~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/mm/init_64.c

Version: ~ [ linux-6.3-rc3 ] ~ [ linux-6.2.7 ] ~ [ linux-6.1.20 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.103 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.175 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.237 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.278 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.310 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  arch/sparc64/mm/init.c
  4  *
  5  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  6  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  7  */
  8  
  9 #include <linux/extable.h>
 10 #include <linux/kernel.h>
 11 #include <linux/sched.h>
 12 #include <linux/string.h>
 13 #include <linux/init.h>
 14 #include <linux/memblock.h>
 15 #include <linux/mm.h>
 16 #include <linux/hugetlb.h>
 17 #include <linux/initrd.h>
 18 #include <linux/swap.h>
 19 #include <linux/pagemap.h>
 20 #include <linux/poison.h>
 21 #include <linux/fs.h>
 22 #include <linux/seq_file.h>
 23 #include <linux/kprobes.h>
 24 #include <linux/cache.h>
 25 #include <linux/sort.h>
 26 #include <linux/ioport.h>
 27 #include <linux/percpu.h>
 28 #include <linux/mmzone.h>
 29 #include <linux/gfp.h>
 30 #include <linux/bootmem_info.h>
 31 
 32 #include <asm/head.h>
 33 #include <asm/page.h>
 34 #include <asm/pgalloc.h>
 35 #include <asm/oplib.h>
 36 #include <asm/iommu.h>
 37 #include <asm/io.h>
 38 #include <linux/uaccess.h>
 39 #include <asm/mmu_context.h>
 40 #include <asm/tlbflush.h>
 41 #include <asm/dma.h>
 42 #include <asm/starfire.h>
 43 #include <asm/tlb.h>
 44 #include <asm/spitfire.h>
 45 #include <asm/sections.h>
 46 #include <asm/tsb.h>
 47 #include <asm/hypervisor.h>
 48 #include <asm/prom.h>
 49 #include <asm/mdesc.h>
 50 #include <asm/cpudata.h>
 51 #include <asm/setup.h>
 52 #include <asm/irq.h>
 53 
 54 #include "init_64.h"
 55 
 56 unsigned long kern_linear_pte_xor[4] __read_mostly;
 57 static unsigned long page_cache4v_flag;
 58 
 59 /* A bitmap, two bits for every 256MB of physical memory.  These two
 60  * bits determine what page size we use for kernel linear
 61  * translations.  They form an index into kern_linear_pte_xor[].  The
 62  * value in the indexed slot is XOR'd with the TLB miss virtual
 63  * address to form the resulting TTE.  The mapping is:
 64  *
 65  *      0       ==>     4MB
 66  *      1       ==>     256MB
 67  *      2       ==>     2GB
 68  *      3       ==>     16GB
 69  *
 70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
 71  * support 2GB pages, and hopefully future cpus will support the 16GB
 72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
 73  * if these larger page sizes are not supported by the cpu.
 74  *
 75  * It would be nice to determine this from the machine description
 76  * 'cpu' properties, but we need to have this table setup before the
 77  * MDESC is initialized.
 78  */
 79 
 80 #ifndef CONFIG_DEBUG_PAGEALLOC
 81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
 82  * Space is allocated for this right after the trap table in
 83  * arch/sparc64/kernel/head.S
 84  */
 85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
 86 #endif
 87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 88 
 89 static unsigned long cpu_pgsz_mask;
 90 
 91 #define MAX_BANKS       1024
 92 
 93 static struct linux_prom64_registers pavail[MAX_BANKS];
 94 static int pavail_ents;
 95 
 96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
 97 
 98 static int cmp_p64(const void *a, const void *b)
 99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101 
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108 
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116 
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124 
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131 
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137 
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140 
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144 
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164 
165         *num_ents = ents;
166 
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170 
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174 
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179 
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182 
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184 
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188 
189 int num_kernel_image_mappings;
190 
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197 
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204 
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping_file(page) != NULL));
209 #else
210         if (page_mapping_file(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215 
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220 
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223 
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228 
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231 
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244 
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248 
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268 
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272 
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275 
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278 
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280 
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284 
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288 
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294 
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302 
303                         clear_dcache_dirty_cpu(page, cpu);
304 
305                         put_cpu();
306                 }
307         }
308 }
309 
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317 
318         if (unlikely(!tsb))
319                 return;
320 
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326 
327 #ifdef CONFIG_HUGETLB_PAGE
328 static int __init hugetlbpage_init(void)
329 {
330         hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
331         hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
332         hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
333         hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
334 
335         return 0;
336 }
337 
338 arch_initcall(hugetlbpage_init);
339 
340 static void __init pud_huge_patch(void)
341 {
342         struct pud_huge_patch_entry *p;
343         unsigned long addr;
344 
345         p = &__pud_huge_patch;
346         addr = p->addr;
347         *(unsigned int *)addr = p->insn;
348 
349         __asm__ __volatile__("flush %0" : : "r" (addr));
350 }
351 
352 bool __init arch_hugetlb_valid_size(unsigned long size)
353 {
354         unsigned int hugepage_shift = ilog2(size);
355         unsigned short hv_pgsz_idx;
356         unsigned int hv_pgsz_mask;
357 
358         switch (hugepage_shift) {
359         case HPAGE_16GB_SHIFT:
360                 hv_pgsz_mask = HV_PGSZ_MASK_16GB;
361                 hv_pgsz_idx = HV_PGSZ_IDX_16GB;
362                 pud_huge_patch();
363                 break;
364         case HPAGE_2GB_SHIFT:
365                 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
366                 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
367                 break;
368         case HPAGE_256MB_SHIFT:
369                 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
370                 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
371                 break;
372         case HPAGE_SHIFT:
373                 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
374                 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
375                 break;
376         case HPAGE_64K_SHIFT:
377                 hv_pgsz_mask = HV_PGSZ_MASK_64K;
378                 hv_pgsz_idx = HV_PGSZ_IDX_64K;
379                 break;
380         default:
381                 hv_pgsz_mask = 0;
382         }
383 
384         if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
385                 return false;
386 
387         return true;
388 }
389 #endif  /* CONFIG_HUGETLB_PAGE */
390 
391 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
392 {
393         struct mm_struct *mm;
394         unsigned long flags;
395         bool is_huge_tsb;
396         pte_t pte = *ptep;
397 
398         if (tlb_type != hypervisor) {
399                 unsigned long pfn = pte_pfn(pte);
400 
401                 if (pfn_valid(pfn))
402                         flush_dcache(pfn);
403         }
404 
405         mm = vma->vm_mm;
406 
407         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
408         if (!pte_accessible(mm, pte))
409                 return;
410 
411         spin_lock_irqsave(&mm->context.lock, flags);
412 
413         is_huge_tsb = false;
414 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
415         if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
416                 unsigned long hugepage_size = PAGE_SIZE;
417 
418                 if (is_vm_hugetlb_page(vma))
419                         hugepage_size = huge_page_size(hstate_vma(vma));
420 
421                 if (hugepage_size >= PUD_SIZE) {
422                         unsigned long mask = 0x1ffc00000UL;
423 
424                         /* Transfer bits [32:22] from address to resolve
425                          * at 4M granularity.
426                          */
427                         pte_val(pte) &= ~mask;
428                         pte_val(pte) |= (address & mask);
429                 } else if (hugepage_size >= PMD_SIZE) {
430                         /* We are fabricating 8MB pages using 4MB
431                          * real hw pages.
432                          */
433                         pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
434                 }
435 
436                 if (hugepage_size >= PMD_SIZE) {
437                         __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
438                                 REAL_HPAGE_SHIFT, address, pte_val(pte));
439                         is_huge_tsb = true;
440                 }
441         }
442 #endif
443         if (!is_huge_tsb)
444                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
445                                         address, pte_val(pte));
446 
447         spin_unlock_irqrestore(&mm->context.lock, flags);
448 }
449 
450 void flush_dcache_page(struct page *page)
451 {
452         struct address_space *mapping;
453         int this_cpu;
454 
455         if (tlb_type == hypervisor)
456                 return;
457 
458         /* Do not bother with the expensive D-cache flush if it
459          * is merely the zero page.  The 'bigcore' testcase in GDB
460          * causes this case to run millions of times.
461          */
462         if (page == ZERO_PAGE(0))
463                 return;
464 
465         this_cpu = get_cpu();
466 
467         mapping = page_mapping_file(page);
468         if (mapping && !mapping_mapped(mapping)) {
469                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
470                 if (dirty) {
471                         int dirty_cpu = dcache_dirty_cpu(page);
472 
473                         if (dirty_cpu == this_cpu)
474                                 goto out;
475                         smp_flush_dcache_page_impl(page, dirty_cpu);
476                 }
477                 set_dcache_dirty(page, this_cpu);
478         } else {
479                 /* We could delay the flush for the !page_mapping
480                  * case too.  But that case is for exec env/arg
481                  * pages and those are %99 certainly going to get
482                  * faulted into the tlb (and thus flushed) anyways.
483                  */
484                 flush_dcache_page_impl(page);
485         }
486 
487 out:
488         put_cpu();
489 }
490 EXPORT_SYMBOL(flush_dcache_page);
491 
492 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
493 {
494         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
495         if (tlb_type == spitfire) {
496                 unsigned long kaddr;
497 
498                 /* This code only runs on Spitfire cpus so this is
499                  * why we can assume _PAGE_PADDR_4U.
500                  */
501                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
502                         unsigned long paddr, mask = _PAGE_PADDR_4U;
503 
504                         if (kaddr >= PAGE_OFFSET)
505                                 paddr = kaddr & mask;
506                         else {
507                                 pte_t *ptep = virt_to_kpte(kaddr);
508 
509                                 paddr = pte_val(*ptep) & mask;
510                         }
511                         __flush_icache_page(paddr);
512                 }
513         }
514 }
515 EXPORT_SYMBOL(flush_icache_range);
516 
517 void mmu_info(struct seq_file *m)
518 {
519         static const char *pgsz_strings[] = {
520                 "8K", "64K", "512K", "4MB", "32MB",
521                 "256MB", "2GB", "16GB",
522         };
523         int i, printed;
524 
525         if (tlb_type == cheetah)
526                 seq_printf(m, "MMU Type\t: Cheetah\n");
527         else if (tlb_type == cheetah_plus)
528                 seq_printf(m, "MMU Type\t: Cheetah+\n");
529         else if (tlb_type == spitfire)
530                 seq_printf(m, "MMU Type\t: Spitfire\n");
531         else if (tlb_type == hypervisor)
532                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
533         else
534                 seq_printf(m, "MMU Type\t: ???\n");
535 
536         seq_printf(m, "MMU PGSZs\t: ");
537         printed = 0;
538         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
539                 if (cpu_pgsz_mask & (1UL << i)) {
540                         seq_printf(m, "%s%s",
541                                    printed ? "," : "", pgsz_strings[i]);
542                         printed++;
543                 }
544         }
545         seq_putc(m, '\n');
546 
547 #ifdef CONFIG_DEBUG_DCFLUSH
548         seq_printf(m, "DCPageFlushes\t: %d\n",
549                    atomic_read(&dcpage_flushes));
550 #ifdef CONFIG_SMP
551         seq_printf(m, "DCPageFlushesXC\t: %d\n",
552                    atomic_read(&dcpage_flushes_xcall));
553 #endif /* CONFIG_SMP */
554 #endif /* CONFIG_DEBUG_DCFLUSH */
555 }
556 
557 struct linux_prom_translation prom_trans[512] __read_mostly;
558 unsigned int prom_trans_ents __read_mostly;
559 
560 unsigned long kern_locked_tte_data;
561 
562 /* The obp translations are saved based on 8k pagesize, since obp can
563  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
564  * HI_OBP_ADDRESS range are handled in ktlb.S.
565  */
566 static inline int in_obp_range(unsigned long vaddr)
567 {
568         return (vaddr >= LOW_OBP_ADDRESS &&
569                 vaddr < HI_OBP_ADDRESS);
570 }
571 
572 static int cmp_ptrans(const void *a, const void *b)
573 {
574         const struct linux_prom_translation *x = a, *y = b;
575 
576         if (x->virt > y->virt)
577                 return 1;
578         if (x->virt < y->virt)
579                 return -1;
580         return 0;
581 }
582 
583 /* Read OBP translations property into 'prom_trans[]'.  */
584 static void __init read_obp_translations(void)
585 {
586         int n, node, ents, first, last, i;
587 
588         node = prom_finddevice("/virtual-memory");
589         n = prom_getproplen(node, "translations");
590         if (unlikely(n == 0 || n == -1)) {
591                 prom_printf("prom_mappings: Couldn't get size.\n");
592                 prom_halt();
593         }
594         if (unlikely(n > sizeof(prom_trans))) {
595                 prom_printf("prom_mappings: Size %d is too big.\n", n);
596                 prom_halt();
597         }
598 
599         if ((n = prom_getproperty(node, "translations",
600                                   (char *)&prom_trans[0],
601                                   sizeof(prom_trans))) == -1) {
602                 prom_printf("prom_mappings: Couldn't get property.\n");
603                 prom_halt();
604         }
605 
606         n = n / sizeof(struct linux_prom_translation);
607 
608         ents = n;
609 
610         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
611              cmp_ptrans, NULL);
612 
613         /* Now kick out all the non-OBP entries.  */
614         for (i = 0; i < ents; i++) {
615                 if (in_obp_range(prom_trans[i].virt))
616                         break;
617         }
618         first = i;
619         for (; i < ents; i++) {
620                 if (!in_obp_range(prom_trans[i].virt))
621                         break;
622         }
623         last = i;
624 
625         for (i = 0; i < (last - first); i++) {
626                 struct linux_prom_translation *src = &prom_trans[i + first];
627                 struct linux_prom_translation *dest = &prom_trans[i];
628 
629                 *dest = *src;
630         }
631         for (; i < ents; i++) {
632                 struct linux_prom_translation *dest = &prom_trans[i];
633                 dest->virt = dest->size = dest->data = 0x0UL;
634         }
635 
636         prom_trans_ents = last - first;
637 
638         if (tlb_type == spitfire) {
639                 /* Clear diag TTE bits. */
640                 for (i = 0; i < prom_trans_ents; i++)
641                         prom_trans[i].data &= ~0x0003fe0000000000UL;
642         }
643 
644         /* Force execute bit on.  */
645         for (i = 0; i < prom_trans_ents; i++)
646                 prom_trans[i].data |= (tlb_type == hypervisor ?
647                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
648 }
649 
650 static void __init hypervisor_tlb_lock(unsigned long vaddr,
651                                        unsigned long pte,
652                                        unsigned long mmu)
653 {
654         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
655 
656         if (ret != 0) {
657                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
658                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
659                 prom_halt();
660         }
661 }
662 
663 static unsigned long kern_large_tte(unsigned long paddr);
664 
665 static void __init remap_kernel(void)
666 {
667         unsigned long phys_page, tte_vaddr, tte_data;
668         int i, tlb_ent = sparc64_highest_locked_tlbent();
669 
670         tte_vaddr = (unsigned long) KERNBASE;
671         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
672         tte_data = kern_large_tte(phys_page);
673 
674         kern_locked_tte_data = tte_data;
675 
676         /* Now lock us into the TLBs via Hypervisor or OBP. */
677         if (tlb_type == hypervisor) {
678                 for (i = 0; i < num_kernel_image_mappings; i++) {
679                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
680                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
681                         tte_vaddr += 0x400000;
682                         tte_data += 0x400000;
683                 }
684         } else {
685                 for (i = 0; i < num_kernel_image_mappings; i++) {
686                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
687                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
688                         tte_vaddr += 0x400000;
689                         tte_data += 0x400000;
690                 }
691                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
692         }
693         if (tlb_type == cheetah_plus) {
694                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
695                                             CTX_CHEETAH_PLUS_NUC);
696                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
697                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
698         }
699 }
700 
701 
702 static void __init inherit_prom_mappings(void)
703 {
704         /* Now fixup OBP's idea about where we really are mapped. */
705         printk("Remapping the kernel... ");
706         remap_kernel();
707         printk("done.\n");
708 }
709 
710 void prom_world(int enter)
711 {
712         /*
713          * No need to change the address space any more, just flush
714          * the register windows
715          */
716         __asm__ __volatile__("flushw");
717 }
718 
719 void __flush_dcache_range(unsigned long start, unsigned long end)
720 {
721         unsigned long va;
722 
723         if (tlb_type == spitfire) {
724                 int n = 0;
725 
726                 for (va = start; va < end; va += 32) {
727                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
728                         if (++n >= 512)
729                                 break;
730                 }
731         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
732                 start = __pa(start);
733                 end = __pa(end);
734                 for (va = start; va < end; va += 32)
735                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
736                                              "membar #Sync"
737                                              : /* no outputs */
738                                              : "r" (va),
739                                                "i" (ASI_DCACHE_INVALIDATE));
740         }
741 }
742 EXPORT_SYMBOL(__flush_dcache_range);
743 
744 /* get_new_mmu_context() uses "cache + 1".  */
745 DEFINE_SPINLOCK(ctx_alloc_lock);
746 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
747 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
748 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
749 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
750 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
751 
752 static void mmu_context_wrap(void)
753 {
754         unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
755         unsigned long new_ver, new_ctx, old_ctx;
756         struct mm_struct *mm;
757         int cpu;
758 
759         bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
760 
761         /* Reserve kernel context */
762         set_bit(0, mmu_context_bmap);
763 
764         new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
765         if (unlikely(new_ver == 0))
766                 new_ver = CTX_FIRST_VERSION;
767         tlb_context_cache = new_ver;
768 
769         /*
770          * Make sure that any new mm that are added into per_cpu_secondary_mm,
771          * are going to go through get_new_mmu_context() path.
772          */
773         mb();
774 
775         /*
776          * Updated versions to current on those CPUs that had valid secondary
777          * contexts
778          */
779         for_each_online_cpu(cpu) {
780                 /*
781                  * If a new mm is stored after we took this mm from the array,
782                  * it will go into get_new_mmu_context() path, because we
783                  * already bumped the version in tlb_context_cache.
784                  */
785                 mm = per_cpu(per_cpu_secondary_mm, cpu);
786 
787                 if (unlikely(!mm || mm == &init_mm))
788                         continue;
789 
790                 old_ctx = mm->context.sparc64_ctx_val;
791                 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
792                         new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
793                         set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
794                         mm->context.sparc64_ctx_val = new_ctx;
795                 }
796         }
797 }
798 
799 /* Caller does TLB context flushing on local CPU if necessary.
800  * The caller also ensures that CTX_VALID(mm->context) is false.
801  *
802  * We must be careful about boundary cases so that we never
803  * let the user have CTX 0 (nucleus) or we ever use a CTX
804  * version of zero (and thus NO_CONTEXT would not be caught
805  * by version mis-match tests in mmu_context.h).
806  *
807  * Always invoked with interrupts disabled.
808  */
809 void get_new_mmu_context(struct mm_struct *mm)
810 {
811         unsigned long ctx, new_ctx;
812         unsigned long orig_pgsz_bits;
813 
814         spin_lock(&ctx_alloc_lock);
815 retry:
816         /* wrap might have happened, test again if our context became valid */
817         if (unlikely(CTX_VALID(mm->context)))
818                 goto out;
819         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
820         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
821         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
822         if (new_ctx >= (1 << CTX_NR_BITS)) {
823                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
824                 if (new_ctx >= ctx) {
825                         mmu_context_wrap();
826                         goto retry;
827                 }
828         }
829         if (mm->context.sparc64_ctx_val)
830                 cpumask_clear(mm_cpumask(mm));
831         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
832         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
833         tlb_context_cache = new_ctx;
834         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
835 out:
836         spin_unlock(&ctx_alloc_lock);
837 }
838 
839 static int numa_enabled = 1;
840 static int numa_debug;
841 
842 static int __init early_numa(char *p)
843 {
844         if (!p)
845                 return 0;
846 
847         if (strstr(p, "off"))
848                 numa_enabled = 0;
849 
850         if (strstr(p, "debug"))
851                 numa_debug = 1;
852 
853         return 0;
854 }
855 early_param("numa", early_numa);
856 
857 #define numadbg(f, a...) \
858 do {    if (numa_debug) \
859                 printk(KERN_INFO f, ## a); \
860 } while (0)
861 
862 static void __init find_ramdisk(unsigned long phys_base)
863 {
864 #ifdef CONFIG_BLK_DEV_INITRD
865         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
866                 unsigned long ramdisk_image;
867 
868                 /* Older versions of the bootloader only supported a
869                  * 32-bit physical address for the ramdisk image
870                  * location, stored at sparc_ramdisk_image.  Newer
871                  * SILO versions set sparc_ramdisk_image to zero and
872                  * provide a full 64-bit physical address at
873                  * sparc_ramdisk_image64.
874                  */
875                 ramdisk_image = sparc_ramdisk_image;
876                 if (!ramdisk_image)
877                         ramdisk_image = sparc_ramdisk_image64;
878 
879                 /* Another bootloader quirk.  The bootloader normalizes
880                  * the physical address to KERNBASE, so we have to
881                  * factor that back out and add in the lowest valid
882                  * physical page address to get the true physical address.
883                  */
884                 ramdisk_image -= KERNBASE;
885                 ramdisk_image += phys_base;
886 
887                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
888                         ramdisk_image, sparc_ramdisk_size);
889 
890                 initrd_start = ramdisk_image;
891                 initrd_end = ramdisk_image + sparc_ramdisk_size;
892 
893                 memblock_reserve(initrd_start, sparc_ramdisk_size);
894 
895                 initrd_start += PAGE_OFFSET;
896                 initrd_end += PAGE_OFFSET;
897         }
898 #endif
899 }
900 
901 struct node_mem_mask {
902         unsigned long mask;
903         unsigned long match;
904 };
905 static struct node_mem_mask node_masks[MAX_NUMNODES];
906 static int num_node_masks;
907 
908 #ifdef CONFIG_NUMA
909 
910 struct mdesc_mlgroup {
911         u64     node;
912         u64     latency;
913         u64     match;
914         u64     mask;
915 };
916 
917 static struct mdesc_mlgroup *mlgroups;
918 static int num_mlgroups;
919 
920 int numa_cpu_lookup_table[NR_CPUS];
921 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
922 
923 struct mdesc_mblock {
924         u64     base;
925         u64     size;
926         u64     offset; /* RA-to-PA */
927 };
928 static struct mdesc_mblock *mblocks;
929 static int num_mblocks;
930 
931 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
932 {
933         struct mdesc_mblock *m = NULL;
934         int i;
935 
936         for (i = 0; i < num_mblocks; i++) {
937                 m = &mblocks[i];
938 
939                 if (addr >= m->base &&
940                     addr < (m->base + m->size)) {
941                         break;
942                 }
943         }
944 
945         return m;
946 }
947 
948 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
949 {
950         int prev_nid, new_nid;
951 
952         prev_nid = NUMA_NO_NODE;
953         for ( ; start < end; start += PAGE_SIZE) {
954                 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
955                         struct node_mem_mask *p = &node_masks[new_nid];
956 
957                         if ((start & p->mask) == p->match) {
958                                 if (prev_nid == NUMA_NO_NODE)
959                                         prev_nid = new_nid;
960                                 break;
961                         }
962                 }
963 
964                 if (new_nid == num_node_masks) {
965                         prev_nid = 0;
966                         WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
967                                   start);
968                         break;
969                 }
970 
971                 if (prev_nid != new_nid)
972                         break;
973         }
974         *nid = prev_nid;
975 
976         return start > end ? end : start;
977 }
978 
979 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
980 {
981         u64 ret_end, pa_start, m_mask, m_match, m_end;
982         struct mdesc_mblock *mblock;
983         int _nid, i;
984 
985         if (tlb_type != hypervisor)
986                 return memblock_nid_range_sun4u(start, end, nid);
987 
988         mblock = addr_to_mblock(start);
989         if (!mblock) {
990                 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
991                           start);
992 
993                 _nid = 0;
994                 ret_end = end;
995                 goto done;
996         }
997 
998         pa_start = start + mblock->offset;
999         m_match = 0;
1000         m_mask = 0;
1001 
1002         for (_nid = 0; _nid < num_node_masks; _nid++) {
1003                 struct node_mem_mask *const m = &node_masks[_nid];
1004 
1005                 if ((pa_start & m->mask) == m->match) {
1006                         m_match = m->match;
1007                         m_mask = m->mask;
1008                         break;
1009                 }
1010         }
1011 
1012         if (num_node_masks == _nid) {
1013                 /* We could not find NUMA group, so default to 0, but lets
1014                  * search for latency group, so we could calculate the correct
1015                  * end address that we return
1016                  */
1017                 _nid = 0;
1018 
1019                 for (i = 0; i < num_mlgroups; i++) {
1020                         struct mdesc_mlgroup *const m = &mlgroups[i];
1021 
1022                         if ((pa_start & m->mask) == m->match) {
1023                                 m_match = m->match;
1024                                 m_mask = m->mask;
1025                                 break;
1026                         }
1027                 }
1028 
1029                 if (i == num_mlgroups) {
1030                         WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1031                                   start);
1032 
1033                         ret_end = end;
1034                         goto done;
1035                 }
1036         }
1037 
1038         /*
1039          * Each latency group has match and mask, and each memory block has an
1040          * offset.  An address belongs to a latency group if its address matches
1041          * the following formula: ((addr + offset) & mask) == match
1042          * It is, however, slow to check every single page if it matches a
1043          * particular latency group. As optimization we calculate end value by
1044          * using bit arithmetics.
1045          */
1046         m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1047         m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1048         ret_end = m_end > end ? end : m_end;
1049 
1050 done:
1051         *nid = _nid;
1052         return ret_end;
1053 }
1054 #endif
1055 
1056 /* This must be invoked after performing all of the necessary
1057  * memblock_set_node() calls for 'nid'.  We need to be able to get
1058  * correct data from get_pfn_range_for_nid().
1059  */
1060 static void __init allocate_node_data(int nid)
1061 {
1062         struct pglist_data *p;
1063         unsigned long start_pfn, end_pfn;
1064 #ifdef CONFIG_NUMA
1065 
1066         NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1067                                              SMP_CACHE_BYTES, nid);
1068         if (!NODE_DATA(nid)) {
1069                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1070                 prom_halt();
1071         }
1072 
1073         NODE_DATA(nid)->node_id = nid;
1074 #endif
1075 
1076         p = NODE_DATA(nid);
1077 
1078         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1079         p->node_start_pfn = start_pfn;
1080         p->node_spanned_pages = end_pfn - start_pfn;
1081 }
1082 
1083 static void init_node_masks_nonnuma(void)
1084 {
1085 #ifdef CONFIG_NUMA
1086         int i;
1087 #endif
1088 
1089         numadbg("Initializing tables for non-numa.\n");
1090 
1091         node_masks[0].mask = 0;
1092         node_masks[0].match = 0;
1093         num_node_masks = 1;
1094 
1095 #ifdef CONFIG_NUMA
1096         for (i = 0; i < NR_CPUS; i++)
1097                 numa_cpu_lookup_table[i] = 0;
1098 
1099         cpumask_setall(&numa_cpumask_lookup_table[0]);
1100 #endif
1101 }
1102 
1103 #ifdef CONFIG_NUMA
1104 struct pglist_data *node_data[MAX_NUMNODES];
1105 
1106 EXPORT_SYMBOL(numa_cpu_lookup_table);
1107 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1108 EXPORT_SYMBOL(node_data);
1109 
1110 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1111                                    u32 cfg_handle)
1112 {
1113         u64 arc;
1114 
1115         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1116                 u64 target = mdesc_arc_target(md, arc);
1117                 const u64 *val;
1118 
1119                 val = mdesc_get_property(md, target,
1120                                          "cfg-handle", NULL);
1121                 if (val && *val == cfg_handle)
1122                         return 0;
1123         }
1124         return -ENODEV;
1125 }
1126 
1127 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1128                                     u32 cfg_handle)
1129 {
1130         u64 arc, candidate, best_latency = ~(u64)0;
1131 
1132         candidate = MDESC_NODE_NULL;
1133         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1134                 u64 target = mdesc_arc_target(md, arc);
1135                 const char *name = mdesc_node_name(md, target);
1136                 const u64 *val;
1137 
1138                 if (strcmp(name, "pio-latency-group"))
1139                         continue;
1140 
1141                 val = mdesc_get_property(md, target, "latency", NULL);
1142                 if (!val)
1143                         continue;
1144 
1145                 if (*val < best_latency) {
1146                         candidate = target;
1147                         best_latency = *val;
1148                 }
1149         }
1150 
1151         if (candidate == MDESC_NODE_NULL)
1152                 return -ENODEV;
1153 
1154         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1155 }
1156 
1157 int of_node_to_nid(struct device_node *dp)
1158 {
1159         const struct linux_prom64_registers *regs;
1160         struct mdesc_handle *md;
1161         u32 cfg_handle;
1162         int count, nid;
1163         u64 grp;
1164 
1165         /* This is the right thing to do on currently supported
1166          * SUN4U NUMA platforms as well, as the PCI controller does
1167          * not sit behind any particular memory controller.
1168          */
1169         if (!mlgroups)
1170                 return -1;
1171 
1172         regs = of_get_property(dp, "reg", NULL);
1173         if (!regs)
1174                 return -1;
1175 
1176         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1177 
1178         md = mdesc_grab();
1179 
1180         count = 0;
1181         nid = NUMA_NO_NODE;
1182         mdesc_for_each_node_by_name(md, grp, "group") {
1183                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1184                         nid = count;
1185                         break;
1186                 }
1187                 count++;
1188         }
1189 
1190         mdesc_release(md);
1191 
1192         return nid;
1193 }
1194 
1195 static void __init add_node_ranges(void)
1196 {
1197         phys_addr_t start, end;
1198         unsigned long prev_max;
1199         u64 i;
1200 
1201 memblock_resized:
1202         prev_max = memblock.memory.max;
1203 
1204         for_each_mem_range(i, &start, &end) {
1205                 while (start < end) {
1206                         unsigned long this_end;
1207                         int nid;
1208 
1209                         this_end = memblock_nid_range(start, end, &nid);
1210 
1211                         numadbg("Setting memblock NUMA node nid[%d] "
1212                                 "start[%llx] end[%lx]\n",
1213                                 nid, start, this_end);
1214 
1215                         memblock_set_node(start, this_end - start,
1216                                           &memblock.memory, nid);
1217                         if (memblock.memory.max != prev_max)
1218                                 goto memblock_resized;
1219                         start = this_end;
1220                 }
1221         }
1222 }
1223 
1224 static int __init grab_mlgroups(struct mdesc_handle *md)
1225 {
1226         unsigned long paddr;
1227         int count = 0;
1228         u64 node;
1229 
1230         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1231                 count++;
1232         if (!count)
1233                 return -ENOENT;
1234 
1235         paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1236                                     SMP_CACHE_BYTES);
1237         if (!paddr)
1238                 return -ENOMEM;
1239 
1240         mlgroups = __va(paddr);
1241         num_mlgroups = count;
1242 
1243         count = 0;
1244         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1245                 struct mdesc_mlgroup *m = &mlgroups[count++];
1246                 const u64 *val;
1247 
1248                 m->node = node;
1249 
1250                 val = mdesc_get_property(md, node, "latency", NULL);
1251                 m->latency = *val;
1252                 val = mdesc_get_property(md, node, "address-match", NULL);
1253                 m->match = *val;
1254                 val = mdesc_get_property(md, node, "address-mask", NULL);
1255                 m->mask = *val;
1256 
1257                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1258                         "match[%llx] mask[%llx]\n",
1259                         count - 1, m->node, m->latency, m->match, m->mask);
1260         }
1261 
1262         return 0;
1263 }
1264 
1265 static int __init grab_mblocks(struct mdesc_handle *md)
1266 {
1267         unsigned long paddr;
1268         int count = 0;
1269         u64 node;
1270 
1271         mdesc_for_each_node_by_name(md, node, "mblock")
1272                 count++;
1273         if (!count)
1274                 return -ENOENT;
1275 
1276         paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1277                                     SMP_CACHE_BYTES);
1278         if (!paddr)
1279                 return -ENOMEM;
1280 
1281         mblocks = __va(paddr);
1282         num_mblocks = count;
1283 
1284         count = 0;
1285         mdesc_for_each_node_by_name(md, node, "mblock") {
1286                 struct mdesc_mblock *m = &mblocks[count++];
1287                 const u64 *val;
1288 
1289                 val = mdesc_get_property(md, node, "base", NULL);
1290                 m->base = *val;
1291                 val = mdesc_get_property(md, node, "size", NULL);
1292                 m->size = *val;
1293                 val = mdesc_get_property(md, node,
1294                                          "address-congruence-offset", NULL);
1295 
1296                 /* The address-congruence-offset property is optional.
1297                  * Explicity zero it be identifty this.
1298                  */
1299                 if (val)
1300                         m->offset = *val;
1301                 else
1302                         m->offset = 0UL;
1303 
1304                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1305                         count - 1, m->base, m->size, m->offset);
1306         }
1307 
1308         return 0;
1309 }
1310 
1311 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1312                                                u64 grp, cpumask_t *mask)
1313 {
1314         u64 arc;
1315 
1316         cpumask_clear(mask);
1317 
1318         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1319                 u64 target = mdesc_arc_target(md, arc);
1320                 const char *name = mdesc_node_name(md, target);
1321                 const u64 *id;
1322 
1323                 if (strcmp(name, "cpu"))
1324                         continue;
1325                 id = mdesc_get_property(md, target, "id", NULL);
1326                 if (*id < nr_cpu_ids)
1327                         cpumask_set_cpu(*id, mask);
1328         }
1329 }
1330 
1331 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1332 {
1333         int i;
1334 
1335         for (i = 0; i < num_mlgroups; i++) {
1336                 struct mdesc_mlgroup *m = &mlgroups[i];
1337                 if (m->node == node)
1338                         return m;
1339         }
1340         return NULL;
1341 }
1342 
1343 int __node_distance(int from, int to)
1344 {
1345         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1346                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1347                         from, to);
1348                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1349         }
1350         return numa_latency[from][to];
1351 }
1352 EXPORT_SYMBOL(__node_distance);
1353 
1354 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1355 {
1356         int i;
1357 
1358         for (i = 0; i < MAX_NUMNODES; i++) {
1359                 struct node_mem_mask *n = &node_masks[i];
1360 
1361                 if ((grp->mask == n->mask) && (grp->match == n->match))
1362                         break;
1363         }
1364         return i;
1365 }
1366 
1367 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1368                                                  u64 grp, int index)
1369 {
1370         u64 arc;
1371 
1372         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1373                 int tnode;
1374                 u64 target = mdesc_arc_target(md, arc);
1375                 struct mdesc_mlgroup *m = find_mlgroup(target);
1376 
1377                 if (!m)
1378                         continue;
1379                 tnode = find_best_numa_node_for_mlgroup(m);
1380                 if (tnode == MAX_NUMNODES)
1381                         continue;
1382                 numa_latency[index][tnode] = m->latency;
1383         }
1384 }
1385 
1386 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1387                                       int index)
1388 {
1389         struct mdesc_mlgroup *candidate = NULL;
1390         u64 arc, best_latency = ~(u64)0;
1391         struct node_mem_mask *n;
1392 
1393         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1394                 u64 target = mdesc_arc_target(md, arc);
1395                 struct mdesc_mlgroup *m = find_mlgroup(target);
1396                 if (!m)
1397                         continue;
1398                 if (m->latency < best_latency) {
1399                         candidate = m;
1400                         best_latency = m->latency;
1401                 }
1402         }
1403         if (!candidate)
1404                 return -ENOENT;
1405 
1406         if (num_node_masks != index) {
1407                 printk(KERN_ERR "Inconsistent NUMA state, "
1408                        "index[%d] != num_node_masks[%d]\n",
1409                        index, num_node_masks);
1410                 return -EINVAL;
1411         }
1412 
1413         n = &node_masks[num_node_masks++];
1414 
1415         n->mask = candidate->mask;
1416         n->match = candidate->match;
1417 
1418         numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1419                 index, n->mask, n->match, candidate->latency);
1420 
1421         return 0;
1422 }
1423 
1424 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1425                                          int index)
1426 {
1427         cpumask_t mask;
1428         int cpu;
1429 
1430         numa_parse_mdesc_group_cpus(md, grp, &mask);
1431 
1432         for_each_cpu(cpu, &mask)
1433                 numa_cpu_lookup_table[cpu] = index;
1434         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1435 
1436         if (numa_debug) {
1437                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1438                 for_each_cpu(cpu, &mask)
1439                         printk("%d ", cpu);
1440                 printk("]\n");
1441         }
1442 
1443         return numa_attach_mlgroup(md, grp, index);
1444 }
1445 
1446 static int __init numa_parse_mdesc(void)
1447 {
1448         struct mdesc_handle *md = mdesc_grab();
1449         int i, j, err, count;
1450         u64 node;
1451 
1452         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1453         if (node == MDESC_NODE_NULL) {
1454                 mdesc_release(md);
1455                 return -ENOENT;
1456         }
1457 
1458         err = grab_mblocks(md);
1459         if (err < 0)
1460                 goto out;
1461 
1462         err = grab_mlgroups(md);
1463         if (err < 0)
1464                 goto out;
1465 
1466         count = 0;
1467         mdesc_for_each_node_by_name(md, node, "group") {
1468                 err = numa_parse_mdesc_group(md, node, count);
1469                 if (err < 0)
1470                         break;
1471                 count++;
1472         }
1473 
1474         count = 0;
1475         mdesc_for_each_node_by_name(md, node, "group") {
1476                 find_numa_latencies_for_group(md, node, count);
1477                 count++;
1478         }
1479 
1480         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1481         for (i = 0; i < MAX_NUMNODES; i++) {
1482                 u64 self_latency = numa_latency[i][i];
1483 
1484                 for (j = 0; j < MAX_NUMNODES; j++) {
1485                         numa_latency[i][j] =
1486                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1487                                 self_latency;
1488                 }
1489         }
1490 
1491         add_node_ranges();
1492 
1493         for (i = 0; i < num_node_masks; i++) {
1494                 allocate_node_data(i);
1495                 node_set_online(i);
1496         }
1497 
1498         err = 0;
1499 out:
1500         mdesc_release(md);
1501         return err;
1502 }
1503 
1504 static int __init numa_parse_jbus(void)
1505 {
1506         unsigned long cpu, index;
1507 
1508         /* NUMA node id is encoded in bits 36 and higher, and there is
1509          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1510          */
1511         index = 0;
1512         for_each_present_cpu(cpu) {
1513                 numa_cpu_lookup_table[cpu] = index;
1514                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1515                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1516                 node_masks[index].match = cpu << 36UL;
1517 
1518                 index++;
1519         }
1520         num_node_masks = index;
1521 
1522         add_node_ranges();
1523 
1524         for (index = 0; index < num_node_masks; index++) {
1525                 allocate_node_data(index);
1526                 node_set_online(index);
1527         }
1528 
1529         return 0;
1530 }
1531 
1532 static int __init numa_parse_sun4u(void)
1533 {
1534         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1535                 unsigned long ver;
1536 
1537                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1538                 if ((ver >> 32UL) == __JALAPENO_ID ||
1539                     (ver >> 32UL) == __SERRANO_ID)
1540                         return numa_parse_jbus();
1541         }
1542         return -1;
1543 }
1544 
1545 static int __init bootmem_init_numa(void)
1546 {
1547         int i, j;
1548         int err = -1;
1549 
1550         numadbg("bootmem_init_numa()\n");
1551 
1552         /* Some sane defaults for numa latency values */
1553         for (i = 0; i < MAX_NUMNODES; i++) {
1554                 for (j = 0; j < MAX_NUMNODES; j++)
1555                         numa_latency[i][j] = (i == j) ?
1556                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1557         }
1558 
1559         if (numa_enabled) {
1560                 if (tlb_type == hypervisor)
1561                         err = numa_parse_mdesc();
1562                 else
1563                         err = numa_parse_sun4u();
1564         }
1565         return err;
1566 }
1567 
1568 #else
1569 
1570 static int bootmem_init_numa(void)
1571 {
1572         return -1;
1573 }
1574 
1575 #endif
1576 
1577 static void __init bootmem_init_nonnuma(void)
1578 {
1579         unsigned long top_of_ram = memblock_end_of_DRAM();
1580         unsigned long total_ram = memblock_phys_mem_size();
1581 
1582         numadbg("bootmem_init_nonnuma()\n");
1583 
1584         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1585                top_of_ram, total_ram);
1586         printk(KERN_INFO "Memory hole size: %ldMB\n",
1587                (top_of_ram - total_ram) >> 20);
1588 
1589         init_node_masks_nonnuma();
1590         memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1591         allocate_node_data(0);
1592         node_set_online(0);
1593 }
1594 
1595 static unsigned long __init bootmem_init(unsigned long phys_base)
1596 {
1597         unsigned long end_pfn;
1598 
1599         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1600         max_pfn = max_low_pfn = end_pfn;
1601         min_low_pfn = (phys_base >> PAGE_SHIFT);
1602 
1603         if (bootmem_init_numa() < 0)
1604                 bootmem_init_nonnuma();
1605 
1606         /* Dump memblock with node info. */
1607         memblock_dump_all();
1608 
1609         /* XXX cpu notifier XXX */
1610 
1611         sparse_init();
1612 
1613         return end_pfn;
1614 }
1615 
1616 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1617 static int pall_ents __initdata;
1618 
1619 static unsigned long max_phys_bits = 40;
1620 
1621 bool kern_addr_valid(unsigned long addr)
1622 {
1623         pgd_t *pgd;
1624         p4d_t *p4d;
1625         pud_t *pud;
1626         pmd_t *pmd;
1627         pte_t *pte;
1628 
1629         if ((long)addr < 0L) {
1630                 unsigned long pa = __pa(addr);
1631 
1632                 if ((pa >> max_phys_bits) != 0UL)
1633                         return false;
1634 
1635                 return pfn_valid(pa >> PAGE_SHIFT);
1636         }
1637 
1638         if (addr >= (unsigned long) KERNBASE &&
1639             addr < (unsigned long)&_end)
1640                 return true;
1641 
1642         pgd = pgd_offset_k(addr);
1643         if (pgd_none(*pgd))
1644                 return false;
1645 
1646         p4d = p4d_offset(pgd, addr);
1647         if (p4d_none(*p4d))
1648                 return false;
1649 
1650         pud = pud_offset(p4d, addr);
1651         if (pud_none(*pud))
1652                 return false;
1653 
1654         if (pud_large(*pud))
1655                 return pfn_valid(pud_pfn(*pud));
1656 
1657         pmd = pmd_offset(pud, addr);
1658         if (pmd_none(*pmd))
1659                 return false;
1660 
1661         if (pmd_large(*pmd))
1662                 return pfn_valid(pmd_pfn(*pmd));
1663 
1664         pte = pte_offset_kernel(pmd, addr);
1665         if (pte_none(*pte))
1666                 return false;
1667 
1668         return pfn_valid(pte_pfn(*pte));
1669 }
1670 EXPORT_SYMBOL(kern_addr_valid);
1671 
1672 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1673                                               unsigned long vend,
1674                                               pud_t *pud)
1675 {
1676         const unsigned long mask16gb = (1UL << 34) - 1UL;
1677         u64 pte_val = vstart;
1678 
1679         /* Each PUD is 8GB */
1680         if ((vstart & mask16gb) ||
1681             (vend - vstart <= mask16gb)) {
1682                 pte_val ^= kern_linear_pte_xor[2];
1683                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1684 
1685                 return vstart + PUD_SIZE;
1686         }
1687 
1688         pte_val ^= kern_linear_pte_xor[3];
1689         pte_val |= _PAGE_PUD_HUGE;
1690 
1691         vend = vstart + mask16gb + 1UL;
1692         while (vstart < vend) {
1693                 pud_val(*pud) = pte_val;
1694 
1695                 pte_val += PUD_SIZE;
1696                 vstart += PUD_SIZE;
1697                 pud++;
1698         }
1699         return vstart;
1700 }
1701 
1702 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1703                                    bool guard)
1704 {
1705         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1706                 return true;
1707 
1708         return false;
1709 }
1710 
1711 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1712                                               unsigned long vend,
1713                                               pmd_t *pmd)
1714 {
1715         const unsigned long mask256mb = (1UL << 28) - 1UL;
1716         const unsigned long mask2gb = (1UL << 31) - 1UL;
1717         u64 pte_val = vstart;
1718 
1719         /* Each PMD is 8MB */
1720         if ((vstart & mask256mb) ||
1721             (vend - vstart <= mask256mb)) {
1722                 pte_val ^= kern_linear_pte_xor[0];
1723                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1724 
1725                 return vstart + PMD_SIZE;
1726         }
1727 
1728         if ((vstart & mask2gb) ||
1729             (vend - vstart <= mask2gb)) {
1730                 pte_val ^= kern_linear_pte_xor[1];
1731                 pte_val |= _PAGE_PMD_HUGE;
1732                 vend = vstart + mask256mb + 1UL;
1733         } else {
1734                 pte_val ^= kern_linear_pte_xor[2];
1735                 pte_val |= _PAGE_PMD_HUGE;
1736                 vend = vstart + mask2gb + 1UL;
1737         }
1738 
1739         while (vstart < vend) {
1740                 pmd_val(*pmd) = pte_val;
1741 
1742                 pte_val += PMD_SIZE;
1743                 vstart += PMD_SIZE;
1744                 pmd++;
1745         }
1746 
1747         return vstart;
1748 }
1749 
1750 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1751                                    bool guard)
1752 {
1753         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1754                 return true;
1755 
1756         return false;
1757 }
1758 
1759 static unsigned long __ref kernel_map_range(unsigned long pstart,
1760                                             unsigned long pend, pgprot_t prot,
1761                                             bool use_huge)
1762 {
1763         unsigned long vstart = PAGE_OFFSET + pstart;
1764         unsigned long vend = PAGE_OFFSET + pend;
1765         unsigned long alloc_bytes = 0UL;
1766 
1767         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1768                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1769                             vstart, vend);
1770                 prom_halt();
1771         }
1772 
1773         while (vstart < vend) {
1774                 unsigned long this_end, paddr = __pa(vstart);
1775                 pgd_t *pgd = pgd_offset_k(vstart);
1776                 p4d_t *p4d;
1777                 pud_t *pud;
1778                 pmd_t *pmd;
1779                 pte_t *pte;
1780 
1781                 if (pgd_none(*pgd)) {
1782                         pud_t *new;
1783 
1784                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1785                                                   PAGE_SIZE);
1786                         if (!new)
1787                                 goto err_alloc;
1788                         alloc_bytes += PAGE_SIZE;
1789                         pgd_populate(&init_mm, pgd, new);
1790                 }
1791 
1792                 p4d = p4d_offset(pgd, vstart);
1793                 if (p4d_none(*p4d)) {
1794                         pud_t *new;
1795 
1796                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1797                                                   PAGE_SIZE);
1798                         if (!new)
1799                                 goto err_alloc;
1800                         alloc_bytes += PAGE_SIZE;
1801                         p4d_populate(&init_mm, p4d, new);
1802                 }
1803 
1804                 pud = pud_offset(p4d, vstart);
1805                 if (pud_none(*pud)) {
1806                         pmd_t *new;
1807 
1808                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1809                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1810                                 continue;
1811                         }
1812                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1813                                                   PAGE_SIZE);
1814                         if (!new)
1815                                 goto err_alloc;
1816                         alloc_bytes += PAGE_SIZE;
1817                         pud_populate(&init_mm, pud, new);
1818                 }
1819 
1820                 pmd = pmd_offset(pud, vstart);
1821                 if (pmd_none(*pmd)) {
1822                         pte_t *new;
1823 
1824                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1825                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1826                                 continue;
1827                         }
1828                         new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1829                                                   PAGE_SIZE);
1830                         if (!new)
1831                                 goto err_alloc;
1832                         alloc_bytes += PAGE_SIZE;
1833                         pmd_populate_kernel(&init_mm, pmd, new);
1834                 }
1835 
1836                 pte = pte_offset_kernel(pmd, vstart);
1837                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1838                 if (this_end > vend)
1839                         this_end = vend;
1840 
1841                 while (vstart < this_end) {
1842                         pte_val(*pte) = (paddr | pgprot_val(prot));
1843 
1844                         vstart += PAGE_SIZE;
1845                         paddr += PAGE_SIZE;
1846                         pte++;
1847                 }
1848         }
1849 
1850         return alloc_bytes;
1851 
1852 err_alloc:
1853         panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1854               __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1855         return -ENOMEM;
1856 }
1857 
1858 static void __init flush_all_kernel_tsbs(void)
1859 {
1860         int i;
1861 
1862         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1863                 struct tsb *ent = &swapper_tsb[i];
1864 
1865                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1866         }
1867 #ifndef CONFIG_DEBUG_PAGEALLOC
1868         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1869                 struct tsb *ent = &swapper_4m_tsb[i];
1870 
1871                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1872         }
1873 #endif
1874 }
1875 
1876 extern unsigned int kvmap_linear_patch[1];
1877 
1878 static void __init kernel_physical_mapping_init(void)
1879 {
1880         unsigned long i, mem_alloced = 0UL;
1881         bool use_huge = true;
1882 
1883 #ifdef CONFIG_DEBUG_PAGEALLOC
1884         use_huge = false;
1885 #endif
1886         for (i = 0; i < pall_ents; i++) {
1887                 unsigned long phys_start, phys_end;
1888 
1889                 phys_start = pall[i].phys_addr;
1890                 phys_end = phys_start + pall[i].reg_size;
1891 
1892                 mem_alloced += kernel_map_range(phys_start, phys_end,
1893                                                 PAGE_KERNEL, use_huge);
1894         }
1895 
1896         printk("Allocated %ld bytes for kernel page tables.\n",
1897                mem_alloced);
1898 
1899         kvmap_linear_patch[0] = 0x01000000; /* nop */
1900         flushi(&kvmap_linear_patch[0]);
1901 
1902         flush_all_kernel_tsbs();
1903 
1904         __flush_tlb_all();
1905 }
1906 
1907 #ifdef CONFIG_DEBUG_PAGEALLOC
1908 void __kernel_map_pages(struct page *page, int numpages, int enable)
1909 {
1910         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1911         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1912 
1913         kernel_map_range(phys_start, phys_end,
1914                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1915 
1916         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1917                                PAGE_OFFSET + phys_end);
1918 
1919         /* we should perform an IPI and flush all tlbs,
1920          * but that can deadlock->flush only current cpu.
1921          */
1922         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1923                                  PAGE_OFFSET + phys_end);
1924 }
1925 #endif
1926 
1927 unsigned long __init find_ecache_flush_span(unsigned long size)
1928 {
1929         int i;
1930 
1931         for (i = 0; i < pavail_ents; i++) {
1932                 if (pavail[i].reg_size >= size)
1933                         return pavail[i].phys_addr;
1934         }
1935 
1936         return ~0UL;
1937 }
1938 
1939 unsigned long PAGE_OFFSET;
1940 EXPORT_SYMBOL(PAGE_OFFSET);
1941 
1942 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1943 EXPORT_SYMBOL(VMALLOC_END);
1944 
1945 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1946 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1947 
1948 static void __init setup_page_offset(void)
1949 {
1950         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1951                 /* Cheetah/Panther support a full 64-bit virtual
1952                  * address, so we can use all that our page tables
1953                  * support.
1954                  */
1955                 sparc64_va_hole_top =    0xfff0000000000000UL;
1956                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1957 
1958                 max_phys_bits = 42;
1959         } else if (tlb_type == hypervisor) {
1960                 switch (sun4v_chip_type) {
1961                 case SUN4V_CHIP_NIAGARA1:
1962                 case SUN4V_CHIP_NIAGARA2:
1963                         /* T1 and T2 support 48-bit virtual addresses.  */
1964                         sparc64_va_hole_top =    0xffff800000000000UL;
1965                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1966 
1967                         max_phys_bits = 39;
1968                         break;
1969                 case SUN4V_CHIP_NIAGARA3:
1970                         /* T3 supports 48-bit virtual addresses.  */
1971                         sparc64_va_hole_top =    0xffff800000000000UL;
1972                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1973 
1974                         max_phys_bits = 43;
1975                         break;
1976                 case SUN4V_CHIP_NIAGARA4:
1977                 case SUN4V_CHIP_NIAGARA5:
1978                 case SUN4V_CHIP_SPARC64X:
1979                 case SUN4V_CHIP_SPARC_M6:
1980                         /* T4 and later support 52-bit virtual addresses.  */
1981                         sparc64_va_hole_top =    0xfff8000000000000UL;
1982                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1983                         max_phys_bits = 47;
1984                         break;
1985                 case SUN4V_CHIP_SPARC_M7:
1986                 case SUN4V_CHIP_SPARC_SN:
1987                         /* M7 and later support 52-bit virtual addresses.  */
1988                         sparc64_va_hole_top =    0xfff8000000000000UL;
1989                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1990                         max_phys_bits = 49;
1991                         break;
1992                 case SUN4V_CHIP_SPARC_M8:
1993                 default:
1994                         /* M8 and later support 54-bit virtual addresses.
1995                          * However, restricting M8 and above VA bits to 53
1996                          * as 4-level page table cannot support more than
1997                          * 53 VA bits.
1998                          */
1999                         sparc64_va_hole_top =    0xfff0000000000000UL;
2000                         sparc64_va_hole_bottom = 0x0010000000000000UL;
2001                         max_phys_bits = 51;
2002                         break;
2003                 }
2004         }
2005 
2006         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2007                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2008                             max_phys_bits);
2009                 prom_halt();
2010         }
2011 
2012         PAGE_OFFSET = sparc64_va_hole_top;
2013         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2014                        (sparc64_va_hole_bottom >> 2));
2015 
2016         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2017                 PAGE_OFFSET, max_phys_bits);
2018         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2019                 VMALLOC_START, VMALLOC_END);
2020         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2021                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
2022 }
2023 
2024 static void __init tsb_phys_patch(void)
2025 {
2026         struct tsb_ldquad_phys_patch_entry *pquad;
2027         struct tsb_phys_patch_entry *p;
2028 
2029         pquad = &__tsb_ldquad_phys_patch;
2030         while (pquad < &__tsb_ldquad_phys_patch_end) {
2031                 unsigned long addr = pquad->addr;
2032 
2033                 if (tlb_type == hypervisor)
2034                         *(unsigned int *) addr = pquad->sun4v_insn;
2035                 else
2036                         *(unsigned int *) addr = pquad->sun4u_insn;
2037                 wmb();
2038                 __asm__ __volatile__("flush     %0"
2039                                      : /* no outputs */
2040                                      : "r" (addr));
2041 
2042                 pquad++;
2043         }
2044 
2045         p = &__tsb_phys_patch;
2046         while (p < &__tsb_phys_patch_end) {
2047                 unsigned long addr = p->addr;
2048 
2049                 *(unsigned int *) addr = p->insn;
2050                 wmb();
2051                 __asm__ __volatile__("flush     %0"
2052                                      : /* no outputs */
2053                                      : "r" (addr));
2054 
2055                 p++;
2056         }
2057 }
2058 
2059 /* Don't mark as init, we give this to the Hypervisor.  */
2060 #ifndef CONFIG_DEBUG_PAGEALLOC
2061 #define NUM_KTSB_DESCR  2
2062 #else
2063 #define NUM_KTSB_DESCR  1
2064 #endif
2065 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2066 
2067 /* The swapper TSBs are loaded with a base sequence of:
2068  *
2069  *      sethi   %uhi(SYMBOL), REG1
2070  *      sethi   %hi(SYMBOL), REG2
2071  *      or      REG1, %ulo(SYMBOL), REG1
2072  *      or      REG2, %lo(SYMBOL), REG2
2073  *      sllx    REG1, 32, REG1
2074  *      or      REG1, REG2, REG1
2075  *
2076  * When we use physical addressing for the TSB accesses, we patch the
2077  * first four instructions in the above sequence.
2078  */
2079 
2080 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2081 {
2082         unsigned long high_bits, low_bits;
2083 
2084         high_bits = (pa >> 32) & 0xffffffff;
2085         low_bits = (pa >> 0) & 0xffffffff;
2086 
2087         while (start < end) {
2088                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2089 
2090                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2091                 __asm__ __volatile__("flush     %0" : : "r" (ia));
2092 
2093                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2094                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
2095 
2096                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2097                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
2098 
2099                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2100                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
2101 
2102                 start++;
2103         }
2104 }
2105 
2106 static void ktsb_phys_patch(void)
2107 {
2108         extern unsigned int __swapper_tsb_phys_patch;
2109         extern unsigned int __swapper_tsb_phys_patch_end;
2110         unsigned long ktsb_pa;
2111 
2112         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2113         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2114                             &__swapper_tsb_phys_patch_end, ktsb_pa);
2115 #ifndef CONFIG_DEBUG_PAGEALLOC
2116         {
2117         extern unsigned int __swapper_4m_tsb_phys_patch;
2118         extern unsigned int __swapper_4m_tsb_phys_patch_end;
2119         ktsb_pa = (kern_base +
2120                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2121         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2122                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2123         }
2124 #endif
2125 }
2126 
2127 static void __init sun4v_ktsb_init(void)
2128 {
2129         unsigned long ktsb_pa;
2130 
2131         /* First KTSB for PAGE_SIZE mappings.  */
2132         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2133 
2134         switch (PAGE_SIZE) {
2135         case 8 * 1024:
2136         default:
2137                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2138                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2139                 break;
2140 
2141         case 64 * 1024:
2142                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2143                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2144                 break;
2145 
2146         case 512 * 1024:
2147                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2148                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2149                 break;
2150 
2151         case 4 * 1024 * 1024:
2152                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2153                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2154                 break;
2155         }
2156 
2157         ktsb_descr[0].assoc = 1;
2158         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2159         ktsb_descr[0].ctx_idx = 0;
2160         ktsb_descr[0].tsb_base = ktsb_pa;
2161         ktsb_descr[0].resv = 0;
2162 
2163 #ifndef CONFIG_DEBUG_PAGEALLOC
2164         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2165         ktsb_pa = (kern_base +
2166                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2167 
2168         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2169         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2170                                     HV_PGSZ_MASK_256MB |
2171                                     HV_PGSZ_MASK_2GB |
2172                                     HV_PGSZ_MASK_16GB) &
2173                                    cpu_pgsz_mask);
2174         ktsb_descr[1].assoc = 1;
2175         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2176         ktsb_descr[1].ctx_idx = 0;
2177         ktsb_descr[1].tsb_base = ktsb_pa;
2178         ktsb_descr[1].resv = 0;
2179 #endif
2180 }
2181 
2182 void sun4v_ktsb_register(void)
2183 {
2184         unsigned long pa, ret;
2185 
2186         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2187 
2188         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2189         if (ret != 0) {
2190                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2191                             "errors with %lx\n", pa, ret);
2192                 prom_halt();
2193         }
2194 }
2195 
2196 static void __init sun4u_linear_pte_xor_finalize(void)
2197 {
2198 #ifndef CONFIG_DEBUG_PAGEALLOC
2199         /* This is where we would add Panther support for
2200          * 32MB and 256MB pages.
2201          */
2202 #endif
2203 }
2204 
2205 static void __init sun4v_linear_pte_xor_finalize(void)
2206 {
2207         unsigned long pagecv_flag;
2208 
2209         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2210          * enables MCD error. Do not set bit 9 on M7 processor.
2211          */
2212         switch (sun4v_chip_type) {
2213         case SUN4V_CHIP_SPARC_M7:
2214         case SUN4V_CHIP_SPARC_M8:
2215         case SUN4V_CHIP_SPARC_SN:
2216                 pagecv_flag = 0x00;
2217                 break;
2218         default:
2219                 pagecv_flag = _PAGE_CV_4V;
2220                 break;
2221         }
2222 #ifndef CONFIG_DEBUG_PAGEALLOC
2223         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2224                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2225                         PAGE_OFFSET;
2226                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2227                                            _PAGE_P_4V | _PAGE_W_4V);
2228         } else {
2229                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2230         }
2231 
2232         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2233                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2234                         PAGE_OFFSET;
2235                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2236                                            _PAGE_P_4V | _PAGE_W_4V);
2237         } else {
2238                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2239         }
2240 
2241         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2242                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2243                         PAGE_OFFSET;
2244                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2245                                            _PAGE_P_4V | _PAGE_W_4V);
2246         } else {
2247                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2248         }
2249 #endif
2250 }
2251 
2252 /* paging_init() sets up the page tables */
2253 
2254 static unsigned long last_valid_pfn;
2255 
2256 static void sun4u_pgprot_init(void);
2257 static void sun4v_pgprot_init(void);
2258 
2259 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2260 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2261 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2262 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2263 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2264 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2265 
2266 /* We need to exclude reserved regions. This exclusion will include
2267  * vmlinux and initrd. To be more precise the initrd size could be used to
2268  * compute a new lower limit because it is freed later during initialization.
2269  */
2270 static void __init reduce_memory(phys_addr_t limit_ram)
2271 {
2272         limit_ram += memblock_reserved_size();
2273         memblock_enforce_memory_limit(limit_ram);
2274 }
2275 
2276 void __init paging_init(void)
2277 {
2278         unsigned long end_pfn, shift, phys_base;
2279         unsigned long real_end, i;
2280 
2281         setup_page_offset();
2282 
2283         /* These build time checkes make sure that the dcache_dirty_cpu()
2284          * page->flags usage will work.
2285          *
2286          * When a page gets marked as dcache-dirty, we store the
2287          * cpu number starting at bit 32 in the page->flags.  Also,
2288          * functions like clear_dcache_dirty_cpu use the cpu mask
2289          * in 13-bit signed-immediate instruction fields.
2290          */
2291 
2292         /*
2293          * Page flags must not reach into upper 32 bits that are used
2294          * for the cpu number
2295          */
2296         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2297 
2298         /*
2299          * The bit fields placed in the high range must not reach below
2300          * the 32 bit boundary. Otherwise we cannot place the cpu field
2301          * at the 32 bit boundary.
2302          */
2303         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2304                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2305 
2306         BUILD_BUG_ON(NR_CPUS > 4096);
2307 
2308         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2309         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2310 
2311         /* Invalidate both kernel TSBs.  */
2312         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2313 #ifndef CONFIG_DEBUG_PAGEALLOC
2314         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2315 #endif
2316 
2317         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2318          * bit on M7 processor. This is a conflicting usage of the same
2319          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2320          * Detection error on all pages and this will lead to problems
2321          * later. Kernel does not run with MCD enabled and hence rest
2322          * of the required steps to fully configure memory corruption
2323          * detection are not taken. We need to ensure TTE.mcde is not
2324          * set on M7 processor. Compute the value of cacheability
2325          * flag for use later taking this into consideration.
2326          */
2327         switch (sun4v_chip_type) {
2328         case SUN4V_CHIP_SPARC_M7:
2329         case SUN4V_CHIP_SPARC_M8:
2330         case SUN4V_CHIP_SPARC_SN:
2331                 page_cache4v_flag = _PAGE_CP_4V;
2332                 break;
2333         default:
2334                 page_cache4v_flag = _PAGE_CACHE_4V;
2335                 break;
2336         }
2337 
2338         if (tlb_type == hypervisor)
2339                 sun4v_pgprot_init();
2340         else
2341                 sun4u_pgprot_init();
2342 
2343         if (tlb_type == cheetah_plus ||
2344             tlb_type == hypervisor) {
2345                 tsb_phys_patch();
2346                 ktsb_phys_patch();
2347         }
2348 
2349         if (tlb_type == hypervisor)
2350                 sun4v_patch_tlb_handlers();
2351 
2352         /* Find available physical memory...
2353          *
2354          * Read it twice in order to work around a bug in openfirmware.
2355          * The call to grab this table itself can cause openfirmware to
2356          * allocate memory, which in turn can take away some space from
2357          * the list of available memory.  Reading it twice makes sure
2358          * we really do get the final value.
2359          */
2360         read_obp_translations();
2361         read_obp_memory("reg", &pall[0], &pall_ents);
2362         read_obp_memory("available", &pavail[0], &pavail_ents);
2363         read_obp_memory("available", &pavail[0], &pavail_ents);
2364 
2365         phys_base = 0xffffffffffffffffUL;
2366         for (i = 0; i < pavail_ents; i++) {
2367                 phys_base = min(phys_base, pavail[i].phys_addr);
2368                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2369         }
2370 
2371         memblock_reserve(kern_base, kern_size);
2372 
2373         find_ramdisk(phys_base);
2374 
2375         if (cmdline_memory_size)
2376                 reduce_memory(cmdline_memory_size);
2377 
2378         memblock_allow_resize();
2379         memblock_dump_all();
2380 
2381         set_bit(0, mmu_context_bmap);
2382 
2383         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2384 
2385         real_end = (unsigned long)_end;
2386         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2387         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2388                num_kernel_image_mappings);
2389 
2390         /* Set kernel pgd to upper alias so physical page computations
2391          * work.
2392          */
2393         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2394         
2395         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2396 
2397         inherit_prom_mappings();
2398         
2399         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2400         setup_tba();
2401 
2402         __flush_tlb_all();
2403 
2404         prom_build_devicetree();
2405         of_populate_present_mask();
2406 #ifndef CONFIG_SMP
2407         of_fill_in_cpu_data();
2408 #endif
2409 
2410         if (tlb_type == hypervisor) {
2411                 sun4v_mdesc_init();
2412                 mdesc_populate_present_mask(cpu_all_mask);
2413 #ifndef CONFIG_SMP
2414                 mdesc_fill_in_cpu_data(cpu_all_mask);
2415 #endif
2416                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2417 
2418                 sun4v_linear_pte_xor_finalize();
2419 
2420                 sun4v_ktsb_init();
2421                 sun4v_ktsb_register();
2422         } else {
2423                 unsigned long impl, ver;
2424 
2425                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2426                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2427 
2428                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2429                 impl = ((ver >> 32) & 0xffff);
2430                 if (impl == PANTHER_IMPL)
2431                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2432                                           HV_PGSZ_MASK_256MB);
2433 
2434                 sun4u_linear_pte_xor_finalize();
2435         }
2436 
2437         /* Flush the TLBs and the 4M TSB so that the updated linear
2438          * pte XOR settings are realized for all mappings.
2439          */
2440         __flush_tlb_all();
2441 #ifndef CONFIG_DEBUG_PAGEALLOC
2442         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2443 #endif
2444         __flush_tlb_all();
2445 
2446         /* Setup bootmem... */
2447         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2448 
2449         kernel_physical_mapping_init();
2450 
2451         {
2452                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2453 
2454                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2455 
2456                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2457 
2458                 free_area_init(max_zone_pfns);
2459         }
2460 
2461         printk("Booting Linux...\n");
2462 }
2463 
2464 int page_in_phys_avail(unsigned long paddr)
2465 {
2466         int i;
2467 
2468         paddr &= PAGE_MASK;
2469 
2470         for (i = 0; i < pavail_ents; i++) {
2471                 unsigned long start, end;
2472 
2473                 start = pavail[i].phys_addr;
2474                 end = start + pavail[i].reg_size;
2475 
2476                 if (paddr >= start && paddr < end)
2477                         return 1;
2478         }
2479         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2480                 return 1;
2481 #ifdef CONFIG_BLK_DEV_INITRD
2482         if (paddr >= __pa(initrd_start) &&
2483             paddr < __pa(PAGE_ALIGN(initrd_end)))
2484                 return 1;
2485 #endif
2486 
2487         return 0;
2488 }
2489 
2490 static void __init register_page_bootmem_info(void)
2491 {
2492 #ifdef CONFIG_NUMA
2493         int i;
2494 
2495         for_each_online_node(i)
2496                 if (NODE_DATA(i)->node_spanned_pages)
2497                         register_page_bootmem_info_node(NODE_DATA(i));
2498 #endif
2499 }
2500 void __init mem_init(void)
2501 {
2502         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2503 
2504         memblock_free_all();
2505 
2506         /*
2507          * Must be done after boot memory is put on freelist, because here we
2508          * might set fields in deferred struct pages that have not yet been
2509          * initialized, and memblock_free_all() initializes all the reserved
2510          * deferred pages for us.
2511          */
2512         register_page_bootmem_info();
2513 
2514         /*
2515          * Set up the zero page, mark it reserved, so that page count
2516          * is not manipulated when freeing the page from user ptes.
2517          */
2518         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2519         if (mem_map_zero == NULL) {
2520                 prom_printf("paging_init: Cannot alloc zero page.\n");
2521                 prom_halt();
2522         }
2523         mark_page_reserved(mem_map_zero);
2524 
2525 
2526         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2527                 cheetah_ecache_flush_init();
2528 }
2529 
2530 void free_initmem(void)
2531 {
2532         unsigned long addr, initend;
2533         int do_free = 1;
2534 
2535         /* If the physical memory maps were trimmed by kernel command
2536          * line options, don't even try freeing this initmem stuff up.
2537          * The kernel image could have been in the trimmed out region
2538          * and if so the freeing below will free invalid page structs.
2539          */
2540         if (cmdline_memory_size)
2541                 do_free = 0;
2542 
2543         /*
2544          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2545          */
2546         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2547         initend = (unsigned long)(__init_end) & PAGE_MASK;
2548         for (; addr < initend; addr += PAGE_SIZE) {
2549                 unsigned long page;
2550 
2551                 page = (addr +
2552                         ((unsigned long) __va(kern_base)) -
2553                         ((unsigned long) KERNBASE));
2554                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2555 
2556                 if (do_free)
2557                         free_reserved_page(virt_to_page(page));
2558         }
2559 }
2560 
2561 pgprot_t PAGE_KERNEL __read_mostly;
2562 EXPORT_SYMBOL(PAGE_KERNEL);
2563 
2564 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2565 pgprot_t PAGE_COPY __read_mostly;
2566 
2567 pgprot_t PAGE_SHARED __read_mostly;
2568 EXPORT_SYMBOL(PAGE_SHARED);
2569 
2570 unsigned long pg_iobits __read_mostly;
2571 
2572 unsigned long _PAGE_IE __read_mostly;
2573 EXPORT_SYMBOL(_PAGE_IE);
2574 
2575 unsigned long _PAGE_E __read_mostly;
2576 EXPORT_SYMBOL(_PAGE_E);
2577 
2578 unsigned long _PAGE_CACHE __read_mostly;
2579 EXPORT_SYMBOL(_PAGE_CACHE);
2580 
2581 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2582 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2583                                int node, struct vmem_altmap *altmap)
2584 {
2585         unsigned long pte_base;
2586 
2587         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2588                     _PAGE_CP_4U | _PAGE_CV_4U |
2589                     _PAGE_P_4U | _PAGE_W_4U);
2590         if (tlb_type == hypervisor)
2591                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2592                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2593 
2594         pte_base |= _PAGE_PMD_HUGE;
2595 
2596         vstart = vstart & PMD_MASK;
2597         vend = ALIGN(vend, PMD_SIZE);
2598         for (; vstart < vend; vstart += PMD_SIZE) {
2599                 pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2600                 unsigned long pte;
2601                 p4d_t *p4d;
2602                 pud_t *pud;
2603                 pmd_t *pmd;
2604 
2605                 if (!pgd)
2606                         return -ENOMEM;
2607 
2608                 p4d = vmemmap_p4d_populate(pgd, vstart, node);
2609                 if (!p4d)
2610                         return -ENOMEM;
2611 
2612                 pud = vmemmap_pud_populate(p4d, vstart, node);
2613                 if (!pud)
2614                         return -ENOMEM;
2615 
2616                 pmd = pmd_offset(pud, vstart);
2617                 pte = pmd_val(*pmd);
2618                 if (!(pte & _PAGE_VALID)) {
2619                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2620 
2621                         if (!block)
2622                                 return -ENOMEM;
2623 
2624                         pmd_val(*pmd) = pte_base | __pa(block);
2625                 }
2626         }
2627 
2628         return 0;
2629 }
2630 
2631 void vmemmap_free(unsigned long start, unsigned long end,
2632                 struct vmem_altmap *altmap)
2633 {
2634 }
2635 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2636 
2637 static void prot_init_common(unsigned long page_none,
2638                              unsigned long page_shared,
2639                              unsigned long page_copy,
2640                              unsigned long page_readonly,
2641                              unsigned long page_exec_bit)
2642 {
2643         PAGE_COPY = __pgprot(page_copy);
2644         PAGE_SHARED = __pgprot(page_shared);
2645 
2646         protection_map[0x0] = __pgprot(page_none);
2647         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2648         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2649         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2650         protection_map[0x4] = __pgprot(page_readonly);
2651         protection_map[0x5] = __pgprot(page_readonly);
2652         protection_map[0x6] = __pgprot(page_copy);
2653         protection_map[0x7] = __pgprot(page_copy);
2654         protection_map[0x8] = __pgprot(page_none);
2655         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2656         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2657         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2658         protection_map[0xc] = __pgprot(page_readonly);
2659         protection_map[0xd] = __pgprot(page_readonly);
2660         protection_map[0xe] = __pgprot(page_shared);
2661         protection_map[0xf] = __pgprot(page_shared);
2662 }
2663 
2664 static void __init sun4u_pgprot_init(void)
2665 {
2666         unsigned long page_none, page_shared, page_copy, page_readonly;
2667         unsigned long page_exec_bit;
2668         int i;
2669 
2670         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2671                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2672                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2673                                 _PAGE_EXEC_4U);
2674         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2675                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2676                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2677                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2678 
2679         _PAGE_IE = _PAGE_IE_4U;
2680         _PAGE_E = _PAGE_E_4U;
2681         _PAGE_CACHE = _PAGE_CACHE_4U;
2682 
2683         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2684                      __ACCESS_BITS_4U | _PAGE_E_4U);
2685 
2686 #ifdef CONFIG_DEBUG_PAGEALLOC
2687         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2688 #else
2689         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2690                 PAGE_OFFSET;
2691 #endif
2692         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2693                                    _PAGE_P_4U | _PAGE_W_4U);
2694 
2695         for (i = 1; i < 4; i++)
2696                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2697 
2698         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2699                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2700                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2701 
2702 
2703         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2704         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2705                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2706         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2707                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2708         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2709                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2710 
2711         page_exec_bit = _PAGE_EXEC_4U;
2712 
2713         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2714                          page_exec_bit);
2715 }
2716 
2717 static void __init sun4v_pgprot_init(void)
2718 {
2719         unsigned long page_none, page_shared, page_copy, page_readonly;
2720         unsigned long page_exec_bit;
2721         int i;
2722 
2723         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2724                                 page_cache4v_flag | _PAGE_P_4V |
2725                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2726                                 _PAGE_EXEC_4V);
2727         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2728 
2729         _PAGE_IE = _PAGE_IE_4V;
2730         _PAGE_E = _PAGE_E_4V;
2731         _PAGE_CACHE = page_cache4v_flag;
2732 
2733 #ifdef CONFIG_DEBUG_PAGEALLOC
2734         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2735 #else
2736         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2737                 PAGE_OFFSET;
2738 #endif
2739         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2740                                    _PAGE_W_4V);
2741 
2742         for (i = 1; i < 4; i++)
2743                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2744 
2745         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2746                      __ACCESS_BITS_4V | _PAGE_E_4V);
2747 
2748         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2749                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2750                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2751                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2752 
2753         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2754         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2755                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2756         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2757                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2758         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2759                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2760 
2761         page_exec_bit = _PAGE_EXEC_4V;
2762 
2763         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2764                          page_exec_bit);
2765 }
2766 
2767 unsigned long pte_sz_bits(unsigned long sz)
2768 {
2769         if (tlb_type == hypervisor) {
2770                 switch (sz) {
2771                 case 8 * 1024:
2772                 default:
2773                         return _PAGE_SZ8K_4V;
2774                 case 64 * 1024:
2775                         return _PAGE_SZ64K_4V;
2776                 case 512 * 1024:
2777                         return _PAGE_SZ512K_4V;
2778                 case 4 * 1024 * 1024:
2779                         return _PAGE_SZ4MB_4V;
2780                 }
2781         } else {
2782                 switch (sz) {
2783                 case 8 * 1024:
2784                 default:
2785                         return _PAGE_SZ8K_4U;
2786                 case 64 * 1024:
2787                         return _PAGE_SZ64K_4U;
2788                 case 512 * 1024:
2789                         return _PAGE_SZ512K_4U;
2790                 case 4 * 1024 * 1024:
2791                         return _PAGE_SZ4MB_4U;
2792                 }
2793         }
2794 }
2795 
2796 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2797 {
2798         pte_t pte;
2799 
2800         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2801         pte_val(pte) |= (((unsigned long)space) << 32);
2802         pte_val(pte) |= pte_sz_bits(page_size);
2803 
2804         return pte;
2805 }
2806 
2807 static unsigned long kern_large_tte(unsigned long paddr)
2808 {
2809         unsigned long val;
2810 
2811         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2812                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2813                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2814         if (tlb_type == hypervisor)
2815                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2816                        page_cache4v_flag | _PAGE_P_4V |
2817                        _PAGE_EXEC_4V | _PAGE_W_4V);
2818 
2819         return val | paddr;
2820 }
2821 
2822 /* If not locked, zap it. */
2823 void __flush_tlb_all(void)
2824 {
2825         unsigned long pstate;
2826         int i;
2827 
2828         __asm__ __volatile__("flushw\n\t"
2829                              "rdpr      %%pstate, %0\n\t"
2830                              "wrpr      %0, %1, %%pstate"
2831                              : "=r" (pstate)
2832                              : "i" (PSTATE_IE));
2833         if (tlb_type == hypervisor) {
2834                 sun4v_mmu_demap_all();
2835         } else if (tlb_type == spitfire) {
2836                 for (i = 0; i < 64; i++) {
2837                         /* Spitfire Errata #32 workaround */
2838                         /* NOTE: Always runs on spitfire, so no
2839                          *       cheetah+ page size encodings.
2840                          */
2841                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2842                                              "flush     %%g6"
2843                                              : /* No outputs */
2844                                              : "r" (0),
2845                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2846 
2847                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2848                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2849                                                      "membar #Sync"
2850                                                      : /* no outputs */
2851                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2852                                 spitfire_put_dtlb_data(i, 0x0UL);
2853                         }
2854 
2855                         /* Spitfire Errata #32 workaround */
2856                         /* NOTE: Always runs on spitfire, so no
2857                          *       cheetah+ page size encodings.
2858                          */
2859                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2860                                              "flush     %%g6"
2861                                              : /* No outputs */
2862                                              : "r" (0),
2863                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2864 
2865                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2866                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2867                                                      "membar #Sync"
2868                                                      : /* no outputs */
2869                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2870                                 spitfire_put_itlb_data(i, 0x0UL);
2871                         }
2872                 }
2873         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2874                 cheetah_flush_dtlb_all();
2875                 cheetah_flush_itlb_all();
2876         }
2877         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2878                              : : "r" (pstate));
2879 }
2880 
2881 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2882 {
2883         struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2884         pte_t *pte = NULL;
2885 
2886         if (page)
2887                 pte = (pte_t *) page_address(page);
2888 
2889         return pte;
2890 }
2891 
2892 pgtable_t pte_alloc_one(struct mm_struct *mm)
2893 {
2894         struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2895         if (!page)
2896                 return NULL;
2897         if (!pgtable_pte_page_ctor(page)) {
2898                 __free_page(page);
2899                 return NULL;
2900         }
2901         return (pte_t *) page_address(page);
2902 }
2903 
2904 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2905 {
2906         free_page((unsigned long)pte);
2907 }
2908 
2909 static void __pte_free(pgtable_t pte)
2910 {
2911         struct page *page = virt_to_page(pte);
2912 
2913         pgtable_pte_page_dtor(page);
2914         __free_page(page);
2915 }
2916 
2917 void pte_free(struct mm_struct *mm, pgtable_t pte)
2918 {
2919         __pte_free(pte);
2920 }
2921 
2922 void pgtable_free(void *table, bool is_page)
2923 {
2924         if (is_page)
2925                 __pte_free(table);
2926         else
2927                 kmem_cache_free(pgtable_cache, table);
2928 }
2929 
2930 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2931 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2932                           pmd_t *pmd)
2933 {
2934         unsigned long pte, flags;
2935         struct mm_struct *mm;
2936         pmd_t entry = *pmd;
2937 
2938         if (!pmd_large(entry) || !pmd_young(entry))
2939                 return;
2940 
2941         pte = pmd_val(entry);
2942 
2943         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2944         if (!(pte & _PAGE_VALID))
2945                 return;
2946 
2947         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2948         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2949 
2950         mm = vma->vm_mm;
2951 
2952         spin_lock_irqsave(&mm->context.lock, flags);
2953 
2954         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2955                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2956                                         addr, pte);
2957 
2958         spin_unlock_irqrestore(&mm->context.lock, flags);
2959 }
2960 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2961 
2962 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2963 static void context_reload(void *__data)
2964 {
2965         struct mm_struct *mm = __data;
2966 
2967         if (mm == current->mm)
2968                 load_secondary_context(mm);
2969 }
2970 
2971 void hugetlb_setup(struct pt_regs *regs)
2972 {
2973         struct mm_struct *mm = current->mm;
2974         struct tsb_config *tp;
2975 
2976         if (faulthandler_disabled() || !mm) {
2977                 const struct exception_table_entry *entry;
2978 
2979                 entry = search_exception_tables(regs->tpc);
2980                 if (entry) {
2981                         regs->tpc = entry->fixup;
2982                         regs->tnpc = regs->tpc + 4;
2983                         return;
2984                 }
2985                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2986                 die_if_kernel("HugeTSB in atomic", regs);
2987         }
2988 
2989         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2990         if (likely(tp->tsb == NULL))
2991                 tsb_grow(mm, MM_TSB_HUGE, 0);
2992 
2993         tsb_context_switch(mm);
2994         smp_tsb_sync(mm);
2995 
2996         /* On UltraSPARC-III+ and later, configure the second half of
2997          * the Data-TLB for huge pages.
2998          */
2999         if (tlb_type == cheetah_plus) {
3000                 bool need_context_reload = false;
3001                 unsigned long ctx;
3002 
3003                 spin_lock_irq(&ctx_alloc_lock);
3004                 ctx = mm->context.sparc64_ctx_val;
3005                 ctx &= ~CTX_PGSZ_MASK;
3006                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3007                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3008 
3009                 if (ctx != mm->context.sparc64_ctx_val) {
3010                         /* When changing the page size fields, we
3011                          * must perform a context flush so that no
3012                          * stale entries match.  This flush must
3013                          * occur with the original context register
3014                          * settings.
3015                          */
3016                         do_flush_tlb_mm(mm);
3017 
3018                         /* Reload the context register of all processors
3019                          * also executing in this address space.
3020                          */
3021                         mm->context.sparc64_ctx_val = ctx;
3022                         need_context_reload = true;
3023                 }
3024                 spin_unlock_irq(&ctx_alloc_lock);
3025 
3026                 if (need_context_reload)
3027                         on_each_cpu(context_reload, mm, 0);
3028         }
3029 }
3030 #endif
3031 
3032 static struct resource code_resource = {
3033         .name   = "Kernel code",
3034         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3035 };
3036 
3037 static struct resource data_resource = {
3038         .name   = "Kernel data",
3039         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3040 };
3041 
3042 static struct resource bss_resource = {
3043         .name   = "Kernel bss",
3044         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3045 };
3046 
3047 static inline resource_size_t compute_kern_paddr(void *addr)
3048 {
3049         return (resource_size_t) (addr - KERNBASE + kern_base);
3050 }
3051 
3052 static void __init kernel_lds_init(void)
3053 {
3054         code_resource.start = compute_kern_paddr(_text);
3055         code_resource.end   = compute_kern_paddr(_etext - 1);
3056         data_resource.start = compute_kern_paddr(_etext);
3057         data_resource.end   = compute_kern_paddr(_edata - 1);
3058         bss_resource.start  = compute_kern_paddr(__bss_start);
3059         bss_resource.end    = compute_kern_paddr(_end - 1);
3060 }
3061 
3062 static int __init report_memory(void)
3063 {
3064         int i;
3065         struct resource *res;
3066 
3067         kernel_lds_init();
3068 
3069         for (i = 0; i < pavail_ents; i++) {
3070                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3071 
3072                 if (!res) {
3073                         pr_warn("Failed to allocate source.\n");
3074                         break;
3075                 }
3076 
3077                 res->name = "System RAM";
3078                 res->start = pavail[i].phys_addr;
3079                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3080                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3081 
3082                 if (insert_resource(&iomem_resource, res) < 0) {
3083                         pr_warn("Resource insertion failed.\n");
3084                         break;
3085                 }
3086 
3087                 insert_resource(res, &code_resource);
3088                 insert_resource(res, &data_resource);
3089                 insert_resource(res, &bss_resource);
3090         }
3091 
3092         return 0;
3093 }
3094 arch_initcall(report_memory);
3095 
3096 #ifdef CONFIG_SMP
3097 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3098 #else
3099 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3100 #endif
3101 
3102 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3103 {
3104         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3105                 if (start < LOW_OBP_ADDRESS) {
3106                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3107                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3108                 }
3109                 if (end > HI_OBP_ADDRESS) {
3110                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3111                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3112                 }
3113         } else {
3114                 flush_tsb_kernel_range(start, end);
3115                 do_flush_tlb_kernel_range(start, end);
3116         }
3117 }
3118 
3119 void copy_user_highpage(struct page *to, struct page *from,
3120         unsigned long vaddr, struct vm_area_struct *vma)
3121 {
3122         char *vfrom, *vto;
3123 
3124         vfrom = kmap_atomic(from);
3125         vto = kmap_atomic(to);
3126         copy_user_page(vto, vfrom, vaddr, to);
3127         kunmap_atomic(vto);
3128         kunmap_atomic(vfrom);
3129 
3130         /* If this page has ADI enabled, copy over any ADI tags
3131          * as well
3132          */
3133         if (vma->vm_flags & VM_SPARC_ADI) {
3134                 unsigned long pfrom, pto, i, adi_tag;
3135 
3136                 pfrom = page_to_phys(from);
3137                 pto = page_to_phys(to);
3138 
3139                 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3140                         asm volatile("ldxa [%1] %2, %0\n\t"
3141                                         : "=r" (adi_tag)
3142                                         :  "r" (i), "i" (ASI_MCD_REAL));
3143                         asm volatile("stxa %0, [%1] %2\n\t"
3144                                         :
3145                                         : "r" (adi_tag), "r" (pto),
3146                                           "i" (ASI_MCD_REAL));
3147                         pto += adi_blksize();
3148                 }
3149                 asm volatile("membar #Sync\n\t");
3150         }
3151 }
3152 EXPORT_SYMBOL(copy_user_highpage);
3153 
3154 void copy_highpage(struct page *to, struct page *from)
3155 {
3156         char *vfrom, *vto;
3157 
3158         vfrom = kmap_atomic(from);
3159         vto = kmap_atomic(to);
3160         copy_page(vto, vfrom);
3161         kunmap_atomic(vto);
3162         kunmap_atomic(vfrom);
3163 
3164         /* If this platform is ADI enabled, copy any ADI tags
3165          * as well
3166          */
3167         if (adi_capable()) {
3168                 unsigned long pfrom, pto, i, adi_tag;
3169 
3170                 pfrom = page_to_phys(from);
3171                 pto = page_to_phys(to);
3172 
3173                 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3174                         asm volatile("ldxa [%1] %2, %0\n\t"
3175                                         : "=r" (adi_tag)
3176                                         :  "r" (i), "i" (ASI_MCD_REAL));
3177                         asm volatile("stxa %0, [%1] %2\n\t"
3178                                         :
3179                                         : "r" (adi_tag), "r" (pto),
3180                                           "i" (ASI_MCD_REAL));
3181                         pto += adi_blksize();
3182                 }
3183                 asm volatile("membar #Sync\n\t");
3184         }
3185 }
3186 EXPORT_SYMBOL(copy_highpage);
3187 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp