~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/sparc/mm/srmmu.c

Version: ~ [ linux-6.6-rc1 ] ~ [ linux-6.5.2 ] ~ [ linux-6.4.15 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.52 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.131 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.194 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.256 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.294 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.325 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * srmmu.c:  SRMMU specific routines for memory management.
  3  *
  4  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
  5  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
  6  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
  7  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  8  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  9  */
 10 
 11 #include <linux/config.h>
 12 #include <linux/kernel.h>
 13 #include <linux/mm.h>
 14 #include <linux/slab.h>
 15 #include <linux/vmalloc.h>
 16 #include <linux/pagemap.h>
 17 #include <linux/init.h>
 18 #include <linux/spinlock.h>
 19 #include <linux/bootmem.h>
 20 #include <linux/fs.h>
 21 #include <linux/seq_file.h>
 22 
 23 #include <asm/bitext.h>
 24 #include <asm/page.h>
 25 #include <asm/pgalloc.h>
 26 #include <asm/pgtable.h>
 27 #include <asm/io.h>
 28 #include <asm/kdebug.h>
 29 #include <asm/vaddrs.h>
 30 #include <asm/traps.h>
 31 #include <asm/smp.h>
 32 #include <asm/mbus.h>
 33 #include <asm/cache.h>
 34 #include <asm/oplib.h>
 35 #include <asm/sbus.h>
 36 #include <asm/asi.h>
 37 #include <asm/msi.h>
 38 #include <asm/a.out.h>
 39 #include <asm/mmu_context.h>
 40 #include <asm/io-unit.h>
 41 #include <asm/cacheflush.h>
 42 #include <asm/tlbflush.h>
 43 
 44 /* Now the cpu specific definitions. */
 45 #include <asm/viking.h>
 46 #include <asm/mxcc.h>
 47 #include <asm/ross.h>
 48 #include <asm/tsunami.h>
 49 #include <asm/swift.h>
 50 #include <asm/turbosparc.h>
 51 
 52 #include <asm/btfixup.h>
 53 
 54 /*
 55  * To support pagetables in highmem, Linux introduces APIs which
 56  * return struct page* and generally manipulate page tables when
 57  * they are not mapped into kernel space. Our hardware page tables
 58  * are smaller than pages. We lump hardware tabes into big, page sized
 59  * software tables.
 60  *
 61  * PMD_SHIFT determines the size of the area a second-level page table entry
 62  * can map, and our pmd_t is 16 times larger than normal.
 63  */
 64 #define SRMMU_PTRS_PER_PMD_SOFT    0x4  /* Each pmd_t contains 16 hard PTPs */
 65 #define SRMMU_PTRS_PER_PTE_SOFT  0x400  /* 16 hard tables per 4K page */
 66 #define SRMMU_PTE_SZ_SOFT       0x1000  /* same as above, in bytes */
 67 
 68 #define SRMMU_PMD_SHIFT_SOFT    22
 69 #define SRMMU_PMD_SIZE_SOFT     (1UL << SRMMU_PMD_SHIFT_SOFT)
 70 #define SRMMU_PMD_MASK_SOFT     (~(SRMMU_PMD_SIZE_SOFT-1))
 71 // #define SRMMU_PMD_ALIGN(addr)  (((addr)+SRMMU_PMD_SIZE-1)&SRMMU_PMD_MASK)
 72 
 73 
 74 enum mbus_module srmmu_modtype;
 75 unsigned int hwbug_bitmask;
 76 int vac_cache_size;
 77 int vac_line_size;
 78 
 79 extern struct resource sparc_iomap;
 80 
 81 extern unsigned long last_valid_pfn;
 82 
 83 extern unsigned long page_kernel;
 84 
 85 pgd_t *srmmu_swapper_pg_dir;
 86 
 87 #ifdef CONFIG_SMP
 88 #define FLUSH_BEGIN(mm)
 89 #define FLUSH_END
 90 #else
 91 #define FLUSH_BEGIN(mm) if((mm)->context != NO_CONTEXT) {
 92 #define FLUSH_END       }
 93 #endif
 94 
 95 BTFIXUPDEF_CALL(void, flush_page_for_dma, unsigned long)
 96 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
 97 
 98 int flush_page_for_dma_global = 1;
 99 
100 #ifdef CONFIG_SMP
101 BTFIXUPDEF_CALL(void, local_flush_page_for_dma, unsigned long)
102 #define local_flush_page_for_dma(page) BTFIXUP_CALL(local_flush_page_for_dma)(page)
103 #endif
104 
105 char *srmmu_name;
106 
107 ctxd_t *srmmu_ctx_table_phys;
108 ctxd_t *srmmu_context_table;
109 
110 int viking_mxcc_present;
111 static spinlock_t srmmu_context_spinlock = SPIN_LOCK_UNLOCKED;
112 
113 int is_hypersparc;
114 
115 /*
116  * In general all page table modifications should use the V8 atomic
117  * swap instruction.  This insures the mmu and the cpu are in sync
118  * with respect to ref/mod bits in the page tables.
119  */
120 static inline unsigned long srmmu_swap(unsigned long *addr, unsigned long value)
121 {
122         __asm__ __volatile__("swap [%2], %0" : "=&r" (value) : "" (value), "r" (addr));
123         return value;
124 }
125 
126 static inline void srmmu_set_pte(pte_t *ptep, pte_t pteval)
127 {
128         srmmu_swap((unsigned long *)ptep, pte_val(pteval));
129 }
130 
131 /* The very generic SRMMU page table operations. */
132 static inline int srmmu_device_memory(unsigned long x)
133 {
134         return ((x & 0xF0000000) != 0);
135 }
136 
137 int srmmu_cache_pagetables;
138 
139 /* these will be initialized in srmmu_nocache_calcsize() */
140 unsigned long srmmu_nocache_size;
141 unsigned long srmmu_nocache_end;
142 unsigned long pkmap_base;
143 unsigned long pkmap_base_end;
144 extern unsigned long fix_kmap_begin;
145 extern unsigned long fix_kmap_end;
146 
147 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
148 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
149 
150 /* The context table is a nocache user with the biggest alignment needs. */
151 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
152 
153 void *srmmu_nocache_pool;
154 void *srmmu_nocache_bitmap;
155 static struct bit_map srmmu_nocache_map;
156 
157 /* This makes sense. Honest it does - Anton */
158 #define __nocache_pa(VADDR) (((unsigned long)VADDR) - SRMMU_NOCACHE_VADDR + __pa((unsigned long)srmmu_nocache_pool))
159 #define __nocache_va(PADDR) (__va((unsigned long)PADDR) - (unsigned long)srmmu_nocache_pool + SRMMU_NOCACHE_VADDR)
160 #define __nocache_fix(VADDR) __va(__nocache_pa(VADDR))
161 
162 static unsigned long srmmu_pte_pfn(pte_t pte)
163 {
164         if (srmmu_device_memory(pte_val(pte))) {
165                 /* XXX Anton obviously had something in mind when he did this.
166                  * But what?
167                  */
168                 /* return (struct page *)~0; */
169                 BUG();
170         }
171         return (pte_val(pte) & SRMMU_PTE_PMASK) >> (PAGE_SHIFT-4);
172 }
173 
174 static struct page *srmmu_pmd_page(pmd_t pmd)
175 {
176 
177         if (srmmu_device_memory(pmd_val(pmd)))
178                 BUG();
179         return pfn_to_page((pmd_val(pmd) & SRMMU_PTD_PMASK) >> (PAGE_SHIFT-4));
180 }
181 
182 static inline unsigned long srmmu_pgd_page(pgd_t pgd)
183 { return srmmu_device_memory(pgd_val(pgd))?~0:(unsigned long)__nocache_va((pgd_val(pgd) & SRMMU_PTD_PMASK) << 4); }
184 
185 
186 static inline int srmmu_pte_none(pte_t pte)
187 { return !(pte_val(pte) & 0xFFFFFFF); }
188 
189 static inline int srmmu_pte_present(pte_t pte)
190 { return ((pte_val(pte) & SRMMU_ET_MASK) == SRMMU_ET_PTE); }
191 
192 static inline void srmmu_pte_clear(pte_t *ptep)
193 { srmmu_set_pte(ptep, __pte(0)); }
194 
195 static inline int srmmu_pmd_none(pmd_t pmd)
196 { return !(pmd_val(pmd) & 0xFFFFFFF); }
197 
198 static inline int srmmu_pmd_bad(pmd_t pmd)
199 { return (pmd_val(pmd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
200 
201 static inline int srmmu_pmd_present(pmd_t pmd)
202 { return ((pmd_val(pmd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
203 
204 static inline void srmmu_pmd_clear(pmd_t *pmdp) {
205         int i;
206         for (i = 0; i < SRMMU_PTRS_PER_PTE_SOFT/SRMMU_PTRS_PER_PTE; i++)
207                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], __pte(0));
208 }
209 
210 static inline int srmmu_pgd_none(pgd_t pgd)          
211 { return !(pgd_val(pgd) & 0xFFFFFFF); }
212 
213 static inline int srmmu_pgd_bad(pgd_t pgd)
214 { return (pgd_val(pgd) & SRMMU_ET_MASK) != SRMMU_ET_PTD; }
215 
216 static inline int srmmu_pgd_present(pgd_t pgd)
217 { return ((pgd_val(pgd) & SRMMU_ET_MASK) == SRMMU_ET_PTD); }
218 
219 static inline void srmmu_pgd_clear(pgd_t * pgdp)
220 { srmmu_set_pte((pte_t *)pgdp, __pte(0)); }
221 
222 static inline pte_t srmmu_pte_wrprotect(pte_t pte)
223 { return __pte(pte_val(pte) & ~SRMMU_WRITE);}
224 
225 static inline pte_t srmmu_pte_mkclean(pte_t pte)
226 { return __pte(pte_val(pte) & ~SRMMU_DIRTY);}
227 
228 static inline pte_t srmmu_pte_mkold(pte_t pte)
229 { return __pte(pte_val(pte) & ~SRMMU_REF);}
230 
231 static inline pte_t srmmu_pte_mkwrite(pte_t pte)
232 { return __pte(pte_val(pte) | SRMMU_WRITE);}
233 
234 static inline pte_t srmmu_pte_mkdirty(pte_t pte)
235 { return __pte(pte_val(pte) | SRMMU_DIRTY);}
236 
237 static inline pte_t srmmu_pte_mkyoung(pte_t pte)
238 { return __pte(pte_val(pte) | SRMMU_REF);}
239 
240 /*
241  * Conversion functions: convert a page and protection to a page entry,
242  * and a page entry and page directory to the page they refer to.
243  */
244 static pte_t srmmu_mk_pte(struct page *page, pgprot_t pgprot)
245 { return __pte(((page - mem_map) << (PAGE_SHIFT-4)) | pgprot_val(pgprot)); }
246 
247 static pte_t srmmu_mk_pte_phys(unsigned long page, pgprot_t pgprot)
248 { return __pte(((page) >> 4) | pgprot_val(pgprot)); }
249 
250 static pte_t srmmu_mk_pte_io(unsigned long page, pgprot_t pgprot, int space)
251 { return __pte(((page) >> 4) | (space << 28) | pgprot_val(pgprot)); }
252 
253 /* XXX should we hyper_flush_whole_icache here - Anton */
254 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
255 { srmmu_set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
256 
257 static inline void srmmu_pgd_set(pgd_t * pgdp, pmd_t * pmdp)
258 { srmmu_set_pte((pte_t *)pgdp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pmdp) >> 4))); }
259 
260 static void srmmu_pmd_set(pmd_t *pmdp, pte_t *ptep)
261 {
262         unsigned long ptp;      /* Physical address, shifted right by 4 */
263         int i;
264 
265         ptp = __nocache_pa((unsigned long) ptep) >> 4;
266         for (i = 0; i < SRMMU_PTRS_PER_PTE_SOFT/SRMMU_PTRS_PER_PTE; i++) {
267                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
268                 ptp += (SRMMU_PTRS_PER_PTE*sizeof(pte_t) >> 4);
269         }
270 }
271 
272 static void srmmu_pmd_populate(pmd_t *pmdp, struct page *ptep)
273 {
274         unsigned long ptp;      /* Physical address, shifted right by 4 */
275         int i;
276 
277         ptp = (ptep - mem_map) << (PAGE_SHIFT-4);       /* watch for overflow */
278         for (i = 0; i < SRMMU_PTRS_PER_PTE_SOFT/SRMMU_PTRS_PER_PTE; i++) {
279                 srmmu_set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
280                 ptp += (SRMMU_PTRS_PER_PTE*sizeof(pte_t) >> 4);
281         }
282 }
283 
284 static inline pte_t srmmu_pte_modify(pte_t pte, pgprot_t newprot)
285 { return __pte((pte_val(pte) & SRMMU_CHG_MASK) | pgprot_val(newprot)); }
286 
287 /* to find an entry in a top-level page table... */
288 extern inline pgd_t *srmmu_pgd_offset(struct mm_struct * mm, unsigned long address)
289 { return mm->pgd + (address >> SRMMU_PGDIR_SHIFT); }
290 
291 /* Find an entry in the second-level page table.. */
292 static inline pmd_t *srmmu_pmd_offset(pgd_t * dir, unsigned long address)
293 {
294         return (pmd_t *) srmmu_pgd_page(*dir) +
295             ((address >> SRMMU_PMD_SHIFT_SOFT) & (SRMMU_PTRS_PER_PMD_SOFT - 1));
296 }
297 
298 /* Find an entry in the third-level page table.. */ 
299 static inline pte_t *srmmu_pte_offset(pmd_t * dir, unsigned long address)
300 {
301         void *pte;
302 
303         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
304         return (pte_t *) pte +
305             ((address >> PAGE_SHIFT) & (SRMMU_PTRS_PER_PTE_SOFT - 1));
306 }
307 
308 /*
309  * size: bytes to allocate in the nocache area.
310  * align: bytes, number to align at.
311  * Returns the virtual address of the allocated area.
312  */
313 static unsigned long __srmmu_get_nocache(int size, int align)
314 {
315         int offset;
316 
317         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
318                 printk("Size 0x%x too small for nocache request\n", size);
319                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
320         }
321         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
322                 printk("Size 0x%x unaligned int nocache request\n", size);
323                 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
324         }
325         if (align > SRMMU_NOCACHE_ALIGN_MAX) {
326                 BUG();
327                 return 0;
328         }
329 
330         offset = bit_map_string_get(&srmmu_nocache_map,
331                                         size >> SRMMU_NOCACHE_BITMAP_SHIFT,
332                                         align >> SRMMU_NOCACHE_BITMAP_SHIFT);
333         if (offset == -1) {
334                 printk("srmmu: out of nocache %d: %d/%d\n",
335                     size, (int) srmmu_nocache_size,
336                     srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
337                 return 0;
338         }
339 
340         return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
341 }
342 
343 unsigned inline long srmmu_get_nocache(int size, int align)
344 {
345         unsigned long tmp;
346 
347         tmp = __srmmu_get_nocache(size, align);
348 
349         if (tmp)
350                 memset((void *)tmp, 0, size);
351 
352         return tmp;
353 }
354 
355 void srmmu_free_nocache(unsigned long vaddr, int size)
356 {
357         int offset;
358 
359         if (vaddr < SRMMU_NOCACHE_VADDR) {
360                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
361                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
362                 BUG();
363         }
364         if (vaddr >= srmmu_nocache_end) {
365                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
366                     vaddr, srmmu_nocache_end);
367                 BUG();
368         }
369         if (size & (size-1)) {
370                 printk("Size 0x%x is not a power of 2\n", size);
371                 BUG();
372         }
373         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
374                 printk("Size 0x%x is too small\n", size);
375                 BUG();
376         }
377         if (vaddr & (size-1)) {
378                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
379                 BUG();
380         }
381 
382         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
383         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
384 
385         bit_map_clear(&srmmu_nocache_map, offset, size);
386 }
387 
388 void srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end);
389 
390 extern unsigned long probe_memory(void);        /* in fault.c */
391 
392 /*
393  * Reserve nocache dynamically proportionally to the amount of
394  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
395  */
396 void srmmu_nocache_calcsize(void)
397 {
398         unsigned long sysmemavail = probe_memory() / 1024;
399         int srmmu_nocache_npages;
400 
401         srmmu_nocache_npages =
402                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
403 
404  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
405         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
406         if (srmmu_nocache_npages < 550) srmmu_nocache_npages = 550;
407 
408         /* anything above 1280 blows up */
409         if (srmmu_nocache_npages > 1280) srmmu_nocache_npages = 1280;
410 
411         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
412         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
413         fix_kmap_begin = srmmu_nocache_end;
414         fix_kmap_end = fix_kmap_begin + (KM_TYPE_NR * NR_CPUS - 1) * PAGE_SIZE;
415         pkmap_base = SRMMU_NOCACHE_VADDR + srmmu_nocache_size + 0x40000;
416         pkmap_base_end = pkmap_base + LAST_PKMAP * PAGE_SIZE;
417 }
418 
419 void srmmu_nocache_init(void)
420 {
421         unsigned int bitmap_bits;
422         pgd_t *pgd;
423         pmd_t *pmd;
424         pte_t *pte;
425         unsigned long paddr, vaddr;
426         unsigned long pteval;
427 
428         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
429 
430         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
431                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
432         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
433 
434         srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
435         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
436 
437         srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
438         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
439         init_mm.pgd = srmmu_swapper_pg_dir;
440 
441         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
442 
443         paddr = __pa((unsigned long)srmmu_nocache_pool);
444         vaddr = SRMMU_NOCACHE_VADDR;
445 
446         while (vaddr < srmmu_nocache_end) {
447                 pgd = pgd_offset_k(vaddr);
448                 pmd = srmmu_pmd_offset(__nocache_fix(pgd), vaddr);
449                 pte = srmmu_pte_offset(__nocache_fix(pmd), vaddr);
450 
451                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
452 
453                 if (srmmu_cache_pagetables)
454                         pteval |= SRMMU_CACHE;
455 
456                 srmmu_set_pte(__nocache_fix(pte), pteval);
457 
458                 vaddr += PAGE_SIZE;
459                 paddr += PAGE_SIZE;
460         }
461 
462         flush_cache_all();
463         flush_tlb_all();
464 }
465 
466 static inline pgd_t *srmmu_get_pgd_fast(void)
467 {
468         pgd_t *pgd = NULL;
469 
470         pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
471         if (pgd) {
472                 pgd_t *init = pgd_offset_k(0);
473                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
474                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
475                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
476         }
477 
478         return pgd;
479 }
480 
481 static void srmmu_free_pgd_fast(pgd_t *pgd)
482 {
483         srmmu_free_nocache((unsigned long)pgd, SRMMU_PGD_TABLE_SIZE);
484 }
485 
486 static pmd_t *srmmu_pmd_alloc_one(struct mm_struct *mm, unsigned long address)
487 {
488         return (pmd_t *)srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
489 }
490 
491 static void srmmu_pmd_free(pmd_t * pmd)
492 {
493         srmmu_free_nocache((unsigned long)pmd, SRMMU_PMD_TABLE_SIZE);
494 }
495 
496 /*
497  * Hardware needs alignment to 256 only, but we align to whole page size
498  * to reduce fragmentation problems due to the buddy principle.
499  * XXX Provide actual fragmentation statistics in /proc.
500  *
501  * Alignments up to the page size are the same for physical and virtual
502  * addresses of the nocache area.
503  */
504 static pte_t *
505 srmmu_pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
506 {
507         return (pte_t *)srmmu_get_nocache(SRMMU_PTE_SZ_SOFT, SRMMU_PTE_SZ_SOFT);
508 }
509 
510 static struct page *
511 srmmu_pte_alloc_one(struct mm_struct *mm, unsigned long address)
512 {
513         unsigned long pte;
514 
515         if ((pte = (unsigned long)srmmu_pte_alloc_one_kernel(mm, address)) == 0)
516                 return NULL;
517         return mem_map + (__nocache_pa(pte) >> PAGE_SHIFT);
518 }
519 
520 static void srmmu_free_pte_fast(pte_t *pte)
521 {
522         srmmu_free_nocache((unsigned long)pte, SRMMU_PTE_SZ_SOFT);
523 }
524 
525 static void srmmu_pte_free(struct page *pte)
526 {
527         unsigned long p;
528 
529         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
530         if (p == 0)
531                 BUG();
532         p = ((pte - mem_map) << PAGE_SHIFT);    /* Physical address */
533         p = (unsigned long) __nocache_va(p);    /* Nocached virtual */
534         srmmu_free_nocache(p, SRMMU_PTE_SZ_SOFT);
535 }
536 
537 /*
538  */
539 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
540 {
541         struct ctx_list *ctxp;
542 
543         ctxp = ctx_free.next;
544         if(ctxp != &ctx_free) {
545                 remove_from_ctx_list(ctxp);
546                 add_to_used_ctxlist(ctxp);
547                 mm->context = ctxp->ctx_number;
548                 ctxp->ctx_mm = mm;
549                 return;
550         }
551         ctxp = ctx_used.next;
552         if(ctxp->ctx_mm == old_mm)
553                 ctxp = ctxp->next;
554         if(ctxp == &ctx_used)
555                 panic("out of mmu contexts");
556         flush_cache_mm(ctxp->ctx_mm);
557         flush_tlb_mm(ctxp->ctx_mm);
558         remove_from_ctx_list(ctxp);
559         add_to_used_ctxlist(ctxp);
560         ctxp->ctx_mm->context = NO_CONTEXT;
561         ctxp->ctx_mm = mm;
562         mm->context = ctxp->ctx_number;
563 }
564 
565 static inline void free_context(int context)
566 {
567         struct ctx_list *ctx_old;
568 
569         ctx_old = ctx_list_pool + context;
570         remove_from_ctx_list(ctx_old);
571         add_to_free_ctxlist(ctx_old);
572 }
573 
574 
575 static void srmmu_switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
576     struct task_struct *tsk, int cpu)
577 {
578         if(mm->context == NO_CONTEXT) {
579                 spin_lock(&srmmu_context_spinlock);
580                 alloc_context(old_mm, mm);
581                 spin_unlock(&srmmu_context_spinlock);
582                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
583         }
584 
585         if (is_hypersparc)
586                 hyper_flush_whole_icache();
587 
588         srmmu_set_context(mm->context);
589 }
590 
591 /* Low level IO area allocation on the SRMMU. */
592 static inline void srmmu_mapioaddr(unsigned long physaddr,
593     unsigned long virt_addr, int bus_type)
594 {
595         pgd_t *pgdp;
596         pmd_t *pmdp;
597         pte_t *ptep;
598         unsigned long tmp;
599 
600         physaddr &= PAGE_MASK;
601         pgdp = pgd_offset_k(virt_addr);
602         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
603         ptep = srmmu_pte_offset(pmdp, virt_addr);
604         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
605 
606         /*
607          * I need to test whether this is consistent over all
608          * sun4m's.  The bus_type represents the upper 4 bits of
609          * 36-bit physical address on the I/O space lines...
610          */
611         tmp |= (bus_type << 28);
612         tmp |= SRMMU_PRIV;
613         __flush_page_to_ram(virt_addr);
614         srmmu_set_pte(ptep, __pte(tmp));
615 }
616 
617 static void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
618     unsigned long xva, unsigned int len)
619 {
620         while (len != 0) {
621                 len -= PAGE_SIZE;
622                 srmmu_mapioaddr(xpa, xva, bus);
623                 xva += PAGE_SIZE;
624                 xpa += PAGE_SIZE;
625         }
626         flush_tlb_all();
627 }
628 
629 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
630 {
631         pgd_t *pgdp;
632         pmd_t *pmdp;
633         pte_t *ptep;
634 
635         pgdp = pgd_offset_k(virt_addr);
636         pmdp = srmmu_pmd_offset(pgdp, virt_addr);
637         ptep = srmmu_pte_offset(pmdp, virt_addr);
638 
639         /* No need to flush uncacheable page. */
640         srmmu_pte_clear(ptep);
641 }
642 
643 static void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
644 {
645         while (len != 0) {
646                 len -= PAGE_SIZE;
647                 srmmu_unmapioaddr(virt_addr);
648                 virt_addr += PAGE_SIZE;
649         }
650         flush_tlb_all();
651 }
652 
653 /*
654  * On the SRMMU we do not have the problems with limited tlb entries
655  * for mapping kernel pages, so we just take things from the free page
656  * pool.  As a side effect we are putting a little too much pressure
657  * on the gfp() subsystem.  This setup also makes the logic of the
658  * iommu mapping code a lot easier as we can transparently handle
659  * mappings on the kernel stack without any special code as we did
660  * need on the sun4c.
661  */
662 struct thread_info *srmmu_alloc_thread_info(void)
663 {
664         return (struct thread_info *)
665             __get_free_pages(GFP_KERNEL, THREAD_INFO_ORDER);
666 }
667 
668 static void srmmu_free_thread_info(struct thread_info *ti)
669 {
670         free_pages((unsigned long)ti, THREAD_INFO_ORDER);
671 }
672 
673 /* tsunami.S */
674 extern void tsunami_flush_cache_all(void);
675 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
676 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
677 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
678 extern void tsunami_flush_page_to_ram(unsigned long page);
679 extern void tsunami_flush_page_for_dma(unsigned long page);
680 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
681 extern void tsunami_flush_tlb_all(void);
682 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
683 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
684 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
685 extern void tsunami_setup_blockops(void);
686 
687 /*
688  * Workaround, until we find what's going on with Swift. When low on memory,
689  * it sometimes loops in fault/handle_mm_fault incl. flush_tlb_page to find
690  * out it is already in page tables/ fault again on the same instruction.
691  * I really don't understand it, have checked it and contexts
692  * are right, flush_tlb_all is done as well, and it faults again...
693  * Strange. -jj
694  *
695  * The following code is a deadwood that may be necessary when
696  * we start to make precise page flushes again. --zaitcev
697  */
698 static void swift_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
699 {
700 #if 0
701         static unsigned long last;
702         unsigned int val;
703         /* unsigned int n; */
704 
705         if (address == last) {
706                 val = srmmu_hwprobe(address);
707                 if (val != 0 && pte_val(pte) != val) {
708                         printk("swift_update_mmu_cache: "
709                             "addr %lx put %08x probed %08x from %p\n",
710                             address, pte_val(pte), val,
711                             __builtin_return_address(0));
712                         srmmu_flush_whole_tlb();
713                 }
714         }
715         last = address;
716 #endif
717 }
718 
719 /* swift.S */
720 extern void swift_flush_cache_all(void);
721 extern void swift_flush_cache_mm(struct mm_struct *mm);
722 extern void swift_flush_cache_range(struct vm_area_struct *vma,
723                                     unsigned long start, unsigned long end);
724 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
725 extern void swift_flush_page_to_ram(unsigned long page);
726 extern void swift_flush_page_for_dma(unsigned long page);
727 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
728 extern void swift_flush_tlb_all(void);
729 extern void swift_flush_tlb_mm(struct mm_struct *mm);
730 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
731                                   unsigned long start, unsigned long end);
732 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
733 
734 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
735 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
736 {
737         int cctx, ctx1;
738 
739         page &= PAGE_MASK;
740         if ((ctx1 = vma->vm_mm->context) != -1) {
741                 cctx = srmmu_get_context();
742 /* Is context # ever different from current context? P3 */
743                 if (cctx != ctx1) {
744                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
745                         srmmu_set_context(ctx1);
746                         swift_flush_page(page);
747                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
748                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
749                         srmmu_set_context(cctx);
750                 } else {
751                          /* Rm. prot. bits from virt. c. */
752                         /* swift_flush_cache_all(); */
753                         /* swift_flush_cache_page(vma, page); */
754                         swift_flush_page(page);
755 
756                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
757                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
758                         /* same as above: srmmu_flush_tlb_page() */
759                 }
760         }
761 }
762 #endif
763 
764 /*
765  * The following are all MBUS based SRMMU modules, and therefore could
766  * be found in a multiprocessor configuration.  On the whole, these
767  * chips seems to be much more touchy about DVMA and page tables
768  * with respect to cache coherency.
769  */
770 
771 /* Cypress flushes. */
772 static void cypress_flush_cache_all(void)
773 {
774         volatile unsigned long cypress_sucks;
775         unsigned long faddr, tagval;
776 
777         flush_user_windows();
778         for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
779                 __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
780                                      "=r" (tagval) :
781                                      "r" (faddr), "r" (0x40000),
782                                      "i" (ASI_M_DATAC_TAG));
783 
784                 /* If modified and valid, kick it. */
785                 if((tagval & 0x60) == 0x60)
786                         cypress_sucks = *(unsigned long *)(0xf0020000 + faddr);
787         }
788 }
789 
790 static void cypress_flush_cache_mm(struct mm_struct *mm)
791 {
792         register unsigned long a, b, c, d, e, f, g;
793         unsigned long flags, faddr;
794         int octx;
795 
796         FLUSH_BEGIN(mm)
797         flush_user_windows();
798         local_irq_save(flags);
799         octx = srmmu_get_context();
800         srmmu_set_context(mm->context);
801         a = 0x20; b = 0x40; c = 0x60;
802         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
803 
804         faddr = (0x10000 - 0x100);
805         goto inside;
806         do {
807                 faddr -= 0x100;
808         inside:
809                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
810                                      "sta %%g0, [%0 + %2] %1\n\t"
811                                      "sta %%g0, [%0 + %3] %1\n\t"
812                                      "sta %%g0, [%0 + %4] %1\n\t"
813                                      "sta %%g0, [%0 + %5] %1\n\t"
814                                      "sta %%g0, [%0 + %6] %1\n\t"
815                                      "sta %%g0, [%0 + %7] %1\n\t"
816                                      "sta %%g0, [%0 + %8] %1\n\t" : :
817                                      "r" (faddr), "i" (ASI_M_FLUSH_CTX),
818                                      "r" (a), "r" (b), "r" (c), "r" (d),
819                                      "r" (e), "r" (f), "r" (g));
820         } while(faddr);
821         srmmu_set_context(octx);
822         local_irq_restore(flags);
823         FLUSH_END
824 }
825 
826 static void cypress_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
827 {
828         struct mm_struct *mm = vma->vm_mm;
829         register unsigned long a, b, c, d, e, f, g;
830         unsigned long flags, faddr;
831         int octx;
832 
833         FLUSH_BEGIN(mm)
834         flush_user_windows();
835         local_irq_save(flags);
836         octx = srmmu_get_context();
837         srmmu_set_context(mm->context);
838         a = 0x20; b = 0x40; c = 0x60;
839         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
840 
841         start &= SRMMU_PMD_MASK;
842         while(start < end) {
843                 faddr = (start + (0x10000 - 0x100));
844                 goto inside;
845                 do {
846                         faddr -= 0x100;
847                 inside:
848                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
849                                              "sta %%g0, [%0 + %2] %1\n\t"
850                                              "sta %%g0, [%0 + %3] %1\n\t"
851                                              "sta %%g0, [%0 + %4] %1\n\t"
852                                              "sta %%g0, [%0 + %5] %1\n\t"
853                                              "sta %%g0, [%0 + %6] %1\n\t"
854                                              "sta %%g0, [%0 + %7] %1\n\t"
855                                              "sta %%g0, [%0 + %8] %1\n\t" : :
856                                              "r" (faddr),
857                                              "i" (ASI_M_FLUSH_SEG),
858                                              "r" (a), "r" (b), "r" (c), "r" (d),
859                                              "r" (e), "r" (f), "r" (g));
860                 } while (faddr != start);
861                 start += SRMMU_PMD_SIZE;
862         }
863         srmmu_set_context(octx);
864         local_irq_restore(flags);
865         FLUSH_END
866 }
867 
868 static void cypress_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
869 {
870         register unsigned long a, b, c, d, e, f, g;
871         struct mm_struct *mm = vma->vm_mm;
872         unsigned long flags, line;
873         int octx;
874 
875         FLUSH_BEGIN(mm)
876         flush_user_windows();
877         local_irq_save(flags);
878         octx = srmmu_get_context();
879         srmmu_set_context(mm->context);
880         a = 0x20; b = 0x40; c = 0x60;
881         d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
882 
883         page &= PAGE_MASK;
884         line = (page + PAGE_SIZE) - 0x100;
885         goto inside;
886         do {
887                 line -= 0x100;
888         inside:
889                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
890                                              "sta %%g0, [%0 + %2] %1\n\t"
891                                              "sta %%g0, [%0 + %3] %1\n\t"
892                                              "sta %%g0, [%0 + %4] %1\n\t"
893                                              "sta %%g0, [%0 + %5] %1\n\t"
894                                              "sta %%g0, [%0 + %6] %1\n\t"
895                                              "sta %%g0, [%0 + %7] %1\n\t"
896                                              "sta %%g0, [%0 + %8] %1\n\t" : :
897                                              "r" (line),
898                                              "i" (ASI_M_FLUSH_PAGE),
899                                              "r" (a), "r" (b), "r" (c), "r" (d),
900                                              "r" (e), "r" (f), "r" (g));
901         } while(line != page);
902         srmmu_set_context(octx);
903         local_irq_restore(flags);
904         FLUSH_END
905 }
906 
907 /* Cypress is copy-back, at least that is how we configure it. */
908 static void cypress_flush_page_to_ram(unsigned long page)
909 {
910         register unsigned long a, b, c, d, e, f, g;
911         unsigned long line;
912 
913         a = 0x20; b = 0x40; c = 0x60; d = 0x80; e = 0xa0; f = 0xc0; g = 0xe0;
914         page &= PAGE_MASK;
915         line = (page + PAGE_SIZE) - 0x100;
916         goto inside;
917         do {
918                 line -= 0x100;
919         inside:
920                 __asm__ __volatile__("sta %%g0, [%0] %1\n\t"
921                                      "sta %%g0, [%0 + %2] %1\n\t"
922                                      "sta %%g0, [%0 + %3] %1\n\t"
923                                      "sta %%g0, [%0 + %4] %1\n\t"
924                                      "sta %%g0, [%0 + %5] %1\n\t"
925                                      "sta %%g0, [%0 + %6] %1\n\t"
926                                      "sta %%g0, [%0 + %7] %1\n\t"
927                                      "sta %%g0, [%0 + %8] %1\n\t" : :
928                                      "r" (line),
929                                      "i" (ASI_M_FLUSH_PAGE),
930                                      "r" (a), "r" (b), "r" (c), "r" (d),
931                                      "r" (e), "r" (f), "r" (g));
932         } while(line != page);
933 }
934 
935 /* Cypress is also IO cache coherent. */
936 static void cypress_flush_page_for_dma(unsigned long page)
937 {
938 }
939 
940 /* Cypress has unified L2 VIPT, from which both instructions and data
941  * are stored.  It does not have an onboard icache of any sort, therefore
942  * no flush is necessary.
943  */
944 static void cypress_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
945 {
946 }
947 
948 static void cypress_flush_tlb_all(void)
949 {
950         srmmu_flush_whole_tlb();
951 }
952 
953 static void cypress_flush_tlb_mm(struct mm_struct *mm)
954 {
955         FLUSH_BEGIN(mm)
956         __asm__ __volatile__(
957         "lda    [%0] %3, %%g5\n\t"
958         "sta    %2, [%0] %3\n\t"
959         "sta    %%g0, [%1] %4\n\t"
960         "sta    %%g5, [%0] %3\n"
961         : /* no outputs */
962         : "r" (SRMMU_CTX_REG), "r" (0x300), "r" (mm->context),
963           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
964         : "g5");
965         FLUSH_END
966 }
967 
968 static void cypress_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
969 {
970         struct mm_struct *mm = vma->vm_mm;
971         unsigned long size;
972 
973         FLUSH_BEGIN(mm)
974         start &= SRMMU_PGDIR_MASK;
975         size = SRMMU_PGDIR_ALIGN(end) - start;
976         __asm__ __volatile__(
977                 "lda    [%0] %5, %%g5\n\t"
978                 "sta    %1, [%0] %5\n"
979                 "1:\n\t"
980                 "subcc  %3, %4, %3\n\t"
981                 "bne    1b\n\t"
982                 " sta   %%g0, [%2 + %3] %6\n\t"
983                 "sta    %%g5, [%0] %5\n"
984         : /* no outputs */
985         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (start | 0x200),
986           "r" (size), "r" (SRMMU_PGDIR_SIZE), "i" (ASI_M_MMUREGS),
987           "i" (ASI_M_FLUSH_PROBE)
988         : "g5", "cc");
989         FLUSH_END
990 }
991 
992 static void cypress_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
993 {
994         struct mm_struct *mm = vma->vm_mm;
995 
996         FLUSH_BEGIN(mm)
997         __asm__ __volatile__(
998         "lda    [%0] %3, %%g5\n\t"
999         "sta    %1, [%0] %3\n\t"
1000         "sta    %%g0, [%2] %4\n\t"
1001         "sta    %%g5, [%0] %3\n"
1002         : /* no outputs */
1003         : "r" (SRMMU_CTX_REG), "r" (mm->context), "r" (page & PAGE_MASK),
1004           "i" (ASI_M_MMUREGS), "i" (ASI_M_FLUSH_PROBE)
1005         : "g5");
1006         FLUSH_END
1007 }
1008 
1009 /* viking.S */
1010 extern void viking_flush_cache_all(void);
1011 extern void viking_flush_cache_mm(struct mm_struct *mm);
1012 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1013                                      unsigned long end);
1014 extern void viking_flush_cache_page(struct vm_area_struct *vma,
1015                                     unsigned long page);
1016 extern void viking_flush_page_to_ram(unsigned long page);
1017 extern void viking_flush_page_for_dma(unsigned long page);
1018 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
1019 extern void viking_flush_page(unsigned long page);
1020 extern void viking_mxcc_flush_page(unsigned long page);
1021 extern void viking_flush_tlb_all(void);
1022 extern void viking_flush_tlb_mm(struct mm_struct *mm);
1023 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1024                                    unsigned long end);
1025 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
1026                                   unsigned long page);
1027 extern void sun4dsmp_flush_tlb_all(void);
1028 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
1029 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
1030                                    unsigned long end);
1031 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
1032                                   unsigned long page);
1033 
1034 /* hypersparc.S */
1035 extern void hypersparc_flush_cache_all(void);
1036 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
1037 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1038 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
1039 extern void hypersparc_flush_page_to_ram(unsigned long page);
1040 extern void hypersparc_flush_page_for_dma(unsigned long page);
1041 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
1042 extern void hypersparc_flush_tlb_all(void);
1043 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
1044 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
1045 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
1046 extern void hypersparc_setup_blockops(void);
1047 
1048 /*
1049  * NOTE: All of this startup code assumes the low 16mb (approx.) of
1050  *       kernel mappings are done with one single contiguous chunk of
1051  *       ram.  On small ram machines (classics mainly) we only get
1052  *       around 8mb mapped for us.
1053  */
1054 
1055 void __init early_pgtable_allocfail(char *type)
1056 {
1057         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
1058         prom_halt();
1059 }
1060 
1061 void __init srmmu_early_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1062 {
1063         pgd_t *pgdp;
1064         pmd_t *pmdp;
1065         pte_t *ptep;
1066 
1067         while(start < end) {
1068                 pgdp = pgd_offset_k(start);
1069                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1070                         pmdp = (pmd_t *) __srmmu_get_nocache(
1071                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1072                         if (pmdp == NULL)
1073                                 early_pgtable_allocfail("pmd");
1074                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1075                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1076                 }
1077                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1078                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1079                         ptep = (pte_t *)__srmmu_get_nocache(SRMMU_PTE_SZ_SOFT,
1080                             SRMMU_PTE_SZ_SOFT);
1081                         if (ptep == NULL)
1082                                 early_pgtable_allocfail("pte");
1083                         memset(__nocache_fix(ptep), 0, SRMMU_PTE_SZ_SOFT);
1084                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1085                 }
1086                 start = (start + SRMMU_PMD_SIZE) & SRMMU_PMD_MASK;
1087         }
1088 }
1089 
1090 void __init srmmu_allocate_ptable_skeleton(unsigned long start, unsigned long end)
1091 {
1092         pgd_t *pgdp;
1093         pmd_t *pmdp;
1094         pte_t *ptep;
1095 
1096         while(start < end) {
1097                 pgdp = pgd_offset_k(start);
1098                 if(srmmu_pgd_none(*pgdp)) {
1099                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1100                         if (pmdp == NULL)
1101                                 early_pgtable_allocfail("pmd");
1102                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
1103                         srmmu_pgd_set(pgdp, pmdp);
1104                 }
1105                 pmdp = srmmu_pmd_offset(pgdp, start);
1106                 if(srmmu_pmd_none(*pmdp)) {
1107                         ptep = (pte_t *) __srmmu_get_nocache(SRMMU_PTE_SZ_SOFT,
1108                             SRMMU_PTE_SZ_SOFT);
1109                         if (ptep == NULL)
1110                                 early_pgtable_allocfail("pte");
1111                         memset(ptep, 0, SRMMU_PTE_SZ_SOFT);
1112                         srmmu_pmd_set(pmdp, ptep);
1113                 }
1114                 start = (start + SRMMU_PMD_SIZE) & SRMMU_PMD_MASK;
1115         }
1116 }
1117 
1118 /*
1119  * This is much cleaner than poking around physical address space
1120  * looking at the prom's page table directly which is what most
1121  * other OS's do.  Yuck... this is much better.
1122  */
1123 void __init srmmu_inherit_prom_mappings(unsigned long start,unsigned long end)
1124 {
1125         pgd_t *pgdp;
1126         pmd_t *pmdp;
1127         pte_t *ptep;
1128         int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1129         unsigned long prompte;
1130 
1131         while(start <= end) {
1132                 if (start == 0)
1133                         break; /* probably wrap around */
1134                 if(start == 0xfef00000)
1135                         start = KADB_DEBUGGER_BEGVM;
1136                 if(!(prompte = srmmu_hwprobe(start))) {
1137                         start += PAGE_SIZE;
1138                         continue;
1139                 }
1140     
1141                 /* A red snapper, see what it really is. */
1142                 what = 0;
1143     
1144                 if(!(start & ~(SRMMU_PMD_MASK))) {
1145                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PMD_SIZE) == prompte)
1146                                 what = 1;
1147                 }
1148     
1149                 if(!(start & ~(SRMMU_PGDIR_MASK))) {
1150                         if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
1151                            prompte)
1152                                 what = 2;
1153                 }
1154     
1155                 pgdp = pgd_offset_k(start);
1156                 if(what == 2) {
1157                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
1158                         start += SRMMU_PGDIR_SIZE;
1159                         continue;
1160                 }
1161                 if(srmmu_pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
1162                         pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1163                         if (pmdp == NULL)
1164                                 early_pgtable_allocfail("pmd");
1165                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
1166                         srmmu_pgd_set(__nocache_fix(pgdp), pmdp);
1167                 }
1168                 pmdp = srmmu_pmd_offset(__nocache_fix(pgdp), start);
1169                 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
1170                         ptep = (pte_t *) __srmmu_get_nocache(SRMMU_PTE_SZ_SOFT,
1171                             SRMMU_PTE_SZ_SOFT);
1172                         if (ptep == NULL)
1173                                 early_pgtable_allocfail("pte");
1174                         memset(__nocache_fix(ptep), 0, SRMMU_PTE_SZ_SOFT);
1175                         srmmu_pmd_set(__nocache_fix(pmdp), ptep);
1176                 }
1177                 if(what == 1) {
1178                         /*
1179                          * We bend the rule where all 16 PTPs in a pmd_t point
1180                          * inside the same PTE page, and we leak a perfectly
1181                          * good hardware PTE piece. Alternatives seem worse.
1182                          */
1183                         unsigned int x; /* Index of HW PMD in soft cluster */
1184                         x = (start >> SRMMU_PMD_SHIFT) & 15;
1185                         *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
1186                         start += SRMMU_PMD_SIZE;
1187                         continue;
1188                 }
1189                 ptep = srmmu_pte_offset(__nocache_fix(pmdp), start);
1190                 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
1191                 start += PAGE_SIZE;
1192         }
1193 }
1194 
1195 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
1196 
1197 /* Create a third-level SRMMU 16MB page mapping. */
1198 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
1199 {
1200         pgd_t *pgdp = pgd_offset_k(vaddr);
1201         unsigned long big_pte;
1202 
1203         big_pte = KERNEL_PTE(phys_base >> 4);
1204         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
1205 }
1206 
1207 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
1208 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
1209 {
1210         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
1211         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
1212         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
1213         /* Map "low" memory only */
1214         const unsigned long min_vaddr = PAGE_OFFSET;
1215         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
1216 
1217         if (vstart < min_vaddr || vstart >= max_vaddr)
1218                 return vstart;
1219         
1220         if (vend > max_vaddr || vend < min_vaddr)
1221                 vend = max_vaddr;
1222 
1223         while(vstart < vend) {
1224                 do_large_mapping(vstart, pstart);
1225                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
1226         }
1227         return vstart;
1228 }
1229 
1230 static inline void memprobe_error(char *msg)
1231 {
1232         prom_printf(msg);
1233         prom_printf("Halting now...\n");
1234         prom_halt();
1235 }
1236 
1237 static inline void map_kernel(void)
1238 {
1239         int i;
1240 
1241         if (phys_base > 0) {
1242                 do_large_mapping(PAGE_OFFSET, phys_base);
1243         }
1244 
1245         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
1246                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
1247         }
1248 
1249         BTFIXUPSET_SIMM13(user_ptrs_per_pgd, PAGE_OFFSET / SRMMU_PGDIR_SIZE);
1250 }
1251 
1252 /* Paging initialization on the Sparc Reference MMU. */
1253 extern void sparc_context_init(int);
1254 
1255 extern int linux_num_cpus;
1256 
1257 void (*poke_srmmu)(void) __initdata = NULL;
1258 
1259 extern unsigned long bootmem_init(unsigned long *pages_avail);
1260 
1261 void __init srmmu_paging_init(void)
1262 {
1263         int i, cpunode;
1264         char node_str[128];
1265         pgd_t *pgd;
1266         pmd_t *pmd;
1267         pte_t *pte;
1268         unsigned long pages_avail;
1269 
1270         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
1271 
1272         if (sparc_cpu_model == sun4d)
1273                 num_contexts = 65536; /* We know it is Viking */
1274         else {
1275                 /* Find the number of contexts on the srmmu. */
1276                 cpunode = prom_getchild(prom_root_node);
1277                 num_contexts = 0;
1278                 while(cpunode != 0) {
1279                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1280                         if(!strcmp(node_str, "cpu")) {
1281                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
1282                                 break;
1283                         }
1284                         cpunode = prom_getsibling(cpunode);
1285                 }
1286         }
1287 
1288         if(!num_contexts) {
1289                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
1290                 prom_halt();
1291         }
1292 
1293         pages_avail = 0;
1294         last_valid_pfn = bootmem_init(&pages_avail);
1295 
1296         srmmu_nocache_calcsize();
1297         srmmu_nocache_init();
1298         srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
1299         map_kernel();
1300 
1301         /* ctx table has to be physically aligned to its size */
1302         srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
1303         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
1304 
1305         for(i = 0; i < num_contexts; i++)
1306                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
1307 
1308         flush_cache_all();
1309         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
1310         flush_tlb_all();
1311         poke_srmmu();
1312 
1313 #ifdef CONFIG_SUN_IO
1314         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
1315         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1316 #endif
1317 
1318         srmmu_allocate_ptable_skeleton(fix_kmap_begin, fix_kmap_end);
1319         srmmu_allocate_ptable_skeleton(pkmap_base, pkmap_base_end);
1320 
1321         pgd = pgd_offset_k(pkmap_base);
1322         pmd = srmmu_pmd_offset(pgd, pkmap_base);
1323         pte = srmmu_pte_offset(pmd, pkmap_base);
1324         pkmap_page_table = pte;
1325 
1326         flush_cache_all();
1327         flush_tlb_all();
1328 
1329         sparc_context_init(num_contexts);
1330 
1331         kmap_init();
1332 
1333         {
1334                 unsigned long zones_size[MAX_NR_ZONES];
1335                 unsigned long zholes_size[MAX_NR_ZONES];
1336                 unsigned long npages;
1337                 int znum;
1338 
1339                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
1340                         zones_size[znum] = zholes_size[znum] = 0;
1341 
1342                 npages = max_low_pfn - (phys_base >> PAGE_SHIFT);
1343 
1344                 zones_size[ZONE_DMA] = npages;
1345                 zholes_size[ZONE_DMA] = npages - pages_avail;
1346 
1347                 npages = highend_pfn - max_low_pfn;
1348                 zones_size[ZONE_HIGHMEM] = npages;
1349                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
1350 
1351                 free_area_init_node(0, &contig_page_data, NULL, zones_size,
1352                                     phys_base >> PAGE_SHIFT, zholes_size);
1353                 mem_map = contig_page_data.node_mem_map;
1354         }
1355 
1356 /* P3: easy to fix, todo. Current code is utterly broken, though. */
1357         if (phys_base != 0)
1358                 panic("phys_base nonzero");
1359 }
1360 
1361 static void srmmu_mmu_info(struct seq_file *m)
1362 {
1363         seq_printf(m, 
1364                    "MMU type\t: %s\n"
1365                    "contexts\t: %d\n"
1366                    "nocache total\t: %ld\n"
1367                    "nocache used\t: %d\n",
1368                    srmmu_name,
1369                    num_contexts,
1370                    srmmu_nocache_size,
1371                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1372 }
1373 
1374 static void srmmu_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte)
1375 {
1376 }
1377 
1378 static void srmmu_destroy_context(struct mm_struct *mm)
1379 {
1380 
1381         if(mm->context != NO_CONTEXT) {
1382                 flush_cache_mm(mm);
1383                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1384                 flush_tlb_mm(mm);
1385                 spin_lock(&srmmu_context_spinlock);
1386                 free_context(mm->context);
1387                 spin_unlock(&srmmu_context_spinlock);
1388                 mm->context = NO_CONTEXT;
1389         }
1390 }
1391 
1392 /* Init various srmmu chip types. */
1393 static void __init srmmu_is_bad(void)
1394 {
1395         prom_printf("Could not determine SRMMU chip type.\n");
1396         prom_halt();
1397 }
1398 
1399 static void __init init_vac_layout(void)
1400 {
1401         int nd, cache_lines;
1402         char node_str[128];
1403 #ifdef CONFIG_SMP
1404         int cpu = 0;
1405         unsigned long max_size = 0;
1406         unsigned long min_line_size = 0x10000000;
1407 #endif
1408 
1409         nd = prom_getchild(prom_root_node);
1410         while((nd = prom_getsibling(nd)) != 0) {
1411                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1412                 if(!strcmp(node_str, "cpu")) {
1413                         vac_line_size = prom_getint(nd, "cache-line-size");
1414                         if (vac_line_size == -1) {
1415                                 prom_printf("can't determine cache-line-size, "
1416                                             "halting.\n");
1417                                 prom_halt();
1418                         }
1419                         cache_lines = prom_getint(nd, "cache-nlines");
1420                         if (cache_lines == -1) {
1421                                 prom_printf("can't determine cache-nlines, halting.\n");
1422                                 prom_halt();
1423                         }
1424 
1425                         vac_cache_size = cache_lines * vac_line_size;
1426 #ifdef CONFIG_SMP
1427                         if(vac_cache_size > max_size)
1428                                 max_size = vac_cache_size;
1429                         if(vac_line_size < min_line_size)
1430                                 min_line_size = vac_line_size;
1431                         cpu++;
1432                         if (cpu >= NR_CPUS || !cpu_online(cpu))
1433                                 break;
1434 #else
1435                         break;
1436 #endif
1437                 }
1438         }
1439         if(nd == 0) {
1440                 prom_printf("No CPU nodes found, halting.\n");
1441                 prom_halt();
1442         }
1443 #ifdef CONFIG_SMP
1444         vac_cache_size = max_size;
1445         vac_line_size = min_line_size;
1446 #endif
1447         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1448                (int)vac_cache_size, (int)vac_line_size);
1449 }
1450 
1451 static void __init poke_hypersparc(void)
1452 {
1453         volatile unsigned long clear;
1454         unsigned long mreg = srmmu_get_mmureg();
1455 
1456         hyper_flush_unconditional_combined();
1457 
1458         mreg &= ~(HYPERSPARC_CWENABLE);
1459         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1460         mreg |= (HYPERSPARC_CMODE);
1461 
1462         srmmu_set_mmureg(mreg);
1463 
1464 #if 0 /* XXX I think this is bad news... -DaveM */
1465         hyper_clear_all_tags();
1466 #endif
1467 
1468         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1469         hyper_flush_whole_icache();
1470         clear = srmmu_get_faddr();
1471         clear = srmmu_get_fstatus();
1472 }
1473 
1474 static void __init init_hypersparc(void)
1475 {
1476         srmmu_name = "ROSS HyperSparc";
1477 
1478         init_vac_layout();
1479 
1480         is_hypersparc = 1;
1481 
1482         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1483         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1484         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1485         BTFIXUPSET_CALL(flush_cache_all, hypersparc_flush_cache_all, BTFIXUPCALL_NORM);
1486         BTFIXUPSET_CALL(flush_cache_mm, hypersparc_flush_cache_mm, BTFIXUPCALL_NORM);
1487         BTFIXUPSET_CALL(flush_cache_range, hypersparc_flush_cache_range, BTFIXUPCALL_NORM);
1488         BTFIXUPSET_CALL(flush_cache_page, hypersparc_flush_cache_page, BTFIXUPCALL_NORM);
1489 
1490         BTFIXUPSET_CALL(flush_tlb_all, hypersparc_flush_tlb_all, BTFIXUPCALL_NORM);
1491         BTFIXUPSET_CALL(flush_tlb_mm, hypersparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1492         BTFIXUPSET_CALL(flush_tlb_range, hypersparc_flush_tlb_range, BTFIXUPCALL_NORM);
1493         BTFIXUPSET_CALL(flush_tlb_page, hypersparc_flush_tlb_page, BTFIXUPCALL_NORM);
1494 
1495         BTFIXUPSET_CALL(__flush_page_to_ram, hypersparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1496         BTFIXUPSET_CALL(flush_sig_insns, hypersparc_flush_sig_insns, BTFIXUPCALL_NORM);
1497         BTFIXUPSET_CALL(flush_page_for_dma, hypersparc_flush_page_for_dma, BTFIXUPCALL_NOP);
1498 
1499 
1500         poke_srmmu = poke_hypersparc;
1501 
1502         hypersparc_setup_blockops();
1503 }
1504 
1505 static void __init poke_cypress(void)
1506 {
1507         unsigned long mreg = srmmu_get_mmureg();
1508         unsigned long faddr, tagval;
1509         volatile unsigned long cypress_sucks;
1510         volatile unsigned long clear;
1511 
1512         clear = srmmu_get_faddr();
1513         clear = srmmu_get_fstatus();
1514 
1515         if (!(mreg & CYPRESS_CENABLE)) {
1516                 for(faddr = 0x0; faddr < 0x10000; faddr += 20) {
1517                         __asm__ __volatile__("sta %%g0, [%0 + %1] %2\n\t"
1518                                              "sta %%g0, [%0] %2\n\t" : :
1519                                              "r" (faddr), "r" (0x40000),
1520                                              "i" (ASI_M_DATAC_TAG));
1521                 }
1522         } else {
1523                 for(faddr = 0; faddr < 0x10000; faddr += 0x20) {
1524                         __asm__ __volatile__("lda [%1 + %2] %3, %0\n\t" :
1525                                              "=r" (tagval) :
1526                                              "r" (faddr), "r" (0x40000),
1527                                              "i" (ASI_M_DATAC_TAG));
1528 
1529                         /* If modified and valid, kick it. */
1530                         if((tagval & 0x60) == 0x60)
1531                                 cypress_sucks = *(unsigned long *)
1532                                                         (0xf0020000 + faddr);
1533                 }
1534         }
1535 
1536         /* And one more, for our good neighbor, Mr. Broken Cypress. */
1537         clear = srmmu_get_faddr();
1538         clear = srmmu_get_fstatus();
1539 
1540         mreg |= (CYPRESS_CENABLE | CYPRESS_CMODE);
1541         srmmu_set_mmureg(mreg);
1542 }
1543 
1544 static void __init init_cypress_common(void)
1545 {
1546         init_vac_layout();
1547 
1548         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1549         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1550         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1551         BTFIXUPSET_CALL(flush_cache_all, cypress_flush_cache_all, BTFIXUPCALL_NORM);
1552         BTFIXUPSET_CALL(flush_cache_mm, cypress_flush_cache_mm, BTFIXUPCALL_NORM);
1553         BTFIXUPSET_CALL(flush_cache_range, cypress_flush_cache_range, BTFIXUPCALL_NORM);
1554         BTFIXUPSET_CALL(flush_cache_page, cypress_flush_cache_page, BTFIXUPCALL_NORM);
1555 
1556         BTFIXUPSET_CALL(flush_tlb_all, cypress_flush_tlb_all, BTFIXUPCALL_NORM);
1557         BTFIXUPSET_CALL(flush_tlb_mm, cypress_flush_tlb_mm, BTFIXUPCALL_NORM);
1558         BTFIXUPSET_CALL(flush_tlb_page, cypress_flush_tlb_page, BTFIXUPCALL_NORM);
1559         BTFIXUPSET_CALL(flush_tlb_range, cypress_flush_tlb_range, BTFIXUPCALL_NORM);
1560 
1561 
1562         BTFIXUPSET_CALL(__flush_page_to_ram, cypress_flush_page_to_ram, BTFIXUPCALL_NORM);
1563         BTFIXUPSET_CALL(flush_sig_insns, cypress_flush_sig_insns, BTFIXUPCALL_NOP);
1564         BTFIXUPSET_CALL(flush_page_for_dma, cypress_flush_page_for_dma, BTFIXUPCALL_NOP);
1565 
1566         poke_srmmu = poke_cypress;
1567 }
1568 
1569 static void __init init_cypress_604(void)
1570 {
1571         srmmu_name = "ROSS Cypress-604(UP)";
1572         srmmu_modtype = Cypress;
1573         init_cypress_common();
1574 }
1575 
1576 static void __init init_cypress_605(unsigned long mrev)
1577 {
1578         srmmu_name = "ROSS Cypress-605(MP)";
1579         if(mrev == 0xe) {
1580                 srmmu_modtype = Cypress_vE;
1581                 hwbug_bitmask |= HWBUG_COPYBACK_BROKEN;
1582         } else {
1583                 if(mrev == 0xd) {
1584                         srmmu_modtype = Cypress_vD;
1585                         hwbug_bitmask |= HWBUG_ASIFLUSH_BROKEN;
1586                 } else {
1587                         srmmu_modtype = Cypress;
1588                 }
1589         }
1590         init_cypress_common();
1591 }
1592 
1593 static void __init poke_swift(void)
1594 {
1595         unsigned long mreg;
1596 
1597         /* Clear any crap from the cache or else... */
1598         swift_flush_cache_all();
1599 
1600         /* Enable I & D caches */
1601         mreg = srmmu_get_mmureg();
1602         mreg |= (SWIFT_IE | SWIFT_DE);
1603         /*
1604          * The Swift branch folding logic is completely broken.  At
1605          * trap time, if things are just right, if can mistakenly
1606          * think that a trap is coming from kernel mode when in fact
1607          * it is coming from user mode (it mis-executes the branch in
1608          * the trap code).  So you see things like crashme completely
1609          * hosing your machine which is completely unacceptable.  Turn
1610          * this shit off... nice job Fujitsu.
1611          */
1612         mreg &= ~(SWIFT_BF);
1613         srmmu_set_mmureg(mreg);
1614 }
1615 
1616 #define SWIFT_MASKID_ADDR  0x10003018
1617 static void __init init_swift(void)
1618 {
1619         unsigned long swift_rev;
1620 
1621         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1622                              "srl %0, 0x18, %0\n\t" :
1623                              "=r" (swift_rev) :
1624                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1625         srmmu_name = "Fujitsu Swift";
1626         switch(swift_rev) {
1627         case 0x11:
1628         case 0x20:
1629         case 0x23:
1630         case 0x30:
1631                 srmmu_modtype = Swift_lots_o_bugs;
1632                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1633                 /*
1634                  * Gee george, I wonder why Sun is so hush hush about
1635                  * this hardware bug... really braindamage stuff going
1636                  * on here.  However I think we can find a way to avoid
1637                  * all of the workaround overhead under Linux.  Basically,
1638                  * any page fault can cause kernel pages to become user
1639                  * accessible (the mmu gets confused and clears some of
1640                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1641                  * horrible eh?  But wait, after extensive testing it appears
1642                  * that if you use pgd_t level large kernel pte's (like the
1643                  * 4MB pages on the Pentium) the bug does not get tripped
1644                  * at all.  This avoids almost all of the major overhead.
1645                  * Welcome to a world where your vendor tells you to,
1646                  * "apply this kernel patch" instead of "sorry for the
1647                  * broken hardware, send it back and we'll give you
1648                  * properly functioning parts"
1649                  */
1650                 break;
1651         case 0x25:
1652         case 0x31:
1653                 srmmu_modtype = Swift_bad_c;
1654                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1655                 /*
1656                  * You see Sun allude to this hardware bug but never
1657                  * admit things directly, they'll say things like,
1658                  * "the Swift chip cache problems" or similar.
1659                  */
1660                 break;
1661         default:
1662                 srmmu_modtype = Swift_ok;
1663                 break;
1664         };
1665 
1666         BTFIXUPSET_CALL(flush_cache_all, swift_flush_cache_all, BTFIXUPCALL_NORM);
1667         BTFIXUPSET_CALL(flush_cache_mm, swift_flush_cache_mm, BTFIXUPCALL_NORM);
1668         BTFIXUPSET_CALL(flush_cache_page, swift_flush_cache_page, BTFIXUPCALL_NORM);
1669         BTFIXUPSET_CALL(flush_cache_range, swift_flush_cache_range, BTFIXUPCALL_NORM);
1670 
1671 
1672         BTFIXUPSET_CALL(flush_tlb_all, swift_flush_tlb_all, BTFIXUPCALL_NORM);
1673         BTFIXUPSET_CALL(flush_tlb_mm, swift_flush_tlb_mm, BTFIXUPCALL_NORM);
1674         BTFIXUPSET_CALL(flush_tlb_page, swift_flush_tlb_page, BTFIXUPCALL_NORM);
1675         BTFIXUPSET_CALL(flush_tlb_range, swift_flush_tlb_range, BTFIXUPCALL_NORM);
1676 
1677         BTFIXUPSET_CALL(__flush_page_to_ram, swift_flush_page_to_ram, BTFIXUPCALL_NORM);
1678         BTFIXUPSET_CALL(flush_sig_insns, swift_flush_sig_insns, BTFIXUPCALL_NORM);
1679         BTFIXUPSET_CALL(flush_page_for_dma, swift_flush_page_for_dma, BTFIXUPCALL_NORM);
1680 
1681         BTFIXUPSET_CALL(update_mmu_cache, swift_update_mmu_cache, BTFIXUPCALL_NORM);
1682 
1683         flush_page_for_dma_global = 0;
1684 
1685         /*
1686          * Are you now convinced that the Swift is one of the
1687          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1688          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1689          * you examined the microcode of the Swift you'd find
1690          * XXX's all over the place.
1691          */
1692         poke_srmmu = poke_swift;
1693 }
1694 
1695 static void turbosparc_flush_cache_all(void)
1696 {
1697         flush_user_windows();
1698         turbosparc_idflash_clear();
1699 }
1700 
1701 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1702 {
1703         FLUSH_BEGIN(mm)
1704         flush_user_windows();
1705         turbosparc_idflash_clear();
1706         FLUSH_END
1707 }
1708 
1709 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1710 {
1711         struct mm_struct *mm = vma->vm_mm;
1712 
1713         FLUSH_BEGIN(mm)
1714         flush_user_windows();
1715         turbosparc_idflash_clear();
1716         FLUSH_END
1717 }
1718 
1719 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1720 {
1721         FLUSH_BEGIN(vma->vm_mm)
1722         flush_user_windows();
1723         if (vma->vm_flags & VM_EXEC)
1724                 turbosparc_flush_icache();
1725         turbosparc_flush_dcache();
1726         FLUSH_END
1727 }
1728 
1729 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1730 static void turbosparc_flush_page_to_ram(unsigned long page)
1731 {
1732 #ifdef TURBOSPARC_WRITEBACK
1733         volatile unsigned long clear;
1734 
1735         if (srmmu_hwprobe(page))
1736                 turbosparc_flush_page_cache(page);
1737         clear = srmmu_get_fstatus();
1738 #endif
1739 }
1740 
1741 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1742 {
1743 }
1744 
1745 static void turbosparc_flush_page_for_dma(unsigned long page)
1746 {
1747         turbosparc_flush_dcache();
1748 }
1749 
1750 static void turbosparc_flush_tlb_all(void)
1751 {
1752         srmmu_flush_whole_tlb();
1753 }
1754 
1755 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1756 {
1757         FLUSH_BEGIN(mm)
1758         srmmu_flush_whole_tlb();
1759         FLUSH_END
1760 }
1761 
1762 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1763 {
1764         struct mm_struct *mm = vma->vm_mm;
1765 
1766         FLUSH_BEGIN(mm)
1767         srmmu_flush_whole_tlb();
1768         FLUSH_END
1769 }
1770 
1771 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1772 {
1773         FLUSH_BEGIN(vma->vm_mm)
1774         srmmu_flush_whole_tlb();
1775         FLUSH_END
1776 }
1777 
1778 
1779 static void __init poke_turbosparc(void)
1780 {
1781         unsigned long mreg = srmmu_get_mmureg();
1782         unsigned long ccreg;
1783 
1784         /* Clear any crap from the cache or else... */
1785         turbosparc_flush_cache_all();
1786         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1787         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1788         srmmu_set_mmureg(mreg);
1789         
1790         ccreg = turbosparc_get_ccreg();
1791 
1792 #ifdef TURBOSPARC_WRITEBACK
1793         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1794         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1795                         /* Write-back D-cache, emulate VLSI
1796                          * abortion number three, not number one */
1797 #else
1798         /* For now let's play safe, optimize later */
1799         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1800                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1801         ccreg &= ~(TURBOSPARC_uS2);
1802                         /* Emulate VLSI abortion number three, not number one */
1803 #endif
1804 
1805         switch (ccreg & 7) {
1806         case 0: /* No SE cache */
1807         case 7: /* Test mode */
1808                 break;
1809         default:
1810                 ccreg |= (TURBOSPARC_SCENABLE);
1811         }
1812         turbosparc_set_ccreg (ccreg);
1813 
1814         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1815         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1816         srmmu_set_mmureg(mreg);
1817 }
1818 
1819 static void __init init_turbosparc(void)
1820 {
1821         srmmu_name = "Fujitsu TurboSparc";
1822         srmmu_modtype = TurboSparc;
1823 
1824         BTFIXUPSET_CALL(flush_cache_all, turbosparc_flush_cache_all, BTFIXUPCALL_NORM);
1825         BTFIXUPSET_CALL(flush_cache_mm, turbosparc_flush_cache_mm, BTFIXUPCALL_NORM);
1826         BTFIXUPSET_CALL(flush_cache_page, turbosparc_flush_cache_page, BTFIXUPCALL_NORM);
1827         BTFIXUPSET_CALL(flush_cache_range, turbosparc_flush_cache_range, BTFIXUPCALL_NORM);
1828 
1829         BTFIXUPSET_CALL(flush_tlb_all, turbosparc_flush_tlb_all, BTFIXUPCALL_NORM);
1830         BTFIXUPSET_CALL(flush_tlb_mm, turbosparc_flush_tlb_mm, BTFIXUPCALL_NORM);
1831         BTFIXUPSET_CALL(flush_tlb_page, turbosparc_flush_tlb_page, BTFIXUPCALL_NORM);
1832         BTFIXUPSET_CALL(flush_tlb_range, turbosparc_flush_tlb_range, BTFIXUPCALL_NORM);
1833 
1834         BTFIXUPSET_CALL(__flush_page_to_ram, turbosparc_flush_page_to_ram, BTFIXUPCALL_NORM);
1835 
1836         BTFIXUPSET_CALL(flush_sig_insns, turbosparc_flush_sig_insns, BTFIXUPCALL_NOP);
1837         BTFIXUPSET_CALL(flush_page_for_dma, turbosparc_flush_page_for_dma, BTFIXUPCALL_NORM);
1838 
1839         poke_srmmu = poke_turbosparc;
1840 }
1841 
1842 static void __init poke_tsunami(void)
1843 {
1844         unsigned long mreg = srmmu_get_mmureg();
1845 
1846         tsunami_flush_icache();
1847         tsunami_flush_dcache();
1848         mreg &= ~TSUNAMI_ITD;
1849         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1850         srmmu_set_mmureg(mreg);
1851 }
1852 
1853 static void __init init_tsunami(void)
1854 {
1855         /*
1856          * Tsunami's pretty sane, Sun and TI actually got it
1857          * somewhat right this time.  Fujitsu should have
1858          * taken some lessons from them.
1859          */
1860 
1861         srmmu_name = "TI Tsunami";
1862         srmmu_modtype = Tsunami;
1863 
1864         BTFIXUPSET_CALL(flush_cache_all, tsunami_flush_cache_all, BTFIXUPCALL_NORM);
1865         BTFIXUPSET_CALL(flush_cache_mm, tsunami_flush_cache_mm, BTFIXUPCALL_NORM);
1866         BTFIXUPSET_CALL(flush_cache_page, tsunami_flush_cache_page, BTFIXUPCALL_NORM);
1867         BTFIXUPSET_CALL(flush_cache_range, tsunami_flush_cache_range, BTFIXUPCALL_NORM);
1868 
1869 
1870         BTFIXUPSET_CALL(flush_tlb_all, tsunami_flush_tlb_all, BTFIXUPCALL_NORM);
1871         BTFIXUPSET_CALL(flush_tlb_mm, tsunami_flush_tlb_mm, BTFIXUPCALL_NORM);
1872         BTFIXUPSET_CALL(flush_tlb_page, tsunami_flush_tlb_page, BTFIXUPCALL_NORM);
1873         BTFIXUPSET_CALL(flush_tlb_range, tsunami_flush_tlb_range, BTFIXUPCALL_NORM);
1874 
1875         BTFIXUPSET_CALL(__flush_page_to_ram, tsunami_flush_page_to_ram, BTFIXUPCALL_NOP);
1876         BTFIXUPSET_CALL(flush_sig_insns, tsunami_flush_sig_insns, BTFIXUPCALL_NORM);
1877         BTFIXUPSET_CALL(flush_page_for_dma, tsunami_flush_page_for_dma, BTFIXUPCALL_NORM);
1878 
1879         poke_srmmu = poke_tsunami;
1880 
1881         tsunami_setup_blockops();
1882 }
1883 
1884 static void __init poke_viking(void)
1885 {
1886         unsigned long mreg = srmmu_get_mmureg();
1887         static int smp_catch;
1888 
1889         if(viking_mxcc_present) {
1890                 unsigned long mxcc_control = mxcc_get_creg();
1891 
1892                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1893                 mxcc_control &= ~(MXCC_CTL_RRC);
1894                 mxcc_set_creg(mxcc_control);
1895 
1896                 /*
1897                  * We don't need memory parity checks.
1898                  * XXX This is a mess, have to dig out later. ecd.
1899                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1900                  */
1901 
1902                 /* We do cache ptables on MXCC. */
1903                 mreg |= VIKING_TCENABLE;
1904         } else {
1905                 unsigned long bpreg;
1906 
1907                 mreg &= ~(VIKING_TCENABLE);
1908                 if(smp_catch++) {
1909                         /* Must disable mixed-cmd mode here for other cpu's. */
1910                         bpreg = viking_get_bpreg();
1911                         bpreg &= ~(VIKING_ACTION_MIX);
1912                         viking_set_bpreg(bpreg);
1913 
1914                         /* Just in case PROM does something funny. */
1915                         msi_set_sync();
1916                 }
1917         }
1918 
1919         mreg |= VIKING_SPENABLE;
1920         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1921         mreg |= VIKING_SBENABLE;
1922         mreg &= ~(VIKING_ACENABLE);
1923         srmmu_set_mmureg(mreg);
1924 
1925 #ifdef CONFIG_SMP
1926         /* Avoid unnecessary cross calls. */
1927         BTFIXUPCOPY_CALL(flush_cache_all, local_flush_cache_all);
1928         BTFIXUPCOPY_CALL(flush_cache_mm, local_flush_cache_mm);
1929         BTFIXUPCOPY_CALL(flush_cache_range, local_flush_cache_range);
1930         BTFIXUPCOPY_CALL(flush_cache_page, local_flush_cache_page);
1931         BTFIXUPCOPY_CALL(__flush_page_to_ram, local_flush_page_to_ram);
1932         BTFIXUPCOPY_CALL(flush_sig_insns, local_flush_sig_insns);
1933         BTFIXUPCOPY_CALL(flush_page_for_dma, local_flush_page_for_dma);
1934         btfixup();
1935 #endif
1936 }
1937 
1938 static void __init init_viking(void)
1939 {
1940         unsigned long mreg = srmmu_get_mmureg();
1941 
1942         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1943         if(mreg & VIKING_MMODE) {
1944                 srmmu_name = "TI Viking";
1945                 viking_mxcc_present = 0;
1946                 msi_set_sync();
1947 
1948                 BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_NORM);
1949                 BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_NORM);
1950                 BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_NORM);
1951 
1952                 /*
1953                  * We need this to make sure old viking takes no hits
1954                  * on it's cache for dma snoops to workaround the
1955                  * "load from non-cacheable memory" interrupt bug.
1956                  * This is only necessary because of the new way in
1957                  * which we use the IOMMU.
1958                  */
1959                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page, BTFIXUPCALL_NORM);
1960 
1961                 flush_page_for_dma_global = 0;
1962         } else {
1963                 srmmu_name = "TI Viking/MXCC";
1964                 viking_mxcc_present = 1;
1965 
1966                 srmmu_cache_pagetables = 1;
1967 
1968                 /* MXCC vikings lack the DMA snooping bug. */
1969                 BTFIXUPSET_CALL(flush_page_for_dma, viking_flush_page_for_dma, BTFIXUPCALL_NOP);
1970         }
1971 
1972         BTFIXUPSET_CALL(flush_cache_all, viking_flush_cache_all, BTFIXUPCALL_NORM);
1973         BTFIXUPSET_CALL(flush_cache_mm, viking_flush_cache_mm, BTFIXUPCALL_NORM);
1974         BTFIXUPSET_CALL(flush_cache_page, viking_flush_cache_page, BTFIXUPCALL_NORM);
1975         BTFIXUPSET_CALL(flush_cache_range, viking_flush_cache_range, BTFIXUPCALL_NORM);
1976 
1977 #ifdef CONFIG_SMP
1978         if (sparc_cpu_model == sun4d) {
1979                 BTFIXUPSET_CALL(flush_tlb_all, sun4dsmp_flush_tlb_all, BTFIXUPCALL_NORM);
1980                 BTFIXUPSET_CALL(flush_tlb_mm, sun4dsmp_flush_tlb_mm, BTFIXUPCALL_NORM);
1981                 BTFIXUPSET_CALL(flush_tlb_page, sun4dsmp_flush_tlb_page, BTFIXUPCALL_NORM);
1982                 BTFIXUPSET_CALL(flush_tlb_range, sun4dsmp_flush_tlb_range, BTFIXUPCALL_NORM);
1983         } else
1984 #endif
1985         {
1986                 BTFIXUPSET_CALL(flush_tlb_all, viking_flush_tlb_all, BTFIXUPCALL_NORM);
1987                 BTFIXUPSET_CALL(flush_tlb_mm, viking_flush_tlb_mm, BTFIXUPCALL_NORM);
1988                 BTFIXUPSET_CALL(flush_tlb_page, viking_flush_tlb_page, BTFIXUPCALL_NORM);
1989                 BTFIXUPSET_CALL(flush_tlb_range, viking_flush_tlb_range, BTFIXUPCALL_NORM);
1990         }
1991 
1992         BTFIXUPSET_CALL(__flush_page_to_ram, viking_flush_page_to_ram, BTFIXUPCALL_NOP);
1993         BTFIXUPSET_CALL(flush_sig_insns, viking_flush_sig_insns, BTFIXUPCALL_NOP);
1994 
1995         poke_srmmu = poke_viking;
1996 }
1997 
1998 /* Probe for the srmmu chip version. */
1999 static void __init get_srmmu_type(void)
2000 {
2001         unsigned long mreg, psr;
2002         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
2003 
2004         srmmu_modtype = SRMMU_INVAL_MOD;
2005         hwbug_bitmask = 0;
2006 
2007         mreg = srmmu_get_mmureg(); psr = get_psr();
2008         mod_typ = (mreg & 0xf0000000) >> 28;
2009         mod_rev = (mreg & 0x0f000000) >> 24;
2010         psr_typ = (psr >> 28) & 0xf;
2011         psr_vers = (psr >> 24) & 0xf;
2012 
2013         /* First, check for HyperSparc or Cypress. */
2014         if(mod_typ == 1) {
2015                 switch(mod_rev) {
2016                 case 7:
2017                         /* UP or MP Hypersparc */
2018                         init_hypersparc();
2019                         break;
2020                 case 0:
2021                 case 2:
2022                         /* Uniprocessor Cypress */
2023                         init_cypress_604();
2024                         break;
2025                 case 10:
2026                 case 11:
2027                 case 12:
2028                         /* _REALLY OLD_ Cypress MP chips... */
2029                 case 13:
2030                 case 14:
2031                 case 15:
2032                         /* MP Cypress mmu/cache-controller */
2033                         init_cypress_605(mod_rev);
2034                         break;
2035                 default:
2036                         /* Some other Cypress revision, assume a 605. */
2037                         init_cypress_605(mod_rev);
2038                         break;
2039                 };
2040                 return;
2041         }
2042         
2043         /*
2044          * Now Fujitsu TurboSparc. It might happen that it is
2045          * in Swift emulation mode, so we will check later...
2046          */
2047         if (psr_typ == 0 && psr_vers == 5) {
2048                 init_turbosparc();
2049                 return;
2050         }
2051 
2052         /* Next check for Fujitsu Swift. */
2053         if(psr_typ == 0 && psr_vers == 4) {
2054                 int cpunode;
2055                 char node_str[128];
2056 
2057                 /* Look if it is not a TurboSparc emulating Swift... */
2058                 cpunode = prom_getchild(prom_root_node);
2059                 while((cpunode = prom_getsibling(cpunode)) != 0) {
2060                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
2061                         if(!strcmp(node_str, "cpu")) {
2062                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
2063                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
2064                                         init_turbosparc();
2065                                         return;
2066                                 }
2067                                 break;
2068                         }
2069                 }
2070                 
2071                 init_swift();
2072                 return;
2073         }
2074 
2075         /* Now the Viking family of srmmu. */
2076         if(psr_typ == 4 &&
2077            ((psr_vers == 0) ||
2078             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
2079                 init_viking();
2080                 return;
2081         }
2082 
2083         /* Finally the Tsunami. */
2084         if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
2085                 init_tsunami();
2086                 return;
2087         }
2088 
2089         /* Oh well */
2090         srmmu_is_bad();
2091 }
2092 
2093 /* don't laugh, static pagetables */
2094 static void srmmu_check_pgt_cache(int low, int high)
2095 {
2096 }
2097 
2098 extern unsigned long spwin_mmu_patchme, fwin_mmu_patchme,
2099         tsetup_mmu_patchme, rtrap_mmu_patchme;
2100 
2101 extern unsigned long spwin_srmmu_stackchk, srmmu_fwin_stackchk,
2102         tsetup_srmmu_stackchk, srmmu_rett_stackchk;
2103 
2104 extern unsigned long srmmu_fault;
2105 
2106 #define PATCH_BRANCH(insn, dest) do { \
2107                 iaddr = &(insn); \
2108                 daddr = &(dest); \
2109                 *iaddr = SPARC_BRANCH((unsigned long) daddr, (unsigned long) iaddr); \
2110         } while(0)
2111 
2112 static void __init patch_window_trap_handlers(void)
2113 {
2114         unsigned long *iaddr, *daddr;
2115         
2116         PATCH_BRANCH(spwin_mmu_patchme, spwin_srmmu_stackchk);
2117         PATCH_BRANCH(fwin_mmu_patchme, srmmu_fwin_stackchk);
2118         PATCH_BRANCH(tsetup_mmu_patchme, tsetup_srmmu_stackchk);
2119         PATCH_BRANCH(rtrap_mmu_patchme, srmmu_rett_stackchk);
2120         PATCH_BRANCH(sparc_ttable[SP_TRAP_TFLT].inst_three, srmmu_fault);
2121         PATCH_BRANCH(sparc_ttable[SP_TRAP_DFLT].inst_three, srmmu_fault);
2122         PATCH_BRANCH(sparc_ttable[SP_TRAP_DACC].inst_three, srmmu_fault);
2123 }
2124 
2125 #ifdef CONFIG_SMP
2126 /* Local cross-calls. */
2127 static void smp_flush_page_for_dma(unsigned long page)
2128 {
2129         xc1((smpfunc_t) BTFIXUP_CALL(local_flush_page_for_dma), page);
2130         local_flush_page_for_dma(page);
2131 }
2132 
2133 #endif
2134 
2135 static pte_t srmmu_pgoff_to_pte(unsigned long pgoff)
2136 {
2137         return __pte((pgoff << SRMMU_PTE_FILE_SHIFT) | SRMMU_FILE);
2138 }
2139 
2140 static unsigned long srmmu_pte_to_pgoff(pte_t pte)
2141 {
2142         return pte_val(pte) >> SRMMU_PTE_FILE_SHIFT;
2143 }
2144 
2145 /* Load up routines and constants for sun4m and sun4d mmu */
2146 void __init ld_mmu_srmmu(void)
2147 {
2148         extern void ld_mmu_iommu(void);
2149         extern void ld_mmu_iounit(void);
2150         extern void ___xchg32_sun4md(void);
2151 
2152         BTFIXUPSET_SIMM13(pmd_shift, SRMMU_PMD_SHIFT_SOFT);
2153         BTFIXUPSET_SETHI(pmd_size, SRMMU_PMD_SIZE_SOFT);
2154         BTFIXUPSET_SETHI(pmd_mask, SRMMU_PMD_MASK_SOFT);
2155 
2156         BTFIXUPSET_SIMM13(pgdir_shift, SRMMU_PGDIR_SHIFT);
2157         BTFIXUPSET_SETHI(pgdir_size, SRMMU_PGDIR_SIZE);
2158         BTFIXUPSET_SETHI(pgdir_mask, SRMMU_PGDIR_MASK);
2159 
2160         BTFIXUPSET_SIMM13(ptrs_per_pte, SRMMU_PTRS_PER_PTE_SOFT);
2161         BTFIXUPSET_SIMM13(ptrs_per_pmd, SRMMU_PTRS_PER_PMD_SOFT);
2162         BTFIXUPSET_SIMM13(ptrs_per_pgd, SRMMU_PTRS_PER_PGD);
2163 
2164         BTFIXUPSET_INT(page_none, pgprot_val(SRMMU_PAGE_NONE));
2165         BTFIXUPSET_INT(page_shared, pgprot_val(SRMMU_PAGE_SHARED));
2166         BTFIXUPSET_INT(page_copy, pgprot_val(SRMMU_PAGE_COPY));
2167         BTFIXUPSET_INT(page_readonly, pgprot_val(SRMMU_PAGE_RDONLY));
2168         BTFIXUPSET_INT(page_kernel, pgprot_val(SRMMU_PAGE_KERNEL));
2169         page_kernel = pgprot_val(SRMMU_PAGE_KERNEL);
2170         pg_iobits = SRMMU_VALID | SRMMU_WRITE | SRMMU_REF;
2171 
2172         /* Functions */
2173 #ifndef CONFIG_SMP      
2174         BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4md, BTFIXUPCALL_SWAPG1G2);
2175 #endif
2176         BTFIXUPSET_CALL(do_check_pgt_cache, srmmu_check_pgt_cache, BTFIXUPCALL_NOP);
2177 
2178         BTFIXUPSET_CALL(set_pte, srmmu_set_pte, BTFIXUPCALL_SWAPO0O1);
2179         BTFIXUPSET_CALL(switch_mm, srmmu_switch_mm, BTFIXUPCALL_NORM);
2180 
2181         BTFIXUPSET_CALL(pte_pfn, srmmu_pte_pfn, BTFIXUPCALL_NORM);
2182         BTFIXUPSET_CALL(pmd_page, srmmu_pmd_page, BTFIXUPCALL_NORM);
2183         BTFIXUPSET_CALL(pgd_page, srmmu_pgd_page, BTFIXUPCALL_NORM);
2184 
2185         BTFIXUPSET_SETHI(none_mask, 0xF0000000);
2186 
2187         BTFIXUPSET_CALL(pte_present, srmmu_pte_present, BTFIXUPCALL_NORM);
2188         BTFIXUPSET_CALL(pte_clear, srmmu_pte_clear, BTFIXUPCALL_SWAPO0G0);
2189 
2190         BTFIXUPSET_CALL(pmd_bad, srmmu_pmd_bad, BTFIXUPCALL_NORM);
2191         BTFIXUPSET_CALL(pmd_present, srmmu_pmd_present, BTFIXUPCALL_NORM);
2192         BTFIXUPSET_CALL(pmd_clear, srmmu_pmd_clear, BTFIXUPCALL_SWAPO0G0);
2193 
2194         BTFIXUPSET_CALL(pgd_none, srmmu_pgd_none, BTFIXUPCALL_NORM);
2195         BTFIXUPSET_CALL(pgd_bad, srmmu_pgd_bad, BTFIXUPCALL_NORM);
2196         BTFIXUPSET_CALL(pgd_present, srmmu_pgd_present, BTFIXUPCALL_NORM);
2197         BTFIXUPSET_CALL(pgd_clear, srmmu_pgd_clear, BTFIXUPCALL_SWAPO0G0);
2198 
2199         BTFIXUPSET_CALL(mk_pte, srmmu_mk_pte, BTFIXUPCALL_NORM);
2200         BTFIXUPSET_CALL(mk_pte_phys, srmmu_mk_pte_phys, BTFIXUPCALL_NORM);
2201         BTFIXUPSET_CALL(mk_pte_io, srmmu_mk_pte_io, BTFIXUPCALL_NORM);
2202         BTFIXUPSET_CALL(pgd_set, srmmu_pgd_set, BTFIXUPCALL_NORM);
2203         BTFIXUPSET_CALL(pmd_set, srmmu_pmd_set, BTFIXUPCALL_NORM);
2204         BTFIXUPSET_CALL(pmd_populate, srmmu_pmd_populate, BTFIXUPCALL_NORM);
2205         
2206         BTFIXUPSET_INT(pte_modify_mask, SRMMU_CHG_MASK);
2207         BTFIXUPSET_CALL(pmd_offset, srmmu_pmd_offset, BTFIXUPCALL_NORM);
2208         BTFIXUPSET_CALL(pte_offset_kernel, srmmu_pte_offset, BTFIXUPCALL_NORM);
2209 
2210         BTFIXUPSET_CALL(free_pte_fast, srmmu_free_pte_fast, BTFIXUPCALL_NORM);
2211         BTFIXUPSET_CALL(pte_free, srmmu_pte_free, BTFIXUPCALL_NORM);
2212         BTFIXUPSET_CALL(pte_alloc_one_kernel, srmmu_pte_alloc_one_kernel, BTFIXUPCALL_NORM);
2213         BTFIXUPSET_CALL(pte_alloc_one, srmmu_pte_alloc_one, BTFIXUPCALL_NORM);
2214         BTFIXUPSET_CALL(free_pmd_fast, srmmu_pmd_free, BTFIXUPCALL_NORM);
2215         BTFIXUPSET_CALL(pmd_alloc_one, srmmu_pmd_alloc_one, BTFIXUPCALL_NORM);
2216         BTFIXUPSET_CALL(free_pgd_fast, srmmu_free_pgd_fast, BTFIXUPCALL_NORM);
2217         BTFIXUPSET_CALL(get_pgd_fast, srmmu_get_pgd_fast, BTFIXUPCALL_NORM);
2218 
2219         BTFIXUPSET_HALF(pte_writei, SRMMU_WRITE);
2220         BTFIXUPSET_HALF(pte_dirtyi, SRMMU_DIRTY);
2221         BTFIXUPSET_HALF(pte_youngi, SRMMU_REF);
2222         BTFIXUPSET_HALF(pte_filei, SRMMU_FILE);
2223         BTFIXUPSET_HALF(pte_wrprotecti, SRMMU_WRITE);
2224         BTFIXUPSET_HALF(pte_mkcleani, SRMMU_DIRTY);
2225         BTFIXUPSET_HALF(pte_mkoldi, SRMMU_REF);
2226         BTFIXUPSET_CALL(pte_mkwrite, srmmu_pte_mkwrite, BTFIXUPCALL_ORINT(SRMMU_WRITE));
2227         BTFIXUPSET_CALL(pte_mkdirty, srmmu_pte_mkdirty, BTFIXUPCALL_ORINT(SRMMU_DIRTY));
2228         BTFIXUPSET_CALL(pte_mkyoung, srmmu_pte_mkyoung, BTFIXUPCALL_ORINT(SRMMU_REF));
2229         BTFIXUPSET_CALL(update_mmu_cache, srmmu_update_mmu_cache, BTFIXUPCALL_NOP);
2230         BTFIXUPSET_CALL(destroy_context, srmmu_destroy_context, BTFIXUPCALL_NORM);
2231 
2232         BTFIXUPSET_CALL(sparc_mapiorange, srmmu_mapiorange, BTFIXUPCALL_NORM);
2233         BTFIXUPSET_CALL(sparc_unmapiorange, srmmu_unmapiorange, BTFIXUPCALL_NORM);
2234 
2235         BTFIXUPSET_CALL(mmu_info, srmmu_mmu_info, BTFIXUPCALL_NORM);
2236 
2237         BTFIXUPSET_CALL(alloc_thread_info, srmmu_alloc_thread_info, BTFIXUPCALL_NORM);
2238         BTFIXUPSET_CALL(free_thread_info, srmmu_free_thread_info, BTFIXUPCALL_NORM);
2239 
2240         BTFIXUPSET_CALL(pte_to_pgoff, srmmu_pte_to_pgoff, BTFIXUPCALL_NORM);
2241         BTFIXUPSET_CALL(pgoff_to_pte, srmmu_pgoff_to_pte, BTFIXUPCALL_NORM);
2242 
2243         get_srmmu_type();
2244         patch_window_trap_handlers();
2245 
2246 #ifdef CONFIG_SMP
2247         /* El switcheroo... */
2248 
2249         BTFIXUPCOPY_CALL(local_flush_cache_all, flush_cache_all);
2250         BTFIXUPCOPY_CALL(local_flush_cache_mm, flush_cache_mm);
2251         BTFIXUPCOPY_CALL(local_flush_cache_range, flush_cache_range);
2252         BTFIXUPCOPY_CALL(local_flush_cache_page, flush_cache_page);
2253         BTFIXUPCOPY_CALL(local_flush_tlb_all, flush_tlb_all);
2254         BTFIXUPCOPY_CALL(local_flush_tlb_mm, flush_tlb_mm);
2255         BTFIXUPCOPY_CALL(local_flush_tlb_range, flush_tlb_range);
2256         BTFIXUPCOPY_CALL(local_flush_tlb_page, flush_tlb_page);
2257         BTFIXUPCOPY_CALL(local_flush_page_to_ram, __flush_page_to_ram);
2258         BTFIXUPCOPY_CALL(local_flush_sig_insns, flush_sig_insns);
2259         BTFIXUPCOPY_CALL(local_flush_page_for_dma, flush_page_for_dma);
2260 
2261         BTFIXUPSET_CALL(flush_cache_all, smp_flush_cache_all, BTFIXUPCALL_NORM);
2262         BTFIXUPSET_CALL(flush_cache_mm, smp_flush_cache_mm, BTFIXUPCALL_NORM);
2263         BTFIXUPSET_CALL(flush_cache_range, smp_flush_cache_range, BTFIXUPCALL_NORM);
2264         BTFIXUPSET_CALL(flush_cache_page, smp_flush_cache_page, BTFIXUPCALL_NORM);
2265         if (sparc_cpu_model != sun4d) {
2266                 BTFIXUPSET_CALL(flush_tlb_all, smp_flush_tlb_all, BTFIXUPCALL_NORM);
2267                 BTFIXUPSET_CALL(flush_tlb_mm, smp_flush_tlb_mm, BTFIXUPCALL_NORM);
2268                 BTFIXUPSET_CALL(flush_tlb_range, smp_flush_tlb_range, BTFIXUPCALL_NORM);
2269                 BTFIXUPSET_CALL(flush_tlb_page, smp_flush_tlb_page, BTFIXUPCALL_NORM);
2270         }
2271         BTFIXUPSET_CALL(__flush_page_to_ram, smp_flush_page_to_ram, BTFIXUPCALL_NORM);
2272         BTFIXUPSET_CALL(flush_sig_insns, smp_flush_sig_insns, BTFIXUPCALL_NORM);
2273         BTFIXUPSET_CALL(flush_page_for_dma, smp_flush_page_for_dma, BTFIXUPCALL_NORM);
2274 #endif
2275 
2276         if (sparc_cpu_model == sun4d)
2277                 ld_mmu_iounit();
2278         else
2279                 ld_mmu_iommu();
2280 #ifdef CONFIG_SMP
2281         if (sparc_cpu_model == sun4d)
2282                 sun4d_init_smp();
2283         else
2284                 sun4m_init_smp();
2285 #endif
2286 }
2287 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp