1 /* 2 * Copyright 2010 Tilera Corporation. All Rights Reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation, version 2. 7 * 8 * This program is distributed in the hope that it will be useful, but 9 * WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 11 * NON INFRINGEMENT. See the GNU General Public License for 12 * more details. 13 * 14 * From i386 code copyright (C) 1995 Linus Torvalds 15 */ 16 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/errno.h> 21 #include <linux/string.h> 22 #include <linux/types.h> 23 #include <linux/ptrace.h> 24 #include <linux/mman.h> 25 #include <linux/mm.h> 26 #include <linux/smp.h> 27 #include <linux/interrupt.h> 28 #include <linux/init.h> 29 #include <linux/tty.h> 30 #include <linux/vt_kern.h> /* For unblank_screen() */ 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/kprobes.h> 34 #include <linux/hugetlb.h> 35 #include <linux/syscalls.h> 36 #include <linux/uaccess.h> 37 #include <linux/kdebug.h> 38 39 #include <asm/pgalloc.h> 40 #include <asm/sections.h> 41 #include <asm/traps.h> 42 #include <asm/syscalls.h> 43 44 #include <arch/interrupts.h> 45 46 static noinline void force_sig_info_fault(const char *type, int si_signo, 47 int si_code, unsigned long address, 48 int fault_num, 49 struct task_struct *tsk, 50 struct pt_regs *regs) 51 { 52 siginfo_t info; 53 54 if (unlikely(tsk->pid < 2)) { 55 panic("Signal %d (code %d) at %#lx sent to %s!", 56 si_signo, si_code & 0xffff, address, 57 is_idle_task(tsk) ? "the idle task" : "init"); 58 } 59 60 info.si_signo = si_signo; 61 info.si_errno = 0; 62 info.si_code = si_code; 63 info.si_addr = (void __user *)address; 64 info.si_trapno = fault_num; 65 trace_unhandled_signal(type, regs, address, si_signo); 66 force_sig_info(si_signo, &info, tsk); 67 } 68 69 #ifndef __tilegx__ 70 /* 71 * Synthesize the fault a PL0 process would get by doing a word-load of 72 * an unaligned address or a high kernel address. 73 */ 74 SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address) 75 { 76 struct pt_regs *regs = current_pt_regs(); 77 78 if (address >= PAGE_OFFSET) 79 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR, 80 address, INT_DTLB_MISS, current, regs); 81 else 82 force_sig_info_fault("atomic alignment fault", SIGBUS, 83 BUS_ADRALN, address, 84 INT_UNALIGN_DATA, current, regs); 85 86 /* 87 * Adjust pc to point at the actual instruction, which is unusual 88 * for syscalls normally, but is appropriate when we are claiming 89 * that a syscall swint1 caused a page fault or bus error. 90 */ 91 regs->pc -= 8; 92 93 /* 94 * Mark this as a caller-save interrupt, like a normal page fault, 95 * so that when we go through the signal handler path we will 96 * properly restore r0, r1, and r2 for the signal handler arguments. 97 */ 98 regs->flags |= PT_FLAGS_CALLER_SAVES; 99 100 return 0; 101 } 102 #endif 103 104 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) 105 { 106 unsigned index = pgd_index(address); 107 pgd_t *pgd_k; 108 pud_t *pud, *pud_k; 109 pmd_t *pmd, *pmd_k; 110 111 pgd += index; 112 pgd_k = init_mm.pgd + index; 113 114 if (!pgd_present(*pgd_k)) 115 return NULL; 116 117 pud = pud_offset(pgd, address); 118 pud_k = pud_offset(pgd_k, address); 119 if (!pud_present(*pud_k)) 120 return NULL; 121 122 pmd = pmd_offset(pud, address); 123 pmd_k = pmd_offset(pud_k, address); 124 if (!pmd_present(*pmd_k)) 125 return NULL; 126 if (!pmd_present(*pmd)) 127 set_pmd(pmd, *pmd_k); 128 else 129 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k)); 130 return pmd_k; 131 } 132 133 /* 134 * Handle a fault on the vmalloc area. 135 */ 136 static inline int vmalloc_fault(pgd_t *pgd, unsigned long address) 137 { 138 pmd_t *pmd_k; 139 pte_t *pte_k; 140 141 /* Make sure we are in vmalloc area */ 142 if (!(address >= VMALLOC_START && address < VMALLOC_END)) 143 return -1; 144 145 /* 146 * Synchronize this task's top level page-table 147 * with the 'reference' page table. 148 */ 149 pmd_k = vmalloc_sync_one(pgd, address); 150 if (!pmd_k) 151 return -1; 152 pte_k = pte_offset_kernel(pmd_k, address); 153 if (!pte_present(*pte_k)) 154 return -1; 155 return 0; 156 } 157 158 /* Wait until this PTE has completed migration. */ 159 static void wait_for_migration(pte_t *pte) 160 { 161 if (pte_migrating(*pte)) { 162 /* 163 * Wait until the migrater fixes up this pte. 164 * We scale the loop count by the clock rate so we'll wait for 165 * a few seconds here. 166 */ 167 int retries = 0; 168 int bound = get_clock_rate(); 169 while (pte_migrating(*pte)) { 170 barrier(); 171 if (++retries > bound) 172 panic("Hit migrating PTE (%#llx) and page PFN %#lx still migrating", 173 pte->val, pte_pfn(*pte)); 174 } 175 } 176 } 177 178 /* 179 * It's not generally safe to use "current" to get the page table pointer, 180 * since we might be running an oprofile interrupt in the middle of a 181 * task switch. 182 */ 183 static pgd_t *get_current_pgd(void) 184 { 185 HV_Context ctx = hv_inquire_context(); 186 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT; 187 struct page *pgd_page = pfn_to_page(pgd_pfn); 188 BUG_ON(PageHighMem(pgd_page)); 189 return (pgd_t *) __va(ctx.page_table); 190 } 191 192 /* 193 * We can receive a page fault from a migrating PTE at any time. 194 * Handle it by just waiting until the fault resolves. 195 * 196 * It's also possible to get a migrating kernel PTE that resolves 197 * itself during the downcall from hypervisor to Linux. We just check 198 * here to see if the PTE seems valid, and if so we retry it. 199 * 200 * NOTE! We MUST NOT take any locks for this case. We may be in an 201 * interrupt or a critical region, and must do as little as possible. 202 * Similarly, we can't use atomic ops here, since we may be handling a 203 * fault caused by an atomic op access. 204 * 205 * If we find a migrating PTE while we're in an NMI context, and we're 206 * at a PC that has a registered exception handler, we don't wait, 207 * since this thread may (e.g.) have been interrupted while migrating 208 * its own stack, which would then cause us to self-deadlock. 209 */ 210 static int handle_migrating_pte(pgd_t *pgd, int fault_num, 211 unsigned long address, unsigned long pc, 212 int is_kernel_mode, int write) 213 { 214 pud_t *pud; 215 pmd_t *pmd; 216 pte_t *pte; 217 pte_t pteval; 218 219 if (pgd_addr_invalid(address)) 220 return 0; 221 222 pgd += pgd_index(address); 223 pud = pud_offset(pgd, address); 224 if (!pud || !pud_present(*pud)) 225 return 0; 226 pmd = pmd_offset(pud, address); 227 if (!pmd || !pmd_present(*pmd)) 228 return 0; 229 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) : 230 pte_offset_kernel(pmd, address); 231 pteval = *pte; 232 if (pte_migrating(pteval)) { 233 if (in_nmi() && search_exception_tables(pc)) 234 return 0; 235 wait_for_migration(pte); 236 return 1; 237 } 238 239 if (!is_kernel_mode || !pte_present(pteval)) 240 return 0; 241 if (fault_num == INT_ITLB_MISS) { 242 if (pte_exec(pteval)) 243 return 1; 244 } else if (write) { 245 if (pte_write(pteval)) 246 return 1; 247 } else { 248 if (pte_read(pteval)) 249 return 1; 250 } 251 252 return 0; 253 } 254 255 /* 256 * This routine is responsible for faulting in user pages. 257 * It passes the work off to one of the appropriate routines. 258 * It returns true if the fault was successfully handled. 259 */ 260 static int handle_page_fault(struct pt_regs *regs, 261 int fault_num, 262 int is_page_fault, 263 unsigned long address, 264 int write) 265 { 266 struct task_struct *tsk; 267 struct mm_struct *mm; 268 struct vm_area_struct *vma; 269 unsigned long stack_offset; 270 int fault; 271 int si_code; 272 int is_kernel_mode; 273 pgd_t *pgd; 274 unsigned int flags; 275 276 /* on TILE, protection faults are always writes */ 277 if (!is_page_fault) 278 write = 1; 279 280 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 281 282 is_kernel_mode = !user_mode(regs); 283 284 tsk = validate_current(); 285 286 /* 287 * Check to see if we might be overwriting the stack, and bail 288 * out if so. The page fault code is a relatively likely 289 * place to get trapped in an infinite regress, and once we 290 * overwrite the whole stack, it becomes very hard to recover. 291 */ 292 stack_offset = stack_pointer & (THREAD_SIZE-1); 293 if (stack_offset < THREAD_SIZE / 8) { 294 pr_alert("Potential stack overrun: sp %#lx\n", stack_pointer); 295 show_regs(regs); 296 pr_alert("Killing current process %d/%s\n", 297 tsk->pid, tsk->comm); 298 do_group_exit(SIGKILL); 299 } 300 301 /* 302 * Early on, we need to check for migrating PTE entries; 303 * see homecache.c. If we find a migrating PTE, we wait until 304 * the backing page claims to be done migrating, then we proceed. 305 * For kernel PTEs, we rewrite the PTE and return and retry. 306 * Otherwise, we treat the fault like a normal "no PTE" fault, 307 * rather than trying to patch up the existing PTE. 308 */ 309 pgd = get_current_pgd(); 310 if (handle_migrating_pte(pgd, fault_num, address, regs->pc, 311 is_kernel_mode, write)) 312 return 1; 313 314 si_code = SEGV_MAPERR; 315 316 /* 317 * We fault-in kernel-space virtual memory on-demand. The 318 * 'reference' page table is init_mm.pgd. 319 * 320 * NOTE! We MUST NOT take any locks for this case. We may 321 * be in an interrupt or a critical region, and should 322 * only copy the information from the master page table, 323 * nothing more. 324 * 325 * This verifies that the fault happens in kernel space 326 * and that the fault was not a protection fault. 327 */ 328 if (unlikely(address >= TASK_SIZE && 329 !is_arch_mappable_range(address, 0))) { 330 if (is_kernel_mode && is_page_fault && 331 vmalloc_fault(pgd, address) >= 0) 332 return 1; 333 /* 334 * Don't take the mm semaphore here. If we fixup a prefetch 335 * fault we could otherwise deadlock. 336 */ 337 mm = NULL; /* happy compiler */ 338 vma = NULL; 339 goto bad_area_nosemaphore; 340 } 341 342 /* 343 * If we're trying to touch user-space addresses, we must 344 * be either at PL0, or else with interrupts enabled in the 345 * kernel, so either way we can re-enable interrupts here 346 * unless we are doing atomic access to user space with 347 * interrupts disabled. 348 */ 349 if (!(regs->flags & PT_FLAGS_DISABLE_IRQ)) 350 local_irq_enable(); 351 352 mm = tsk->mm; 353 354 /* 355 * If we're in an interrupt, have no user context or are running in an 356 * region with pagefaults disabled then we must not take the fault. 357 */ 358 if (pagefault_disabled() || !mm) { 359 vma = NULL; /* happy compiler */ 360 goto bad_area_nosemaphore; 361 } 362 363 if (!is_kernel_mode) 364 flags |= FAULT_FLAG_USER; 365 366 /* 367 * When running in the kernel we expect faults to occur only to 368 * addresses in user space. All other faults represent errors in the 369 * kernel and should generate an OOPS. Unfortunately, in the case of an 370 * erroneous fault occurring in a code path which already holds mmap_sem 371 * we will deadlock attempting to validate the fault against the 372 * address space. Luckily the kernel only validly references user 373 * space from well defined areas of code, which are listed in the 374 * exceptions table. 375 * 376 * As the vast majority of faults will be valid we will only perform 377 * the source reference check when there is a possibility of a deadlock. 378 * Attempt to lock the address space, if we cannot we then validate the 379 * source. If this is invalid we can skip the address space check, 380 * thus avoiding the deadlock. 381 */ 382 if (!down_read_trylock(&mm->mmap_sem)) { 383 if (is_kernel_mode && 384 !search_exception_tables(regs->pc)) { 385 vma = NULL; /* happy compiler */ 386 goto bad_area_nosemaphore; 387 } 388 389 retry: 390 down_read(&mm->mmap_sem); 391 } 392 393 vma = find_vma(mm, address); 394 if (!vma) 395 goto bad_area; 396 if (vma->vm_start <= address) 397 goto good_area; 398 if (!(vma->vm_flags & VM_GROWSDOWN)) 399 goto bad_area; 400 if (regs->sp < PAGE_OFFSET) { 401 /* 402 * accessing the stack below sp is always a bug. 403 */ 404 if (address < regs->sp) 405 goto bad_area; 406 } 407 if (expand_stack(vma, address)) 408 goto bad_area; 409 410 /* 411 * Ok, we have a good vm_area for this memory access, so 412 * we can handle it.. 413 */ 414 good_area: 415 si_code = SEGV_ACCERR; 416 if (fault_num == INT_ITLB_MISS) { 417 if (!(vma->vm_flags & VM_EXEC)) 418 goto bad_area; 419 } else if (write) { 420 #ifdef TEST_VERIFY_AREA 421 if (!is_page_fault && regs->cs == KERNEL_CS) 422 pr_err("WP fault at " REGFMT "\n", regs->eip); 423 #endif 424 if (!(vma->vm_flags & VM_WRITE)) 425 goto bad_area; 426 flags |= FAULT_FLAG_WRITE; 427 } else { 428 if (!is_page_fault || !(vma->vm_flags & VM_READ)) 429 goto bad_area; 430 } 431 432 /* 433 * If for any reason at all we couldn't handle the fault, 434 * make sure we exit gracefully rather than endlessly redo 435 * the fault. 436 */ 437 fault = handle_mm_fault(mm, vma, address, flags); 438 439 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 440 return 0; 441 442 if (unlikely(fault & VM_FAULT_ERROR)) { 443 if (fault & VM_FAULT_OOM) 444 goto out_of_memory; 445 else if (fault & VM_FAULT_SIGSEGV) 446 goto bad_area; 447 else if (fault & VM_FAULT_SIGBUS) 448 goto do_sigbus; 449 BUG(); 450 } 451 if (flags & FAULT_FLAG_ALLOW_RETRY) { 452 if (fault & VM_FAULT_MAJOR) 453 tsk->maj_flt++; 454 else 455 tsk->min_flt++; 456 if (fault & VM_FAULT_RETRY) { 457 flags &= ~FAULT_FLAG_ALLOW_RETRY; 458 flags |= FAULT_FLAG_TRIED; 459 460 /* 461 * No need to up_read(&mm->mmap_sem) as we would 462 * have already released it in __lock_page_or_retry 463 * in mm/filemap.c. 464 */ 465 goto retry; 466 } 467 } 468 469 #if CHIP_HAS_TILE_DMA() 470 /* If this was a DMA TLB fault, restart the DMA engine. */ 471 switch (fault_num) { 472 case INT_DMATLB_MISS: 473 case INT_DMATLB_MISS_DWNCL: 474 case INT_DMATLB_ACCESS: 475 case INT_DMATLB_ACCESS_DWNCL: 476 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); 477 break; 478 } 479 #endif 480 481 up_read(&mm->mmap_sem); 482 return 1; 483 484 /* 485 * Something tried to access memory that isn't in our memory map.. 486 * Fix it, but check if it's kernel or user first.. 487 */ 488 bad_area: 489 up_read(&mm->mmap_sem); 490 491 bad_area_nosemaphore: 492 /* User mode accesses just cause a SIGSEGV */ 493 if (!is_kernel_mode) { 494 /* 495 * It's possible to have interrupts off here. 496 */ 497 local_irq_enable(); 498 499 force_sig_info_fault("segfault", SIGSEGV, si_code, address, 500 fault_num, tsk, regs); 501 return 0; 502 } 503 504 no_context: 505 /* Are we prepared to handle this kernel fault? */ 506 if (fixup_exception(regs)) 507 return 0; 508 509 /* 510 * Oops. The kernel tried to access some bad page. We'll have to 511 * terminate things with extreme prejudice. 512 */ 513 514 bust_spinlocks(1); 515 516 /* FIXME: no lookup_address() yet */ 517 #ifdef SUPPORT_LOOKUP_ADDRESS 518 if (fault_num == INT_ITLB_MISS) { 519 pte_t *pte = lookup_address(address); 520 521 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) 522 pr_crit("kernel tried to execute non-executable page - exploit attempt? (uid: %d)\n", 523 current->uid); 524 } 525 #endif 526 if (address < PAGE_SIZE) 527 pr_alert("Unable to handle kernel NULL pointer dereference\n"); 528 else 529 pr_alert("Unable to handle kernel paging request\n"); 530 pr_alert(" at virtual address " REGFMT ", pc " REGFMT "\n", 531 address, regs->pc); 532 533 show_regs(regs); 534 535 if (unlikely(tsk->pid < 2)) { 536 panic("Kernel page fault running %s!", 537 is_idle_task(tsk) ? "the idle task" : "init"); 538 } 539 540 /* 541 * More FIXME: we should probably copy the i386 here and 542 * implement a generic die() routine. Not today. 543 */ 544 #ifdef SUPPORT_DIE 545 die("Oops", regs); 546 #endif 547 bust_spinlocks(1); 548 549 do_group_exit(SIGKILL); 550 551 /* 552 * We ran out of memory, or some other thing happened to us that made 553 * us unable to handle the page fault gracefully. 554 */ 555 out_of_memory: 556 up_read(&mm->mmap_sem); 557 if (is_kernel_mode) 558 goto no_context; 559 pagefault_out_of_memory(); 560 return 0; 561 562 do_sigbus: 563 up_read(&mm->mmap_sem); 564 565 /* Kernel mode? Handle exceptions or die */ 566 if (is_kernel_mode) 567 goto no_context; 568 569 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address, 570 fault_num, tsk, regs); 571 return 0; 572 } 573 574 #ifndef __tilegx__ 575 576 /* We must release ICS before panicking or we won't get anywhere. */ 577 #define ics_panic(fmt, ...) \ 578 do { \ 579 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \ 580 panic(fmt, ##__VA_ARGS__); \ 581 } while (0) 582 583 /* 584 * When we take an ITLB or DTLB fault or access violation in the 585 * supervisor while the critical section bit is set, the hypervisor is 586 * reluctant to write new values into the EX_CONTEXT_K_x registers, 587 * since that might indicate we have not yet squirreled the SPR 588 * contents away and can thus safely take a recursive interrupt. 589 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2. 590 * 591 * Note that this routine is called before homecache_tlb_defer_enter(), 592 * which means that we can properly unlock any atomics that might 593 * be used there (good), but also means we must be very sensitive 594 * to not touch any data structures that might be located in memory 595 * that could migrate, as we could be entering the kernel on a dataplane 596 * cpu that has been deferring kernel TLB updates. This means, for 597 * example, that we can't migrate init_mm or its pgd. 598 */ 599 struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num, 600 unsigned long address, 601 unsigned long info) 602 { 603 unsigned long pc = info & ~1; 604 int write = info & 1; 605 pgd_t *pgd = get_current_pgd(); 606 607 /* Retval is 1 at first since we will handle the fault fully. */ 608 struct intvec_state state = { 609 do_page_fault, fault_num, address, write, 1 610 }; 611 612 /* Validate that we are plausibly in the right routine. */ 613 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET || 614 (fault_num != INT_DTLB_MISS && 615 fault_num != INT_DTLB_ACCESS)) { 616 unsigned long old_pc = regs->pc; 617 regs->pc = pc; 618 ics_panic("Bad ICS page fault args: old PC %#lx, fault %d/%d at %#lx", 619 old_pc, fault_num, write, address); 620 } 621 622 /* We might be faulting on a vmalloc page, so check that first. */ 623 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0) 624 return state; 625 626 /* 627 * If we faulted with ICS set in sys_cmpxchg, we are providing 628 * a user syscall service that should generate a signal on 629 * fault. We didn't set up a kernel stack on initial entry to 630 * sys_cmpxchg, but instead had one set up by the fault, which 631 * (because sys_cmpxchg never releases ICS) came to us via the 632 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are 633 * still referencing the original user code. We release the 634 * atomic lock and rewrite pt_regs so that it appears that we 635 * came from user-space directly, and after we finish the 636 * fault we'll go back to user space and re-issue the swint. 637 * This way the backtrace information is correct if we need to 638 * emit a stack dump at any point while handling this. 639 * 640 * Must match register use in sys_cmpxchg(). 641 */ 642 if (pc >= (unsigned long) sys_cmpxchg && 643 pc < (unsigned long) __sys_cmpxchg_end) { 644 #ifdef CONFIG_SMP 645 /* Don't unlock before we could have locked. */ 646 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) { 647 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]); 648 __atomic_fault_unlock(lock_ptr); 649 } 650 #endif 651 regs->sp = regs->regs[27]; 652 } 653 654 /* 655 * We can also fault in the atomic assembly, in which 656 * case we use the exception table to do the first-level fixup. 657 * We may re-fixup again in the real fault handler if it 658 * turns out the faulting address is just bad, and not, 659 * for example, migrating. 660 */ 661 else if (pc >= (unsigned long) __start_atomic_asm_code && 662 pc < (unsigned long) __end_atomic_asm_code) { 663 const struct exception_table_entry *fixup; 664 #ifdef CONFIG_SMP 665 /* Unlock the atomic lock. */ 666 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]); 667 __atomic_fault_unlock(lock_ptr); 668 #endif 669 fixup = search_exception_tables(pc); 670 if (!fixup) 671 ics_panic("ICS atomic fault not in table: PC %#lx, fault %d", 672 pc, fault_num); 673 regs->pc = fixup->fixup; 674 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0); 675 } 676 677 /* 678 * Now that we have released the atomic lock (if necessary), 679 * it's safe to spin if the PTE that caused the fault was migrating. 680 */ 681 if (fault_num == INT_DTLB_ACCESS) 682 write = 1; 683 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write)) 684 return state; 685 686 /* Return zero so that we continue on with normal fault handling. */ 687 state.retval = 0; 688 return state; 689 } 690 691 #endif /* !__tilegx__ */ 692 693 /* 694 * This routine handles page faults. It determines the address, and the 695 * problem, and then passes it handle_page_fault() for normal DTLB and 696 * ITLB issues, and for DMA or SN processor faults when we are in user 697 * space. For the latter, if we're in kernel mode, we just save the 698 * interrupt away appropriately and return immediately. We can't do 699 * page faults for user code while in kernel mode. 700 */ 701 static inline void __do_page_fault(struct pt_regs *regs, int fault_num, 702 unsigned long address, unsigned long write) 703 { 704 int is_page_fault; 705 706 #ifdef CONFIG_KPROBES 707 /* 708 * This is to notify the fault handler of the kprobes. The 709 * exception code is redundant as it is also carried in REGS, 710 * but we pass it anyhow. 711 */ 712 if (notify_die(DIE_PAGE_FAULT, "page fault", regs, -1, 713 regs->faultnum, SIGSEGV) == NOTIFY_STOP) 714 return; 715 #endif 716 717 #ifdef __tilegx__ 718 /* 719 * We don't need early do_page_fault_ics() support, since unlike 720 * Pro we don't need to worry about unlocking the atomic locks. 721 * There is only one current case in GX where we touch any memory 722 * under ICS other than our own kernel stack, and we handle that 723 * here. (If we crash due to trying to touch our own stack, 724 * we're in too much trouble for C code to help out anyway.) 725 */ 726 if (write & ~1) { 727 unsigned long pc = write & ~1; 728 if (pc >= (unsigned long) __start_unalign_asm_code && 729 pc < (unsigned long) __end_unalign_asm_code) { 730 struct thread_info *ti = current_thread_info(); 731 /* 732 * Our EX_CONTEXT is still what it was from the 733 * initial unalign exception, but now we've faulted 734 * on the JIT page. We would like to complete the 735 * page fault however is appropriate, and then retry 736 * the instruction that caused the unalign exception. 737 * Our state has been "corrupted" by setting the low 738 * bit in "sp", and stashing r0..r3 in the 739 * thread_info area, so we revert all of that, then 740 * continue as if this were a normal page fault. 741 */ 742 regs->sp &= ~1UL; 743 regs->regs[0] = ti->unalign_jit_tmp[0]; 744 regs->regs[1] = ti->unalign_jit_tmp[1]; 745 regs->regs[2] = ti->unalign_jit_tmp[2]; 746 regs->regs[3] = ti->unalign_jit_tmp[3]; 747 write &= 1; 748 } else { 749 pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n", 750 current->comm, current->pid, pc, address); 751 show_regs(regs); 752 do_group_exit(SIGKILL); 753 } 754 } 755 #else 756 /* This case should have been handled by do_page_fault_ics(). */ 757 BUG_ON(write & ~1); 758 #endif 759 760 #if CHIP_HAS_TILE_DMA() 761 /* 762 * If it's a DMA fault, suspend the transfer while we're 763 * handling the miss; we'll restart after it's handled. If we 764 * don't suspend, it's possible that this process could swap 765 * out and back in, and restart the engine since the DMA is 766 * still 'running'. 767 */ 768 if (fault_num == INT_DMATLB_MISS || 769 fault_num == INT_DMATLB_ACCESS || 770 fault_num == INT_DMATLB_MISS_DWNCL || 771 fault_num == INT_DMATLB_ACCESS_DWNCL) { 772 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); 773 while (__insn_mfspr(SPR_DMA_USER_STATUS) & 774 SPR_DMA_STATUS__BUSY_MASK) 775 ; 776 } 777 #endif 778 779 /* Validate fault num and decide if this is a first-time page fault. */ 780 switch (fault_num) { 781 case INT_ITLB_MISS: 782 case INT_DTLB_MISS: 783 #if CHIP_HAS_TILE_DMA() 784 case INT_DMATLB_MISS: 785 case INT_DMATLB_MISS_DWNCL: 786 #endif 787 is_page_fault = 1; 788 break; 789 790 case INT_DTLB_ACCESS: 791 #if CHIP_HAS_TILE_DMA() 792 case INT_DMATLB_ACCESS: 793 case INT_DMATLB_ACCESS_DWNCL: 794 #endif 795 is_page_fault = 0; 796 break; 797 798 default: 799 panic("Bad fault number %d in do_page_fault", fault_num); 800 } 801 802 #if CHIP_HAS_TILE_DMA() 803 if (!user_mode(regs)) { 804 struct async_tlb *async; 805 switch (fault_num) { 806 #if CHIP_HAS_TILE_DMA() 807 case INT_DMATLB_MISS: 808 case INT_DMATLB_ACCESS: 809 case INT_DMATLB_MISS_DWNCL: 810 case INT_DMATLB_ACCESS_DWNCL: 811 async = ¤t->thread.dma_async_tlb; 812 break; 813 #endif 814 default: 815 async = NULL; 816 } 817 if (async) { 818 819 /* 820 * No vmalloc check required, so we can allow 821 * interrupts immediately at this point. 822 */ 823 local_irq_enable(); 824 825 set_thread_flag(TIF_ASYNC_TLB); 826 if (async->fault_num != 0) { 827 panic("Second async fault %d; old fault was %d (%#lx/%ld)", 828 fault_num, async->fault_num, 829 address, write); 830 } 831 BUG_ON(fault_num == 0); 832 async->fault_num = fault_num; 833 async->is_fault = is_page_fault; 834 async->is_write = write; 835 async->address = address; 836 return; 837 } 838 } 839 #endif 840 841 handle_page_fault(regs, fault_num, is_page_fault, address, write); 842 } 843 844 void do_page_fault(struct pt_regs *regs, int fault_num, 845 unsigned long address, unsigned long write) 846 { 847 __do_page_fault(regs, fault_num, address, write); 848 } 849 850 #if CHIP_HAS_TILE_DMA() 851 /* 852 * This routine effectively re-issues asynchronous page faults 853 * when we are returning to user space. 854 */ 855 void do_async_page_fault(struct pt_regs *regs) 856 { 857 struct async_tlb *async = ¤t->thread.dma_async_tlb; 858 859 /* 860 * Clear thread flag early. If we re-interrupt while processing 861 * code here, we will reset it and recall this routine before 862 * returning to user space. 863 */ 864 clear_thread_flag(TIF_ASYNC_TLB); 865 866 if (async->fault_num) { 867 /* 868 * Clear async->fault_num before calling the page-fault 869 * handler so that if we re-interrupt before returning 870 * from the function we have somewhere to put the 871 * information from the new interrupt. 872 */ 873 int fault_num = async->fault_num; 874 async->fault_num = 0; 875 handle_page_fault(regs, fault_num, async->is_fault, 876 async->address, async->is_write); 877 } 878 } 879 #endif /* CHIP_HAS_TILE_DMA() */ 880 881 882 void vmalloc_sync_all(void) 883 { 884 #ifdef __tilegx__ 885 /* Currently all L1 kernel pmd's are static and shared. */ 886 BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) != 887 pgd_index(VMALLOC_START)); 888 #else 889 /* 890 * Note that races in the updates of insync and start aren't 891 * problematic: insync can only get set bits added, and updates to 892 * start are only improving performance (without affecting correctness 893 * if undone). 894 */ 895 static DECLARE_BITMAP(insync, PTRS_PER_PGD); 896 static unsigned long start = PAGE_OFFSET; 897 unsigned long address; 898 899 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK); 900 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) { 901 if (!test_bit(pgd_index(address), insync)) { 902 unsigned long flags; 903 struct list_head *pos; 904 905 spin_lock_irqsave(&pgd_lock, flags); 906 list_for_each(pos, &pgd_list) 907 if (!vmalloc_sync_one(list_to_pgd(pos), 908 address)) { 909 /* Must be at first entry in list. */ 910 BUG_ON(pos != pgd_list.next); 911 break; 912 } 913 spin_unlock_irqrestore(&pgd_lock, flags); 914 if (pos != pgd_list.next) 915 set_bit(pgd_index(address), insync); 916 } 917 if (address == start && test_bit(pgd_index(address), insync)) 918 start = address + PGDIR_SIZE; 919 } 920 #endif 921 } 922
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.