~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/kernel/ioport.c

Version: ~ [ linux-5.8-rc5 ] ~ [ linux-5.7.8 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.51 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.132 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.188 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.230 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.230 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * ioport.c:  Simple io mapping allocator.
  3  *
  4  * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
  5  * Copyright (C) 1995 Miguel de Icaza (miguel@nuclecu.unam.mx)
  6  *
  7  * 1996: sparc_free_io, 1999: ioremap()/iounmap() by Pete Zaitcev.
  8  *
  9  * 2000/01/29
 10  * <rth> zait: as long as pci_alloc_consistent produces something addressable, 
 11  *      things are ok.
 12  * <zaitcev> rth: no, it is relevant, because get_free_pages returns you a
 13  *      pointer into the big page mapping
 14  * <rth> zait: so what?
 15  * <rth> zait: remap_it_my_way(virt_to_phys(get_free_page()))
 16  * <zaitcev> Hmm
 17  * <zaitcev> Suppose I did this remap_it_my_way(virt_to_phys(get_free_page())).
 18  *      So far so good.
 19  * <zaitcev> Now, driver calls pci_free_consistent(with result of
 20  *      remap_it_my_way()).
 21  * <zaitcev> How do you find the address to pass to free_pages()?
 22  * <rth> zait: walk the page tables?  It's only two or three level after all.
 23  * <rth> zait: you have to walk them anyway to remove the mapping.
 24  * <zaitcev> Hmm
 25  * <zaitcev> Sounds reasonable
 26  */
 27 
 28 #include <linux/module.h>
 29 #include <linux/sched.h>
 30 #include <linux/kernel.h>
 31 #include <linux/errno.h>
 32 #include <linux/types.h>
 33 #include <linux/ioport.h>
 34 #include <linux/mm.h>
 35 #include <linux/slab.h>
 36 #include <linux/pci.h>          /* struct pci_dev */
 37 #include <linux/proc_fs.h>
 38 #include <linux/seq_file.h>
 39 #include <linux/scatterlist.h>
 40 #include <linux/of_device.h>
 41 
 42 #include <asm/io.h>
 43 #include <asm/vaddrs.h>
 44 #include <asm/oplib.h>
 45 #include <asm/prom.h>
 46 #include <asm/page.h>
 47 #include <asm/pgalloc.h>
 48 #include <asm/dma.h>
 49 #include <asm/iommu.h>
 50 #include <asm/io-unit.h>
 51 #include <asm/leon.h>
 52 
 53 const struct sparc32_dma_ops *sparc32_dma_ops;
 54 
 55 /* This function must make sure that caches and memory are coherent after DMA
 56  * On LEON systems without cache snooping it flushes the entire D-CACHE.
 57  */
 58 static inline void dma_make_coherent(unsigned long pa, unsigned long len)
 59 {
 60         if (sparc_cpu_model == sparc_leon) {
 61                 if (!sparc_leon3_snooping_enabled())
 62                         leon_flush_dcache_all();
 63         }
 64 }
 65 
 66 static void __iomem *_sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz);
 67 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
 68     unsigned long size, char *name);
 69 static void _sparc_free_io(struct resource *res);
 70 
 71 static void register_proc_sparc_ioport(void);
 72 
 73 /* This points to the next to use virtual memory for DVMA mappings */
 74 static struct resource _sparc_dvma = {
 75         .name = "sparc_dvma", .start = DVMA_VADDR, .end = DVMA_END - 1
 76 };
 77 /* This points to the start of I/O mappings, cluable from outside. */
 78 /*ext*/ struct resource sparc_iomap = {
 79         .name = "sparc_iomap", .start = IOBASE_VADDR, .end = IOBASE_END - 1
 80 };
 81 
 82 /*
 83  * Our mini-allocator...
 84  * Boy this is gross! We need it because we must map I/O for
 85  * timers and interrupt controller before the kmalloc is available.
 86  */
 87 
 88 #define XNMLN  15
 89 #define XNRES  10       /* SS-10 uses 8 */
 90 
 91 struct xresource {
 92         struct resource xres;   /* Must be first */
 93         int xflag;              /* 1 == used */
 94         char xname[XNMLN+1];
 95 };
 96 
 97 static struct xresource xresv[XNRES];
 98 
 99 static struct xresource *xres_alloc(void) {
100         struct xresource *xrp;
101         int n;
102 
103         xrp = xresv;
104         for (n = 0; n < XNRES; n++) {
105                 if (xrp->xflag == 0) {
106                         xrp->xflag = 1;
107                         return xrp;
108                 }
109                 xrp++;
110         }
111         return NULL;
112 }
113 
114 static void xres_free(struct xresource *xrp) {
115         xrp->xflag = 0;
116 }
117 
118 /*
119  * These are typically used in PCI drivers
120  * which are trying to be cross-platform.
121  *
122  * Bus type is always zero on IIep.
123  */
124 void __iomem *ioremap(unsigned long offset, unsigned long size)
125 {
126         char name[14];
127 
128         sprintf(name, "phys_%08x", (u32)offset);
129         return _sparc_alloc_io(0, offset, size, name);
130 }
131 EXPORT_SYMBOL(ioremap);
132 
133 /*
134  * Comlimentary to ioremap().
135  */
136 void iounmap(volatile void __iomem *virtual)
137 {
138         unsigned long vaddr = (unsigned long) virtual & PAGE_MASK;
139         struct resource *res;
140 
141         /*
142          * XXX Too slow. Can have 8192 DVMA pages on sun4m in the worst case.
143          * This probably warrants some sort of hashing.
144         */
145         if ((res = lookup_resource(&sparc_iomap, vaddr)) == NULL) {
146                 printk("free_io/iounmap: cannot free %lx\n", vaddr);
147                 return;
148         }
149         _sparc_free_io(res);
150 
151         if ((char *)res >= (char*)xresv && (char *)res < (char *)&xresv[XNRES]) {
152                 xres_free((struct xresource *)res);
153         } else {
154                 kfree(res);
155         }
156 }
157 EXPORT_SYMBOL(iounmap);
158 
159 void __iomem *of_ioremap(struct resource *res, unsigned long offset,
160                          unsigned long size, char *name)
161 {
162         return _sparc_alloc_io(res->flags & 0xF,
163                                res->start + offset,
164                                size, name);
165 }
166 EXPORT_SYMBOL(of_ioremap);
167 
168 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
169 {
170         iounmap(base);
171 }
172 EXPORT_SYMBOL(of_iounmap);
173 
174 /*
175  * Meat of mapping
176  */
177 static void __iomem *_sparc_alloc_io(unsigned int busno, unsigned long phys,
178     unsigned long size, char *name)
179 {
180         static int printed_full;
181         struct xresource *xres;
182         struct resource *res;
183         char *tack;
184         int tlen;
185         void __iomem *va;       /* P3 diag */
186 
187         if (name == NULL) name = "???";
188 
189         if ((xres = xres_alloc()) != 0) {
190                 tack = xres->xname;
191                 res = &xres->xres;
192         } else {
193                 if (!printed_full) {
194                         printk("ioremap: done with statics, switching to malloc\n");
195                         printed_full = 1;
196                 }
197                 tlen = strlen(name);
198                 tack = kmalloc(sizeof (struct resource) + tlen + 1, GFP_KERNEL);
199                 if (tack == NULL) return NULL;
200                 memset(tack, 0, sizeof(struct resource));
201                 res = (struct resource *) tack;
202                 tack += sizeof (struct resource);
203         }
204 
205         strlcpy(tack, name, XNMLN+1);
206         res->name = tack;
207 
208         va = _sparc_ioremap(res, busno, phys, size);
209         /* printk("ioremap(0x%x:%08lx[0x%lx])=%p\n", busno, phys, size, va); */ /* P3 diag */
210         return va;
211 }
212 
213 /*
214  */
215 static void __iomem *
216 _sparc_ioremap(struct resource *res, u32 bus, u32 pa, int sz)
217 {
218         unsigned long offset = ((unsigned long) pa) & (~PAGE_MASK);
219 
220         if (allocate_resource(&sparc_iomap, res,
221             (offset + sz + PAGE_SIZE-1) & PAGE_MASK,
222             sparc_iomap.start, sparc_iomap.end, PAGE_SIZE, NULL, NULL) != 0) {
223                 /* Usually we cannot see printks in this case. */
224                 prom_printf("alloc_io_res(%s): cannot occupy\n",
225                     (res->name != NULL)? res->name: "???");
226                 prom_halt();
227         }
228 
229         pa &= PAGE_MASK;
230         srmmu_mapiorange(bus, pa, res->start, resource_size(res));
231 
232         return (void __iomem *)(unsigned long)(res->start + offset);
233 }
234 
235 /*
236  * Comlimentary to _sparc_ioremap().
237  */
238 static void _sparc_free_io(struct resource *res)
239 {
240         unsigned long plen;
241 
242         plen = resource_size(res);
243         BUG_ON((plen & (PAGE_SIZE-1)) != 0);
244         srmmu_unmapiorange(res->start, plen);
245         release_resource(res);
246 }
247 
248 #ifdef CONFIG_SBUS
249 
250 void sbus_set_sbus64(struct device *dev, int x)
251 {
252         printk("sbus_set_sbus64: unsupported\n");
253 }
254 EXPORT_SYMBOL(sbus_set_sbus64);
255 
256 /*
257  * Allocate a chunk of memory suitable for DMA.
258  * Typically devices use them for control blocks.
259  * CPU may access them without any explicit flushing.
260  */
261 static void *sbus_alloc_coherent(struct device *dev, size_t len,
262                                  dma_addr_t *dma_addrp, gfp_t gfp,
263                                  struct dma_attrs *attrs)
264 {
265         struct platform_device *op = to_platform_device(dev);
266         unsigned long len_total = PAGE_ALIGN(len);
267         unsigned long va;
268         struct resource *res;
269         int order;
270 
271         /* XXX why are some lengths signed, others unsigned? */
272         if (len <= 0) {
273                 return NULL;
274         }
275         /* XXX So what is maxphys for us and how do drivers know it? */
276         if (len > 256*1024) {                   /* __get_free_pages() limit */
277                 return NULL;
278         }
279 
280         order = get_order(len_total);
281         if ((va = __get_free_pages(GFP_KERNEL|__GFP_COMP, order)) == 0)
282                 goto err_nopages;
283 
284         if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL)
285                 goto err_nomem;
286 
287         if (allocate_resource(&_sparc_dvma, res, len_total,
288             _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
289                 printk("sbus_alloc_consistent: cannot occupy 0x%lx", len_total);
290                 goto err_nova;
291         }
292 
293         // XXX The sbus_map_dma_area does this for us below, see comments.
294         // srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
295         /*
296          * XXX That's where sdev would be used. Currently we load
297          * all iommu tables with the same translations.
298          */
299         if (sbus_map_dma_area(dev, dma_addrp, va, res->start, len_total) != 0)
300                 goto err_noiommu;
301 
302         res->name = op->dev.of_node->name;
303 
304         return (void *)(unsigned long)res->start;
305 
306 err_noiommu:
307         release_resource(res);
308 err_nova:
309         kfree(res);
310 err_nomem:
311         free_pages(va, order);
312 err_nopages:
313         return NULL;
314 }
315 
316 static void sbus_free_coherent(struct device *dev, size_t n, void *p,
317                                dma_addr_t ba, struct dma_attrs *attrs)
318 {
319         struct resource *res;
320         struct page *pgv;
321 
322         if ((res = lookup_resource(&_sparc_dvma,
323             (unsigned long)p)) == NULL) {
324                 printk("sbus_free_consistent: cannot free %p\n", p);
325                 return;
326         }
327 
328         if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
329                 printk("sbus_free_consistent: unaligned va %p\n", p);
330                 return;
331         }
332 
333         n = PAGE_ALIGN(n);
334         if (resource_size(res) != n) {
335                 printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
336                     (long)resource_size(res), n);
337                 return;
338         }
339 
340         release_resource(res);
341         kfree(res);
342 
343         pgv = virt_to_page(p);
344         sbus_unmap_dma_area(dev, ba, n);
345 
346         __free_pages(pgv, get_order(n));
347 }
348 
349 /*
350  * Map a chunk of memory so that devices can see it.
351  * CPU view of this memory may be inconsistent with
352  * a device view and explicit flushing is necessary.
353  */
354 static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
355                                 unsigned long offset, size_t len,
356                                 enum dma_data_direction dir,
357                                 struct dma_attrs *attrs)
358 {
359         void *va = page_address(page) + offset;
360 
361         /* XXX why are some lengths signed, others unsigned? */
362         if (len <= 0) {
363                 return 0;
364         }
365         /* XXX So what is maxphys for us and how do drivers know it? */
366         if (len > 256*1024) {                   /* __get_free_pages() limit */
367                 return 0;
368         }
369         return mmu_get_scsi_one(dev, va, len);
370 }
371 
372 static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
373                             enum dma_data_direction dir, struct dma_attrs *attrs)
374 {
375         mmu_release_scsi_one(dev, ba, n);
376 }
377 
378 static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
379                        enum dma_data_direction dir, struct dma_attrs *attrs)
380 {
381         mmu_get_scsi_sgl(dev, sg, n);
382         return n;
383 }
384 
385 static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
386                           enum dma_data_direction dir, struct dma_attrs *attrs)
387 {
388         mmu_release_scsi_sgl(dev, sg, n);
389 }
390 
391 static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
392                                  int n, enum dma_data_direction dir)
393 {
394         BUG();
395 }
396 
397 static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
398                                     int n, enum dma_data_direction dir)
399 {
400         BUG();
401 }
402 
403 struct dma_map_ops sbus_dma_ops = {
404         .alloc                  = sbus_alloc_coherent,
405         .free                   = sbus_free_coherent,
406         .map_page               = sbus_map_page,
407         .unmap_page             = sbus_unmap_page,
408         .map_sg                 = sbus_map_sg,
409         .unmap_sg               = sbus_unmap_sg,
410         .sync_sg_for_cpu        = sbus_sync_sg_for_cpu,
411         .sync_sg_for_device     = sbus_sync_sg_for_device,
412 };
413 
414 static int __init sparc_register_ioport(void)
415 {
416         register_proc_sparc_ioport();
417 
418         return 0;
419 }
420 
421 arch_initcall(sparc_register_ioport);
422 
423 #endif /* CONFIG_SBUS */
424 
425 
426 /* Allocate and map kernel buffer using consistent mode DMA for a device.
427  * hwdev should be valid struct pci_dev pointer for PCI devices.
428  */
429 static void *pci32_alloc_coherent(struct device *dev, size_t len,
430                                   dma_addr_t *pba, gfp_t gfp,
431                                   struct dma_attrs *attrs)
432 {
433         unsigned long len_total = PAGE_ALIGN(len);
434         void *va;
435         struct resource *res;
436         int order;
437 
438         if (len == 0) {
439                 return NULL;
440         }
441         if (len > 256*1024) {                   /* __get_free_pages() limit */
442                 return NULL;
443         }
444 
445         order = get_order(len_total);
446         va = (void *) __get_free_pages(GFP_KERNEL, order);
447         if (va == NULL) {
448                 printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT);
449                 goto err_nopages;
450         }
451 
452         if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
453                 printk("pci_alloc_consistent: no core\n");
454                 goto err_nomem;
455         }
456 
457         if (allocate_resource(&_sparc_dvma, res, len_total,
458             _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
459                 printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total);
460                 goto err_nova;
461         }
462         srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
463 
464         *pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
465         return (void *) res->start;
466 
467 err_nova:
468         kfree(res);
469 err_nomem:
470         free_pages((unsigned long)va, order);
471 err_nopages:
472         return NULL;
473 }
474 
475 /* Free and unmap a consistent DMA buffer.
476  * cpu_addr is what was returned from pci_alloc_consistent,
477  * size must be the same as what as passed into pci_alloc_consistent,
478  * and likewise dma_addr must be the same as what *dma_addrp was set to.
479  *
480  * References to the memory and mappings associated with cpu_addr/dma_addr
481  * past this call are illegal.
482  */
483 static void pci32_free_coherent(struct device *dev, size_t n, void *p,
484                                 dma_addr_t ba, struct dma_attrs *attrs)
485 {
486         struct resource *res;
487 
488         if ((res = lookup_resource(&_sparc_dvma,
489             (unsigned long)p)) == NULL) {
490                 printk("pci_free_consistent: cannot free %p\n", p);
491                 return;
492         }
493 
494         if (((unsigned long)p & (PAGE_SIZE-1)) != 0) {
495                 printk("pci_free_consistent: unaligned va %p\n", p);
496                 return;
497         }
498 
499         n = PAGE_ALIGN(n);
500         if (resource_size(res) != n) {
501                 printk("pci_free_consistent: region 0x%lx asked 0x%lx\n",
502                     (long)resource_size(res), (long)n);
503                 return;
504         }
505 
506         dma_make_coherent(ba, n);
507         srmmu_unmapiorange((unsigned long)p, n);
508 
509         release_resource(res);
510         kfree(res);
511         free_pages((unsigned long)phys_to_virt(ba), get_order(n));
512 }
513 
514 /*
515  * Same as pci_map_single, but with pages.
516  */
517 static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
518                                  unsigned long offset, size_t size,
519                                  enum dma_data_direction dir,
520                                  struct dma_attrs *attrs)
521 {
522         /* IIep is write-through, not flushing. */
523         return page_to_phys(page) + offset;
524 }
525 
526 static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
527                              enum dma_data_direction dir, struct dma_attrs *attrs)
528 {
529         if (dir != PCI_DMA_TODEVICE)
530                 dma_make_coherent(ba, PAGE_ALIGN(size));
531 }
532 
533 /* Map a set of buffers described by scatterlist in streaming
534  * mode for DMA.  This is the scather-gather version of the
535  * above pci_map_single interface.  Here the scatter gather list
536  * elements are each tagged with the appropriate dma address
537  * and length.  They are obtained via sg_dma_{address,length}(SG).
538  *
539  * NOTE: An implementation may be able to use a smaller number of
540  *       DMA address/length pairs than there are SG table elements.
541  *       (for example via virtual mapping capabilities)
542  *       The routine returns the number of addr/length pairs actually
543  *       used, at most nents.
544  *
545  * Device ownership issues as mentioned above for pci_map_single are
546  * the same here.
547  */
548 static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
549                         int nents, enum dma_data_direction dir,
550                         struct dma_attrs *attrs)
551 {
552         struct scatterlist *sg;
553         int n;
554 
555         /* IIep is write-through, not flushing. */
556         for_each_sg(sgl, sg, nents, n) {
557                 sg->dma_address = sg_phys(sg);
558                 sg->dma_length = sg->length;
559         }
560         return nents;
561 }
562 
563 /* Unmap a set of streaming mode DMA translations.
564  * Again, cpu read rules concerning calls here are the same as for
565  * pci_unmap_single() above.
566  */
567 static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
568                            int nents, enum dma_data_direction dir,
569                            struct dma_attrs *attrs)
570 {
571         struct scatterlist *sg;
572         int n;
573 
574         if (dir != PCI_DMA_TODEVICE) {
575                 for_each_sg(sgl, sg, nents, n) {
576                         dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
577                 }
578         }
579 }
580 
581 /* Make physical memory consistent for a single
582  * streaming mode DMA translation before or after a transfer.
583  *
584  * If you perform a pci_map_single() but wish to interrogate the
585  * buffer using the cpu, yet do not wish to teardown the PCI dma
586  * mapping, you must call this function before doing so.  At the
587  * next point you give the PCI dma address back to the card, you
588  * must first perform a pci_dma_sync_for_device, and then the
589  * device again owns the buffer.
590  */
591 static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
592                                       size_t size, enum dma_data_direction dir)
593 {
594         if (dir != PCI_DMA_TODEVICE) {
595                 dma_make_coherent(ba, PAGE_ALIGN(size));
596         }
597 }
598 
599 static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
600                                          size_t size, enum dma_data_direction dir)
601 {
602         if (dir != PCI_DMA_TODEVICE) {
603                 dma_make_coherent(ba, PAGE_ALIGN(size));
604         }
605 }
606 
607 /* Make physical memory consistent for a set of streaming
608  * mode DMA translations after a transfer.
609  *
610  * The same as pci_dma_sync_single_* but for a scatter-gather list,
611  * same rules and usage.
612  */
613 static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
614                                   int nents, enum dma_data_direction dir)
615 {
616         struct scatterlist *sg;
617         int n;
618 
619         if (dir != PCI_DMA_TODEVICE) {
620                 for_each_sg(sgl, sg, nents, n) {
621                         dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
622                 }
623         }
624 }
625 
626 static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
627                                      int nents, enum dma_data_direction dir)
628 {
629         struct scatterlist *sg;
630         int n;
631 
632         if (dir != PCI_DMA_TODEVICE) {
633                 for_each_sg(sgl, sg, nents, n) {
634                         dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
635                 }
636         }
637 }
638 
639 struct dma_map_ops pci32_dma_ops = {
640         .alloc                  = pci32_alloc_coherent,
641         .free                   = pci32_free_coherent,
642         .map_page               = pci32_map_page,
643         .unmap_page             = pci32_unmap_page,
644         .map_sg                 = pci32_map_sg,
645         .unmap_sg               = pci32_unmap_sg,
646         .sync_single_for_cpu    = pci32_sync_single_for_cpu,
647         .sync_single_for_device = pci32_sync_single_for_device,
648         .sync_sg_for_cpu        = pci32_sync_sg_for_cpu,
649         .sync_sg_for_device     = pci32_sync_sg_for_device,
650 };
651 EXPORT_SYMBOL(pci32_dma_ops);
652 
653 /* leon re-uses pci32_dma_ops */
654 struct dma_map_ops *leon_dma_ops = &pci32_dma_ops;
655 EXPORT_SYMBOL(leon_dma_ops);
656 
657 struct dma_map_ops *dma_ops = &sbus_dma_ops;
658 EXPORT_SYMBOL(dma_ops);
659 
660 
661 /*
662  * Return whether the given PCI device DMA address mask can be
663  * supported properly.  For example, if your device can only drive the
664  * low 24-bits during PCI bus mastering, then you would pass
665  * 0x00ffffff as the mask to this function.
666  */
667 int dma_supported(struct device *dev, u64 mask)
668 {
669 #ifdef CONFIG_PCI
670         if (dev->bus == &pci_bus_type)
671                 return 1;
672 #endif
673         return 0;
674 }
675 EXPORT_SYMBOL(dma_supported);
676 
677 #ifdef CONFIG_PROC_FS
678 
679 static int sparc_io_proc_show(struct seq_file *m, void *v)
680 {
681         struct resource *root = m->private, *r;
682         const char *nm;
683 
684         for (r = root->child; r != NULL; r = r->sibling) {
685                 if ((nm = r->name) == 0) nm = "???";
686                 seq_printf(m, "%016llx-%016llx: %s\n",
687                                 (unsigned long long)r->start,
688                                 (unsigned long long)r->end, nm);
689         }
690 
691         return 0;
692 }
693 
694 static int sparc_io_proc_open(struct inode *inode, struct file *file)
695 {
696         return single_open(file, sparc_io_proc_show, PDE_DATA(inode));
697 }
698 
699 static const struct file_operations sparc_io_proc_fops = {
700         .owner          = THIS_MODULE,
701         .open           = sparc_io_proc_open,
702         .read           = seq_read,
703         .llseek         = seq_lseek,
704         .release        = single_release,
705 };
706 #endif /* CONFIG_PROC_FS */
707 
708 static void register_proc_sparc_ioport(void)
709 {
710 #ifdef CONFIG_PROC_FS
711         proc_create_data("io_map", 0, NULL, &sparc_io_proc_fops, &sparc_iomap);
712         proc_create_data("dvma_map", 0, NULL, &sparc_io_proc_fops, &_sparc_dvma);
713 #endif
714 }
715 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp