  * orig_gpr2 and fp_regs on s390.
619                  */
620                 tmp = 0;
621 
622         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
623                 /*
624                  * floating point control reg. is in the thread structure
625                  */
626                 tmp = child->thread.fpu.fpc;
627 
628         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
629                 /*
630                  * floating point regs. are either in child->thread.fpu
631                  * or the child->thread.fpu.vxrs array
632                  */
633                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
634                 if (MACHINE_HAS_VX)
635                         tmp = *(__u32 *)
636                                ((addr_t) child->thread.fpu.vxrs + 2*offset);
637                 else
638                         tmp = *(__u32 *)
639                                ((addr_t) child->thread.fpu.fprs + offset);
640 
641         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
642                 /*
643                  * Handle access to the per_info structure.
644                  */
645                 addr -= (addr_t) &dummy32->regs.per_info;
646                 tmp = __peek_user_per_compat(child, addr);
647 
648         } else
649                 tmp = 0;
650 
651         return tmp;
652 }
653 
654 static int peek_user_compat(struct task_struct *child,
655                             addr_t addr, addr_t data)
656 {
657         __u32 tmp;
658 
659         if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
660                 return -EIO;
661 
662         tmp = __peek_user_compat(child, addr);
663         return put_user(tmp, (__u32 __user *) data);
664 }
665 
666 /*
667  * Same as poke_user_per but for a 31 bit program.
668  */
669 static inline void __poke_user_per_compat(struct task_struct *child,
670                                           addr_t addr, __u32 data)
671 {
672         struct compat_per_struct_kernel *dummy32 = NULL;
673 
674         if (addr == (addr_t) &dummy32->cr9)
675                 /* PER event mask of the user specified per set. */
676                 child->thread.per_user.control =
677                         data & (PER_EVENT_MASK | PER_CONTROL_MASK);
678         else if (addr == (addr_t) &dummy32->starting_addr)
679                 /* Starting address of the user specified per set. */
680                 child->thread.per_user.start = data;
681         else if (addr == (addr_t) &dummy32->ending_addr)
682                 /* Ending address of the user specified per set. */
683                 child->thread.per_user.end = data;
684 }
685 
686 /*
687  * Same as poke_user but for a 31 bit program.
688  */
689 static int __poke_user_compat(struct task_struct *child,
690                               addr_t addr, addr_t data)
691 {
692         struct compat_user *dummy32 = NULL;
693         __u32 tmp = (__u32) data;
694         addr_t offset;
695 
696         if (addr < (addr_t) &dummy32->regs.acrs) {
697                 struct pt_regs *regs = task_pt_regs(child);
698                 /*
699                  * psw, gprs, acrs and orig_gpr2 are stored on the stack
700                  */
701                 if (addr == (addr_t) &dummy32->regs.psw.mask) {
702                         __u32 mask = PSW32_MASK_USER;
703 
704                         mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
705                         /* Build a 64 bit psw mask from 31 bit mask. */
706                         if ((tmp ^ PSW32_USER_BITS) & ~mask)
707                                 /* Invalid psw mask. */
708                                 return -EINVAL;
709                         if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
710                                 /* Invalid address-space-control bits */
711                                 return -EINVAL;
712                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
713                                 (regs->psw.mask & PSW_MASK_BA) |
714                                 (__u64)(tmp & mask) << 32;
715                 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
716                         /* Build a 64 bit psw address from 31 bit address. */
717                         regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
718                         /* Transfer 31 bit amode bit to psw mask. */
719                         regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
720                                 (__u64)(tmp & PSW32_ADDR_AMODE);
721                 } else {
722                         /* gpr 0-15 */
723                         *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
724                 }
725         } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
726                 /*
727                  * access registers are stored in the thread structure
728                  */
729                 offset = addr - (addr_t) &dummy32->regs.acrs;
730                 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
731 
732         } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
733                 /*
734                  * orig_gpr2 is stored on the kernel stack
735                  */
736                 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
737 
738         } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
739                 /*
740                  * prevent writess of padding hole between
741                  * orig_gpr2 and fp_regs on s390.
742                  */
743                 return 0;
744 
745         } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
746                 /*
747                  * floating point control reg. is in the thread structure
748                  */
749                 if (test_fp_ctl(tmp))
750                         return -EINVAL;
751                 child->thread.fpu.fpc = data;
752 
753         } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
754                 /*
755                  * floating point regs. are either in child->thread.fpu
756                  * or the child->thread.fpu.vxrs array
757                  */
758                 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
759                 if (MACHINE_HAS_VX)
760                         *(__u32 *)((addr_t)
761                                 child->thread.fpu.vxrs + 2*offset) = tmp;
762                 else
763                         *(__u32 *)((addr_t)
764                                 child->thread.fpu.fprs + offset) = tmp;
765 
766         } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
767                 /*
768                  * Handle access to the per_info structure.
769                  */
770                 addr -= (addr_t) &dummy32->regs.per_info;
771                 __poke_user_per_compat(child, addr, data);
772         }
773 
774         return 0;
775 }
776 
777 static int poke_user_compat(struct task_struct *child,
778                             addr_t addr, addr_t data)
779 {
780         if (!is_compat_task() || (addr & 3) ||
781             addr > sizeof(struct compat_user) - 3)
782                 return -EIO;
783 
784         return __poke_user_compat(child, addr, data);
785 }
786 
787 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
788                         compat_ulong_t caddr, compat_ulong_t cdata)
789 {
790         unsigned long addr = caddr;
791         unsigned long data = cdata;
792         compat_ptrace_area parea;
793         int copied, ret;
794 
795         switch (request) {
796         case PTRACE_PEEKUSR:
797                 /* read the word at location addr in the USER area. */
798                 return peek_user_compat(child, addr, data);
799 
800         case PTRACE_POKEUSR:
801                 /* write the word at location addr in the USER area */
802                 return poke_user_compat(child, addr, data);
803 
804         case PTRACE_PEEKUSR_AREA:
805         case PTRACE_POKEUSR_AREA:
806                 if (copy_from_user(&parea, (void __force __user *) addr,
807                                                         sizeof(parea)))
808                         return -EFAULT;
809                 addr = parea.kernel_addr;
810                 data = parea.process_addr;
811                 copied = 0;
812                 while (copied < parea.len) {
813                         if (request == PTRACE_PEEKUSR_AREA)
814                                 ret = peek_user_compat(child, addr, data);
815                         else {
816                                 __u32 utmp;
817                                 if (get_user(utmp,
818                                              (__u32 __force __user *) data))
819                                         return -EFAULT;
820                                 ret = poke_user_compat(child, addr, utmp);
821                         }
822                         if (ret)
823                                 return ret;
824                         addr += sizeof(unsigned int);
825                         data += sizeof(unsigned int);
826                         copied += sizeof(unsigned int);
827                 }
828                 return 0;
829         case PTRACE_GET_LAST_BREAK:
830                 put_user(child->thread.last_break,
831                          (unsigned int __user *) data);
832                 return 0;
833         }
834         return compat_ptrace_request(child, request, addr, data);
835 }
836 #endif
837 
838 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
839 {
840         unsigned long mask = -1UL;
841 
842         /*
843          * The sysc_tracesys code in entry.S stored the system
844          * call number to gprs[2].
845          */
846         if (test_thread_flag(TIF_SYSCALL_TRACE) &&
847             (tracehook_report_syscall_entry(regs) ||
848              regs->gprs[2] >= NR_syscalls)) {
849                 /*
850                  * Tracing decided this syscall should not happen or the
851                  * debugger stored an invalid system call number. Skip
852                  * the system call and the system call restart handling.
853                  */
854                 clear_pt_regs_flag(regs, PIF_SYSCALL);
855                 return -1;
856         }
857 
858         /* Do the secure computing check after ptrace. */
859         if (secure_computing()) {
860                 /* seccomp failures shouldn't expose any additional code. */
861                 return -1;
862         }
863 
864         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
865                 trace_sys_enter(regs, regs->gprs[2]);
866 
867         if (is_compat_task())
868                 mask = 0xffffffff;
869 
870         audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
871                             regs->gprs[3] &mask, regs->gprs[4] &mask,
872                             regs->gprs[5] &mask);
873 
874         return regs->gprs[2];
875 }
876 
877 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
878 {
879         audit_syscall_exit(regs);
880 
881         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
882                 trace_sys_exit(regs, regs->gprs[2]);
883 
884         if (test_thread_flag(TIF_SYSCALL_TRACE))
885                 tracehook_report_syscall_exit(regs, 0);
886 }
887 
888 /*
889  * user_regset definitions.
890  */
891 
892 static int s390_regs_get(struct task_struct *target,
893                          const struct user_regset *regset,
894                          unsigned int pos, unsigned int count,
895                          void *kbuf, void __user *ubuf)
896 {
897         if (target == current)
898                 save_access_regs(target->thread.acrs);
899 
900         if (kbuf) {
901                 unsigned long *k = kbuf;
902                 while (count > 0) {
903                         *k++ = __peek_user(target, pos);
904                         count -= sizeof(*k);
905                         pos += sizeof(*k);
906                 }
907         } else {
908                 unsigned long __user *u = ubuf;
909                 while (count > 0) {
910                         if (__put_user(__peek_user(target, pos), u++))
911                                 return -EFAULT;
912                         count -= sizeof(*u);
913                         pos += sizeof(*u);
914                 }
915         }
916         return 0;
917 }
918 
919 static int s390_regs_set(struct task_struct *target,
920                          const struct user_regset *regset,
921                          unsigned int pos, unsigned int count,
922                          const void *kbuf, const void __user *ubuf)
923 {
924         int rc = 0;
925 
926         if (target == current)
927                 save_access_regs(target->thread.acrs);
928 
929         if (kbuf) {
930                 const unsigned long *k = kbuf;
931                 while (count > 0 && !rc) {
932                         rc = __poke_user(target, pos, *k++);
933                         count -= sizeof(*k);
934                         pos += sizeof(*k);
935                 }
936         } else {
937                 const unsigned long  __user *u = ubuf;
938                 while (count > 0 && !rc) {
939                         unsigned long word;
940                         rc = __get_user(word, u++);
941                         if (rc)
942                                 break;
943                         rc = __poke_user(target, pos, word);
944                         count -= sizeof(*u);
945                         pos += sizeof(*u);
946                 }
947         }
948 
949         if (rc == 0 && target == current)
950                 restore_access_regs(target->thread.acrs);
951 
952         return rc;
953 }
954 
955 static int s390_fpregs_get(struct task_struct *target,
956                            const struct user_regset *regset, unsigned int pos,
957                            unsigned int count, void *kbuf, void __user *ubuf)
958 {
959         _s390_fp_regs fp_regs;
960 
961         if (target == current)
962                 save_fpu_regs();
963 
964         fp_regs.fpc = target->thread.fpu.fpc;
965         fpregs_store(&fp_regs, &target->thread.fpu);
966 
967         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
968                                    &fp_regs, 0, -1);
969 }
970 
971 static int s390_fpregs_set(struct task_struct *target,
972                            const struct user_regset *regset, unsigned int pos,
973                            unsigned int count, const void *kbuf,
974                            const void __user *ubuf)
975 {
976         int rc = 0;
977         freg_t fprs[__NUM_FPRS];
978 
979         if (target == current)
980                 save_fpu_regs();
981 
982         if (MACHINE_HAS_VX)
983                 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
984         else
985                 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
986 
987         /* If setting FPC, must validate it first. */
988         if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
989                 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
990                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
991                                         0, offsetof(s390_fp_regs, fprs));
992                 if (rc)
993                         return rc;
994                 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
995                         return -EINVAL;
996                 target->thread.fpu.fpc = ufpc[0];
997         }
998 
999         if (rc == 0 && count > 0)
1000                 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1001                                         fprs, offsetof(s390_fp_regs, fprs), -1);
1002         if (rc)
1003                 return rc;
1004 
1005         if (MACHINE_HAS_VX)
1006                 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1007         else
1008                 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1009 
1010         return rc;
1011 }
1012 
1013 static int s390_last_break_get(struct task_struct *target,
1014                                const struct user_regset *regset,
1015                                unsigned int pos, unsigned int count,
1016                                void *kbuf, void __user *ubuf)
1017 {
1018         if (count > 0) {
1019                 if (kbuf) {
1020                         unsigned long *k = kbuf;
1021                         *k = target->thread.last_break;
1022                 } else {
1023                         unsigned long  __user *u = ubuf;
1024                         if (__put_user(target->thread.last_break, u))
1025                                 return -EFAULT;
1026                 }
1027         }
1028         return 0;
1029 }
1030 
1031 static int s390_last_break_set(struct task_struct *target,
1032                                const struct user_regset *regset,
1033                                unsigned int pos, unsigned int count,
1034                                const void *kbuf, const void __user *ubuf)
1035 {
1036         return 0;
1037 }
1038 
1039 static int s390_tdb_get(struct task_struct *target,
1040                         const struct user_regset *regset,
1041                         unsigned int pos, unsigned int count,
1042                         void *kbuf, void __user *ubuf)
1043 {
1044         struct pt_regs *regs = task_pt_regs(target);
1045         unsigned char *data;
1046 
1047         if (!(regs->int_code & 0x200))
1048                 return -ENODATA;
1049         data = target->thread.trap_tdb;
1050         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1051 }
1052 
1053 static int s390_tdb_set(struct task_struct *target,
1054                         const struct user_regset *regset,
1055                         unsigned int pos, unsigned int count,
1056                         const void *kbuf, const void __user *ubuf)
1057 {
1058         return 0;
1059 }
1060 
1061 static int s390_vxrs_low_get(struct task_struct *target,
1062                              const struct user_regset *regset,
1063                              unsigned int pos, unsigned int count,
1064                              void *kbuf, void __user *ubuf)
1065 {
1066         __u64 vxrs[__NUM_VXRS_LOW];
1067         int i;
1068 
1069         if (!MACHINE_HAS_VX)
1070                 return -ENODEV;
1071         if (target == current)
1072                 save_fpu_regs();
1073         for (i = 0; i < __NUM_VXRS_LOW; i++)
1074                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1075         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1076 }
1077 
1078 static int s390_vxrs_low_set(struct task_struct *target,
1079                              const struct user_regset *regset,
1080                              unsigned int pos, unsigned int count,
1081                              const void *kbuf, const void __user *ubuf)
1082 {
1083         __u64 vxrs[__NUM_VXRS_LOW];
1084         int i, rc;
1085 
1086         if (!MACHINE_HAS_VX)
1087                 return -ENODEV;
1088         if (target == current)
1089                 save_fpu_regs();
1090 
1091         for (i = 0; i < __NUM_VXRS_LOW; i++)
1092                 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1093 
1094         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1095         if (rc == 0)
1096                 for (i = 0; i < __NUM_VXRS_LOW; i++)
1097                         *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1098 
1099         return rc;
1100 }
1101 
1102 static int s390_vxrs_high_get(struct task_struct *target,
1103                               const struct user_regset *regset,
1104                               unsigned int pos, unsigned int count,
1105                               void *kbuf, void __user *ubuf)
1106 {
1107         __vector128 vxrs[__NUM_VXRS_HIGH];
1108 
1109         if (!MACHINE_HAS_VX)
1110                 return -ENODEV;
1111         if (target == current)
1112                 save_fpu_regs();
1113         memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1114 
1115         return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1116 }
1117 
1118 static int s390_vxrs_high_set(struct task_struct *target,
1119                               const struct user_regset *regset,
1120                               unsigned int pos, unsigned int count,
1121                               const void *kbuf, const void __user *ubuf)
1122 {
1123         int rc;
1124 
1125         if (!MACHINE_HAS_VX)
1126                 return -ENODEV;
1127         if (target == current)
1128                 save_fpu_regs();
1129 
1130         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1131                                 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1132         return rc;
1133 }
1134 
1135 static int s390_system_call_get(struct task_struct *target,
1136                                 const struct user_regset *regset,
1137                                 unsigned int pos, unsigned int count,
1138                                 void *kbuf, void __user *ubuf)
1139 {
1140         unsigned int *data = &target->thread.system_call;
1141         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1142                                    data, 0, sizeof(unsigned int));
1143 }
1144 
1145 static int s390_system_call_set(struct task_struct *target,
1146                                 const struct user_regset *regset,
1147                                 unsigned int pos, unsigned int count,
1148                                 const void *kbuf, const void __user *ubuf)
1149 {
1150         unsigned int *data = &target->thread.system_call;
1151         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1152                                   data, 0, sizeof(unsigned int));
1153 }
1154 
1155 static int s390_gs_cb_get(struct task_struct *target,
1156                           const struct user_regset *regset,
1157                           unsigned int pos, unsigned int count,
1158                           void *kbuf, void __user *ubuf)
1159 {
1160         struct gs_cb *data = target->thread.gs_cb;
1161 
1162         if (!MACHINE_HAS_GS)
1163                 return -ENODEV;
1164         if (!data)
1165                 return -ENODATA;
1166         if (target == current)
1167                 save_gs_cb(data);
1168         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1169                                    data, 0, sizeof(struct gs_cb));
1170 }
1171 
1172 static int s390_gs_cb_set(struct task_struct *target,
1173                           const struct user_regset *regset,
1174                           unsigned int pos, unsigned int count,
1175                           const void *kbuf, const void __user *ubuf)
1176 {
1177         struct gs_cb gs_cb = { }, *data = NULL;
1178         int rc;
1179 
1180         if (!MACHINE_HAS_GS)
1181                 return -ENODEV;
1182         if (!target->thread.gs_cb) {
1183                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1184                 if (!data)
1185                         return -ENOMEM;
1186         }
1187         if (!target->thread.gs_cb)
1188                 gs_cb.gsd = 25;
1189         else if (target == current)
1190                 save_gs_cb(&gs_cb);
1191         else
1192                 gs_cb = *target->thread.gs_cb;
1193         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1194                                 &gs_cb, 0, sizeof(gs_cb));
1195         if (rc) {
1196                 kfree(data);
1197                 return -EFAULT;
1198         }
1199         preempt_disable();
1200         if (!target->thread.gs_cb)
1201                 target->thread.gs_cb = data;
1202         *target->thread.gs_cb = gs_cb;
1203         if (target == current) {
1204                 __ctl_set_bit(2, 4);
1205                 restore_gs_cb(target->thread.gs_cb);
1206         }
1207         preempt_enable();
1208         return rc;
1209 }
1210 
1211 static int s390_gs_bc_get(struct task_struct *target,
1212                           const struct user_regset *regset,
1213                           unsigned int pos, unsigned int count,
1214                           void *kbuf, void __user *ubuf)
1215 {
1216         struct gs_cb *data = target->thread.gs_bc_cb;
1217 
1218         if (!MACHINE_HAS_GS)
1219                 return -ENODEV;
1220         if (!data)
1221                 return -ENODATA;
1222         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1223                                    data, 0, sizeof(struct gs_cb));
1224 }
1225 
1226 static int s390_gs_bc_set(struct task_struct *target,
1227                           const struct user_regset *regset,
1228                           unsigned int pos, unsigned int count,
1229                           const void *kbuf, const void __user *ubuf)
1230 {
1231         struct gs_cb *data = target->thread.gs_bc_cb;
1232 
1233         if (!MACHINE_HAS_GS)
1234                 return -ENODEV;
1235         if (!data) {
1236                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1237                 if (!data)
1238                         return -ENOMEM;
1239                 target->thread.gs_bc_cb = data;
1240         }
1241         return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1242                                   data, 0, sizeof(struct gs_cb));
1243 }
1244 
1245 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1246 {
1247         return (cb->rca & 0x1f) == 0 &&
1248                 (cb->roa & 0xfff) == 0 &&
1249                 (cb->rla & 0xfff) == 0xfff &&
1250                 cb->s == 1 &&
1251                 cb->k == 1 &&
1252                 cb->h == 0 &&
1253                 cb->reserved1 == 0 &&
1254                 cb->ps == 1 &&
1255                 cb->qs == 0 &&
1256                 cb->pc == 1 &&
1257                 cb->qc == 0 &&
1258                 cb->reserved2 == 0 &&
1259                 cb->key == PAGE_DEFAULT_KEY &&
1260                 cb->reserved3 == 0 &&
1261                 cb->reserved4 == 0 &&
1262                 cb->reserved5 == 0 &&
1263                 cb->reserved6 == 0 &&
1264                 cb->reserved7 == 0 &&
1265                 cb->reserved8 == 0 &&
1266                 cb->rla >= cb->roa &&
1267                 cb->rca >= cb->roa &&
1268                 cb->rca <= cb->rla+1 &&
1269                 cb->m < 3;
1270 }
1271 
1272 static int s390_runtime_instr_get(struct task_struct *target,
1273                                 const struct user_regset *regset,
1274                                 unsigned int pos, unsigned int count,
1275                                 void *kbuf, void __user *ubuf)
1276 {
1277         struct runtime_instr_cb *data = target->thread.ri_cb;
1278 
1279         if (!test_facility(64))
1280                 return -ENODEV;
1281         if (!data)
1282                 return -ENODATA;
1283 
1284         return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1285                                    data, 0, sizeof(struct runtime_instr_cb));
1286 }
1287 
1288 static int s390_runtime_instr_set(struct task_struct *target,
1289                                   const struct user_regset *regset,
1290                                   unsigned int pos, unsigned int count,
1291                                   const void *kbuf, const void __user *ubuf)
1292 {
1293         struct runtime_instr_cb ri_cb = { }, *data = NULL;
1294         int rc;
1295 
1296         if (!test_facility(64))
1297                 return -ENODEV;
1298 
1299         if (!target->thread.ri_cb) {
1300                 data = kzalloc(sizeof(*data), GFP_KERNEL);
1301                 if (!data)
1302                         return -ENOMEM;
1303         }
1304 
1305         if (target->thread.ri_cb) {
1306                 if (target == current)
1307                         store_runtime_instr_cb(&ri_cb);
1308                 else
1309                         ri_cb = *target->thread.ri_cb;
1310         }
1311 
1312         rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1313                                 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1314         if (rc) {
1315                 kfree(data);
1316                 return -EFAULT;
1317         }
1318 
1319         if (!is_ri_cb_valid(&ri_cb)) {
1320                 kfree(data);
1321                 return -EINVAL;
1322         }
1323 
1324         preempt_disable();
1325         if (!target->thread.ri_cb)
1326                 target->thread.ri_cb = data;
1327         *target->thread.ri_cb = ri_cb;
1328         if (target == current)
1329                 load_runtime_instr_cb(target->thread.ri_cb);
1330         preempt_enable();
1331 
1332         return 0;
1333 }
1334 
1335 static const struct user_regset s390_regsets[] = {
1336         {
1337                 .core_note_type = NT_PRSTATUS,
1338                 .n = sizeof(s390_regs) / sizeof(long),
1339                 .size = sizeof(long),
1340                 .align = sizeof(long),
1341                 .get = s390_regs_get,
1342                 .set = s390_regs_set,
1343         },
1344         {
1345                 .core_note_type = NT_PRFPREG,
1346                 .n = sizeof(s390_fp_regs) / sizeof(long),
1347                 .size = sizeof(long),
1348                 .align = sizeof(long),
1349                 .get = s390_fpregs_get,
1350                 .set = s390_fpregs_set,
1351         },
1352         {
1353                 .core_note_type = NT_S390_SYSTEM_CALL,
1354                 .n = 1,
1355                 .size = sizeof(unsigned int),
1356                 .align = sizeof(unsigned int),
1357                 .get = s390_system_call_get,
1358                 .set = s390_system_call_set,
1359         },
1360         {
1361                 .core_note_type = NT_S390_LAST_BREAK,
1362                 .n = 1,
1363                 .size = sizeof(long),
1364                 .align = sizeof(long),
1365                 .get = s390_last_break_get,
1366                 .set = s390_last_break_set,
1367         },
1368         {
1369                 .core_note_type = NT_S390_TDB,
1370                 .n = 1,
1371                 .size = 256,
1372                 .align = 1,
1373                 .get = s390_tdb_get,
1374                 .set = s390_tdb_set,
1375         },
1376         {
1377                 .core_note_type = NT_S390_VXRS_LOW,
1378                 .n = __NUM_VXRS_LOW,
1379                 .size = sizeof(__u64),
1380                 .align = sizeof(__u64),
1381                 .get = s390_vxrs_low_get,
1382                 .set = s390_vxrs_low_set,
1383         },
1384         {
1385                 .core_note_type = NT_S390_VXRS_HIGH,
1386                 .n = __NUM_VXRS_HIGH,
1387                 .size = sizeof(__vector128),
1388                 .align = sizeof(__vector128),
1389                 .get = s390_vxrs_high_get,
1390                 .set = s390_vxrs_high_set,
1391         },
1392         {
1393                 .core_note_type = NT_S390_GS_CB,
1394                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1395                 .size = sizeof(__u64),
1396                 .align = sizeof(__u64),
1397                 .get = s390_gs_cb_get,
1398                 .set = s390_gs_cb_set,
1399         },
1400         {
1401                 .core_note_type = NT_S390_GS_BC,
1402                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1403                 .size = sizeof(__u64),
1404                 .align = sizeof(__u64),
1405                 .get = s390_gs_bc_get,
1406                 .set = s390_gs_bc_set,
1407         },
1408         {
1409                 .core_note_type = NT_S390_RI_CB,
1410                 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1411                 .size = sizeof(__u64),
1412                 .align = sizeof(__u64),
1413                 .get = s390_runtime_instr_get,
1414                 .set = s390_runtime_instr_set,
1415         },
1416 };
1417 
1418 static const struct user_regset_view user_s390_view = {
1419         .name = UTS_MACHINE,
1420         .e_machine = EM_S390,
1421         .regsets = s390_regsets,
1422         .n = ARRAY_SIZE(s390_regsets)
1423 };
1424 
1425 #ifdef CONFIG_COMPAT
1426 static int s390_compat_regs_get(struct task_struct *target,
1427                                 const struct user_regset *regset,
1428                                 unsigned int pos, unsigned int count,
1429                                 void *kbuf, void __user *ubuf)
1430 {
1431         if (target == current)
1432                 save_access_regs(target->thread.acrs);
1433 
1434         if (kbuf) {
1435                 compat_ulong_t *k = kbuf;
1436                 while (count > 0) {
1437                         *k++ = __peek_user_compat(target, pos);
1438                         count -= sizeof(*k);
1439                         pos += sizeof(*k);
1440                 }
1441         } else {
1442                 compat_ulong_t __user *u = ubuf;
1443                 while (count > 0) {
1444                         if (__put_user(__peek_user_compat(target, pos), u++))
1445                                 return -EFAULT;
1446                         count -= sizeof(*u);
1447                         pos += sizeof(*u);
1448                 }
1449         }
1450         return 0;
1451 }
1452 
1453 static int s390_compat_regs_set(struct task_struct *target,
1454                                 const struct user_regset *regset,
1455                                 unsigned int pos, unsigned int count,
1456                                 const void *kbuf, const void __user *ubuf)
1457 {
1458         int rc = 0;
1459 
1460         if (target == current)
1461                 save_access_regs(target->thread.acrs);
1462 
1463         if (kbuf) {
1464                 const compat_ulong_t *k = kbuf;
1465                 while (count > 0 && !rc) {
1466                         rc = __poke_user_compat(target, pos, *k++);
1467                         count -= sizeof(*k);
1468                         pos += sizeof(*k);
1469                 }
1470         } else {
1471                 const compat_ulong_t  __user *u = ubuf;
1472                 while (count > 0 && !rc) {
1473                         compat_ulong_t word;
1474                         rc = __get_user(word, u++);
1475                         if (rc)
1476                                 break;
1477                         rc = __poke_user_compat(target, pos, word);
1478                         count -= sizeof(*u);
1479                         pos += sizeof(*u);
1480                 }
1481         }
1482 
1483         if (rc == 0 && target == current)
1484                 restore_access_regs(target->thread.acrs);
1485 
1486         return rc;
1487 }
1488 
1489 static int s390_compat_regs_high_get(struct task_struct *target,
1490                                      const struct user_regset *regset,
1491                                      unsigned int pos, unsigned int count,
1492                                      void *kbuf, void __user *ubuf)
1493 {
1494         compat_ulong_t *gprs_high;
1495 
1496         gprs_high = (compat_ulong_t *)
1497                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1498         if (kbuf) {
1499                 compat_ulong_t *k = kbuf;
1500                 while (count > 0) {
1501                         *k++ = *gprs_high;
1502                         gprs_high += 2;
1503                         count -= sizeof(*k);
1504                 }
1505         } else {
1506                 compat_ulong_t __user *u = ubuf;
1507                 while (count > 0) {
1508                         if (__put_user(*gprs_high, u++))
1509                                 return -EFAULT;
1510                         gprs_high += 2;
1511                         count -= sizeof(*u);
1512                 }
1513         }
1514         return 0;
1515 }
1516 
1517 static int s390_compat_regs_high_set(struct task_struct *target,
1518                                      const struct user_regset *regset,
1519                                      unsigned int pos, unsigned int count,
1520                                      const void *kbuf, const void __user *ubuf)
1521 {
1522         compat_ulong_t *gprs_high;
1523         int rc = 0;
1524 
1525         gprs_high = (compat_ulong_t *)
1526                 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1527         if (kbuf) {
1528                 const compat_ulong_t *k = kbuf;
1529                 while (count > 0) {
1530                         *gprs_high = *k++;
1531                         *gprs_high += 2;
1532                         count -= sizeof(*k);
1533                 }
1534         } else {
1535                 const compat_ulong_t  __user *u = ubuf;
1536                 while (count > 0 && !rc) {
1537                         unsigned long word;
1538                         rc = __get_user(word, u++);
1539                         if (rc)
1540                                 break;
1541                         *gprs_high = word;
1542                         *gprs_high += 2;
1543                         count -= sizeof(*u);
1544                 }
1545         }
1546 
1547         return rc;
1548 }
1549 
1550 static int s390_compat_last_break_get(struct task_struct *target,
1551                                       const struct user_regset *regset,
1552                                       unsigned int pos, unsigned int count,
1553                                       void *kbuf, void __user *ubuf)
1554 {
1555         compat_ulong_t last_break;
1556 
1557         if (count > 0) {
1558                 last_break = target->thread.last_break;
1559                 if (kbuf) {
1560                         unsigned long *k = kbuf;
1561                         *k = last_break;
1562                 } else {
1563                         unsigned long  __user *u = ubuf;
1564                         if (__put_user(last_break, u))
1565                                 return -EFAULT;
1566                 }
1567         }
1568         return 0;
1569 }
1570 
1571 static int s390_compat_last_break_set(struct task_struct *target,
1572                                       const struct user_regset *regset,
1573                                       unsigned int pos, unsigned int count,
1574                                       const void *kbuf, const void __user *ubuf)
1575 {
1576         return 0;
1577 }
1578 
1579 static const struct user_regset s390_compat_regsets[] = {
1580         {
1581                 .core_note_type = NT_PRSTATUS,
1582                 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1583                 .size = sizeof(compat_long_t),
1584                 .align = sizeof(compat_long_t),
1585                 .get = s390_compat_regs_get,
1586                 .set = s390_compat_regs_set,
1587         },
1588         {
1589                 .core_note_type = NT_PRFPREG,
1590                 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1591                 .size = sizeof(compat_long_t),
1592                 .align = sizeof(compat_long_t),
1593                 .get = s390_fpregs_get,
1594                 .set = s390_fpregs_set,
1595         },
1596         {
1597                 .core_note_type = NT_S390_SYSTEM_CALL,
1598                 .n = 1,
1599                 .size = sizeof(compat_uint_t),
1600                 .align = sizeof(compat_uint_t),
1601                 .get = s390_system_call_get,
1602                 .set = s390_system_call_set,
1603         },
1604         {
1605                 .core_note_type = NT_S390_LAST_BREAK,
1606                 .n = 1,
1607                 .size = sizeof(long),
1608                 .align = sizeof(long),
1609                 .get = s390_compat_last_break_get,
1610                 .set = s390_compat_last_break_set,
1611         },
1612         {
1613                 .core_note_type = NT_S390_TDB,
1614                 .n = 1,
1615                 .size = 256,
1616                 .align = 1,
1617                 .get = s390_tdb_get,
1618                 .set = s390_tdb_set,
1619         },
1620         {
1621                 .core_note_type = NT_S390_VXRS_LOW,
1622                 .n = __NUM_VXRS_LOW,
1623                 .size = sizeof(__u64),
1624                 .align = sizeof(__u64),
1625                 .get = s390_vxrs_low_get,
1626                 .set = s390_vxrs_low_set,
1627         },
1628         {
1629                 .core_note_type = NT_S390_VXRS_HIGH,
1630                 .n = __NUM_VXRS_HIGH,
1631                 .size = sizeof(__vector128),
1632                 .align = sizeof(__vector128),
1633                 .get = s390_vxrs_high_get,
1634                 .set = s390_vxrs_high_set,
1635         },
1636         {
1637                 .core_note_type = NT_S390_HIGH_GPRS,
1638                 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1639                 .size = sizeof(compat_long_t),
1640                 .align = sizeof(compat_long_t),
1641                 .get = s390_compat_regs_high_get,
1642                 .set = s390_compat_regs_high_set,
1643         },
1644         {
1645                 .core_note_type = NT_S390_GS_CB,
1646                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1647                 .size = sizeof(__u64),
1648                 .align = sizeof(__u64),
1649                 .get = s390_gs_cb_get,
1650                 .set = s390_gs_cb_set,
1651         },
1652         {
1653                 .core_note_type = NT_S390_GS_BC,
1654                 .n = sizeof(struct gs_cb) / sizeof(__u64),
1655                 .size = sizeof(__u64),
1656                 .align = sizeof(__u64),
1657                 .get = s390_gs_bc_get,
1658                 .set = s390_gs_bc_set,
1659         },
1660         {
1661                 .core_note_type = NT_S390_RI_CB,
1662                 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1663                 .size = sizeof(__u64),
1664                 .align = sizeof(__u64),
1665                 .get = s390_runtime_instr_get,
1666                 .set = s390_runtime_instr_set,
1667         },
1668 };
1669 
1670 static const struct user_regset_view user_s390_compat_view = {
1671         .name = "s390",
1672         .e_machine = EM_S390,
1673         .regsets = s390_compat_regsets,
1674         .n = ARRAY_SIZE(s390_compat_regsets)
1675 };
1676 #endif
1677 
1678 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1679 {
1680 #ifdef CONFIG_COMPAT
1681         if (test_tsk_thread_flag(task, TIF_31BIT))
1682                 return &user_s390_compat_view;
1683 #endif
1684         return &user_s390_view;
1685 }
1686 
1687 static const char *gpr_names[NUM_GPRS] = {
1688         "r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1689         "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1690 };
1691 
1692 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1693 {
1694         if (offset >= NUM_GPRS)
1695                 return 0;
1696         return regs->gprs[offset];
1697 }
1698 
1699 int regs_query_register_offset(const char *name)
1700 {
1701         unsigned long offset;
1702 
1703         if (!name || *name != 'r')
1704                 return -EINVAL;
1705         if (kstrtoul(name + 1, 10, &offset))
1706                 return -EINVAL;
1707         if (offset >= NUM_GPRS)
1708                 return -EINVAL;
1709         return offset;
1710 }
1711 
1712 const char *regs_query_register_name(unsigned int offset)
1713 {
1714         if (offset >= NUM_GPRS)
1715                 return NULL;
1716         return gpr_names[offset];
1717 }
1718 
1719 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1720 {
1721         unsigned long ksp = kernel_stack_pointer(regs);
1722 
1723         return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1724 }
1725 
1726 /**
1727  * regs_get_kernel_stack_nth() - get Nth entry of the stack
1728  * @regs:pt_regs which contains kernel stack pointer.
1729  * @n:stack entry number.
1730  *
1731  * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1732  * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1733  * this returns 0.
1734  */
1735 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1736 {
1737         unsigned long addr;
1738 
1739         addr = kernel_stack_pointer(regs) + n * sizeof(long);
1740         if (!regs_within_kernel_stack(regs, addr))
1741                 return 0;
1742         return *(unsigned long *)addr;
1743 }
1744 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp