~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/mm/init_64.c

Version: ~ [ linux-5.17-rc1 ] ~ [ linux-5.16.2 ] ~ [ linux-5.15.16 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.93 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.173 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.225 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.262 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.297 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.299 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  arch/sparc64/mm/init.c
  4  *
  5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7  */
  8  
  9 #include <linux/extable.h>
 10 #include <linux/kernel.h>
 11 #include <linux/sched.h>
 12 #include <linux/string.h>
 13 #include <linux/init.h>
 14 #include <linux/memblock.h>
 15 #include <linux/mm.h>
 16 #include <linux/hugetlb.h>
 17 #include <linux/initrd.h>
 18 #include <linux/swap.h>
 19 #include <linux/pagemap.h>
 20 #include <linux/poison.h>
 21 #include <linux/fs.h>
 22 #include <linux/seq_file.h>
 23 #include <linux/kprobes.h>
 24 #include <linux/cache.h>
 25 #include <linux/sort.h>
 26 #include <linux/ioport.h>
 27 #include <linux/percpu.h>
 28 #include <linux/mmzone.h>
 29 #include <linux/gfp.h>
 30 
 31 #include <asm/head.h>
 32 #include <asm/page.h>
 33 #include <asm/pgalloc.h>
 34 #include <asm/oplib.h>
 35 #include <asm/iommu.h>
 36 #include <asm/io.h>
 37 #include <linux/uaccess.h>
 38 #include <asm/mmu_context.h>
 39 #include <asm/tlbflush.h>
 40 #include <asm/dma.h>
 41 #include <asm/starfire.h>
 42 #include <asm/tlb.h>
 43 #include <asm/spitfire.h>
 44 #include <asm/sections.h>
 45 #include <asm/tsb.h>
 46 #include <asm/hypervisor.h>
 47 #include <asm/prom.h>
 48 #include <asm/mdesc.h>
 49 #include <asm/cpudata.h>
 50 #include <asm/setup.h>
 51 #include <asm/irq.h>
 52 
 53 #include "init_64.h"
 54 
 55 unsigned long kern_linear_pte_xor[4] __read_mostly;
 56 static unsigned long page_cache4v_flag;
 57 
 58 /* A bitmap, two bits for every 256MB of physical memory.  These two
 59  * bits determine what page size we use for kernel linear
 60  * translations.  They form an index into kern_linear_pte_xor[].  The
 61  * value in the indexed slot is XOR'd with the TLB miss virtual
 62  * address to form the resulting TTE.  The mapping is:
 63  *
 64  *      0       ==>     4MB
 65  *      1       ==>     256MB
 66  *      2       ==>     2GB
 67  *      3       ==>     16GB
 68  *
 69  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
 70  * support 2GB pages, and hopefully future cpus will support the 16GB
 71  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
 72  * if these larger page sizes are not supported by the cpu.
 73  *
 74  * It would be nice to determine this from the machine description
 75  * 'cpu' properties, but we need to have this table setup before the
 76  * MDESC is initialized.
 77  */
 78 
 79 #ifndef CONFIG_DEBUG_PAGEALLOC
 80 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
 81  * Space is allocated for this right after the trap table in
 82  * arch/sparc64/kernel/head.S
 83  */
 84 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
 85 #endif
 86 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 87 
 88 static unsigned long cpu_pgsz_mask;
 89 
 90 #define MAX_BANKS       1024
 91 
 92 static struct linux_prom64_registers pavail[MAX_BANKS];
 93 static int pavail_ents;
 94 
 95 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
 96 
 97 static int cmp_p64(const void *a, const void *b)
 98 {
 99         const struct linux_prom64_registers *x = a, *y = b;
100 
101         if (x->phys_addr > y->phys_addr)
102                 return 1;
103         if (x->phys_addr < y->phys_addr)
104                 return -1;
105         return 0;
106 }
107 
108 static void __init read_obp_memory(const char *property,
109                                    struct linux_prom64_registers *regs,
110                                    int *num_ents)
111 {
112         phandle node = prom_finddevice("/memory");
113         int prop_size = prom_getproplen(node, property);
114         int ents, ret, i;
115 
116         ents = prop_size / sizeof(struct linux_prom64_registers);
117         if (ents > MAX_BANKS) {
118                 prom_printf("The machine has more %s property entries than "
119                             "this kernel can support (%d).\n",
120                             property, MAX_BANKS);
121                 prom_halt();
122         }
123 
124         ret = prom_getproperty(node, property, (char *) regs, prop_size);
125         if (ret == -1) {
126                 prom_printf("Couldn't get %s property from /memory.\n",
127                                 property);
128                 prom_halt();
129         }
130 
131         /* Sanitize what we got from the firmware, by page aligning
132          * everything.
133          */
134         for (i = 0; i < ents; i++) {
135                 unsigned long base, size;
136 
137                 base = regs[i].phys_addr;
138                 size = regs[i].reg_size;
139 
140                 size &= PAGE_MASK;
141                 if (base & ~PAGE_MASK) {
142                         unsigned long new_base = PAGE_ALIGN(base);
143 
144                         size -= new_base - base;
145                         if ((long) size < 0L)
146                                 size = 0UL;
147                         base = new_base;
148                 }
149                 if (size == 0UL) {
150                         /* If it is empty, simply get rid of it.
151                          * This simplifies the logic of the other
152                          * functions that process these arrays.
153                          */
154                         memmove(&regs[i], &regs[i + 1],
155                                 (ents - i - 1) * sizeof(regs[0]));
156                         i--;
157                         ents--;
158                         continue;
159                 }
160                 regs[i].phys_addr = base;
161                 regs[i].reg_size = size;
162         }
163 
164         *num_ents = ents;
165 
166         sort(regs, ents, sizeof(struct linux_prom64_registers),
167              cmp_p64, NULL);
168 }
169 
170 /* Kernel physical address base and size in bytes.  */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173 
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178 
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181 
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183 
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187 
188 int num_kernel_image_mappings;
189 
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196 
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199         BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201         atomic_inc(&dcpage_flushes);
202 #endif
203 
204 #ifdef DCACHE_ALIASING_POSSIBLE
205         __flush_dcache_page(page_address(page),
206                             ((tlb_type == spitfire) &&
207                              page_mapping_file(page) != NULL));
208 #else
209         if (page_mapping_file(page) != NULL &&
210             tlb_type == spitfire)
211                 __flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214 
215 #define PG_dcache_dirty         PG_arch_1
216 #define PG_dcache_cpu_shift     32UL
217 #define PG_dcache_cpu_mask      \
218         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219 
220 #define dcache_dirty_cpu(page) \
221         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222 
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225         unsigned long mask = this_cpu;
226         unsigned long non_cpu_bits;
227 
228         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230 
231         __asm__ __volatile__("1:\n\t"
232                              "ldx       [%2], %%g7\n\t"
233                              "and       %%g7, %1, %%g1\n\t"
234                              "or        %%g1, %0, %%g1\n\t"
235                              "casx      [%2], %%g7, %%g1\n\t"
236                              "cmp       %%g7, %%g1\n\t"
237                              "bne,pn    %%xcc, 1b\n\t"
238                              " nop"
239                              : /* no outputs */
240                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241                              : "g1", "g7");
242 }
243 
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246         unsigned long mask = (1UL << PG_dcache_dirty);
247 
248         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249                              "1:\n\t"
250                              "ldx       [%2], %%g7\n\t"
251                              "srlx      %%g7, %4, %%g1\n\t"
252                              "and       %%g1, %3, %%g1\n\t"
253                              "cmp       %%g1, %0\n\t"
254                              "bne,pn    %%icc, 2f\n\t"
255                              " andn     %%g7, %1, %%g1\n\t"
256                              "casx      [%2], %%g7, %%g1\n\t"
257                              "cmp       %%g7, %%g1\n\t"
258                              "bne,pn    %%xcc, 1b\n\t"
259                              " nop\n"
260                              "2:"
261                              : /* no outputs */
262                              : "r" (cpu), "r" (mask), "r" (&page->flags),
263                                "i" (PG_dcache_cpu_mask),
264                                "i" (PG_dcache_cpu_shift)
265                              : "g1", "g7");
266 }
267 
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270         unsigned long tsb_addr = (unsigned long) ent;
271 
272         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273                 tsb_addr = __pa(tsb_addr);
274 
275         __tsb_insert(tsb_addr, tag, pte);
276 }
277 
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279 
280 static void flush_dcache(unsigned long pfn)
281 {
282         struct page *page;
283 
284         page = pfn_to_page(pfn);
285         if (page) {
286                 unsigned long pg_flags;
287 
288                 pg_flags = page->flags;
289                 if (pg_flags & (1UL << PG_dcache_dirty)) {
290                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291                                    PG_dcache_cpu_mask);
292                         int this_cpu = get_cpu();
293 
294                         /* This is just to optimize away some function calls
295                          * in the SMP case.
296                          */
297                         if (cpu == this_cpu)
298                                 flush_dcache_page_impl(page);
299                         else
300                                 smp_flush_dcache_page_impl(page, cpu);
301 
302                         clear_dcache_dirty_cpu(page, cpu);
303 
304                         put_cpu();
305                 }
306         }
307 }
308 
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311                                     unsigned long tsb_hash_shift, unsigned long address,
312                                     unsigned long tte)
313 {
314         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315         unsigned long tag;
316 
317         if (unlikely(!tsb))
318                 return;
319 
320         tsb += ((address >> tsb_hash_shift) &
321                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322         tag = (address >> 22UL);
323         tsb_insert(tsb, tag, tte);
324 }
325 
326 #ifdef CONFIG_HUGETLB_PAGE
327 static int __init hugetlbpage_init(void)
328 {
329         hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
330         hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
331         hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
332         hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
333 
334         return 0;
335 }
336 
337 arch_initcall(hugetlbpage_init);
338 
339 static void __init pud_huge_patch(void)
340 {
341         struct pud_huge_patch_entry *p;
342         unsigned long addr;
343 
344         p = &__pud_huge_patch;
345         addr = p->addr;
346         *(unsigned int *)addr = p->insn;
347 
348         __asm__ __volatile__("flush %0" : : "r" (addr));
349 }
350 
351 bool __init arch_hugetlb_valid_size(unsigned long size)
352 {
353         unsigned int hugepage_shift = ilog2(size);
354         unsigned short hv_pgsz_idx;
355         unsigned int hv_pgsz_mask;
356 
357         switch (hugepage_shift) {
358         case HPAGE_16GB_SHIFT:
359                 hv_pgsz_mask = HV_PGSZ_MASK_16GB;
360                 hv_pgsz_idx = HV_PGSZ_IDX_16GB;
361                 pud_huge_patch();
362                 break;
363         case HPAGE_2GB_SHIFT:
364                 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
365                 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
366                 break;
367         case HPAGE_256MB_SHIFT:
368                 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
369                 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
370                 break;
371         case HPAGE_SHIFT:
372                 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
373                 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
374                 break;
375         case HPAGE_64K_SHIFT:
376                 hv_pgsz_mask = HV_PGSZ_MASK_64K;
377                 hv_pgsz_idx = HV_PGSZ_IDX_64K;
378                 break;
379         default:
380                 hv_pgsz_mask = 0;
381         }
382 
383         if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
384                 return false;
385 
386         return true;
387 }
388 #endif  /* CONFIG_HUGETLB_PAGE */
389 
390 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
391 {
392         struct mm_struct *mm;
393         unsigned long flags;
394         bool is_huge_tsb;
395         pte_t pte = *ptep;
396 
397         if (tlb_type != hypervisor) {
398                 unsigned long pfn = pte_pfn(pte);
399 
400                 if (pfn_valid(pfn))
401                         flush_dcache(pfn);
402         }
403 
404         mm = vma->vm_mm;
405 
406         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
407         if (!pte_accessible(mm, pte))
408                 return;
409 
410         spin_lock_irqsave(&mm->context.lock, flags);
411 
412         is_huge_tsb = false;
413 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
414         if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
415                 unsigned long hugepage_size = PAGE_SIZE;
416 
417                 if (is_vm_hugetlb_page(vma))
418                         hugepage_size = huge_page_size(hstate_vma(vma));
419 
420                 if (hugepage_size >= PUD_SIZE) {
421                         unsigned long mask = 0x1ffc00000UL;
422 
423                         /* Transfer bits [32:22] from address to resolve
424                          * at 4M granularity.
425                          */
426                         pte_val(pte) &= ~mask;
427                         pte_val(pte) |= (address & mask);
428                 } else if (hugepage_size >= PMD_SIZE) {
429                         /* We are fabricating 8MB pages using 4MB
430                          * real hw pages.
431                          */
432                         pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
433                 }
434 
435                 if (hugepage_size >= PMD_SIZE) {
436                         __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
437                                 REAL_HPAGE_SHIFT, address, pte_val(pte));
438                         is_huge_tsb = true;
439                 }
440         }
441 #endif
442         if (!is_huge_tsb)
443                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
444                                         address, pte_val(pte));
445 
446         spin_unlock_irqrestore(&mm->context.lock, flags);
447 }
448 
449 void flush_dcache_page(struct page *page)
450 {
451         struct address_space *mapping;
452         int this_cpu;
453 
454         if (tlb_type == hypervisor)
455                 return;
456 
457         /* Do not bother with the expensive D-cache flush if it
458          * is merely the zero page.  The 'bigcore' testcase in GDB
459          * causes this case to run millions of times.
460          */
461         if (page == ZERO_PAGE(0))
462                 return;
463 
464         this_cpu = get_cpu();
465 
466         mapping = page_mapping_file(page);
467         if (mapping && !mapping_mapped(mapping)) {
468                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
469                 if (dirty) {
470                         int dirty_cpu = dcache_dirty_cpu(page);
471 
472                         if (dirty_cpu == this_cpu)
473                                 goto out;
474                         smp_flush_dcache_page_impl(page, dirty_cpu);
475                 }
476                 set_dcache_dirty(page, this_cpu);
477         } else {
478                 /* We could delay the flush for the !page_mapping
479                  * case too.  But that case is for exec env/arg
480                  * pages and those are %99 certainly going to get
481                  * faulted into the tlb (and thus flushed) anyways.
482                  */
483                 flush_dcache_page_impl(page);
484         }
485 
486 out:
487         put_cpu();
488 }
489 EXPORT_SYMBOL(flush_dcache_page);
490 
491 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
492 {
493         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
494         if (tlb_type == spitfire) {
495                 unsigned long kaddr;
496 
497                 /* This code only runs on Spitfire cpus so this is
498                  * why we can assume _PAGE_PADDR_4U.
499                  */
500                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
501                         unsigned long paddr, mask = _PAGE_PADDR_4U;
502 
503                         if (kaddr >= PAGE_OFFSET)
504                                 paddr = kaddr & mask;
505                         else {
506                                 pte_t *ptep = virt_to_kpte(kaddr);
507 
508                                 paddr = pte_val(*ptep) & mask;
509                         }
510                         __flush_icache_page(paddr);
511                 }
512         }
513 }
514 EXPORT_SYMBOL(flush_icache_range);
515 
516 void mmu_info(struct seq_file *m)
517 {
518         static const char *pgsz_strings[] = {
519                 "8K", "64K", "512K", "4MB", "32MB",
520                 "256MB", "2GB", "16GB",
521         };
522         int i, printed;
523 
524         if (tlb_type == cheetah)
525                 seq_printf(m, "MMU Type\t: Cheetah\n");
526         else if (tlb_type == cheetah_plus)
527                 seq_printf(m, "MMU Type\t: Cheetah+\n");
528         else if (tlb_type == spitfire)
529                 seq_printf(m, "MMU Type\t: Spitfire\n");
530         else if (tlb_type == hypervisor)
531                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
532         else
533                 seq_printf(m, "MMU Type\t: ???\n");
534 
535         seq_printf(m, "MMU PGSZs\t: ");
536         printed = 0;
537         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
538                 if (cpu_pgsz_mask & (1UL << i)) {
539                         seq_printf(m, "%s%s",
540                                    printed ? "," : "", pgsz_strings[i]);
541                         printed++;
542                 }
543         }
544         seq_putc(m, '\n');
545 
546 #ifdef CONFIG_DEBUG_DCFLUSH
547         seq_printf(m, "DCPageFlushes\t: %d\n",
548                    atomic_read(&dcpage_flushes));
549 #ifdef CONFIG_SMP
550         seq_printf(m, "DCPageFlushesXC\t: %d\n",
551                    atomic_read(&dcpage_flushes_xcall));
552 #endif /* CONFIG_SMP */
553 #endif /* CONFIG_DEBUG_DCFLUSH */
554 }
555 
556 struct linux_prom_translation prom_trans[512] __read_mostly;
557 unsigned int prom_trans_ents __read_mostly;
558 
559 unsigned long kern_locked_tte_data;
560 
561 /* The obp translations are saved based on 8k pagesize, since obp can
562  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
563  * HI_OBP_ADDRESS range are handled in ktlb.S.
564  */
565 static inline int in_obp_range(unsigned long vaddr)
566 {
567         return (vaddr >= LOW_OBP_ADDRESS &&
568                 vaddr < HI_OBP_ADDRESS);
569 }
570 
571 static int cmp_ptrans(const void *a, const void *b)
572 {
573         const struct linux_prom_translation *x = a, *y = b;
574 
575         if (x->virt > y->virt)
576                 return 1;
577         if (x->virt < y->virt)
578                 return -1;
579         return 0;
580 }
581 
582 /* Read OBP translations property into 'prom_trans[]'.  */
583 static void __init read_obp_translations(void)
584 {
585         int n, node, ents, first, last, i;
586 
587         node = prom_finddevice("/virtual-memory");
588         n = prom_getproplen(node, "translations");
589         if (unlikely(n == 0 || n == -1)) {
590                 prom_printf("prom_mappings: Couldn't get size.\n");
591                 prom_halt();
592         }
593         if (unlikely(n > sizeof(prom_trans))) {
594                 prom_printf("prom_mappings: Size %d is too big.\n", n);
595                 prom_halt();
596         }
597 
598         if ((n = prom_getproperty(node, "translations",
599                                   (char *)&prom_trans[0],
600                                   sizeof(prom_trans))) == -1) {
601                 prom_printf("prom_mappings: Couldn't get property.\n");
602                 prom_halt();
603         }
604 
605         n = n / sizeof(struct linux_prom_translation);
606 
607         ents = n;
608 
609         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
610              cmp_ptrans, NULL);
611 
612         /* Now kick out all the non-OBP entries.  */
613         for (i = 0; i < ents; i++) {
614                 if (in_obp_range(prom_trans[i].virt))
615                         break;
616         }
617         first = i;
618         for (; i < ents; i++) {
619                 if (!in_obp_range(prom_trans[i].virt))
620                         break;
621         }
622         last = i;
623 
624         for (i = 0; i < (last - first); i++) {
625                 struct linux_prom_translation *src = &prom_trans[i + first];
626                 struct linux_prom_translation *dest = &prom_trans[i];
627 
628                 *dest = *src;
629         }
630         for (; i < ents; i++) {
631                 struct linux_prom_translation *dest = &prom_trans[i];
632                 dest->virt = dest->size = dest->data = 0x0UL;
633         }
634 
635         prom_trans_ents = last - first;
636 
637         if (tlb_type == spitfire) {
638                 /* Clear diag TTE bits. */
639                 for (i = 0; i < prom_trans_ents; i++)
640                         prom_trans[i].data &= ~0x0003fe0000000000UL;
641         }
642 
643         /* Force execute bit on.  */
644         for (i = 0; i < prom_trans_ents; i++)
645                 prom_trans[i].data |= (tlb_type == hypervisor ?
646                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
647 }
648 
649 static void __init hypervisor_tlb_lock(unsigned long vaddr,
650                                        unsigned long pte,
651                                        unsigned long mmu)
652 {
653         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
654 
655         if (ret != 0) {
656                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
657                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
658                 prom_halt();
659         }
660 }
661 
662 static unsigned long kern_large_tte(unsigned long paddr);
663 
664 static void __init remap_kernel(void)
665 {
666         unsigned long phys_page, tte_vaddr, tte_data;
667         int i, tlb_ent = sparc64_highest_locked_tlbent();
668 
669         tte_vaddr = (unsigned long) KERNBASE;
670         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
671         tte_data = kern_large_tte(phys_page);
672 
673         kern_locked_tte_data = tte_data;
674 
675         /* Now lock us into the TLBs via Hypervisor or OBP. */
676         if (tlb_type == hypervisor) {
677                 for (i = 0; i < num_kernel_image_mappings; i++) {
678                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
679                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
680                         tte_vaddr += 0x400000;
681                         tte_data += 0x400000;
682                 }
683         } else {
684                 for (i = 0; i < num_kernel_image_mappings; i++) {
685                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
686                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
687                         tte_vaddr += 0x400000;
688                         tte_data += 0x400000;
689                 }
690                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
691         }
692         if (tlb_type == cheetah_plus) {
693                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
694                                             CTX_CHEETAH_PLUS_NUC);
695                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
696                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
697         }
698 }
699 
700 
701 static void __init inherit_prom_mappings(void)
702 {
703         /* Now fixup OBP's idea about where we really are mapped. */
704         printk("Remapping the kernel... ");
705         remap_kernel();
706         printk("done.\n");
707 }
708 
709 void prom_world(int enter)
710 {
711         if (!enter)
712                 set_fs(get_fs());
713 
714         __asm__ __volatile__("flushw");
715 }
716 
717 void __flush_dcache_range(unsigned long start, unsigned long end)
718 {
719         unsigned long va;
720 
721         if (tlb_type == spitfire) {
722                 int n = 0;
723 
724                 for (va = start; va < end; va += 32) {
725                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
726                         if (++n >= 512)
727                                 break;
728                 }
729         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
730                 start = __pa(start);
731                 end = __pa(end);
732                 for (va = start; va < end; va += 32)
733                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
734                                              "membar #Sync"
735                                              : /* no outputs */
736                                              : "r" (va),
737                                                "i" (ASI_DCACHE_INVALIDATE));
738         }
739 }
740 EXPORT_SYMBOL(__flush_dcache_range);
741 
742 /* get_new_mmu_context() uses "cache + 1".  */
743 DEFINE_SPINLOCK(ctx_alloc_lock);
744 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
745 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
746 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
747 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
748 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
749 
750 static void mmu_context_wrap(void)
751 {
752         unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
753         unsigned long new_ver, new_ctx, old_ctx;
754         struct mm_struct *mm;
755         int cpu;
756 
757         bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
758 
759         /* Reserve kernel context */
760         set_bit(0, mmu_context_bmap);
761 
762         new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
763         if (unlikely(new_ver == 0))
764                 new_ver = CTX_FIRST_VERSION;
765         tlb_context_cache = new_ver;
766 
767         /*
768          * Make sure that any new mm that are added into per_cpu_secondary_mm,
769          * are going to go through get_new_mmu_context() path.
770          */
771         mb();
772 
773         /*
774          * Updated versions to current on those CPUs that had valid secondary
775          * contexts
776          */
777         for_each_online_cpu(cpu) {
778                 /*
779                  * If a new mm is stored after we took this mm from the array,
780                  * it will go into get_new_mmu_context() path, because we
781                  * already bumped the version in tlb_context_cache.
782                  */
783                 mm = per_cpu(per_cpu_secondary_mm, cpu);
784 
785                 if (unlikely(!mm || mm == &init_mm))
786                         continue;
787 
788                 old_ctx = mm->context.sparc64_ctx_val;
789                 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
790                         new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
791                         set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
792                         mm->context.sparc64_ctx_val = new_ctx;
793                 }
794         }
795 }
796 
797 /* Caller does TLB context flushing on local CPU if necessary.
798  * The caller also ensures that CTX_VALID(mm->context) is false.
799  *
800  * We must be careful about boundary cases so that we never
801  * let the user have CTX 0 (nucleus) or we ever use a CTX
802  * version of zero (and thus NO_CONTEXT would not be caught
803  * by version mis-match tests in mmu_context.h).
804  *
805  * Always invoked with interrupts disabled.
806  */
807 void get_new_mmu_context(struct mm_struct *mm)
808 {
809         unsigned long ctx, new_ctx;
810         unsigned long orig_pgsz_bits;
811 
812         spin_lock(&ctx_alloc_lock);
813 retry:
814         /* wrap might have happened, test again if our context became valid */
815         if (unlikely(CTX_VALID(mm->context)))
816                 goto out;
817         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
818         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
819         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
820         if (new_ctx >= (1 << CTX_NR_BITS)) {
821                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
822                 if (new_ctx >= ctx) {
823                         mmu_context_wrap();
824                         goto retry;
825                 }
826         }
827         if (mm->context.sparc64_ctx_val)
828                 cpumask_clear(mm_cpumask(mm));
829         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
830         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
831         tlb_context_cache = new_ctx;
832         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
833 out:
834         spin_unlock(&ctx_alloc_lock);
835 }
836 
837 static int numa_enabled = 1;
838 static int numa_debug;
839 
840 static int __init early_numa(char *p)
841 {
842         if (!p)
843                 return 0;
844 
845         if (strstr(p, "off"))
846                 numa_enabled = 0;
847 
848         if (strstr(p, "debug"))
849                 numa_debug = 1;
850 
851         return 0;
852 }
853 early_param("numa", early_numa);
854 
855 #define numadbg(f, a...) \
856 do {    if (numa_debug) \
857                 printk(KERN_INFO f, ## a); \
858 } while (0)
859 
860 static void __init find_ramdisk(unsigned long phys_base)
861 {
862 #ifdef CONFIG_BLK_DEV_INITRD
863         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
864                 unsigned long ramdisk_image;
865 
866                 /* Older versions of the bootloader only supported a
867                  * 32-bit physical address for the ramdisk image
868                  * location, stored at sparc_ramdisk_image.  Newer
869                  * SILO versions set sparc_ramdisk_image to zero and
870                  * provide a full 64-bit physical address at
871                  * sparc_ramdisk_image64.
872                  */
873                 ramdisk_image = sparc_ramdisk_image;
874                 if (!ramdisk_image)
875                         ramdisk_image = sparc_ramdisk_image64;
876 
877                 /* Another bootloader quirk.  The bootloader normalizes
878                  * the physical address to KERNBASE, so we have to
879                  * factor that back out and add in the lowest valid
880                  * physical page address to get the true physical address.
881                  */
882                 ramdisk_image -= KERNBASE;
883                 ramdisk_image += phys_base;
884 
885                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
886                         ramdisk_image, sparc_ramdisk_size);
887 
888                 initrd_start = ramdisk_image;
889                 initrd_end = ramdisk_image + sparc_ramdisk_size;
890 
891                 memblock_reserve(initrd_start, sparc_ramdisk_size);
892 
893                 initrd_start += PAGE_OFFSET;
894                 initrd_end += PAGE_OFFSET;
895         }
896 #endif
897 }
898 
899 struct node_mem_mask {
900         unsigned long mask;
901         unsigned long match;
902 };
903 static struct node_mem_mask node_masks[MAX_NUMNODES];
904 static int num_node_masks;
905 
906 #ifdef CONFIG_NEED_MULTIPLE_NODES
907 
908 struct mdesc_mlgroup {
909         u64     node;
910         u64     latency;
911         u64     match;
912         u64     mask;
913 };
914 
915 static struct mdesc_mlgroup *mlgroups;
916 static int num_mlgroups;
917 
918 int numa_cpu_lookup_table[NR_CPUS];
919 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
920 
921 struct mdesc_mblock {
922         u64     base;
923         u64     size;
924         u64     offset; /* RA-to-PA */
925 };
926 static struct mdesc_mblock *mblocks;
927 static int num_mblocks;
928 
929 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
930 {
931         struct mdesc_mblock *m = NULL;
932         int i;
933 
934         for (i = 0; i < num_mblocks; i++) {
935                 m = &mblocks[i];
936 
937                 if (addr >= m->base &&
938                     addr < (m->base + m->size)) {
939                         break;
940                 }
941         }
942 
943         return m;
944 }
945 
946 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
947 {
948         int prev_nid, new_nid;
949 
950         prev_nid = NUMA_NO_NODE;
951         for ( ; start < end; start += PAGE_SIZE) {
952                 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
953                         struct node_mem_mask *p = &node_masks[new_nid];
954 
955                         if ((start & p->mask) == p->match) {
956                                 if (prev_nid == NUMA_NO_NODE)
957                                         prev_nid = new_nid;
958                                 break;
959                         }
960                 }
961 
962                 if (new_nid == num_node_masks) {
963                         prev_nid = 0;
964                         WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
965                                   start);
966                         break;
967                 }
968 
969                 if (prev_nid != new_nid)
970                         break;
971         }
972         *nid = prev_nid;
973 
974         return start > end ? end : start;
975 }
976 
977 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
978 {
979         u64 ret_end, pa_start, m_mask, m_match, m_end;
980         struct mdesc_mblock *mblock;
981         int _nid, i;
982 
983         if (tlb_type != hypervisor)
984                 return memblock_nid_range_sun4u(start, end, nid);
985 
986         mblock = addr_to_mblock(start);
987         if (!mblock) {
988                 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
989                           start);
990 
991                 _nid = 0;
992                 ret_end = end;
993                 goto done;
994         }
995 
996         pa_start = start + mblock->offset;
997         m_match = 0;
998         m_mask = 0;
999 
1000         for (_nid = 0; _nid < num_node_masks; _nid++) {
1001                 struct node_mem_mask *const m = &node_masks[_nid];
1002 
1003                 if ((pa_start & m->mask) == m->match) {
1004                         m_match = m->match;
1005                         m_mask = m->mask;
1006                         break;
1007                 }
1008         }
1009 
1010         if (num_node_masks == _nid) {
1011                 /* We could not find NUMA group, so default to 0, but lets
1012                  * search for latency group, so we could calculate the correct
1013                  * end address that we return
1014                  */
1015                 _nid = 0;
1016 
1017                 for (i = 0; i < num_mlgroups; i++) {
1018                         struct mdesc_mlgroup *const m = &mlgroups[i];
1019 
1020                         if ((pa_start & m->mask) == m->match) {
1021                                 m_match = m->match;
1022                                 m_mask = m->mask;
1023                                 break;
1024                         }
1025                 }
1026 
1027                 if (i == num_mlgroups) {
1028                         WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1029                                   start);
1030 
1031                         ret_end = end;
1032                         goto done;
1033                 }
1034         }
1035 
1036         /*
1037          * Each latency group has match and mask, and each memory block has an
1038          * offset.  An address belongs to a latency group if its address matches
1039          * the following formula: ((addr + offset) & mask) == match
1040          * It is, however, slow to check every single page if it matches a
1041          * particular latency group. As optimization we calculate end value by
1042          * using bit arithmetics.
1043          */
1044         m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1045         m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1046         ret_end = m_end > end ? end : m_end;
1047 
1048 done:
1049         *nid = _nid;
1050         return ret_end;
1051 }
1052 #endif
1053 
1054 /* This must be invoked after performing all of the necessary
1055  * memblock_set_node() calls for 'nid'.  We need to be able to get
1056  * correct data from get_pfn_range_for_nid().
1057  */
1058 static void __init allocate_node_data(int nid)
1059 {
1060         struct pglist_data *p;
1061         unsigned long start_pfn, end_pfn;
1062 #ifdef CONFIG_NEED_MULTIPLE_NODES
1063 
1064         NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1065                                              SMP_CACHE_BYTES, nid);
1066         if (!NODE_DATA(nid)) {
1067                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1068                 prom_halt();
1069         }
1070 
1071         NODE_DATA(nid)->node_id = nid;
1072 #endif
1073 
1074         p = NODE_DATA(nid);
1075 
1076         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1077         p->node_start_pfn = start_pfn;
1078         p->node_spanned_pages = end_pfn - start_pfn;
1079 }
1080 
1081 static void init_node_masks_nonnuma(void)
1082 {
1083 #ifdef CONFIG_NEED_MULTIPLE_NODES
1084         int i;
1085 #endif
1086 
1087         numadbg("Initializing tables for non-numa.\n");
1088 
1089         node_masks[0].mask = 0;
1090         node_masks[0].match = 0;
1091         num_node_masks = 1;
1092 
1093 #ifdef CONFIG_NEED_MULTIPLE_NODES
1094         for (i = 0; i < NR_CPUS; i++)
1095                 numa_cpu_lookup_table[i] = 0;
1096 
1097         cpumask_setall(&numa_cpumask_lookup_table[0]);
1098 #endif
1099 }
1100 
1101 #ifdef CONFIG_NEED_MULTIPLE_NODES
1102 struct pglist_data *node_data[MAX_NUMNODES];
1103 
1104 EXPORT_SYMBOL(numa_cpu_lookup_table);
1105 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1106 EXPORT_SYMBOL(node_data);
1107 
1108 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1109                                    u32 cfg_handle)
1110 {
1111         u64 arc;
1112 
1113         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1114                 u64 target = mdesc_arc_target(md, arc);
1115                 const u64 *val;
1116 
1117                 val = mdesc_get_property(md, target,
1118                                          "cfg-handle", NULL);
1119                 if (val && *val == cfg_handle)
1120                         return 0;
1121         }
1122         return -ENODEV;
1123 }
1124 
1125 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1126                                     u32 cfg_handle)
1127 {
1128         u64 arc, candidate, best_latency = ~(u64)0;
1129 
1130         candidate = MDESC_NODE_NULL;
1131         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1132                 u64 target = mdesc_arc_target(md, arc);
1133                 const char *name = mdesc_node_name(md, target);
1134                 const u64 *val;
1135 
1136                 if (strcmp(name, "pio-latency-group"))
1137                         continue;
1138 
1139                 val = mdesc_get_property(md, target, "latency", NULL);
1140                 if (!val)
1141                         continue;
1142 
1143                 if (*val < best_latency) {
1144                         candidate = target;
1145                         best_latency = *val;
1146                 }
1147         }
1148 
1149         if (candidate == MDESC_NODE_NULL)
1150                 return -ENODEV;
1151 
1152         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1153 }
1154 
1155 int of_node_to_nid(struct device_node *dp)
1156 {
1157         const struct linux_prom64_registers *regs;
1158         struct mdesc_handle *md;
1159         u32 cfg_handle;
1160         int count, nid;
1161         u64 grp;
1162 
1163         /* This is the right thing to do on currently supported
1164          * SUN4U NUMA platforms as well, as the PCI controller does
1165          * not sit behind any particular memory controller.
1166          */
1167         if (!mlgroups)
1168                 return -1;
1169 
1170         regs = of_get_property(dp, "reg", NULL);
1171         if (!regs)
1172                 return -1;
1173 
1174         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1175 
1176         md = mdesc_grab();
1177 
1178         count = 0;
1179         nid = NUMA_NO_NODE;
1180         mdesc_for_each_node_by_name(md, grp, "group") {
1181                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1182                         nid = count;
1183                         break;
1184                 }
1185                 count++;
1186         }
1187 
1188         mdesc_release(md);
1189 
1190         return nid;
1191 }
1192 
1193 static void __init add_node_ranges(void)
1194 {
1195         phys_addr_t start, end;
1196         unsigned long prev_max;
1197         u64 i;
1198 
1199 memblock_resized:
1200         prev_max = memblock.memory.max;
1201 
1202         for_each_mem_range(i, &start, &end) {
1203                 while (start < end) {
1204                         unsigned long this_end;
1205                         int nid;
1206 
1207                         this_end = memblock_nid_range(start, end, &nid);
1208 
1209                         numadbg("Setting memblock NUMA node nid[%d] "
1210                                 "start[%llx] end[%lx]\n",
1211                                 nid, start, this_end);
1212 
1213                         memblock_set_node(start, this_end - start,
1214                                           &memblock.memory, nid);
1215                         if (memblock.memory.max != prev_max)
1216                                 goto memblock_resized;
1217                         start = this_end;
1218                 }
1219         }
1220 }
1221 
1222 static int __init grab_mlgroups(struct mdesc_handle *md)
1223 {
1224         unsigned long paddr;
1225         int count = 0;
1226         u64 node;
1227 
1228         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1229                 count++;
1230         if (!count)
1231                 return -ENOENT;
1232 
1233         paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1234                                     SMP_CACHE_BYTES);
1235         if (!paddr)
1236                 return -ENOMEM;
1237 
1238         mlgroups = __va(paddr);
1239         num_mlgroups = count;
1240 
1241         count = 0;
1242         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1243                 struct mdesc_mlgroup *m = &mlgroups[count++];
1244                 const u64 *val;
1245 
1246                 m->node = node;
1247 
1248                 val = mdesc_get_property(md, node, "latency", NULL);
1249                 m->latency = *val;
1250                 val = mdesc_get_property(md, node, "address-match", NULL);
1251                 m->match = *val;
1252                 val = mdesc_get_property(md, node, "address-mask", NULL);
1253                 m->mask = *val;
1254 
1255                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1256                         "match[%llx] mask[%llx]\n",
1257                         count - 1, m->node, m->latency, m->match, m->mask);
1258         }
1259 
1260         return 0;
1261 }
1262 
1263 static int __init grab_mblocks(struct mdesc_handle *md)
1264 {
1265         unsigned long paddr;
1266         int count = 0;
1267         u64 node;
1268 
1269         mdesc_for_each_node_by_name(md, node, "mblock")
1270                 count++;
1271         if (!count)
1272                 return -ENOENT;
1273 
1274         paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1275                                     SMP_CACHE_BYTES);
1276         if (!paddr)
1277                 return -ENOMEM;
1278 
1279         mblocks = __va(paddr);
1280         num_mblocks = count;
1281 
1282         count = 0;
1283         mdesc_for_each_node_by_name(md, node, "mblock") {
1284                 struct mdesc_mblock *m = &mblocks[count++];
1285                 const u64 *val;
1286 
1287                 val = mdesc_get_property(md, node, "base", NULL);
1288                 m->base = *val;
1289                 val = mdesc_get_property(md, node, "size", NULL);
1290                 m->size = *val;
1291                 val = mdesc_get_property(md, node,
1292                                          "address-congruence-offset", NULL);
1293 
1294                 /* The address-congruence-offset property is optional.
1295                  * Explicity zero it be identifty this.
1296                  */
1297                 if (val)
1298                         m->offset = *val;
1299                 else
1300                         m->offset = 0UL;
1301 
1302                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1303                         count - 1, m->base, m->size, m->offset);
1304         }
1305 
1306         return 0;
1307 }
1308 
1309 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1310                                                u64 grp, cpumask_t *mask)
1311 {
1312         u64 arc;
1313 
1314         cpumask_clear(mask);
1315 
1316         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1317                 u64 target = mdesc_arc_target(md, arc);
1318                 const char *name = mdesc_node_name(md, target);
1319                 const u64 *id;
1320 
1321                 if (strcmp(name, "cpu"))
1322                         continue;
1323                 id = mdesc_get_property(md, target, "id", NULL);
1324                 if (*id < nr_cpu_ids)
1325                         cpumask_set_cpu(*id, mask);
1326         }
1327 }
1328 
1329 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1330 {
1331         int i;
1332 
1333         for (i = 0; i < num_mlgroups; i++) {
1334                 struct mdesc_mlgroup *m = &mlgroups[i];
1335                 if (m->node == node)
1336                         return m;
1337         }
1338         return NULL;
1339 }
1340 
1341 int __node_distance(int from, int to)
1342 {
1343         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1344                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1345                         from, to);
1346                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1347         }
1348         return numa_latency[from][to];
1349 }
1350 EXPORT_SYMBOL(__node_distance);
1351 
1352 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1353 {
1354         int i;
1355 
1356         for (i = 0; i < MAX_NUMNODES; i++) {
1357                 struct node_mem_mask *n = &node_masks[i];
1358 
1359                 if ((grp->mask == n->mask) && (grp->match == n->match))
1360                         break;
1361         }
1362         return i;
1363 }
1364 
1365 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1366                                                  u64 grp, int index)
1367 {
1368         u64 arc;
1369 
1370         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1371                 int tnode;
1372                 u64 target = mdesc_arc_target(md, arc);
1373                 struct mdesc_mlgroup *m = find_mlgroup(target);
1374 
1375                 if (!m)
1376                         continue;
1377                 tnode = find_best_numa_node_for_mlgroup(m);
1378                 if (tnode == MAX_NUMNODES)
1379                         continue;
1380                 numa_latency[index][tnode] = m->latency;
1381         }
1382 }
1383 
1384 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1385                                       int index)
1386 {
1387         struct mdesc_mlgroup *candidate = NULL;
1388         u64 arc, best_latency = ~(u64)0;
1389         struct node_mem_mask *n;
1390 
1391         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1392                 u64 target = mdesc_arc_target(md, arc);
1393                 struct mdesc_mlgroup *m = find_mlgroup(target);
1394                 if (!m)
1395                         continue;
1396                 if (m->latency < best_latency) {
1397                         candidate = m;
1398                         best_latency = m->latency;
1399                 }
1400         }
1401         if (!candidate)
1402                 return -ENOENT;
1403 
1404         if (num_node_masks != index) {
1405                 printk(KERN_ERR "Inconsistent NUMA state, "
1406                        "index[%d] != num_node_masks[%d]\n",
1407                        index, num_node_masks);
1408                 return -EINVAL;
1409         }
1410 
1411         n = &node_masks[num_node_masks++];
1412 
1413         n->mask = candidate->mask;
1414         n->match = candidate->match;
1415 
1416         numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1417                 index, n->mask, n->match, candidate->latency);
1418 
1419         return 0;
1420 }
1421 
1422 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1423                                          int index)
1424 {
1425         cpumask_t mask;
1426         int cpu;
1427 
1428         numa_parse_mdesc_group_cpus(md, grp, &mask);
1429 
1430         for_each_cpu(cpu, &mask)
1431                 numa_cpu_lookup_table[cpu] = index;
1432         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1433 
1434         if (numa_debug) {
1435                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1436                 for_each_cpu(cpu, &mask)
1437                         printk("%d ", cpu);
1438                 printk("]\n");
1439         }
1440 
1441         return numa_attach_mlgroup(md, grp, index);
1442 }
1443 
1444 static int __init numa_parse_mdesc(void)
1445 {
1446         struct mdesc_handle *md = mdesc_grab();
1447         int i, j, err, count;
1448         u64 node;
1449 
1450         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1451         if (node == MDESC_NODE_NULL) {
1452                 mdesc_release(md);
1453                 return -ENOENT;
1454         }
1455 
1456         err = grab_mblocks(md);
1457         if (err < 0)
1458                 goto out;
1459 
1460         err = grab_mlgroups(md);
1461         if (err < 0)
1462                 goto out;
1463 
1464         count = 0;
1465         mdesc_for_each_node_by_name(md, node, "group") {
1466                 err = numa_parse_mdesc_group(md, node, count);
1467                 if (err < 0)
1468                         break;
1469                 count++;
1470         }
1471 
1472         count = 0;
1473         mdesc_for_each_node_by_name(md, node, "group") {
1474                 find_numa_latencies_for_group(md, node, count);
1475                 count++;
1476         }
1477 
1478         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1479         for (i = 0; i < MAX_NUMNODES; i++) {
1480                 u64 self_latency = numa_latency[i][i];
1481 
1482                 for (j = 0; j < MAX_NUMNODES; j++) {
1483                         numa_latency[i][j] =
1484                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1485                                 self_latency;
1486                 }
1487         }
1488 
1489         add_node_ranges();
1490 
1491         for (i = 0; i < num_node_masks; i++) {
1492                 allocate_node_data(i);
1493                 node_set_online(i);
1494         }
1495 
1496         err = 0;
1497 out:
1498         mdesc_release(md);
1499         return err;
1500 }
1501 
1502 static int __init numa_parse_jbus(void)
1503 {
1504         unsigned long cpu, index;
1505 
1506         /* NUMA node id is encoded in bits 36 and higher, and there is
1507          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1508          */
1509         index = 0;
1510         for_each_present_cpu(cpu) {
1511                 numa_cpu_lookup_table[cpu] = index;
1512                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1513                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1514                 node_masks[index].match = cpu << 36UL;
1515 
1516                 index++;
1517         }
1518         num_node_masks = index;
1519 
1520         add_node_ranges();
1521 
1522         for (index = 0; index < num_node_masks; index++) {
1523                 allocate_node_data(index);
1524                 node_set_online(index);
1525         }
1526 
1527         return 0;
1528 }
1529 
1530 static int __init numa_parse_sun4u(void)
1531 {
1532         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1533                 unsigned long ver;
1534 
1535                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1536                 if ((ver >> 32UL) == __JALAPENO_ID ||
1537                     (ver >> 32UL) == __SERRANO_ID)
1538                         return numa_parse_jbus();
1539         }
1540         return -1;
1541 }
1542 
1543 static int __init bootmem_init_numa(void)
1544 {
1545         int i, j;
1546         int err = -1;
1547 
1548         numadbg("bootmem_init_numa()\n");
1549 
1550         /* Some sane defaults for numa latency values */
1551         for (i = 0; i < MAX_NUMNODES; i++) {
1552                 for (j = 0; j < MAX_NUMNODES; j++)
1553                         numa_latency[i][j] = (i == j) ?
1554                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1555         }
1556 
1557         if (numa_enabled) {
1558                 if (tlb_type == hypervisor)
1559                         err = numa_parse_mdesc();
1560                 else
1561                         err = numa_parse_sun4u();
1562         }
1563         return err;
1564 }
1565 
1566 #else
1567 
1568 static int bootmem_init_numa(void)
1569 {
1570         return -1;
1571 }
1572 
1573 #endif
1574 
1575 static void __init bootmem_init_nonnuma(void)
1576 {
1577         unsigned long top_of_ram = memblock_end_of_DRAM();
1578         unsigned long total_ram = memblock_phys_mem_size();
1579 
1580         numadbg("bootmem_init_nonnuma()\n");
1581 
1582         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1583                top_of_ram, total_ram);
1584         printk(KERN_INFO "Memory hole size: %ldMB\n",
1585                (top_of_ram - total_ram) >> 20);
1586 
1587         init_node_masks_nonnuma();
1588         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1589         allocate_node_data(0);
1590         node_set_online(0);
1591 }
1592 
1593 static unsigned long __init bootmem_init(unsigned long phys_base)
1594 {
1595         unsigned long end_pfn;
1596 
1597         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1598         max_pfn = max_low_pfn = end_pfn;
1599         min_low_pfn = (phys_base >> PAGE_SHIFT);
1600 
1601         if (bootmem_init_numa() < 0)
1602                 bootmem_init_nonnuma();
1603 
1604         /* Dump memblock with node info. */
1605         memblock_dump_all();
1606 
1607         /* XXX cpu notifier XXX */
1608 
1609         sparse_init();
1610 
1611         return end_pfn;
1612 }
1613 
1614 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1615 static int pall_ents __initdata;
1616 
1617 static unsigned long max_phys_bits = 40;
1618 
1619 bool kern_addr_valid(unsigned long addr)
1620 {
1621         pgd_t *pgd;
1622         p4d_t *p4d;
1623         pud_t *pud;
1624         pmd_t *pmd;
1625         pte_t *pte;
1626 
1627         if ((long)addr < 0L) {
1628                 unsigned long pa = __pa(addr);
1629 
1630                 if ((pa >> max_phys_bits) != 0UL)
1631                         return false;
1632 
1633                 return pfn_valid(pa >> PAGE_SHIFT);
1634         }
1635 
1636         if (addr >= (unsigned long) KERNBASE &&
1637             addr < (unsigned long)&_end)
1638                 return true;
1639 
1640         pgd = pgd_offset_k(addr);
1641         if (pgd_none(*pgd))
1642                 return false;
1643 
1644         p4d = p4d_offset(pgd, addr);
1645         if (p4d_none(*p4d))
1646                 return false;
1647 
1648         pud = pud_offset(p4d, addr);
1649         if (pud_none(*pud))
1650                 return false;
1651 
1652         if (pud_large(*pud))
1653                 return pfn_valid(pud_pfn(*pud));
1654 
1655         pmd = pmd_offset(pud, addr);
1656         if (pmd_none(*pmd))
1657                 return false;
1658 
1659         if (pmd_large(*pmd))
1660                 return pfn_valid(pmd_pfn(*pmd));
1661 
1662         pte = pte_offset_kernel(pmd, addr);
1663         if (pte_none(*pte))
1664                 return false;
1665 
1666         return pfn_valid(pte_pfn(*pte));
1667 }
1668 EXPORT_SYMBOL(kern_addr_valid);
1669 
1670 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1671                                               unsigned long vend,
1672                                               pud_t *pud)
1673 {
1674         const unsigned long mask16gb = (1UL << 34) - 1UL;
1675         u64 pte_val = vstart;
1676 
1677         /* Each PUD is 8GB */
1678         if ((vstart & mask16gb) ||
1679             (vend - vstart <= mask16gb)) {
1680                 pte_val ^= kern_linear_pte_xor[2];
1681                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1682 
1683                 return vstart + PUD_SIZE;
1684         }
1685 
1686         pte_val ^= kern_linear_pte_xor[3];
1687         pte_val |= _PAGE_PUD_HUGE;
1688 
1689         vend = vstart + mask16gb + 1UL;
1690         while (vstart < vend) {
1691                 pud_val(*pud) = pte_val;
1692 
1693                 pte_val += PUD_SIZE;
1694                 vstart += PUD_SIZE;
1695                 pud++;
1696         }
1697         return vstart;
1698 }
1699 
1700 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1701                                    bool guard)
1702 {
1703         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1704                 return true;
1705 
1706         return false;
1707 }
1708 
1709 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1710                                               unsigned long vend,
1711                                               pmd_t *pmd)
1712 {
1713         const unsigned long mask256mb = (1UL << 28) - 1UL;
1714         const unsigned long mask2gb = (1UL << 31) - 1UL;
1715         u64 pte_val = vstart;
1716 
1717         /* Each PMD is 8MB */
1718         if ((vstart & mask256mb) ||
1719             (vend - vstart <= mask256mb)) {
1720                 pte_val ^= kern_linear_pte_xor[0];
1721                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1722 
1723                 return vstart + PMD_SIZE;
1724         }
1725 
1726         if ((vstart & mask2gb) ||
1727             (vend - vstart <= mask2gb)) {
1728                 pte_val ^= kern_linear_pte_xor[1];
1729                 pte_val |= _PAGE_PMD_HUGE;
1730                 vend = vstart + mask256mb + 1UL;
1731         } else {
1732                 pte_val ^= kern_linear_pte_xor[2];
1733                 pte_val |= _PAGE_PMD_HUGE;
1734                 vend = vstart + mask2gb + 1UL;
1735         }
1736 
1737         while (vstart < vend) {
1738                 pmd_val(*pmd) = pte_val;
1739 
1740                 pte_val += PMD_SIZE;
1741                 vstart += PMD_SIZE;
1742                 pmd++;
1743         }
1744 
1745         return vstart;
1746 }
1747 
1748 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1749                                    bool guard)
1750 {
1751         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1752                 return true;
1753 
1754         return false;
1755 }
1756 
1757 static unsigned long __ref kernel_map_range(unsigned long pstart,
1758                                             unsigned long pend, pgprot_t prot,
1759                                             bool use_huge)
1760 {
1761         unsigned long vstart = PAGE_OFFSET + pstart;
1762         unsigned long vend = PAGE_OFFSET + pend;
1763         unsigned long alloc_bytes = 0UL;
1764 
1765         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1766                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1767                             vstart, vend);
1768                 prom_halt();
1769         }
1770 
1771         while (vstart < vend) {
1772                 unsigned long this_end, paddr = __pa(vstart);
1773                 pgd_t *pgd = pgd_offset_k(vstart);
1774                 p4d_t *p4d;
1775                 pud_t *pud;
1776                 pmd_t *pmd;
1777                 pte_t *pte;
1778 
1779                 if (pgd_none(*pgd)) {
1780                         pud_t *new;
1781 
1782                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1783                                                   PAGE_SIZE);
1784                         if (!new)
1785                                 goto err_alloc;
1786                         alloc_bytes += PAGE_SIZE;
1787                         pgd_populate(&init_mm, pgd, new);
1788                 }
1789 
1790                 p4d = p4d_offset(pgd, vstart);
1791                 if (p4d_none(*p4d)) {
1792                         pud_t *new;
1793 
1794                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1795                                                   PAGE_SIZE);
1796                         if (!new)
1797                                 goto err_alloc;
1798                         alloc_bytes += PAGE_SIZE;
1799                         p4d_populate(&init_mm, p4d, new);
1800                 }
1801 
1802                 pud = pud_offset(p4d, vstart);
1803                 if (pud_none(*pud)) {
1804                         pmd_t *new;
1805 
1806                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1807                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1808                                 continue;
1809                         }
1810                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1811                                                   PAGE_SIZE);
1812                         if (!new)
1813                                 goto err_alloc;
1814                         alloc_bytes += PAGE_SIZE;
1815                         pud_populate(&init_mm, pud, new);
1816                 }
1817 
1818                 pmd = pmd_offset(pud, vstart);
1819                 if (pmd_none(*pmd)) {
1820                         pte_t *new;
1821 
1822                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1823                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1824                                 continue;
1825                         }
1826                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1827                                                   PAGE_SIZE);
1828                         if (!new)
1829                                 goto err_alloc;
1830                         alloc_bytes += PAGE_SIZE;
1831                         pmd_populate_kernel(&init_mm, pmd, new);
1832                 }
1833 
1834                 pte = pte_offset_kernel(pmd, vstart);
1835                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1836                 if (this_end > vend)
1837                         this_end = vend;
1838 
1839                 while (vstart < this_end) {
1840                         pte_val(*pte) = (paddr | pgprot_val(prot));
1841 
1842                         vstart += PAGE_SIZE;
1843                         paddr += PAGE_SIZE;
1844                         pte++;
1845                 }
1846         }
1847 
1848         return alloc_bytes;
1849 
1850 err_alloc:
1851         panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1852               __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1853         return -ENOMEM;
1854 }
1855 
1856 static void __init flush_all_kernel_tsbs(void)
1857 {
1858         int i;
1859 
1860         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1861                 struct tsb *ent = &swapper_tsb[i];
1862 
1863                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1864         }
1865 #ifndef CONFIG_DEBUG_PAGEALLOC
1866         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1867                 struct tsb *ent = &swapper_4m_tsb[i];
1868 
1869                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1870         }
1871 #endif
1872 }
1873 
1874 extern unsigned int kvmap_linear_patch[1];
1875 
1876 static void __init kernel_physical_mapping_init(void)
1877 {
1878         unsigned long i, mem_alloced = 0UL;
1879         bool use_huge = true;
1880 
1881 #ifdef CONFIG_DEBUG_PAGEALLOC
1882         use_huge = false;
1883 #endif
1884         for (i = 0; i < pall_ents; i++) {
1885                 unsigned long phys_start, phys_end;
1886 
1887                 phys_start = pall[i].phys_addr;
1888                 phys_end = phys_start + pall[i].reg_size;
1889 
1890                 mem_alloced += kernel_map_range(phys_start, phys_end,
1891                                                 PAGE_KERNEL, use_huge);
1892         }
1893 
1894         printk("Allocated %ld bytes for kernel page tables.\n",
1895                mem_alloced);
1896 
1897         kvmap_linear_patch[0] = 0x01000000; /* nop */
1898         flushi(&kvmap_linear_patch[0]);
1899 
1900         flush_all_kernel_tsbs();
1901 
1902         __flush_tlb_all();
1903 }
1904 
1905 #ifdef CONFIG_DEBUG_PAGEALLOC
1906 void __kernel_map_pages(struct page *page, int numpages, int enable)
1907 {
1908         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1909         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1910 
1911         kernel_map_range(phys_start, phys_end,
1912                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1913 
1914         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1915                                PAGE_OFFSET + phys_end);
1916 
1917         /* we should perform an IPI and flush all tlbs,
1918          * but that can deadlock->flush only current cpu.
1919          */
1920         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1921                                  PAGE_OFFSET + phys_end);
1922 }
1923 #endif
1924 
1925 unsigned long __init find_ecache_flush_span(unsigned long size)
1926 {
1927         int i;
1928 
1929         for (i = 0; i < pavail_ents; i++) {
1930                 if (pavail[i].reg_size >= size)
1931                         return pavail[i].phys_addr;
1932         }
1933 
1934         return ~0UL;
1935 }
1936 
1937 unsigned long PAGE_OFFSET;
1938 EXPORT_SYMBOL(PAGE_OFFSET);
1939 
1940 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1941 EXPORT_SYMBOL(VMALLOC_END);
1942 
1943 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1944 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1945 
1946 static void __init setup_page_offset(void)
1947 {
1948         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1949                 /* Cheetah/Panther support a full 64-bit virtual
1950                  * address, so we can use all that our page tables
1951                  * support.
1952                  */
1953                 sparc64_va_hole_top =    0xfff0000000000000UL;
1954                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1955 
1956                 max_phys_bits = 42;
1957         } else if (tlb_type == hypervisor) {
1958                 switch (sun4v_chip_type) {
1959                 case SUN4V_CHIP_NIAGARA1:
1960                 case SUN4V_CHIP_NIAGARA2:
1961                         /* T1 and T2 support 48-bit virtual addresses.  */
1962                         sparc64_va_hole_top =    0xffff800000000000UL;
1963                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1964 
1965                         max_phys_bits = 39;
1966                         break;
1967                 case SUN4V_CHIP_NIAGARA3:
1968                         /* T3 supports 48-bit virtual addresses.  */
1969                         sparc64_va_hole_top =    0xffff800000000000UL;
1970                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1971 
1972                         max_phys_bits = 43;
1973                         break;
1974                 case SUN4V_CHIP_NIAGARA4:
1975                 case SUN4V_CHIP_NIAGARA5:
1976                 case SUN4V_CHIP_SPARC64X:
1977                 case SUN4V_CHIP_SPARC_M6:
1978                         /* T4 and later support 52-bit virtual addresses.  */
1979                         sparc64_va_hole_top =    0xfff8000000000000UL;
1980                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1981                         max_phys_bits = 47;
1982                         break;
1983                 case SUN4V_CHIP_SPARC_M7:
1984                 case SUN4V_CHIP_SPARC_SN:
1985                         /* M7 and later support 52-bit virtual addresses.  */
1986                         sparc64_va_hole_top =    0xfff8000000000000UL;
1987                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1988                         max_phys_bits = 49;
1989                         break;
1990                 case SUN4V_CHIP_SPARC_M8:
1991                 default:
1992                         /* M8 and later support 54-bit virtual addresses.
1993                          * However, restricting M8 and above VA bits to 53
1994                          * as 4-level page table cannot support more than
1995                          * 53 VA bits.
1996                          */
1997                         sparc64_va_hole_top =    0xfff0000000000000UL;
1998                         sparc64_va_hole_bottom = 0x0010000000000000UL;
1999                         max_phys_bits = 51;
2000                         break;
2001                 }
2002         }
2003 
2004         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2005                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2006                             max_phys_bits);
2007                 prom_halt();
2008         }
2009 
2010         PAGE_OFFSET = sparc64_va_hole_top;
2011         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2012                        (sparc64_va_hole_bottom >> 2));
2013 
2014         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2015                 PAGE_OFFSET, max_phys_bits);
2016         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2017                 VMALLOC_START, VMALLOC_END);
2018         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2019                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
2020 }
2021 
2022 static void __init tsb_phys_patch(void)
2023 {
2024         struct tsb_ldquad_phys_patch_entry *pquad;
2025         struct tsb_phys_patch_entry *p;
2026 
2027         pquad = &__tsb_ldquad_phys_patch;
2028         while (pquad < &__tsb_ldquad_phys_patch_end) {
2029                 unsigned long addr = pquad->addr;
2030 
2031                 if (tlb_type == hypervisor)
2032                         *(unsigned int *) addr = pquad->sun4v_insn;
2033                 else
2034                         *(unsigned int *) addr = pquad->sun4u_insn;
2035                 wmb();
2036                 __asm__ __volatile__("flush     %0"
2037                                      : /* no outputs */
2038                                      : "r" (addr));
2039 
2040                 pquad++;
2041         }
2042 
2043         p = &__tsb_phys_patch;
2044         while (p < &__tsb_phys_patch_end) {
2045                 unsigned long addr = p->addr;
2046 
2047                 *(unsigned int *) addr = p->insn;
2048                 wmb();
2049                 __asm__ __volatile__("flush     %0"
2050                                      : /* no outputs */
2051                                      : "r" (addr));
2052 
2053                 p++;
2054         }
2055 }
2056 
2057 /* Don't mark as init, we give this to the Hypervisor.  */
2058 #ifndef CONFIG_DEBUG_PAGEALLOC
2059 #define NUM_KTSB_DESCR  2
2060 #else
2061 #define NUM_KTSB_DESCR  1
2062 #endif
2063 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2064 
2065 /* The swapper TSBs are loaded with a base sequence of:
2066  *
2067  *      sethi   %uhi(SYMBOL), REG1
2068  *      sethi   %hi(SYMBOL), REG2
2069  *      or      REG1, %ulo(SYMBOL), REG1
2070  *      or      REG2, %lo(SYMBOL), REG2
2071  *      sllx    REG1, 32, REG1
2072  *      or      REG1, REG2, REG1
2073  *
2074  * When we use physical addressing for the TSB accesses, we patch the
2075  * first four instructions in the above sequence.
2076  */
2077 
2078 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2079 {
2080         unsigned long high_bits, low_bits;
2081 
2082         high_bits = (pa >> 32) & 0xffffffff;
2083         low_bits = (pa >> 0) & 0xffffffff;
2084 
2085         while (start < end) {
2086                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2087 
2088                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2089                 __asm__ __volatile__("flush     %0" : : "r" (ia));
2090 
2091                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2092                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
2093 
2094                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2095                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
2096 
2097                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2098                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
2099 
2100                 start++;
2101         }
2102 }
2103 
2104 static void ktsb_phys_patch(void)
2105 {
2106         extern unsigned int __swapper_tsb_phys_patch;
2107         extern unsigned int __swapper_tsb_phys_patch_end;
2108         unsigned long ktsb_pa;
2109 
2110         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2111         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2112                             &__swapper_tsb_phys_patch_end, ktsb_pa);
2113 #ifndef CONFIG_DEBUG_PAGEALLOC
2114         {
2115         extern unsigned int __swapper_4m_tsb_phys_patch;
2116         extern unsigned int __swapper_4m_tsb_phys_patch_end;
2117         ktsb_pa = (kern_base +
2118                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2119         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2120                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2121         }
2122 #endif
2123 }
2124 
2125 static void __init sun4v_ktsb_init(void)
2126 {
2127         unsigned long ktsb_pa;
2128 
2129         /* First KTSB for PAGE_SIZE mappings.  */
2130         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2131 
2132         switch (PAGE_SIZE) {
2133         case 8 * 1024:
2134         default:
2135                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2136                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2137                 break;
2138 
2139         case 64 * 1024:
2140                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2141                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2142                 break;
2143 
2144         case 512 * 1024:
2145                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2146                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2147                 break;
2148 
2149         case 4 * 1024 * 1024:
2150                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2151                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2152                 break;
2153         }
2154 
2155         ktsb_descr[0].assoc = 1;
2156         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2157         ktsb_descr[0].ctx_idx = 0;
2158         ktsb_descr[0].tsb_base = ktsb_pa;
2159         ktsb_descr[0].resv = 0;
2160 
2161 #ifndef CONFIG_DEBUG_PAGEALLOC
2162         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2163         ktsb_pa = (kern_base +
2164                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2165 
2166         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2167         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2168                                     HV_PGSZ_MASK_256MB |
2169                                     HV_PGSZ_MASK_2GB |
2170                                     HV_PGSZ_MASK_16GB) &
2171                                    cpu_pgsz_mask);
2172         ktsb_descr[1].assoc = 1;
2173         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2174         ktsb_descr[1].ctx_idx = 0;
2175         ktsb_descr[1].tsb_base = ktsb_pa;
2176         ktsb_descr[1].resv = 0;
2177 #endif
2178 }
2179 
2180 void sun4v_ktsb_register(void)
2181 {
2182         unsigned long pa, ret;
2183 
2184         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2185 
2186         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2187         if (ret != 0) {
2188                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2189                             "errors with %lx\n", pa, ret);
2190                 prom_halt();
2191         }
2192 }
2193 
2194 static void __init sun4u_linear_pte_xor_finalize(void)
2195 {
2196 #ifndef CONFIG_DEBUG_PAGEALLOC
2197         /* This is where we would add Panther support for
2198          * 32MB and 256MB pages.
2199          */
2200 #endif
2201 }
2202 
2203 static void __init sun4v_linear_pte_xor_finalize(void)
2204 {
2205         unsigned long pagecv_flag;
2206 
2207         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2208          * enables MCD error. Do not set bit 9 on M7 processor.
2209          */
2210         switch (sun4v_chip_type) {
2211         case SUN4V_CHIP_SPARC_M7:
2212         case SUN4V_CHIP_SPARC_M8:
2213         case SUN4V_CHIP_SPARC_SN:
2214                 pagecv_flag = 0x00;
2215                 break;
2216         default:
2217                 pagecv_flag = _PAGE_CV_4V;
2218                 break;
2219         }
2220 #ifndef CONFIG_DEBUG_PAGEALLOC
2221         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2222                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2223                         PAGE_OFFSET;
2224                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2225                                            _PAGE_P_4V | _PAGE_W_4V);
2226         } else {
2227                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2228         }
2229 
2230         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2231                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2232                         PAGE_OFFSET;
2233                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2234                                            _PAGE_P_4V | _PAGE_W_4V);
2235         } else {
2236                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2237         }
2238 
2239         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2240                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2241                         PAGE_OFFSET;
2242                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2243                                            _PAGE_P_4V | _PAGE_W_4V);
2244         } else {
2245                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2246         }
2247 #endif
2248 }
2249 
2250 /* paging_init() sets up the page tables */
2251 
2252 static unsigned long last_valid_pfn;
2253 
2254 static void sun4u_pgprot_init(void);
2255 static void sun4v_pgprot_init(void);
2256 
2257 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2258 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2259 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2260 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2261 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2262 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2263 
2264 /* We need to exclude reserved regions. This exclusion will include
2265  * vmlinux and initrd. To be more precise the initrd size could be used to
2266  * compute a new lower limit because it is freed later during initialization.
2267  */
2268 static void __init reduce_memory(phys_addr_t limit_ram)
2269 {
2270         limit_ram += memblock_reserved_size();
2271         memblock_enforce_memory_limit(limit_ram);
2272 }
2273 
2274 void __init paging_init(void)
2275 {
2276         unsigned long end_pfn, shift, phys_base;
2277         unsigned long real_end, i;
2278 
2279         setup_page_offset();
2280 
2281         /* These build time checkes make sure that the dcache_dirty_cpu()
2282          * page->flags usage will work.
2283          *
2284          * When a page gets marked as dcache-dirty, we store the
2285          * cpu number starting at bit 32 in the page->flags.  Also,
2286          * functions like clear_dcache_dirty_cpu use the cpu mask
2287          * in 13-bit signed-immediate instruction fields.
2288          */
2289 
2290         /*
2291          * Page flags must not reach into upper 32 bits that are used
2292          * for the cpu number
2293          */
2294         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2295 
2296         /*
2297          * The bit fields placed in the high range must not reach below
2298          * the 32 bit boundary. Otherwise we cannot place the cpu field
2299          * at the 32 bit boundary.
2300          */
2301         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2302                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2303 
2304         BUILD_BUG_ON(NR_CPUS > 4096);
2305 
2306         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2307         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2308 
2309         /* Invalidate both kernel TSBs.  */
2310         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2311 #ifndef CONFIG_DEBUG_PAGEALLOC
2312         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2313 #endif
2314 
2315         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2316          * bit on M7 processor. This is a conflicting usage of the same
2317          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2318          * Detection error on all pages and this will lead to problems
2319          * later. Kernel does not run with MCD enabled and hence rest
2320          * of the required steps to fully configure memory corruption
2321          * detection are not taken. We need to ensure TTE.mcde is not
2322          * set on M7 processor. Compute the value of cacheability
2323          * flag for use later taking this into consideration.
2324          */
2325         switch (sun4v_chip_type) {
2326         case SUN4V_CHIP_SPARC_M7:
2327         case SUN4V_CHIP_SPARC_M8:
2328         case SUN4V_CHIP_SPARC_SN:
2329                 page_cache4v_flag = _PAGE_CP_4V;
2330                 break;
2331         default:
2332                 page_cache4v_flag = _PAGE_CACHE_4V;
2333                 break;
2334         }
2335 
2336         if (tlb_type == hypervisor)
2337                 sun4v_pgprot_init();
2338         else
2339                 sun4u_pgprot_init();
2340 
2341         if (tlb_type == cheetah_plus ||
2342             tlb_type == hypervisor) {
2343                 tsb_phys_patch();
2344                 ktsb_phys_patch();
2345         }
2346 
2347         if (tlb_type == hypervisor)
2348                 sun4v_patch_tlb_handlers();
2349 
2350         /* Find available physical memory...
2351          *
2352          * Read it twice in order to work around a bug in openfirmware.
2353          * The call to grab this table itself can cause openfirmware to
2354          * allocate memory, which in turn can take away some space from
2355          * the list of available memory.  Reading it twice makes sure
2356          * we really do get the final value.
2357          */
2358         read_obp_translations();
2359         read_obp_memory("reg", &pall[0], &pall_ents);
2360         read_obp_memory("available", &pavail[0], &pavail_ents);
2361         read_obp_memory("available", &pavail[0], &pavail_ents);
2362 
2363         phys_base = 0xffffffffffffffffUL;
2364         for (i = 0; i < pavail_ents; i++) {
2365                 phys_base = min(phys_base, pavail[i].phys_addr);
2366                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2367         }
2368 
2369         memblock_reserve(kern_base, kern_size);
2370 
2371         find_ramdisk(phys_base);
2372 
2373         if (cmdline_memory_size)
2374                 reduce_memory(cmdline_memory_size);
2375 
2376         memblock_allow_resize();
2377         memblock_dump_all();
2378 
2379         set_bit(0, mmu_context_bmap);
2380 
2381         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2382 
2383         real_end = (unsigned long)_end;
2384         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2385         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2386                num_kernel_image_mappings);
2387 
2388         /* Set kernel pgd to upper alias so physical page computations
2389          * work.
2390          */
2391         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2392         
2393         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2394 
2395         inherit_prom_mappings();
2396         
2397         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2398         setup_tba();
2399 
2400         __flush_tlb_all();
2401 
2402         prom_build_devicetree();
2403         of_populate_present_mask();
2404 #ifndef CONFIG_SMP
2405         of_fill_in_cpu_data();
2406 #endif
2407 
2408         if (tlb_type == hypervisor) {
2409                 sun4v_mdesc_init();
2410                 mdesc_populate_present_mask(cpu_all_mask);
2411 #ifndef CONFIG_SMP
2412                 mdesc_fill_in_cpu_data(cpu_all_mask);
2413 #endif
2414                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2415 
2416                 sun4v_linear_pte_xor_finalize();
2417 
2418                 sun4v_ktsb_init();
2419                 sun4v_ktsb_register();
2420         } else {
2421                 unsigned long impl, ver;
2422 
2423                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2424                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2425 
2426                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2427                 impl = ((ver >> 32) & 0xffff);
2428                 if (impl == PANTHER_IMPL)
2429                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2430                                           HV_PGSZ_MASK_256MB);
2431 
2432                 sun4u_linear_pte_xor_finalize();
2433         }
2434 
2435         /* Flush the TLBs and the 4M TSB so that the updated linear
2436          * pte XOR settings are realized for all mappings.
2437          */
2438         __flush_tlb_all();
2439 #ifndef CONFIG_DEBUG_PAGEALLOC
2440         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2441 #endif
2442         __flush_tlb_all();
2443 
2444         /* Setup bootmem... */
2445         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2446 
2447         kernel_physical_mapping_init();
2448 
2449         {
2450                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2451 
2452                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2453 
2454                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2455 
2456                 free_area_init(max_zone_pfns);
2457         }
2458 
2459         printk("Booting Linux...\n");
2460 }
2461 
2462 int page_in_phys_avail(unsigned long paddr)
2463 {
2464         int i;
2465 
2466         paddr &= PAGE_MASK;
2467 
2468         for (i = 0; i < pavail_ents; i++) {
2469                 unsigned long start, end;
2470 
2471                 start = pavail[i].phys_addr;
2472                 end = start + pavail[i].reg_size;
2473 
2474                 if (paddr >= start && paddr < end)
2475                         return 1;
2476         }
2477         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2478                 return 1;
2479 #ifdef CONFIG_BLK_DEV_INITRD
2480         if (paddr >= __pa(initrd_start) &&
2481             paddr < __pa(PAGE_ALIGN(initrd_end)))
2482                 return 1;
2483 #endif
2484 
2485         return 0;
2486 }
2487 
2488 static void __init register_page_bootmem_info(void)
2489 {
2490 #ifdef CONFIG_NEED_MULTIPLE_NODES
2491         int i;
2492 
2493         for_each_online_node(i)
2494                 if (NODE_DATA(i)->node_spanned_pages)
2495                         register_page_bootmem_info_node(NODE_DATA(i));
2496 #endif
2497 }
2498 void __init mem_init(void)
2499 {
2500         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2501 
2502         memblock_free_all();
2503 
2504         /*
2505          * Must be done after boot memory is put on freelist, because here we
2506          * might set fields in deferred struct pages that have not yet been
2507          * initialized, and memblock_free_all() initializes all the reserved
2508          * deferred pages for us.
2509          */
2510         register_page_bootmem_info();
2511 
2512         /*
2513          * Set up the zero page, mark it reserved, so that page count
2514          * is not manipulated when freeing the page from user ptes.
2515          */
2516         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2517         if (mem_map_zero == NULL) {
2518                 prom_printf("paging_init: Cannot alloc zero page.\n");
2519                 prom_halt();
2520         }
2521         mark_page_reserved(mem_map_zero);
2522 
2523 
2524         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2525                 cheetah_ecache_flush_init();
2526 }
2527 
2528 void free_initmem(void)
2529 {
2530         unsigned long addr, initend;
2531         int do_free = 1;
2532 
2533         /* If the physical memory maps were trimmed by kernel command
2534          * line options, don't even try freeing this initmem stuff up.
2535          * The kernel image could have been in the trimmed out region
2536          * and if so the freeing below will free invalid page structs.
2537          */
2538         if (cmdline_memory_size)
2539                 do_free = 0;
2540 
2541         /*
2542          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2543          */
2544         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2545         initend = (unsigned long)(__init_end) & PAGE_MASK;
2546         for (; addr < initend; addr += PAGE_SIZE) {
2547                 unsigned long page;
2548 
2549                 page = (addr +
2550                         ((unsigned long) __va(kern_base)) -
2551                         ((unsigned long) KERNBASE));
2552                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2553 
2554                 if (do_free)
2555                         free_reserved_page(virt_to_page(page));
2556         }
2557 }
2558 
2559 pgprot_t PAGE_KERNEL __read_mostly;
2560 EXPORT_SYMBOL(PAGE_KERNEL);
2561 
2562 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2563 pgprot_t PAGE_COPY __read_mostly;
2564 
2565 pgprot_t PAGE_SHARED __read_mostly;
2566 EXPORT_SYMBOL(PAGE_SHARED);
2567 
2568 unsigned long pg_iobits __read_mostly;
2569 
2570 unsigned long _PAGE_IE __read_mostly;
2571 EXPORT_SYMBOL(_PAGE_IE);
2572 
2573 unsigned long _PAGE_E __read_mostly;
2574 EXPORT_SYMBOL(_PAGE_E);
2575 
2576 unsigned long _PAGE_CACHE __read_mostly;
2577 EXPORT_SYMBOL(_PAGE_CACHE);
2578 
2579 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2580 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2581                                int node, struct vmem_altmap *altmap)
2582 {
2583         unsigned long pte_base;
2584 
2585         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2586                     _PAGE_CP_4U | _PAGE_CV_4U |
2587                     _PAGE_P_4U | _PAGE_W_4U);
2588         if (tlb_type == hypervisor)
2589                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2590                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2591 
2592         pte_base |= _PAGE_PMD_HUGE;
2593 
2594         vstart = vstart & PMD_MASK;
2595         vend = ALIGN(vend, PMD_SIZE);
2596         for (; vstart < vend; vstart += PMD_SIZE) {
2597                 pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2598                 unsigned long pte;
2599                 p4d_t *p4d;
2600                 pud_t *pud;
2601                 pmd_t *pmd;
2602 
2603                 if (!pgd)
2604                         return -ENOMEM;
2605 
2606                 p4d = vmemmap_p4d_populate(pgd, vstart, node);
2607                 if (!p4d)
2608                         return -ENOMEM;
2609 
2610                 pud = vmemmap_pud_populate(p4d, vstart, node);
2611                 if (!pud)
2612                         return -ENOMEM;
2613 
2614                 pmd = pmd_offset(pud, vstart);
2615                 pte = pmd_val(*pmd);
2616                 if (!(pte & _PAGE_VALID)) {
2617                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2618 
2619                         if (!block)
2620                                 return -ENOMEM;
2621 
2622                         pmd_val(*pmd) = pte_base | __pa(block);
2623                 }
2624         }
2625 
2626         return 0;
2627 }
2628 
2629 void vmemmap_free(unsigned long start, unsigned long end,
2630                 struct vmem_altmap *altmap)
2631 {
2632 }
2633 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2634 
2635 static void prot_init_common(unsigned long page_none,
2636                              unsigned long page_shared,
2637                              unsigned long page_copy,
2638                              unsigned long page_readonly,
2639                              unsigned long page_exec_bit)
2640 {
2641         PAGE_COPY = __pgprot(page_copy);
2642         PAGE_SHARED = __pgprot(page_shared);
2643 
2644         protection_map[0x0] = __pgprot(page_none);
2645         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2646         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2647         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2648         protection_map[0x4] = __pgprot(page_readonly);
2649         protection_map[0x5] = __pgprot(page_readonly);
2650         protection_map[0x6] = __pgprot(page_copy);
2651         protection_map[0x7] = __pgprot(page_copy);
2652         protection_map[0x8] = __pgprot(page_none);
2653         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2654         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2655         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2656         protection_map[0xc] = __pgprot(page_readonly);
2657         protection_map[0xd] = __pgprot(page_readonly);
2658         protection_map[0xe] = __pgprot(page_shared);
2659         protection_map[0xf] = __pgprot(page_shared);
2660 }
2661 
2662 static void __init sun4u_pgprot_init(void)
2663 {
2664         unsigned long page_none, page_shared, page_copy, page_readonly;
2665         unsigned long page_exec_bit;
2666         int i;
2667 
2668         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2669                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2670                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2671                                 _PAGE_EXEC_4U);
2672         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2673                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2674                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2675                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2676 
2677         _PAGE_IE = _PAGE_IE_4U;
2678         _PAGE_E = _PAGE_E_4U;
2679         _PAGE_CACHE = _PAGE_CACHE_4U;
2680 
2681         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2682                      __ACCESS_BITS_4U | _PAGE_E_4U);
2683 
2684 #ifdef CONFIG_DEBUG_PAGEALLOC
2685         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2686 #else
2687         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2688                 PAGE_OFFSET;
2689 #endif
2690         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2691                                    _PAGE_P_4U | _PAGE_W_4U);
2692 
2693         for (i = 1; i < 4; i++)
2694                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2695 
2696         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2697                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2698                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2699 
2700 
2701         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2702         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2703                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2704         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2705                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2706         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2707                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2708 
2709         page_exec_bit = _PAGE_EXEC_4U;
2710 
2711         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2712                          page_exec_bit);
2713 }
2714 
2715 static void __init sun4v_pgprot_init(void)
2716 {
2717         unsigned long page_none, page_shared, page_copy, page_readonly;
2718         unsigned long page_exec_bit;
2719         int i;
2720 
2721         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2722                                 page_cache4v_flag | _PAGE_P_4V |
2723                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2724                                 _PAGE_EXEC_4V);
2725         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2726 
2727         _PAGE_IE = _PAGE_IE_4V;
2728         _PAGE_E = _PAGE_E_4V;
2729         _PAGE_CACHE = page_cache4v_flag;
2730 
2731 #ifdef CONFIG_DEBUG_PAGEALLOC
2732         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2733 #else
2734         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2735                 PAGE_OFFSET;
2736 #endif
2737         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2738                                    _PAGE_W_4V);
2739 
2740         for (i = 1; i < 4; i++)
2741                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2742 
2743         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2744                      __ACCESS_BITS_4V | _PAGE_E_4V);
2745 
2746         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2747                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2748                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2749                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2750 
2751         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2752         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2753                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2754         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2755                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2756         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2757                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2758 
2759         page_exec_bit = _PAGE_EXEC_4V;
2760 
2761         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2762                          page_exec_bit);
2763 }
2764 
2765 unsigned long pte_sz_bits(unsigned long sz)
2766 {
2767         if (tlb_type == hypervisor) {
2768                 switch (sz) {
2769                 case 8 * 1024:
2770                 default:
2771                         return _PAGE_SZ8K_4V;
2772                 case 64 * 1024:
2773                         return _PAGE_SZ64K_4V;
2774                 case 512 * 1024:
2775                         return _PAGE_SZ512K_4V;
2776                 case 4 * 1024 * 1024:
2777                         return _PAGE_SZ4MB_4V;
2778                 }
2779         } else {
2780                 switch (sz) {
2781                 case 8 * 1024:
2782                 default:
2783                         return _PAGE_SZ8K_4U;
2784                 case 64 * 1024:
2785                         return _PAGE_SZ64K_4U;
2786                 case 512 * 1024:
2787                         return _PAGE_SZ512K_4U;
2788                 case 4 * 1024 * 1024:
2789                         return _PAGE_SZ4MB_4U;
2790                 }
2791         }
2792 }
2793 
2794 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2795 {
2796         pte_t pte;
2797 
2798         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2799         pte_val(pte) |= (((unsigned long)space) << 32);
2800         pte_val(pte) |= pte_sz_bits(page_size);
2801 
2802         return pte;
2803 }
2804 
2805 static unsigned long kern_large_tte(unsigned long paddr)
2806 {
2807         unsigned long val;
2808 
2809         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2810                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2811                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2812         if (tlb_type == hypervisor)
2813                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2814                        page_cache4v_flag | _PAGE_P_4V |
2815                        _PAGE_EXEC_4V | _PAGE_W_4V);
2816 
2817         return val | paddr;
2818 }
2819 
2820 /* If not locked, zap it. */
2821 void __flush_tlb_all(void)
2822 {
2823         unsigned long pstate;
2824         int i;
2825 
2826         __asm__ __volatile__("flushw\n\t"
2827                              "rdpr      %%pstate, %0\n\t"
2828                              "wrpr      %0, %1, %%pstate"
2829                              : "=r" (pstate)
2830                              : "i" (PSTATE_IE));
2831         if (tlb_type == hypervisor) {
2832                 sun4v_mmu_demap_all();
2833         } else if (tlb_type == spitfire) {
2834                 for (i = 0; i < 64; i++) {
2835                         /* Spitfire Errata #32 workaround */
2836                         /* NOTE: Always runs on spitfire, so no
2837                          *       cheetah+ page size encodings.
2838                          */
2839                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2840                                              "flush     %%g6"
2841                                              : /* No outputs */
2842                                              : "r" (0),
2843                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2844 
2845                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2846                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2847                                                      "membar #Sync"
2848                                                      : /* no outputs */
2849                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2850                                 spitfire_put_dtlb_data(i, 0x0UL);
2851                         }
2852 
2853                         /* Spitfire Errata #32 workaround */
2854                         /* NOTE: Always runs on spitfire, so no
2855                          *       cheetah+ page size encodings.
2856                          */
2857                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2858                                              "flush     %%g6"
2859                                              : /* No outputs */
2860                                              : "r" (0),
2861                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2862 
2863                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2864                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2865                                                      "membar #Sync"
2866                                                      : /* no outputs */
2867                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2868                                 spitfire_put_itlb_data(i, 0x0UL);
2869                         }
2870                 }
2871         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2872                 cheetah_flush_dtlb_all();
2873                 cheetah_flush_itlb_all();
2874         }
2875         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2876                              : : "r" (pstate));
2877 }
2878 
2879 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2880 {
2881         struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2882         pte_t *pte = NULL;
2883 
2884         if (page)
2885                 pte = (pte_t *) page_address(page);
2886 
2887         return pte;
2888 }
2889 
2890 pgtable_t pte_alloc_one(struct mm_struct *mm)
2891 {
2892         struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2893         if (!page)
2894                 return NULL;
2895         if (!pgtable_pte_page_ctor(page)) {
2896                 __free_page(page);
2897                 return NULL;
2898         }
2899         return (pte_t *) page_address(page);
2900 }
2901 
2902 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2903 {
2904         free_page((unsigned long)pte);
2905 }
2906 
2907 static void __pte_free(pgtable_t pte)
2908 {
2909         struct page *page = virt_to_page(pte);
2910 
2911         pgtable_pte_page_dtor(page);
2912         __free_page(page);
2913 }
2914 
2915 void pte_free(struct mm_struct *mm, pgtable_t pte)
2916 {
2917         __pte_free(pte);
2918 }
2919 
2920 void pgtable_free(void *table, bool is_page)
2921 {
2922         if (is_page)
2923                 __pte_free(table);
2924         else
2925                 kmem_cache_free(pgtable_cache, table);
2926 }
2927 
2928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2929 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2930                           pmd_t *pmd)
2931 {
2932         unsigned long pte, flags;
2933         struct mm_struct *mm;
2934         pmd_t entry = *pmd;
2935 
2936         if (!pmd_large(entry) || !pmd_young(entry))
2937                 return;
2938 
2939         pte = pmd_val(entry);
2940 
2941         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2942         if (!(pte & _PAGE_VALID))
2943                 return;
2944 
2945         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2946         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2947 
2948         mm = vma->vm_mm;
2949 
2950         spin_lock_irqsave(&mm->context.lock, flags);
2951 
2952         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2953                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2954                                         addr, pte);
2955 
2956         spin_unlock_irqrestore(&mm->context.lock, flags);
2957 }
2958 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2959 
2960 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2961 static void context_reload(void *__data)
2962 {
2963         struct mm_struct *mm = __data;
2964 
2965         if (mm == current->mm)
2966                 load_secondary_context(mm);
2967 }
2968 
2969 void hugetlb_setup(struct pt_regs *regs)
2970 {
2971         struct mm_struct *mm = current->mm;
2972         struct tsb_config *tp;
2973 
2974         if (faulthandler_disabled() || !mm) {
2975                 const struct exception_table_entry *entry;
2976 
2977                 entry = search_exception_tables(regs->tpc);
2978                 if (entry) {
2979                         regs->tpc = entry->fixup;
2980                         regs->tnpc = regs->tpc + 4;
2981                         return;
2982                 }
2983                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2984                 die_if_kernel("HugeTSB in atomic", regs);
2985         }
2986 
2987         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2988         if (likely(tp->tsb == NULL))
2989                 tsb_grow(mm, MM_TSB_HUGE, 0);
2990 
2991         tsb_context_switch(mm);
2992         smp_tsb_sync(mm);
2993 
2994         /* On UltraSPARC-III+ and later, configure the second half of
2995          * the Data-TLB for huge pages.
2996          */
2997         if (tlb_type == cheetah_plus) {
2998                 bool need_context_reload = false;
2999                 unsigned long ctx;
3000 
3001                 spin_lock_irq(&ctx_alloc_lock);
3002                 ctx = mm->context.sparc64_ctx_val;
3003                 ctx &= ~CTX_PGSZ_MASK;
3004                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3005                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3006 
3007                 if (ctx != mm->context.sparc64_ctx_val) {
3008                         /* When changing the page size fields, we
3009                          * must perform a context flush so that no
3010                          * stale entries match.  This flush must
3011                          * occur with the original context register
3012                          * settings.
3013                          */
3014                         do_flush_tlb_mm(mm);
3015 
3016                         /* Reload the context register of all processors
3017                          * also executing in this address space.
3018                          */
3019                         mm->context.sparc64_ctx_val = ctx;
3020                         need_context_reload = true;
3021                 }
3022                 spin_unlock_irq(&ctx_alloc_lock);
3023 
3024                 if (need_context_reload)
3025                         on_each_cpu(context_reload, mm, 0);
3026         }
3027 }
3028 #endif
3029 
3030 static struct resource code_resource = {
3031         .name   = "Kernel code",
3032         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3033 };
3034 
3035 static struct resource data_resource = {
3036         .name   = "Kernel data",
3037         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3038 };
3039 
3040 static struct resource bss_resource = {
3041         .name   = "Kernel bss",
3042         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3043 };
3044 
3045 static inline resource_size_t compute_kern_paddr(void *addr)
3046 {
3047         return (resource_size_t) (addr - KERNBASE + kern_base);
3048 }
3049 
3050 static void __init kernel_lds_init(void)
3051 {
3052         code_resource.start = compute_kern_paddr(_text);
3053         code_resource.end   = compute_kern_paddr(_etext - 1);
3054         data_resource.start = compute_kern_paddr(_etext);
3055         data_resource.end   = compute_kern_paddr(_edata - 1);
3056         bss_resource.start  = compute_kern_paddr(__bss_start);
3057         bss_resource.end    = compute_kern_paddr(_end - 1);
3058 }
3059 
3060 static int __init report_memory(void)
3061 {
3062         int i;
3063         struct resource *res;
3064 
3065         kernel_lds_init();
3066 
3067         for (i = 0; i < pavail_ents; i++) {
3068                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3069 
3070                 if (!res) {
3071                         pr_warn("Failed to allocate source.\n");
3072                         break;
3073                 }
3074 
3075                 res->name = "System RAM";
3076                 res->start = pavail[i].phys_addr;
3077                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3078                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3079 
3080                 if (insert_resource(&iomem_resource, res) < 0) {
3081                         pr_warn("Resource insertion failed.\n");
3082                         break;
3083                 }
3084 
3085                 insert_resource(res, &code_resource);
3086                 insert_resource(res, &data_resource);
3087                 insert_resource(res, &bss_resource);
3088         }
3089 
3090         return 0;
3091 }
3092 arch_initcall(report_memory);
3093 
3094 #ifdef CONFIG_SMP
3095 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3096 #else
3097 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3098 #endif
3099 
3100 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3101 {
3102         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3103                 if (start < LOW_OBP_ADDRESS) {
3104                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3105                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3106                 }
3107                 if (end > HI_OBP_ADDRESS) {
3108                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3109                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3110                 }
3111         } else {
3112                 flush_tsb_kernel_range(start, end);
3113                 do_flush_tlb_kernel_range(start, end);
3114         }
3115 }
3116 
3117 void copy_user_highpage(struct page *to, struct page *from,
3118         unsigned long vaddr, struct vm_area_struct *vma)
3119 {
3120         char *vfrom, *vto;
3121 
3122         vfrom = kmap_atomic(from);
3123         vto = kmap_atomic(to);
3124         copy_user_page(vto, vfrom, vaddr, to);
3125         kunmap_atomic(vto);
3126         kunmap_atomic(vfrom);
3127 
3128         /* If this page has ADI enabled, copy over any ADI tags
3129          * as well
3130          */
3131         if (vma->vm_flags & VM_SPARC_ADI) {
3132                 unsigned long pfrom, pto, i, adi_tag;
3133 
3134                 pfrom = page_to_phys(from);
3135                 pto = page_to_phys(to);
3136 
3137                 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3138                         asm volatile("ldxa [%1] %2, %0\n\t"
3139                                         : "=r" (adi_tag)
3140                                         :  "r" (i), "i" (ASI_MCD_REAL));
3141                         asm volatile("stxa %0, [%1] %2\n\t"
3142                                         :
3143                                         : "r" (adi_tag), "r" (pto),
3144                                           "i" (ASI_MCD_REAL));
3145                         pto += adi_blksize();
3146                 }
3147                 asm volatile("membar #Sync\n\t");
3148         }
3149 }
3150 EXPORT_SYMBOL(copy_user_highpage);
3151 
3152 void copy_highpage(struct page *to, struct page *from)
3153 {
3154         char *vfrom, *vto;
3155 
3156         vfrom = kmap_atomic(from);
3157         vto = kmap_atomic(to);
3158         copy_page(vto, vfrom);
3159         kunmap_atomic(vto);
3160         kunmap_atomic(vfrom);
3161 
3162         /* If this platform is ADI enabled, copy any ADI tags
3163          * as well
3164          */
3165         if (adi_capable()) {
3166                 unsigned long pfrom, pto, i, adi_tag;
3167 
3168                 pfrom = page_to_phys(from);
3169                 pto = page_to_phys(to);
3170 
3171                 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3172                         asm volatile("ldxa [%1] %2, %0\n\t"
3173                                         : "=r" (adi_tag)
3174                                         :  "r" (i), "i" (ASI_MCD_REAL));
3175                         asm volatile("stxa %0, [%1] %2\n\t"
3176                                         :
3177                                         : "r" (adi_tag), "r" (pto),
3178                                           "i" (ASI_MCD_REAL));
3179                         pto += adi_blksize();
3180                 }
3181                 asm volatile("membar #Sync\n\t");
3182         }
3183 }
3184 EXPORT_SYMBOL(copy_highpage);
3185 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp