~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/events/intel/core.c

Version: ~ [ linux-5.2-rc4 ] ~ [ linux-5.1.9 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.50 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.125 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.181 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.181 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.68 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Per core/cpu state
  3  *
  4  * Used to coordinate shared registers between HT threads or
  5  * among events on a single PMU.
  6  */
  7 
  8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9 
 10 #include <linux/stddef.h>
 11 #include <linux/types.h>
 12 #include <linux/init.h>
 13 #include <linux/slab.h>
 14 #include <linux/export.h>
 15 #include <linux/nmi.h>
 16 
 17 #include <asm/cpufeature.h>
 18 #include <asm/hardirq.h>
 19 #include <asm/intel-family.h>
 20 #include <asm/apic.h>
 21 
 22 #include "../perf_event.h"
 23 
 24 /*
 25  * Intel PerfMon, used on Core and later.
 26  */
 27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
 28 {
 29         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
 30         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
 31         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
 32         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
 33         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
 34         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
 35         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
 36         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
 37 };
 38 
 39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
 40 {
 41         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
 42         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
 43         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
 44         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
 45         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
 46         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
 47         EVENT_CONSTRAINT_END
 48 };
 49 
 50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
 51 {
 52         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 53         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 54         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 55         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
 56         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
 57         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
 58         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
 59         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
 60         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
 61         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
 62         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
 63         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
 64         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
 65         EVENT_CONSTRAINT_END
 66 };
 67 
 68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
 69 {
 70         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 71         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 72         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 73         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
 74         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
 75         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
 76         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
 77         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
 78         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
 79         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
 80         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
 81         EVENT_CONSTRAINT_END
 82 };
 83 
 84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
 85 {
 86         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
 87         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
 88         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
 89         EVENT_EXTRA_END
 90 };
 91 
 92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
 93 {
 94         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
 95         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
 96         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
 97         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
 98         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
 99         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101         EVENT_CONSTRAINT_END
102 };
103 
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118 
119         /*
120          * When HT is off these events can only run on the bottom 4 counters
121          * When HT is on, they are impacted by the HT bug and require EXCL access
122          */
123         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127 
128         EVENT_CONSTRAINT_END
129 };
130 
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146 
147         /*
148          * When HT is off these events can only run on the bottom 4 counters
149          * When HT is on, they are impacted by the HT bug and require EXCL access
150          */
151         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155 
156         EVENT_CONSTRAINT_END
157 };
158 
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165         EVENT_EXTRA_END
166 };
167 
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170         EVENT_CONSTRAINT_END
171 };
172 
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178         EVENT_CONSTRAINT_END
179 };
180 
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186         EVENT_CONSTRAINT_END
187 };
188 
189 static struct event_constraint intel_skl_event_constraints[] = {
190         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
191         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
192         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
193         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
194 
195         /*
196          * when HT is off, these can only run on the bottom 4 counters
197          */
198         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
199         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
203 
204         EVENT_CONSTRAINT_END
205 };
206 
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210         EVENT_EXTRA_END
211 };
212 
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218         EVENT_EXTRA_END
219 };
220 
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226         EVENT_EXTRA_END
227 };
228 
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233         /*
234          * Note the low 8 bits eventsel code is not a continuous field, containing
235          * some #GPing bits. These are masked out.
236          */
237         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238         EVENT_EXTRA_END
239 };
240 
241 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
244 
245 static struct attribute *nhm_events_attrs[] = {
246         EVENT_PTR(mem_ld_nhm),
247         NULL,
248 };
249 
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263 
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
266         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269         "event=0xe,umask=0x1");                 /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
276         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278         "4", "2");
279 
280 static struct attribute *snb_events_attrs[] = {
281         EVENT_PTR(mem_ld_snb),
282         EVENT_PTR(mem_st_snb),
283         EVENT_PTR(td_slots_issued),
284         EVENT_PTR(td_slots_retired),
285         EVENT_PTR(td_fetch_bubbles),
286         EVENT_PTR(td_total_slots),
287         EVENT_PTR(td_total_slots_scale),
288         EVENT_PTR(td_recovery_bubbles),
289         EVENT_PTR(td_recovery_bubbles_scale),
290         NULL,
291 };
292 
293 static struct event_constraint intel_hsw_event_constraints[] = {
294         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
298         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306 
307         /*
308          * When HT is off these events can only run on the bottom 4 counters
309          * When HT is on, they are impacted by the HT bug and require EXCL access
310          */
311         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315 
316         EVENT_CONSTRAINT_END
317 };
318 
319 static struct event_constraint intel_bdw_event_constraints[] = {
320         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
321         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
322         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
323         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
324         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325         /*
326          * when HT is off, these can only run on the bottom 4 counters
327          */
328         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
329         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
330         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
331         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
332         EVENT_CONSTRAINT_END
333 };
334 
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337         return intel_perfmon_event_map[hw_event];
338 }
339 
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348 
349 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
350 #define SKL_DEMAND_RFO                  BIT_ULL(1)
351 #define SKL_ANY_RESPONSE                BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
357 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
358                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT                     BIT_ULL(30)
362 #define SKL_SNOOP_NONE                  BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
364 #define SKL_SNOOP_MISS                  BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
367 #define SKL_SNOOP_HITM                  BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
369 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
375                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383 
384 static __initconst const u64 skl_hw_cache_event_ids
385                                 [PERF_COUNT_HW_CACHE_MAX]
386                                 [PERF_COUNT_HW_CACHE_OP_MAX]
387                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390         [ C(OP_READ) ] = {
391                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
392                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
393         },
394         [ C(OP_WRITE) ] = {
395                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
396                 [ C(RESULT_MISS)   ] = 0x0,
397         },
398         [ C(OP_PREFETCH) ] = {
399                 [ C(RESULT_ACCESS) ] = 0x0,
400                 [ C(RESULT_MISS)   ] = 0x0,
401         },
402  },
403  [ C(L1I ) ] = {
404         [ C(OP_READ) ] = {
405                 [ C(RESULT_ACCESS) ] = 0x0,
406                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
407         },
408         [ C(OP_WRITE) ] = {
409                 [ C(RESULT_ACCESS) ] = -1,
410                 [ C(RESULT_MISS)   ] = -1,
411         },
412         [ C(OP_PREFETCH) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0,
414                 [ C(RESULT_MISS)   ] = 0x0,
415         },
416  },
417  [ C(LL  ) ] = {
418         [ C(OP_READ) ] = {
419                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
420                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
421         },
422         [ C(OP_WRITE) ] = {
423                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
424                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
425         },
426         [ C(OP_PREFETCH) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x0,
428                 [ C(RESULT_MISS)   ] = 0x0,
429         },
430  },
431  [ C(DTLB) ] = {
432         [ C(OP_READ) ] = {
433                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
434                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
435         },
436         [ C(OP_WRITE) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
438                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
439         },
440         [ C(OP_PREFETCH) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x0,
443         },
444  },
445  [ C(ITLB) ] = {
446         [ C(OP_READ) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
448                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
449         },
450         [ C(OP_WRITE) ] = {
451                 [ C(RESULT_ACCESS) ] = -1,
452                 [ C(RESULT_MISS)   ] = -1,
453         },
454         [ C(OP_PREFETCH) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458  },
459  [ C(BPU ) ] = {
460         [ C(OP_READ) ] = {
461                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
462                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
463         },
464         [ C(OP_WRITE) ] = {
465                 [ C(RESULT_ACCESS) ] = -1,
466                 [ C(RESULT_MISS)   ] = -1,
467         },
468         [ C(OP_PREFETCH) ] = {
469                 [ C(RESULT_ACCESS) ] = -1,
470                 [ C(RESULT_MISS)   ] = -1,
471         },
472  },
473  [ C(NODE) ] = {
474         [ C(OP_READ) ] = {
475                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
476                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
477         },
478         [ C(OP_WRITE) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
480                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
481         },
482         [ C(OP_PREFETCH) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x0,
484                 [ C(RESULT_MISS)   ] = 0x0,
485         },
486  },
487 };
488 
489 static __initconst const u64 skl_hw_cache_extra_regs
490                                 [PERF_COUNT_HW_CACHE_MAX]
491                                 [PERF_COUNT_HW_CACHE_OP_MAX]
492                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495         [ C(OP_READ) ] = {
496                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499                                        SKL_L3_MISS|SKL_ANY_SNOOP|
500                                        SKL_SUPPLIER_NONE,
501         },
502         [ C(OP_WRITE) ] = {
503                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506                                        SKL_L3_MISS|SKL_ANY_SNOOP|
507                                        SKL_SUPPLIER_NONE,
508         },
509         [ C(OP_PREFETCH) ] = {
510                 [ C(RESULT_ACCESS) ] = 0x0,
511                 [ C(RESULT_MISS)   ] = 0x0,
512         },
513  },
514  [ C(NODE) ] = {
515         [ C(OP_READ) ] = {
516                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520         },
521         [ C(OP_WRITE) ] = {
522                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526         },
527         [ C(OP_PREFETCH) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x0,
529                 [ C(RESULT_MISS)   ] = 0x0,
530         },
531  },
532 };
533 
534 #define SNB_DMND_DATA_RD        (1ULL << 0)
535 #define SNB_DMND_RFO            (1ULL << 1)
536 #define SNB_DMND_IFETCH         (1ULL << 2)
537 #define SNB_DMND_WB             (1ULL << 3)
538 #define SNB_PF_DATA_RD          (1ULL << 4)
539 #define SNB_PF_RFO              (1ULL << 5)
540 #define SNB_PF_IFETCH           (1ULL << 6)
541 #define SNB_LLC_DATA_RD         (1ULL << 7)
542 #define SNB_LLC_RFO             (1ULL << 8)
543 #define SNB_LLC_IFETCH          (1ULL << 9)
544 #define SNB_BUS_LOCKS           (1ULL << 10)
545 #define SNB_STRM_ST             (1ULL << 11)
546 #define SNB_OTHER               (1ULL << 15)
547 #define SNB_RESP_ANY            (1ULL << 16)
548 #define SNB_NO_SUPP             (1ULL << 17)
549 #define SNB_LLC_HITM            (1ULL << 18)
550 #define SNB_LLC_HITE            (1ULL << 19)
551 #define SNB_LLC_HITS            (1ULL << 20)
552 #define SNB_LLC_HITF            (1ULL << 21)
553 #define SNB_LOCAL               (1ULL << 22)
554 #define SNB_REMOTE              (0xffULL << 23)
555 #define SNB_SNP_NONE            (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
557 #define SNB_SNP_MISS            (1ULL << 33)
558 #define SNB_NO_FWD              (1ULL << 34)
559 #define SNB_SNP_FWD             (1ULL << 35)
560 #define SNB_HITM                (1ULL << 36)
561 #define SNB_NON_DRAM            (1ULL << 37)
562 
563 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
566 
567 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569                                  SNB_HITM)
570 
571 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
573 
574 #define SNB_L3_ACCESS           SNB_RESP_ANY
575 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
576 
577 static __initconst const u64 snb_hw_cache_extra_regs
578                                 [PERF_COUNT_HW_CACHE_MAX]
579                                 [PERF_COUNT_HW_CACHE_OP_MAX]
580                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583         [ C(OP_READ) ] = {
584                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586         },
587         [ C(OP_WRITE) ] = {
588                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590         },
591         [ C(OP_PREFETCH) ] = {
592                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594         },
595  },
596  [ C(NODE) ] = {
597         [ C(OP_READ) ] = {
598                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600         },
601         [ C(OP_WRITE) ] = {
602                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604         },
605         [ C(OP_PREFETCH) ] = {
606                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608         },
609  },
610 };
611 
612 static __initconst const u64 snb_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650                 [ C(RESULT_MISS)   ] = 0x01b7,
651         },
652         [ C(OP_WRITE) ] = {
653                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654                 [ C(RESULT_ACCESS) ] = 0x01b7,
655                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656                 [ C(RESULT_MISS)   ] = 0x01b7,
657         },
658         [ C(OP_PREFETCH) ] = {
659                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660                 [ C(RESULT_ACCESS) ] = 0x01b7,
661                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662                 [ C(RESULT_MISS)   ] = 0x01b7,
663         },
664  },
665  [ C(DTLB) ] = {
666         [ C(OP_READ) ] = {
667                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669         },
670         [ C(OP_WRITE) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673         },
674         [ C(OP_PREFETCH) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x0,
676                 [ C(RESULT_MISS)   ] = 0x0,
677         },
678  },
679  [ C(ITLB) ] = {
680         [ C(OP_READ) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683         },
684         [ C(OP_WRITE) ] = {
685                 [ C(RESULT_ACCESS) ] = -1,
686                 [ C(RESULT_MISS)   ] = -1,
687         },
688         [ C(OP_PREFETCH) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692  },
693  [ C(BPU ) ] = {
694         [ C(OP_READ) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697         },
698         [ C(OP_WRITE) ] = {
699                 [ C(RESULT_ACCESS) ] = -1,
700                 [ C(RESULT_MISS)   ] = -1,
701         },
702         [ C(OP_PREFETCH) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706  },
707  [ C(NODE) ] = {
708         [ C(OP_READ) ] = {
709                 [ C(RESULT_ACCESS) ] = 0x01b7,
710                 [ C(RESULT_MISS)   ] = 0x01b7,
711         },
712         [ C(OP_WRITE) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x01b7,
714                 [ C(RESULT_MISS)   ] = 0x01b7,
715         },
716         [ C(OP_PREFETCH) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x01b7,
718                 [ C(RESULT_MISS)   ] = 0x01b7,
719         },
720  },
721 
722 };
723 
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732 
733 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
734 #define HSW_DEMAND_RFO                  BIT_ULL(1)
735 #define HSW_ANY_RESPONSE                BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
741 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
742                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743                                          HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE                  BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
746 #define HSW_SNOOP_MISS                  BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
749 #define HSW_SNOOP_HITM                  BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
751 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
752                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
759                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
761 
762 #define BDW_L3_MISS_LOCAL               BIT(26)
763 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
764                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765                                          HSW_L3_MISS_REMOTE_HOP2P)
766 
767 
768 static __initconst const u64 hsw_hw_cache_event_ids
769                                 [PERF_COUNT_HW_CACHE_MAX]
770                                 [PERF_COUNT_HW_CACHE_OP_MAX]
771                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774         [ C(OP_READ) ] = {
775                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
776                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
777         },
778         [ C(OP_WRITE) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
780                 [ C(RESULT_MISS)   ] = 0x0,
781         },
782         [ C(OP_PREFETCH) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x0,
784                 [ C(RESULT_MISS)   ] = 0x0,
785         },
786  },
787  [ C(L1I ) ] = {
788         [ C(OP_READ) ] = {
789                 [ C(RESULT_ACCESS) ] = 0x0,
790                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
791         },
792         [ C(OP_WRITE) ] = {
793                 [ C(RESULT_ACCESS) ] = -1,
794                 [ C(RESULT_MISS)   ] = -1,
795         },
796         [ C(OP_PREFETCH) ] = {
797                 [ C(RESULT_ACCESS) ] = 0x0,
798                 [ C(RESULT_MISS)   ] = 0x0,
799         },
800  },
801  [ C(LL  ) ] = {
802         [ C(OP_READ) ] = {
803                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
804                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
805         },
806         [ C(OP_WRITE) ] = {
807                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
808                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
809         },
810         [ C(OP_PREFETCH) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x0,
812                 [ C(RESULT_MISS)   ] = 0x0,
813         },
814  },
815  [ C(DTLB) ] = {
816         [ C(OP_READ) ] = {
817                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
818                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
822                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823         },
824         [ C(OP_PREFETCH) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x0,
827         },
828  },
829  [ C(ITLB) ] = {
830         [ C(OP_READ) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
832                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833         },
834         [ C(OP_WRITE) ] = {
835                 [ C(RESULT_ACCESS) ] = -1,
836                 [ C(RESULT_MISS)   ] = -1,
837         },
838         [ C(OP_PREFETCH) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842  },
843  [ C(BPU ) ] = {
844         [ C(OP_READ) ] = {
845                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
846                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
847         },
848         [ C(OP_WRITE) ] = {
849                 [ C(RESULT_ACCESS) ] = -1,
850                 [ C(RESULT_MISS)   ] = -1,
851         },
852         [ C(OP_PREFETCH) ] = {
853                 [ C(RESULT_ACCESS) ] = -1,
854                 [ C(RESULT_MISS)   ] = -1,
855         },
856  },
857  [ C(NODE) ] = {
858         [ C(OP_READ) ] = {
859                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
860                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
861         },
862         [ C(OP_WRITE) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
864                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
865         },
866         [ C(OP_PREFETCH) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x0,
868                 [ C(RESULT_MISS)   ] = 0x0,
869         },
870  },
871 };
872 
873 static __initconst const u64 hsw_hw_cache_extra_regs
874                                 [PERF_COUNT_HW_CACHE_MAX]
875                                 [PERF_COUNT_HW_CACHE_OP_MAX]
876                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879         [ C(OP_READ) ] = {
880                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881                                        HSW_LLC_ACCESS,
882                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883                                        HSW_L3_MISS|HSW_ANY_SNOOP,
884         },
885         [ C(OP_WRITE) ] = {
886                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887                                        HSW_LLC_ACCESS,
888                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889                                        HSW_L3_MISS|HSW_ANY_SNOOP,
890         },
891         [ C(OP_PREFETCH) ] = {
892                 [ C(RESULT_ACCESS) ] = 0x0,
893                 [ C(RESULT_MISS)   ] = 0x0,
894         },
895  },
896  [ C(NODE) ] = {
897         [ C(OP_READ) ] = {
898                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899                                        HSW_L3_MISS_LOCAL_DRAM|
900                                        HSW_SNOOP_DRAM,
901                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902                                        HSW_L3_MISS_REMOTE|
903                                        HSW_SNOOP_DRAM,
904         },
905         [ C(OP_WRITE) ] = {
906                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907                                        HSW_L3_MISS_LOCAL_DRAM|
908                                        HSW_SNOOP_DRAM,
909                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910                                        HSW_L3_MISS_REMOTE|
911                                        HSW_SNOOP_DRAM,
912         },
913         [ C(OP_PREFETCH) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x0,
915                 [ C(RESULT_MISS)   ] = 0x0,
916         },
917  },
918 };
919 
920 static __initconst const u64 westmere_hw_cache_event_ids
921                                 [PERF_COUNT_HW_CACHE_MAX]
922                                 [PERF_COUNT_HW_CACHE_OP_MAX]
923                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926         [ C(OP_READ) ] = {
927                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929         },
930         [ C(OP_WRITE) ] = {
931                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933         },
934         [ C(OP_PREFETCH) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937         },
938  },
939  [ C(L1I ) ] = {
940         [ C(OP_READ) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943         },
944         [ C(OP_WRITE) ] = {
945                 [ C(RESULT_ACCESS) ] = -1,
946                 [ C(RESULT_MISS)   ] = -1,
947         },
948         [ C(OP_PREFETCH) ] = {
949                 [ C(RESULT_ACCESS) ] = 0x0,
950                 [ C(RESULT_MISS)   ] = 0x0,
951         },
952  },
953  [ C(LL  ) ] = {
954         [ C(OP_READ) ] = {
955                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958                 [ C(RESULT_MISS)   ] = 0x01b7,
959         },
960         /*
961          * Use RFO, not WRITEBACK, because a write miss would typically occur
962          * on RFO.
963          */
964         [ C(OP_WRITE) ] = {
965                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966                 [ C(RESULT_ACCESS) ] = 0x01b7,
967                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968                 [ C(RESULT_MISS)   ] = 0x01b7,
969         },
970         [ C(OP_PREFETCH) ] = {
971                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972                 [ C(RESULT_ACCESS) ] = 0x01b7,
973                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974                 [ C(RESULT_MISS)   ] = 0x01b7,
975         },
976  },
977  [ C(DTLB) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0,
988                 [ C(RESULT_MISS)   ] = 0x0,
989         },
990  },
991  [ C(ITLB) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004  },
1005  [ C(BPU ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = -1,
1012                 [ C(RESULT_MISS)   ] = -1,
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018  },
1019  [ C(NODE) ] = {
1020         [ C(OP_READ) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x01b7,
1022                 [ C(RESULT_MISS)   ] = 0x01b7,
1023         },
1024         [ C(OP_WRITE) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028         [ C(OP_PREFETCH) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01b7,
1030                 [ C(RESULT_MISS)   ] = 0x01b7,
1031         },
1032  },
1033 };
1034 
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039 
1040 #define NHM_DMND_DATA_RD        (1 << 0)
1041 #define NHM_DMND_RFO            (1 << 1)
1042 #define NHM_DMND_IFETCH         (1 << 2)
1043 #define NHM_DMND_WB             (1 << 3)
1044 #define NHM_PF_DATA_RD          (1 << 4)
1045 #define NHM_PF_DATA_RFO         (1 << 5)
1046 #define NHM_PF_IFETCH           (1 << 6)
1047 #define NHM_OFFCORE_OTHER       (1 << 7)
1048 #define NHM_UNCORE_HIT          (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1050 #define NHM_OTHER_CORE_HITM     (1 << 10)
1051                                 /* reserved */
1052 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1053 #define NHM_REMOTE_DRAM         (1 << 13)
1054 #define NHM_LOCAL_DRAM          (1 << 14)
1055 #define NHM_NON_DRAM            (1 << 15)
1056 
1057 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1059 
1060 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063 
1064 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1067 
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069                                 [PERF_COUNT_HW_CACHE_MAX]
1070                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074         [ C(OP_READ) ] = {
1075                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077         },
1078         [ C(OP_WRITE) ] = {
1079                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081         },
1082         [ C(OP_PREFETCH) ] = {
1083                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085         },
1086  },
1087  [ C(NODE) ] = {
1088         [ C(OP_READ) ] = {
1089                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091         },
1092         [ C(OP_WRITE) ] = {
1093                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095         },
1096         [ C(OP_PREFETCH) ] = {
1097                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099         },
1100  },
1101 };
1102 
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104                                 [PERF_COUNT_HW_CACHE_MAX]
1105                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1106                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109         [ C(OP_READ) ] = {
1110                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116         },
1117         [ C(OP_PREFETCH) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120         },
1121  },
1122  [ C(L1I ) ] = {
1123         [ C(OP_READ) ] = {
1124                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126         },
1127         [ C(OP_WRITE) ] = {
1128                 [ C(RESULT_ACCESS) ] = -1,
1129                 [ C(RESULT_MISS)   ] = -1,
1130         },
1131         [ C(OP_PREFETCH) ] = {
1132                 [ C(RESULT_ACCESS) ] = 0x0,
1133                 [ C(RESULT_MISS)   ] = 0x0,
1134         },
1135  },
1136  [ C(LL  ) ] = {
1137         [ C(OP_READ) ] = {
1138                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141                 [ C(RESULT_MISS)   ] = 0x01b7,
1142         },
1143         /*
1144          * Use RFO, not WRITEBACK, because a write miss would typically occur
1145          * on RFO.
1146          */
1147         [ C(OP_WRITE) ] = {
1148                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149                 [ C(RESULT_ACCESS) ] = 0x01b7,
1150                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151                 [ C(RESULT_MISS)   ] = 0x01b7,
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155                 [ C(RESULT_ACCESS) ] = 0x01b7,
1156                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157                 [ C(RESULT_MISS)   ] = 0x01b7,
1158         },
1159  },
1160  [ C(DTLB) ] = {
1161         [ C(OP_READ) ] = {
1162                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164         },
1165         [ C(OP_WRITE) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168         },
1169         [ C(OP_PREFETCH) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0,
1171                 [ C(RESULT_MISS)   ] = 0x0,
1172         },
1173  },
1174  [ C(ITLB) ] = {
1175         [ C(OP_READ) ] = {
1176                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178         },
1179         [ C(OP_WRITE) ] = {
1180                 [ C(RESULT_ACCESS) ] = -1,
1181                 [ C(RESULT_MISS)   ] = -1,
1182         },
1183         [ C(OP_PREFETCH) ] = {
1184                 [ C(RESULT_ACCESS) ] = -1,
1185                 [ C(RESULT_MISS)   ] = -1,
1186         },
1187  },
1188  [ C(BPU ) ] = {
1189         [ C(OP_READ) ] = {
1190                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192         },
1193         [ C(OP_WRITE) ] = {
1194                 [ C(RESULT_ACCESS) ] = -1,
1195                 [ C(RESULT_MISS)   ] = -1,
1196         },
1197         [ C(OP_PREFETCH) ] = {
1198                 [ C(RESULT_ACCESS) ] = -1,
1199                 [ C(RESULT_MISS)   ] = -1,
1200         },
1201  },
1202  [ C(NODE) ] = {
1203         [ C(OP_READ) ] = {
1204                 [ C(RESULT_ACCESS) ] = 0x01b7,
1205                 [ C(RESULT_MISS)   ] = 0x01b7,
1206         },
1207         [ C(OP_WRITE) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x01b7,
1209                 [ C(RESULT_MISS)   ] = 0x01b7,
1210         },
1211         [ C(OP_PREFETCH) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01b7,
1213                 [ C(RESULT_MISS)   ] = 0x01b7,
1214         },
1215  },
1216 };
1217 
1218 static __initconst const u64 core2_hw_cache_event_ids
1219                                 [PERF_COUNT_HW_CACHE_MAX]
1220                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1221                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224         [ C(OP_READ) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227         },
1228         [ C(OP_WRITE) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231         },
1232         [ C(OP_PREFETCH) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234                 [ C(RESULT_MISS)   ] = 0,
1235         },
1236  },
1237  [ C(L1I ) ] = {
1238         [ C(OP_READ) ] = {
1239                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241         },
1242         [ C(OP_WRITE) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246         [ C(OP_PREFETCH) ] = {
1247                 [ C(RESULT_ACCESS) ] = 0,
1248                 [ C(RESULT_MISS)   ] = 0,
1249         },
1250  },
1251  [ C(LL  ) ] = {
1252         [ C(OP_READ) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255         },
1256         [ C(OP_WRITE) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259         },
1260         [ C(OP_PREFETCH) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0,
1262                 [ C(RESULT_MISS)   ] = 0,
1263         },
1264  },
1265  [ C(DTLB) ] = {
1266         [ C(OP_READ) ] = {
1267                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269         },
1270         [ C(OP_WRITE) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273         },
1274         [ C(OP_PREFETCH) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0,
1276                 [ C(RESULT_MISS)   ] = 0,
1277         },
1278  },
1279  [ C(ITLB) ] = {
1280         [ C(OP_READ) ] = {
1281                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283         },
1284         [ C(OP_WRITE) ] = {
1285                 [ C(RESULT_ACCESS) ] = -1,
1286                 [ C(RESULT_MISS)   ] = -1,
1287         },
1288         [ C(OP_PREFETCH) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292  },
1293  [ C(BPU ) ] = {
1294         [ C(OP_READ) ] = {
1295                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297         },
1298         [ C(OP_WRITE) ] = {
1299                 [ C(RESULT_ACCESS) ] = -1,
1300                 [ C(RESULT_MISS)   ] = -1,
1301         },
1302         [ C(OP_PREFETCH) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306  },
1307 };
1308 
1309 static __initconst const u64 atom_hw_cache_event_ids
1310                                 [PERF_COUNT_HW_CACHE_MAX]
1311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315         [ C(OP_READ) ] = {
1316                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317                 [ C(RESULT_MISS)   ] = 0,
1318         },
1319         [ C(OP_WRITE) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321                 [ C(RESULT_MISS)   ] = 0,
1322         },
1323         [ C(OP_PREFETCH) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x0,
1325                 [ C(RESULT_MISS)   ] = 0,
1326         },
1327  },
1328  [ C(L1I ) ] = {
1329         [ C(OP_READ) ] = {
1330                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332         },
1333         [ C(OP_WRITE) ] = {
1334                 [ C(RESULT_ACCESS) ] = -1,
1335                 [ C(RESULT_MISS)   ] = -1,
1336         },
1337         [ C(OP_PREFETCH) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0,
1339                 [ C(RESULT_MISS)   ] = 0,
1340         },
1341  },
1342  [ C(LL  ) ] = {
1343         [ C(OP_READ) ] = {
1344                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346         },
1347         [ C(OP_WRITE) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350         },
1351         [ C(OP_PREFETCH) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0,
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355  },
1356  [ C(DTLB) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0,
1367                 [ C(RESULT_MISS)   ] = 0,
1368         },
1369  },
1370  [ C(ITLB) ] = {
1371         [ C(OP_READ) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374         },
1375         [ C(OP_WRITE) ] = {
1376                 [ C(RESULT_ACCESS) ] = -1,
1377                 [ C(RESULT_MISS)   ] = -1,
1378         },
1379         [ C(OP_PREFETCH) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383  },
1384  [ C(BPU ) ] = {
1385         [ C(OP_READ) ] = {
1386                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388         },
1389         [ C(OP_WRITE) ] = {
1390                 [ C(RESULT_ACCESS) ] = -1,
1391                 [ C(RESULT_MISS)   ] = -1,
1392         },
1393         [ C(OP_PREFETCH) ] = {
1394                 [ C(RESULT_ACCESS) ] = -1,
1395                 [ C(RESULT_MISS)   ] = -1,
1396         },
1397  },
1398 };
1399 
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404                "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408                "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411                "event=0xc2,umask=0x10");
1412 
1413 static struct attribute *slm_events_attrs[] = {
1414         EVENT_PTR(td_total_slots_slm),
1415         EVENT_PTR(td_total_slots_scale_slm),
1416         EVENT_PTR(td_fetch_bubbles_slm),
1417         EVENT_PTR(td_fetch_bubbles_scale_slm),
1418         EVENT_PTR(td_slots_issued_slm),
1419         EVENT_PTR(td_slots_retired_slm),
1420         NULL
1421 };
1422 
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428         EVENT_EXTRA_END
1429 };
1430 
1431 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE          SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1434 
1435 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1437 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1438 
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440                                 [PERF_COUNT_HW_CACHE_MAX]
1441                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1442                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445         [ C(OP_READ) ] = {
1446                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447                 [ C(RESULT_MISS)   ] = 0,
1448         },
1449         [ C(OP_WRITE) ] = {
1450                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452         },
1453         [ C(OP_PREFETCH) ] = {
1454                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456         },
1457  },
1458 };
1459 
1460 static __initconst const u64 slm_hw_cache_event_ids
1461                                 [PERF_COUNT_HW_CACHE_MAX]
1462                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1463                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0,
1468                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0,
1472                 [ C(RESULT_MISS)   ] = 0,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(L1I ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = -1,
1486                 [ C(RESULT_MISS)   ] = -1,
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(LL  ) ] = {
1494         [ C(OP_READ) ] = {
1495                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496                 [ C(RESULT_ACCESS) ] = 0x01b7,
1497                 [ C(RESULT_MISS)   ] = 0,
1498         },
1499         [ C(OP_WRITE) ] = {
1500                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501                 [ C(RESULT_ACCESS) ] = 0x01b7,
1502                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503                 [ C(RESULT_MISS)   ] = 0x01b7,
1504         },
1505         [ C(OP_PREFETCH) ] = {
1506                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507                 [ C(RESULT_ACCESS) ] = 0x01b7,
1508                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509                 [ C(RESULT_MISS)   ] = 0x01b7,
1510         },
1511  },
1512  [ C(DTLB) ] = {
1513         [ C(OP_READ) ] = {
1514                 [ C(RESULT_ACCESS) ] = 0,
1515                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516         },
1517         [ C(OP_WRITE) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0,
1519                 [ C(RESULT_MISS)   ] = 0,
1520         },
1521         [ C(OP_PREFETCH) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525  },
1526  [ C(ITLB) ] = {
1527         [ C(OP_READ) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530         },
1531         [ C(OP_WRITE) ] = {
1532                 [ C(RESULT_ACCESS) ] = -1,
1533                 [ C(RESULT_MISS)   ] = -1,
1534         },
1535         [ C(OP_PREFETCH) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539  },
1540  [ C(BPU ) ] = {
1541         [ C(OP_READ) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544         },
1545         [ C(OP_WRITE) ] = {
1546                 [ C(RESULT_ACCESS) ] = -1,
1547                 [ C(RESULT_MISS)   ] = -1,
1548         },
1549         [ C(OP_PREFETCH) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553  },
1554 };
1555 
1556 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1557         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1558         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1559         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1560         EVENT_EXTRA_END
1561 };
1562 
1563 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1564 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1565 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1566 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1567 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1568 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1569 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1570 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1571 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1572 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1573 
1574 static __initconst const u64 glm_hw_cache_event_ids
1575                                 [PERF_COUNT_HW_CACHE_MAX]
1576                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1577                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1578         [C(L1D)] = {
1579                 [C(OP_READ)] = {
1580                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1581                         [C(RESULT_MISS)]        = 0x0,
1582                 },
1583                 [C(OP_WRITE)] = {
1584                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1585                         [C(RESULT_MISS)]        = 0x0,
1586                 },
1587                 [C(OP_PREFETCH)] = {
1588                         [C(RESULT_ACCESS)]      = 0x0,
1589                         [C(RESULT_MISS)]        = 0x0,
1590                 },
1591         },
1592         [C(L1I)] = {
1593                 [C(OP_READ)] = {
1594                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1595                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1596                 },
1597                 [C(OP_WRITE)] = {
1598                         [C(RESULT_ACCESS)]      = -1,
1599                         [C(RESULT_MISS)]        = -1,
1600                 },
1601                 [C(OP_PREFETCH)] = {
1602                         [C(RESULT_ACCESS)]      = 0x0,
1603                         [C(RESULT_MISS)]        = 0x0,
1604                 },
1605         },
1606         [C(LL)] = {
1607                 [C(OP_READ)] = {
1608                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1609                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1610                 },
1611                 [C(OP_WRITE)] = {
1612                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1613                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1614                 },
1615                 [C(OP_PREFETCH)] = {
1616                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1617                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1618                 },
1619         },
1620         [C(DTLB)] = {
1621                 [C(OP_READ)] = {
1622                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1623                         [C(RESULT_MISS)]        = 0x0,
1624                 },
1625                 [C(OP_WRITE)] = {
1626                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1627                         [C(RESULT_MISS)]        = 0x0,
1628                 },
1629                 [C(OP_PREFETCH)] = {
1630                         [C(RESULT_ACCESS)]      = 0x0,
1631                         [C(RESULT_MISS)]        = 0x0,
1632                 },
1633         },
1634         [C(ITLB)] = {
1635                 [C(OP_READ)] = {
1636                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1637                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1638                 },
1639                 [C(OP_WRITE)] = {
1640                         [C(RESULT_ACCESS)]      = -1,
1641                         [C(RESULT_MISS)]        = -1,
1642                 },
1643                 [C(OP_PREFETCH)] = {
1644                         [C(RESULT_ACCESS)]      = -1,
1645                         [C(RESULT_MISS)]        = -1,
1646                 },
1647         },
1648         [C(BPU)] = {
1649                 [C(OP_READ)] = {
1650                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1651                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1652                 },
1653                 [C(OP_WRITE)] = {
1654                         [C(RESULT_ACCESS)]      = -1,
1655                         [C(RESULT_MISS)]        = -1,
1656                 },
1657                 [C(OP_PREFETCH)] = {
1658                         [C(RESULT_ACCESS)]      = -1,
1659                         [C(RESULT_MISS)]        = -1,
1660                 },
1661         },
1662 };
1663 
1664 static __initconst const u64 glm_hw_cache_extra_regs
1665                                 [PERF_COUNT_HW_CACHE_MAX]
1666                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1667                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1668         [C(LL)] = {
1669                 [C(OP_READ)] = {
1670                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1671                                                   GLM_LLC_ACCESS,
1672                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1673                                                   GLM_LLC_MISS,
1674                 },
1675                 [C(OP_WRITE)] = {
1676                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1677                                                   GLM_LLC_ACCESS,
1678                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1679                                                   GLM_LLC_MISS,
1680                 },
1681                 [C(OP_PREFETCH)] = {
1682                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1683                                                   GLM_LLC_ACCESS,
1684                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1685                                                   GLM_LLC_MISS,
1686                 },
1687         },
1688 };
1689 
1690 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1691 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1692 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1693 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1694 #define KNL_DDR_LOCAL           BIT_ULL(23)
1695 #define KNL_DDR_FAR             BIT_ULL(24)
1696 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1697                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1698 #define KNL_L2_READ             SLM_DMND_READ
1699 #define KNL_L2_WRITE            SLM_DMND_WRITE
1700 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1701 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1702 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1703                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1704                                                   SNB_NON_DRAM)
1705 
1706 static __initconst const u64 knl_hw_cache_extra_regs
1707                                 [PERF_COUNT_HW_CACHE_MAX]
1708                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1709                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1710         [C(LL)] = {
1711                 [C(OP_READ)] = {
1712                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1713                         [C(RESULT_MISS)]   = 0,
1714                 },
1715                 [C(OP_WRITE)] = {
1716                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1717                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1718                 },
1719                 [C(OP_PREFETCH)] = {
1720                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1721                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1722                 },
1723         },
1724 };
1725 
1726 /*
1727  * Used from PMIs where the LBRs are already disabled.
1728  *
1729  * This function could be called consecutively. It is required to remain in
1730  * disabled state if called consecutively.
1731  *
1732  * During consecutive calls, the same disable value will be written to related
1733  * registers, so the PMU state remains unchanged.
1734  *
1735  * intel_bts events don't coexist with intel PMU's BTS events because of
1736  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1737  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1738  */
1739 static void __intel_pmu_disable_all(void)
1740 {
1741         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1742 
1743         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1744 
1745         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1746                 intel_pmu_disable_bts();
1747 
1748         intel_pmu_pebs_disable_all();
1749 }
1750 
1751 static void intel_pmu_disable_all(void)
1752 {
1753         __intel_pmu_disable_all();
1754         intel_pmu_lbr_disable_all();
1755 }
1756 
1757 static void __intel_pmu_enable_all(int added, bool pmi)
1758 {
1759         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1760 
1761         intel_pmu_pebs_enable_all();
1762         intel_pmu_lbr_enable_all(pmi);
1763         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1764                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1765 
1766         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1767                 struct perf_event *event =
1768                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1769 
1770                 if (WARN_ON_ONCE(!event))
1771                         return;
1772 
1773                 intel_pmu_enable_bts(event->hw.config);
1774         }
1775 }
1776 
1777 static void intel_pmu_enable_all(int added)
1778 {
1779         __intel_pmu_enable_all(added, false);
1780 }
1781 
1782 /*
1783  * Workaround for:
1784  *   Intel Errata AAK100 (model 26)
1785  *   Intel Errata AAP53  (model 30)
1786  *   Intel Errata BD53   (model 44)
1787  *
1788  * The official story:
1789  *   These chips need to be 'reset' when adding counters by programming the
1790  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1791  *   in sequence on the same PMC or on different PMCs.
1792  *
1793  * In practise it appears some of these events do in fact count, and
1794  * we need to programm all 4 events.
1795  */
1796 static void intel_pmu_nhm_workaround(void)
1797 {
1798         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1799         static const unsigned long nhm_magic[4] = {
1800                 0x4300B5,
1801                 0x4300D2,
1802                 0x4300B1,
1803                 0x4300B1
1804         };
1805         struct perf_event *event;
1806         int i;
1807 
1808         /*
1809          * The Errata requires below steps:
1810          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1811          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1812          *    the corresponding PMCx;
1813          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1814          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1815          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1816          */
1817 
1818         /*
1819          * The real steps we choose are a little different from above.
1820          * A) To reduce MSR operations, we don't run step 1) as they
1821          *    are already cleared before this function is called;
1822          * B) Call x86_perf_event_update to save PMCx before configuring
1823          *    PERFEVTSELx with magic number;
1824          * C) With step 5), we do clear only when the PERFEVTSELx is
1825          *    not used currently.
1826          * D) Call x86_perf_event_set_period to restore PMCx;
1827          */
1828 
1829         /* We always operate 4 pairs of PERF Counters */
1830         for (i = 0; i < 4; i++) {
1831                 event = cpuc->events[i];
1832                 if (event)
1833                         x86_perf_event_update(event);
1834         }
1835 
1836         for (i = 0; i < 4; i++) {
1837                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1838                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1839         }
1840 
1841         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1842         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1843 
1844         for (i = 0; i < 4; i++) {
1845                 event = cpuc->events[i];
1846 
1847                 if (event) {
1848                         x86_perf_event_set_period(event);
1849                         __x86_pmu_enable_event(&event->hw,
1850                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1851                 } else
1852                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1853         }
1854 }
1855 
1856 static void intel_pmu_nhm_enable_all(int added)
1857 {
1858         if (added)
1859                 intel_pmu_nhm_workaround();
1860         intel_pmu_enable_all(added);
1861 }
1862 
1863 static inline u64 intel_pmu_get_status(void)
1864 {
1865         u64 status;
1866 
1867         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1868 
1869         return status;
1870 }
1871 
1872 static inline void intel_pmu_ack_status(u64 ack)
1873 {
1874         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1875 }
1876 
1877 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1878 {
1879         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1880         u64 ctrl_val, mask;
1881 
1882         mask = 0xfULL << (idx * 4);
1883 
1884         rdmsrl(hwc->config_base, ctrl_val);
1885         ctrl_val &= ~mask;
1886         wrmsrl(hwc->config_base, ctrl_val);
1887 }
1888 
1889 static inline bool event_is_checkpointed(struct perf_event *event)
1890 {
1891         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1892 }
1893 
1894 static void intel_pmu_disable_event(struct perf_event *event)
1895 {
1896         struct hw_perf_event *hwc = &event->hw;
1897         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1898 
1899         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1900                 intel_pmu_disable_bts();
1901                 intel_pmu_drain_bts_buffer();
1902                 return;
1903         }
1904 
1905         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1906         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1907         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1908 
1909         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1910                 intel_pmu_disable_fixed(hwc);
1911                 return;
1912         }
1913 
1914         x86_pmu_disable_event(event);
1915 
1916         if (unlikely(event->attr.precise_ip))
1917                 intel_pmu_pebs_disable(event);
1918 }
1919 
1920 static void intel_pmu_del_event(struct perf_event *event)
1921 {
1922         if (needs_branch_stack(event))
1923                 intel_pmu_lbr_del(event);
1924         if (event->attr.precise_ip)
1925                 intel_pmu_pebs_del(event);
1926 }
1927 
1928 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1929 {
1930         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1931         u64 ctrl_val, bits, mask;
1932 
1933         /*
1934          * Enable IRQ generation (0x8),
1935          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1936          * if requested:
1937          */
1938         bits = 0x8ULL;
1939         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1940                 bits |= 0x2;
1941         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1942                 bits |= 0x1;
1943 
1944         /*
1945          * ANY bit is supported in v3 and up
1946          */
1947         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1948                 bits |= 0x4;
1949 
1950         bits <<= (idx * 4);
1951         mask = 0xfULL << (idx * 4);
1952 
1953         rdmsrl(hwc->config_base, ctrl_val);
1954         ctrl_val &= ~mask;
1955         ctrl_val |= bits;
1956         wrmsrl(hwc->config_base, ctrl_val);
1957 }
1958 
1959 static void intel_pmu_enable_event(struct perf_event *event)
1960 {
1961         struct hw_perf_event *hwc = &event->hw;
1962         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1963 
1964         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1965                 if (!__this_cpu_read(cpu_hw_events.enabled))
1966                         return;
1967 
1968                 intel_pmu_enable_bts(hwc->config);
1969                 return;
1970         }
1971 
1972         if (event->attr.exclude_host)
1973                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1974         if (event->attr.exclude_guest)
1975                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1976 
1977         if (unlikely(event_is_checkpointed(event)))
1978                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1979 
1980         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1981                 intel_pmu_enable_fixed(hwc);
1982                 return;
1983         }
1984 
1985         if (unlikely(event->attr.precise_ip))
1986                 intel_pmu_pebs_enable(event);
1987 
1988         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1989 }
1990 
1991 static void intel_pmu_add_event(struct perf_event *event)
1992 {
1993         if (event->attr.precise_ip)
1994                 intel_pmu_pebs_add(event);
1995         if (needs_branch_stack(event))
1996                 intel_pmu_lbr_add(event);
1997 }
1998 
1999 /*
2000  * Save and restart an expired event. Called by NMI contexts,
2001  * so it has to be careful about preempting normal event ops:
2002  */
2003 int intel_pmu_save_and_restart(struct perf_event *event)
2004 {
2005         x86_perf_event_update(event);
2006         /*
2007          * For a checkpointed counter always reset back to 0.  This
2008          * avoids a situation where the counter overflows, aborts the
2009          * transaction and is then set back to shortly before the
2010          * overflow, and overflows and aborts again.
2011          */
2012         if (unlikely(event_is_checkpointed(event))) {
2013                 /* No race with NMIs because the counter should not be armed */
2014                 wrmsrl(event->hw.event_base, 0);
2015                 local64_set(&event->hw.prev_count, 0);
2016         }
2017         return x86_perf_event_set_period(event);
2018 }
2019 
2020 static void intel_pmu_reset(void)
2021 {
2022         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2023         unsigned long flags;
2024         int idx;
2025 
2026         if (!x86_pmu.num_counters)
2027                 return;
2028 
2029         local_irq_save(flags);
2030 
2031         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2032 
2033         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2034                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2035                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2036         }
2037         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2038                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2039 
2040         if (ds)
2041                 ds->bts_index = ds->bts_buffer_base;
2042 
2043         /* Ack all overflows and disable fixed counters */
2044         if (x86_pmu.version >= 2) {
2045                 intel_pmu_ack_status(intel_pmu_get_status());
2046                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2047         }
2048 
2049         /* Reset LBRs and LBR freezing */
2050         if (x86_pmu.lbr_nr) {
2051                 update_debugctlmsr(get_debugctlmsr() &
2052                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2053         }
2054 
2055         local_irq_restore(flags);
2056 }
2057 
2058 /*
2059  * This handler is triggered by the local APIC, so the APIC IRQ handling
2060  * rules apply:
2061  */
2062 static int intel_pmu_handle_irq(struct pt_regs *regs)
2063 {
2064         struct perf_sample_data data;
2065         struct cpu_hw_events *cpuc;
2066         int bit, loops;
2067         u64 status;
2068         int handled;
2069 
2070         cpuc = this_cpu_ptr(&cpu_hw_events);
2071 
2072         /*
2073          * No known reason to not always do late ACK,
2074          * but just in case do it opt-in.
2075          */
2076         if (!x86_pmu.late_ack)
2077                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2078         intel_bts_disable_local();
2079         __intel_pmu_disable_all();
2080         handled = intel_pmu_drain_bts_buffer();
2081         handled += intel_bts_interrupt();
2082         status = intel_pmu_get_status();
2083         if (!status)
2084                 goto done;
2085 
2086         loops = 0;
2087 again:
2088         intel_pmu_lbr_read();
2089         intel_pmu_ack_status(status);
2090         if (++loops > 100) {
2091                 static bool warned = false;
2092                 if (!warned) {
2093                         WARN(1, "perfevents: irq loop stuck!\n");
2094                         perf_event_print_debug();
2095                         warned = true;
2096                 }
2097                 intel_pmu_reset();
2098                 goto done;
2099         }
2100 
2101         inc_irq_stat(apic_perf_irqs);
2102 
2103 
2104         /*
2105          * Ignore a range of extra bits in status that do not indicate
2106          * overflow by themselves.
2107          */
2108         status &= ~(GLOBAL_STATUS_COND_CHG |
2109                     GLOBAL_STATUS_ASIF |
2110                     GLOBAL_STATUS_LBRS_FROZEN);
2111         if (!status)
2112                 goto done;
2113         /*
2114          * In case multiple PEBS events are sampled at the same time,
2115          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2116          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2117          * having their bits set in the status register. This is a sign
2118          * that there was at least one PEBS record pending at the time
2119          * of the PMU interrupt. PEBS counters must only be processed
2120          * via the drain_pebs() calls and not via the regular sample
2121          * processing loop coming after that the function, otherwise
2122          * phony regular samples may be generated in the sampling buffer
2123          * not marked with the EXACT tag. Another possibility is to have
2124          * one PEBS event and at least one non-PEBS event whic hoverflows
2125          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2126          * not be set, yet the overflow status bit for the PEBS counter will
2127          * be on Skylake.
2128          *
2129          * To avoid this problem, we systematically ignore the PEBS-enabled
2130          * counters from the GLOBAL_STATUS mask and we always process PEBS
2131          * events via drain_pebs().
2132          */
2133         status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2134 
2135         /*
2136          * PEBS overflow sets bit 62 in the global status register
2137          */
2138         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2139                 handled++;
2140                 x86_pmu.drain_pebs(regs);
2141                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2142         }
2143 
2144         /*
2145          * Intel PT
2146          */
2147         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2148                 handled++;
2149                 intel_pt_interrupt();
2150         }
2151 
2152         /*
2153          * Checkpointed counters can lead to 'spurious' PMIs because the
2154          * rollback caused by the PMI will have cleared the overflow status
2155          * bit. Therefore always force probe these counters.
2156          */
2157         status |= cpuc->intel_cp_status;
2158 
2159         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2160                 struct perf_event *event = cpuc->events[bit];
2161 
2162                 handled++;
2163 
2164                 if (!test_bit(bit, cpuc->active_mask))
2165                         continue;
2166 
2167                 if (!intel_pmu_save_and_restart(event))
2168                         continue;
2169 
2170                 perf_sample_data_init(&data, 0, event->hw.last_period);
2171 
2172                 if (has_branch_stack(event))
2173                         data.br_stack = &cpuc->lbr_stack;
2174 
2175                 if (perf_event_overflow(event, &data, regs))
2176                         x86_pmu_stop(event, 0);
2177         }
2178 
2179         /*
2180          * Repeat if there is more work to be done:
2181          */
2182         status = intel_pmu_get_status();
2183         if (status)
2184                 goto again;
2185 
2186 done:
2187         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2188         if (cpuc->enabled)
2189                 __intel_pmu_enable_all(0, true);
2190         intel_bts_enable_local();
2191 
2192         /*
2193          * Only unmask the NMI after the overflow counters
2194          * have been reset. This avoids spurious NMIs on
2195          * Haswell CPUs.
2196          */
2197         if (x86_pmu.late_ack)
2198                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2199         return handled;
2200 }
2201 
2202 static struct event_constraint *
2203 intel_bts_constraints(struct perf_event *event)
2204 {
2205         struct hw_perf_event *hwc = &event->hw;
2206         unsigned int hw_event, bts_event;
2207 
2208         if (event->attr.freq)
2209                 return NULL;
2210 
2211         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2212         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2213 
2214         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2215                 return &bts_constraint;
2216 
2217         return NULL;
2218 }
2219 
2220 static int intel_alt_er(int idx, u64 config)
2221 {
2222         int alt_idx = idx;
2223 
2224         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2225                 return idx;
2226 
2227         if (idx == EXTRA_REG_RSP_0)
2228                 alt_idx = EXTRA_REG_RSP_1;
2229 
2230         if (idx == EXTRA_REG_RSP_1)
2231                 alt_idx = EXTRA_REG_RSP_0;
2232 
2233         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2234                 return idx;
2235 
2236         return alt_idx;
2237 }
2238 
2239 static void intel_fixup_er(struct perf_event *event, int idx)
2240 {
2241         event->hw.extra_reg.idx = idx;
2242 
2243         if (idx == EXTRA_REG_RSP_0) {
2244                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2245                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2246                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2247         } else if (idx == EXTRA_REG_RSP_1) {
2248                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2249                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2250                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2251         }
2252 }
2253 
2254 /*
2255  * manage allocation of shared extra msr for certain events
2256  *
2257  * sharing can be:
2258  * per-cpu: to be shared between the various events on a single PMU
2259  * per-core: per-cpu + shared by HT threads
2260  */
2261 static struct event_constraint *
2262 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2263                                    struct perf_event *event,
2264                                    struct hw_perf_event_extra *reg)
2265 {
2266         struct event_constraint *c = &emptyconstraint;
2267         struct er_account *era;
2268         unsigned long flags;
2269         int idx = reg->idx;
2270 
2271         /*
2272          * reg->alloc can be set due to existing state, so for fake cpuc we
2273          * need to ignore this, otherwise we might fail to allocate proper fake
2274          * state for this extra reg constraint. Also see the comment below.
2275          */
2276         if (reg->alloc && !cpuc->is_fake)
2277                 return NULL; /* call x86_get_event_constraint() */
2278 
2279 again:
2280         era = &cpuc->shared_regs->regs[idx];
2281         /*
2282          * we use spin_lock_irqsave() to avoid lockdep issues when
2283          * passing a fake cpuc
2284          */
2285         raw_spin_lock_irqsave(&era->lock, flags);
2286 
2287         if (!atomic_read(&era->ref) || era->config == reg->config) {
2288 
2289                 /*
2290                  * If its a fake cpuc -- as per validate_{group,event}() we
2291                  * shouldn't touch event state and we can avoid doing so
2292                  * since both will only call get_event_constraints() once
2293                  * on each event, this avoids the need for reg->alloc.
2294                  *
2295                  * Not doing the ER fixup will only result in era->reg being
2296                  * wrong, but since we won't actually try and program hardware
2297                  * this isn't a problem either.
2298                  */
2299                 if (!cpuc->is_fake) {
2300                         if (idx != reg->idx)
2301                                 intel_fixup_er(event, idx);
2302 
2303                         /*
2304                          * x86_schedule_events() can call get_event_constraints()
2305                          * multiple times on events in the case of incremental
2306                          * scheduling(). reg->alloc ensures we only do the ER
2307                          * allocation once.
2308                          */
2309                         reg->alloc = 1;
2310                 }
2311 
2312                 /* lock in msr value */
2313                 era->config = reg->config;
2314                 era->reg = reg->reg;
2315 
2316                 /* one more user */
2317                 atomic_inc(&era->ref);
2318 
2319                 /*
2320                  * need to call x86_get_event_constraint()
2321                  * to check if associated event has constraints
2322                  */
2323                 c = NULL;
2324         } else {
2325                 idx = intel_alt_er(idx, reg->config);
2326                 if (idx != reg->idx) {
2327                         raw_spin_unlock_irqrestore(&era->lock, flags);
2328                         goto again;
2329                 }
2330         }
2331         raw_spin_unlock_irqrestore(&era->lock, flags);
2332 
2333         return c;
2334 }
2335 
2336 static void
2337 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2338                                    struct hw_perf_event_extra *reg)
2339 {
2340         struct er_account *era;
2341 
2342         /*
2343          * Only put constraint if extra reg was actually allocated. Also takes
2344          * care of event which do not use an extra shared reg.
2345          *
2346          * Also, if this is a fake cpuc we shouldn't touch any event state
2347          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2348          * either since it'll be thrown out.
2349          */
2350         if (!reg->alloc || cpuc->is_fake)
2351                 return;
2352 
2353         era = &cpuc->shared_regs->regs[reg->idx];
2354 
2355         /* one fewer user */
2356         atomic_dec(&era->ref);
2357 
2358         /* allocate again next time */
2359         reg->alloc = 0;
2360 }
2361 
2362 static struct event_constraint *
2363 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2364                               struct perf_event *event)
2365 {
2366         struct event_constraint *c = NULL, *d;
2367         struct hw_perf_event_extra *xreg, *breg;
2368 
2369         xreg = &event->hw.extra_reg;
2370         if (xreg->idx != EXTRA_REG_NONE) {
2371                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2372                 if (c == &emptyconstraint)
2373                         return c;
2374         }
2375         breg = &event->hw.branch_reg;
2376         if (breg->idx != EXTRA_REG_NONE) {
2377                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2378                 if (d == &emptyconstraint) {
2379                         __intel_shared_reg_put_constraints(cpuc, xreg);
2380                         c = d;
2381                 }
2382         }
2383         return c;
2384 }
2385 
2386 struct event_constraint *
2387 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2388                           struct perf_event *event)
2389 {
2390         struct event_constraint *c;
2391 
2392         if (x86_pmu.event_constraints) {
2393                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2394                         if ((event->hw.config & c->cmask) == c->code) {
2395                                 event->hw.flags |= c->flags;
2396                                 return c;
2397                         }
2398                 }
2399         }
2400 
2401         return &unconstrained;
2402 }
2403 
2404 static struct event_constraint *
2405 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2406                             struct perf_event *event)
2407 {
2408         struct event_constraint *c;
2409 
2410         c = intel_bts_constraints(event);
2411         if (c)
2412                 return c;
2413 
2414         c = intel_shared_regs_constraints(cpuc, event);
2415         if (c)
2416                 return c;
2417 
2418         c = intel_pebs_constraints(event);
2419         if (c)
2420                 return c;
2421 
2422         return x86_get_event_constraints(cpuc, idx, event);
2423 }
2424 
2425 static void
2426 intel_start_scheduling(struct cpu_hw_events *cpuc)
2427 {
2428         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2429         struct intel_excl_states *xl;
2430         int tid = cpuc->excl_thread_id;
2431 
2432         /*
2433          * nothing needed if in group validation mode
2434          */
2435         if (cpuc->is_fake || !is_ht_workaround_enabled())
2436                 return;
2437 
2438         /*
2439          * no exclusion needed
2440          */
2441         if (WARN_ON_ONCE(!excl_cntrs))
2442                 return;
2443 
2444         xl = &excl_cntrs->states[tid];
2445 
2446         xl->sched_started = true;
2447         /*
2448          * lock shared state until we are done scheduling
2449          * in stop_event_scheduling()
2450          * makes scheduling appear as a transaction
2451          */
2452         raw_spin_lock(&excl_cntrs->lock);
2453 }
2454 
2455 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2456 {
2457         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2458         struct event_constraint *c = cpuc->event_constraint[idx];
2459         struct intel_excl_states *xl;
2460         int tid = cpuc->excl_thread_id;
2461 
2462         if (cpuc->is_fake || !is_ht_workaround_enabled())
2463                 return;
2464 
2465         if (WARN_ON_ONCE(!excl_cntrs))
2466                 return;
2467 
2468         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2469                 return;
2470 
2471         xl = &excl_cntrs->states[tid];
2472 
2473         lockdep_assert_held(&excl_cntrs->lock);
2474 
2475         if (c->flags & PERF_X86_EVENT_EXCL)
2476                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2477         else
2478                 xl->state[cntr] = INTEL_EXCL_SHARED;
2479 }
2480 
2481 static void
2482 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2483 {
2484         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2485         struct intel_excl_states *xl;
2486         int tid = cpuc->excl_thread_id;
2487 
2488         /*
2489          * nothing needed if in group validation mode
2490          */
2491         if (cpuc->is_fake || !is_ht_workaround_enabled())
2492                 return;
2493         /*
2494          * no exclusion needed
2495          */
2496         if (WARN_ON_ONCE(!excl_cntrs))
2497                 return;
2498 
2499         xl = &excl_cntrs->states[tid];
2500 
2501         xl->sched_started = false;
2502         /*
2503          * release shared state lock (acquired in intel_start_scheduling())
2504          */
2505         raw_spin_unlock(&excl_cntrs->lock);
2506 }
2507 
2508 static struct event_constraint *
2509 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2510                            int idx, struct event_constraint *c)
2511 {
2512         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2513         struct intel_excl_states *xlo;
2514         int tid = cpuc->excl_thread_id;
2515         int is_excl, i;
2516 
2517         /*
2518          * validating a group does not require
2519          * enforcing cross-thread  exclusion
2520          */
2521         if (cpuc->is_fake || !is_ht_workaround_enabled())
2522                 return c;
2523 
2524         /*
2525          * no exclusion needed
2526          */
2527         if (WARN_ON_ONCE(!excl_cntrs))
2528                 return c;
2529 
2530         /*
2531          * because we modify the constraint, we need
2532          * to make a copy. Static constraints come
2533          * from static const tables.
2534          *
2535          * only needed when constraint has not yet
2536          * been cloned (marked dynamic)
2537          */
2538         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2539                 struct event_constraint *cx;
2540 
2541                 /*
2542                  * grab pre-allocated constraint entry
2543                  */
2544                 cx = &cpuc->constraint_list[idx];
2545 
2546                 /*
2547                  * initialize dynamic constraint
2548                  * with static constraint
2549                  */
2550                 *cx = *c;
2551 
2552                 /*
2553                  * mark constraint as dynamic, so we
2554                  * can free it later on
2555                  */
2556                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2557                 c = cx;
2558         }
2559 
2560         /*
2561          * From here on, the constraint is dynamic.
2562          * Either it was just allocated above, or it
2563          * was allocated during a earlier invocation
2564          * of this function
2565          */
2566 
2567         /*
2568          * state of sibling HT
2569          */
2570         xlo = &excl_cntrs->states[tid ^ 1];
2571 
2572         /*
2573          * event requires exclusive counter access
2574          * across HT threads
2575          */
2576         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2577         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2578                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2579                 if (!cpuc->n_excl++)
2580                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2581         }
2582 
2583         /*
2584          * Modify static constraint with current dynamic
2585          * state of thread
2586          *
2587          * EXCLUSIVE: sibling counter measuring exclusive event
2588          * SHARED   : sibling counter measuring non-exclusive event
2589          * UNUSED   : sibling counter unused
2590          */
2591         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2592                 /*
2593                  * exclusive event in sibling counter
2594                  * our corresponding counter cannot be used
2595                  * regardless of our event
2596                  */
2597                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2598                         __clear_bit(i, c->idxmsk);
2599                 /*
2600                  * if measuring an exclusive event, sibling
2601                  * measuring non-exclusive, then counter cannot
2602                  * be used
2603                  */
2604                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2605                         __clear_bit(i, c->idxmsk);
2606         }
2607 
2608         /*
2609          * recompute actual bit weight for scheduling algorithm
2610          */
2611         c->weight = hweight64(c->idxmsk64);
2612 
2613         /*
2614          * if we return an empty mask, then switch
2615          * back to static empty constraint to avoid
2616          * the cost of freeing later on
2617          */
2618         if (c->weight == 0)
2619                 c = &emptyconstraint;
2620 
2621         return c;
2622 }
2623 
2624 static struct event_constraint *
2625 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2626                             struct perf_event *event)
2627 {
2628         struct event_constraint *c1 = NULL;
2629         struct event_constraint *c2;
2630 
2631         if (idx >= 0) /* fake does < 0 */
2632                 c1 = cpuc->event_constraint[idx];
2633 
2634         /*
2635          * first time only
2636          * - static constraint: no change across incremental scheduling calls
2637          * - dynamic constraint: handled by intel_get_excl_constraints()
2638          */
2639         c2 = __intel_get_event_constraints(cpuc, idx, event);
2640         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2641                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2642                 c1->weight = c2->weight;
2643                 c2 = c1;
2644         }
2645 
2646         if (cpuc->excl_cntrs)
2647                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2648 
2649         return c2;
2650 }
2651 
2652 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2653                 struct perf_event *event)
2654 {
2655         struct hw_perf_event *hwc = &event->hw;
2656         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2657         int tid = cpuc->excl_thread_id;
2658         struct intel_excl_states *xl;
2659 
2660         /*
2661          * nothing needed if in group validation mode
2662          */
2663         if (cpuc->is_fake)
2664                 return;
2665 
2666         if (WARN_ON_ONCE(!excl_cntrs))
2667                 return;
2668 
2669         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2670                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2671                 if (!--cpuc->n_excl)
2672                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2673         }
2674 
2675         /*
2676          * If event was actually assigned, then mark the counter state as
2677          * unused now.
2678          */
2679         if (hwc->idx >= 0) {
2680                 xl = &excl_cntrs->states[tid];
2681 
2682                 /*
2683                  * put_constraint may be called from x86_schedule_events()
2684                  * which already has the lock held so here make locking
2685                  * conditional.
2686                  */
2687                 if (!xl->sched_started)
2688                         raw_spin_lock(&excl_cntrs->lock);
2689 
2690                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2691 
2692                 if (!xl->sched_started)
2693                         raw_spin_unlock(&excl_cntrs->lock);
2694         }
2695 }
2696 
2697 static void
2698 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2699                                         struct perf_event *event)
2700 {
2701         struct hw_perf_event_extra *reg;
2702 
2703         reg = &event->hw.extra_reg;
2704         if (reg->idx != EXTRA_REG_NONE)
2705                 __intel_shared_reg_put_constraints(cpuc, reg);
2706 
2707         reg = &event->hw.branch_reg;
2708         if (reg->idx != EXTRA_REG_NONE)
2709                 __intel_shared_reg_put_constraints(cpuc, reg);
2710 }
2711 
2712 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2713                                         struct perf_event *event)
2714 {
2715         intel_put_shared_regs_event_constraints(cpuc, event);
2716 
2717         /*
2718          * is PMU has exclusive counter restrictions, then
2719          * all events are subject to and must call the
2720          * put_excl_constraints() routine
2721          */
2722         if (cpuc->excl_cntrs)
2723                 intel_put_excl_constraints(cpuc, event);
2724 }
2725 
2726 static void intel_pebs_aliases_core2(struct perf_event *event)
2727 {
2728         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2729                 /*
2730                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2731                  * (0x003c) so that we can use it with PEBS.
2732                  *
2733                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2734                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2735                  * (0x00c0), which is a PEBS capable event, to get the same
2736                  * count.
2737                  *
2738                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2739                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2740                  * larger than the maximum number of instructions that can be
2741                  * retired per cycle (4) and then inverting the condition, we
2742                  * count all cycles that retire 16 or less instructions, which
2743                  * is every cycle.
2744                  *
2745                  * Thereby we gain a PEBS capable cycle counter.
2746                  */
2747                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2748 
2749                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2750                 event->hw.config = alt_config;
2751         }
2752 }
2753 
2754 static void intel_pebs_aliases_snb(struct perf_event *event)
2755 {
2756         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2757                 /*
2758                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2759                  * (0x003c) so that we can use it with PEBS.
2760                  *
2761                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2762                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2763                  * (0x01c2), which is a PEBS capable event, to get the same
2764                  * count.
2765                  *
2766                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2767                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2768                  * larger than the maximum number of micro-ops that can be
2769                  * retired per cycle (4) and then inverting the condition, we
2770                  * count all cycles that retire 16 or less micro-ops, which
2771                  * is every cycle.
2772                  *
2773                  * Thereby we gain a PEBS capable cycle counter.
2774                  */
2775                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2776 
2777                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2778                 event->hw.config = alt_config;
2779         }
2780 }
2781 
2782 static void intel_pebs_aliases_precdist(struct perf_event *event)
2783 {
2784         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2785                 /*
2786                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2787                  * (0x003c) so that we can use it with PEBS.
2788                  *
2789                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2790                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2791                  * (0x01c0), which is a PEBS capable event, to get the same
2792                  * count.
2793                  *
2794                  * The PREC_DIST event has special support to minimize sample
2795                  * shadowing effects. One drawback is that it can be
2796                  * only programmed on counter 1, but that seems like an
2797                  * acceptable trade off.
2798                  */
2799                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2800 
2801                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2802                 event->hw.config = alt_config;
2803         }
2804 }
2805 
2806 static void intel_pebs_aliases_ivb(struct perf_event *event)
2807 {
2808         if (event->attr.precise_ip < 3)
2809                 return intel_pebs_aliases_snb(event);
2810         return intel_pebs_aliases_precdist(event);
2811 }
2812 
2813 static void intel_pebs_aliases_skl(struct perf_event *event)
2814 {
2815         if (event->attr.precise_ip < 3)
2816                 return intel_pebs_aliases_core2(event);
2817         return intel_pebs_aliases_precdist(event);
2818 }
2819 
2820 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2821 {
2822         unsigned long flags = x86_pmu.free_running_flags;
2823 
2824         if (event->attr.use_clockid)
2825                 flags &= ~PERF_SAMPLE_TIME;
2826         return flags;
2827 }
2828 
2829 static int intel_pmu_hw_config(struct perf_event *event)
2830 {
2831         int ret = x86_pmu_hw_config(event);
2832 
2833         if (ret)
2834                 return ret;
2835 
2836         if (event->attr.precise_ip) {
2837                 if (!event->attr.freq) {
2838                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2839                         if (!(event->attr.sample_type &
2840                               ~intel_pmu_free_running_flags(event)))
2841                                 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2842                 }
2843                 if (x86_pmu.pebs_aliases)
2844                         x86_pmu.pebs_aliases(event);
2845         }
2846 
2847         if (needs_branch_stack(event)) {
2848                 ret = intel_pmu_setup_lbr_filter(event);
2849                 if (ret)
2850                         return ret;
2851 
2852                 /*
2853                  * BTS is set up earlier in this path, so don't account twice
2854                  */
2855                 if (!intel_pmu_has_bts(event)) {
2856                         /* disallow lbr if conflicting events are present */
2857                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2858                                 return -EBUSY;
2859 
2860                         event->destroy = hw_perf_lbr_event_destroy;
2861                 }
2862         }
2863 
2864         if (event->attr.type != PERF_TYPE_RAW)
2865                 return 0;
2866 
2867         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2868                 return 0;
2869 
2870         if (x86_pmu.version < 3)
2871                 return -EINVAL;
2872 
2873         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2874                 return -EACCES;
2875 
2876         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2877 
2878         return 0;
2879 }
2880 
2881 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2882 {
2883         if (x86_pmu.guest_get_msrs)
2884                 return x86_pmu.guest_get_msrs(nr);
2885         *nr = 0;
2886         return NULL;
2887 }
2888 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2889 
2890 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2891 {
2892         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2893         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2894 
2895         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2896         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2897         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2898         /*
2899          * If PMU counter has PEBS enabled it is not enough to disable counter
2900          * on a guest entry since PEBS memory write can overshoot guest entry
2901          * and corrupt guest memory. Disabling PEBS solves the problem.
2902          */
2903         arr[1].msr = MSR_IA32_PEBS_ENABLE;
2904         arr[1].host = cpuc->pebs_enabled;
2905         arr[1].guest = 0;
2906 
2907         *nr = 2;
2908         return arr;
2909 }
2910 
2911 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2912 {
2913         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2914         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2915         int idx;
2916 
2917         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2918                 struct perf_event *event = cpuc->events[idx];
2919 
2920                 arr[idx].msr = x86_pmu_config_addr(idx);
2921                 arr[idx].host = arr[idx].guest = 0;
2922 
2923                 if (!test_bit(idx, cpuc->active_mask))
2924                         continue;
2925 
2926                 arr[idx].host = arr[idx].guest =
2927                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2928 
2929                 if (event->attr.exclude_host)
2930                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2931                 else if (event->attr.exclude_guest)
2932                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2933         }
2934 
2935         *nr = x86_pmu.num_counters;
2936         return arr;
2937 }
2938 
2939 static void core_pmu_enable_event(struct perf_event *event)
2940 {
2941         if (!event->attr.exclude_host)
2942                 x86_pmu_enable_event(event);
2943 }
2944 
2945 static void core_pmu_enable_all(int added)
2946 {
2947         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2948         int idx;
2949 
2950         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2951                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2952 
2953                 if (!test_bit(idx, cpuc->active_mask) ||
2954                                 cpuc->events[idx]->attr.exclude_host)
2955                         continue;
2956 
2957                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2958         }
2959 }
2960 
2961 static int hsw_hw_config(struct perf_event *event)
2962 {
2963         int ret = intel_pmu_hw_config(event);
2964 
2965         if (ret)
2966                 return ret;
2967         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2968                 return 0;
2969         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2970 
2971         /*
2972          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2973          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2974          * this combination.
2975          */
2976         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2977              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2978               event->attr.precise_ip > 0))
2979                 return -EOPNOTSUPP;
2980 
2981         if (event_is_checkpointed(event)) {
2982                 /*
2983                  * Sampling of checkpointed events can cause situations where
2984                  * the CPU constantly aborts because of a overflow, which is
2985                  * then checkpointed back and ignored. Forbid checkpointing
2986                  * for sampling.
2987                  *
2988                  * But still allow a long sampling period, so that perf stat
2989                  * from KVM works.
2990                  */
2991                 if (event->attr.sample_period > 0 &&
2992                     event->attr.sample_period < 0x7fffffff)
2993                         return -EOPNOTSUPP;
2994         }
2995         return 0;
2996 }
2997 
2998 static struct event_constraint counter2_constraint =
2999                         EVENT_CONSTRAINT(0, 0x4, 0);
3000 
3001 static struct event_constraint *
3002 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3003                           struct perf_event *event)
3004 {
3005         struct event_constraint *c;
3006 
3007         c = intel_get_event_constraints(cpuc, idx, event);
3008 
3009         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3010         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3011                 if (c->idxmsk64 & (1U << 2))
3012                         return &counter2_constraint;
3013                 return &emptyconstraint;
3014         }
3015 
3016         return c;
3017 }
3018 
3019 /*
3020  * Broadwell:
3021  *
3022  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3023  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3024  * the two to enforce a minimum period of 128 (the smallest value that has bits
3025  * 0-5 cleared and >= 100).
3026  *
3027  * Because of how the code in x86_perf_event_set_period() works, the truncation
3028  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3029  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3030  *
3031  * Therefore the effective (average) period matches the requested period,
3032  * despite coarser hardware granularity.
3033  */
3034 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
3035 {
3036         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3037                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3038                 if (left < 128)
3039                         left = 128;
3040                 left &= ~0x3fu;
3041         }
3042         return left;
3043 }
3044 
3045 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3046 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3047 PMU_FORMAT_ATTR(edge,   "config:18"     );
3048 PMU_FORMAT_ATTR(pc,     "config:19"     );
3049 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3050 PMU_FORMAT_ATTR(inv,    "config:23"     );
3051 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3052 PMU_FORMAT_ATTR(in_tx,  "config:32");
3053 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3054 
3055 static struct attribute *intel_arch_formats_attr[] = {
3056         &format_attr_event.attr,
3057         &format_attr_umask.attr,
3058         &format_attr_edge.attr,
3059         &format_attr_pc.attr,
3060         &format_attr_inv.attr,
3061         &format_attr_cmask.attr,
3062         NULL,
3063 };
3064 
3065 ssize_t intel_event_sysfs_show(char *page, u64 config)
3066 {
3067         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3068 
3069         return x86_event_sysfs_show(page, config, event);
3070 }
3071 
3072 struct intel_shared_regs *allocate_shared_regs(int cpu)
3073 {
3074         struct intel_shared_regs *regs;
3075         int i;
3076 
3077         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3078                             GFP_KERNEL, cpu_to_node(cpu));
3079         if (regs) {
3080                 /*
3081                  * initialize the locks to keep lockdep happy
3082                  */
3083                 for (i = 0; i < EXTRA_REG_MAX; i++)
3084                         raw_spin_lock_init(&regs->regs[i].lock);
3085 
3086                 regs->core_id = -1;
3087         }
3088         return regs;
3089 }
3090 
3091 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3092 {
3093         struct intel_excl_cntrs *c;
3094 
3095         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3096                          GFP_KERNEL, cpu_to_node(cpu));
3097         if (c) {
3098                 raw_spin_lock_init(&c->lock);
3099                 c->core_id = -1;
3100         }
3101         return c;
3102 }
3103 
3104 static int intel_pmu_cpu_prepare(int cpu)
3105 {
3106         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3107 
3108         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3109                 cpuc->shared_regs = allocate_shared_regs(cpu);
3110                 if (!cpuc->shared_regs)
3111                         goto err;
3112         }
3113 
3114         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3115                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3116 
3117                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3118                 if (!cpuc->constraint_list)
3119                         goto err_shared_regs;
3120 
3121                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3122                 if (!cpuc->excl_cntrs)
3123                         goto err_constraint_list;
3124 
3125                 cpuc->excl_thread_id = 0;
3126         }
3127 
3128         return 0;
3129 
3130 err_constraint_list:
3131         kfree(cpuc->constraint_list);
3132         cpuc->constraint_list = NULL;
3133 
3134 err_shared_regs:
3135         kfree(cpuc->shared_regs);
3136         cpuc->shared_regs = NULL;
3137 
3138 err:
3139         return -ENOMEM;
3140 }
3141 
3142 static void intel_pmu_cpu_starting(int cpu)
3143 {
3144         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3145         int core_id = topology_core_id(cpu);
3146         int i;
3147 
3148         init_debug_store_on_cpu(cpu);
3149         /*
3150          * Deal with CPUs that don't clear their LBRs on power-up.
3151          */
3152         intel_pmu_lbr_reset();
3153 
3154         cpuc->lbr_sel = NULL;
3155 
3156         if (!cpuc->shared_regs)
3157                 return;
3158 
3159         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3160                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3161                         struct intel_shared_regs *pc;
3162 
3163                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3164                         if (pc && pc->core_id == core_id) {
3165                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3166                                 cpuc->shared_regs = pc;
3167                                 break;
3168                         }
3169                 }
3170                 cpuc->shared_regs->core_id = core_id;
3171                 cpuc->shared_regs->refcnt++;
3172         }
3173 
3174         if (x86_pmu.lbr_sel_map)
3175                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3176 
3177         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3178                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3179                         struct cpu_hw_events *sibling;
3180                         struct intel_excl_cntrs *c;
3181 
3182                         sibling = &per_cpu(cpu_hw_events, i);
3183                         c = sibling->excl_cntrs;
3184                         if (c && c->core_id == core_id) {
3185                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3186                                 cpuc->excl_cntrs = c;
3187                                 if (!sibling->excl_thread_id)
3188                                         cpuc->excl_thread_id = 1;
3189                                 break;
3190                         }
3191                 }
3192                 cpuc->excl_cntrs->core_id = core_id;
3193                 cpuc->excl_cntrs->refcnt++;
3194         }
3195 }
3196 
3197 static void free_excl_cntrs(int cpu)
3198 {
3199         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3200         struct intel_excl_cntrs *c;
3201 
3202         c = cpuc->excl_cntrs;
3203         if (c) {
3204                 if (c->core_id == -1 || --c->refcnt == 0)
3205                         kfree(c);
3206                 cpuc->excl_cntrs = NULL;
3207                 kfree(cpuc->constraint_list);
3208                 cpuc->constraint_list = NULL;
3209         }
3210 }
3211 
3212 static void intel_pmu_cpu_dying(int cpu)
3213 {
3214         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3215         struct intel_shared_regs *pc;
3216 
3217         pc = cpuc->shared_regs;
3218         if (pc) {
3219                 if (pc->core_id == -1 || --pc->refcnt == 0)
3220                         kfree(pc);
3221                 cpuc->shared_regs = NULL;
3222         }
3223 
3224         free_excl_cntrs(cpu);
3225 
3226         fini_debug_store_on_cpu(cpu);
3227 }
3228 
3229 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3230                                  bool sched_in)
3231 {
3232         if (x86_pmu.pebs_active)
3233                 intel_pmu_pebs_sched_task(ctx, sched_in);
3234         if (x86_pmu.lbr_nr)
3235                 intel_pmu_lbr_sched_task(ctx, sched_in);
3236 }
3237 
3238 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3239 
3240 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3241 
3242 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3243 
3244 static struct attribute *intel_arch3_formats_attr[] = {
3245         &format_attr_event.attr,
3246         &format_attr_umask.attr,
3247         &format_attr_edge.attr,
3248         &format_attr_pc.attr,
3249         &format_attr_any.attr,
3250         &format_attr_inv.attr,
3251         &format_attr_cmask.attr,
3252         &format_attr_in_tx.attr,
3253         &format_attr_in_tx_cp.attr,
3254 
3255         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3256         &format_attr_ldlat.attr, /* PEBS load latency */
3257         NULL,
3258 };
3259 
3260 static struct attribute *skl_format_attr[] = {
3261         &format_attr_frontend.attr,
3262         NULL,
3263 };
3264 
3265 static __initconst const struct x86_pmu core_pmu = {
3266         .name                   = "core",
3267         .handle_irq             = x86_pmu_handle_irq,
3268         .disable_all            = x86_pmu_disable_all,
3269         .enable_all             = core_pmu_enable_all,
3270         .enable                 = core_pmu_enable_event,
3271         .disable                = x86_pmu_disable_event,
3272         .hw_config              = x86_pmu_hw_config,
3273         .schedule_events        = x86_schedule_events,
3274         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3275         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3276         .event_map              = intel_pmu_event_map,
3277         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3278         .apic                   = 1,
3279         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3280 
3281         /*
3282          * Intel PMCs cannot be accessed sanely above 32-bit width,
3283          * so we install an artificial 1<<31 period regardless of
3284          * the generic event period:
3285          */
3286         .max_period             = (1ULL<<31) - 1,
3287         .get_event_constraints  = intel_get_event_constraints,
3288         .put_event_constraints  = intel_put_event_constraints,
3289         .event_constraints      = intel_core_event_constraints,
3290         .guest_get_msrs         = core_guest_get_msrs,
3291         .format_attrs           = intel_arch_formats_attr,
3292         .events_sysfs_show      = intel_event_sysfs_show,
3293 
3294         /*
3295          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3296          * together with PMU version 1 and thus be using core_pmu with
3297          * shared_regs. We need following callbacks here to allocate
3298          * it properly.
3299          */
3300         .cpu_prepare            = intel_pmu_cpu_prepare,
3301         .cpu_starting           = intel_pmu_cpu_starting,
3302         .cpu_dying              = intel_pmu_cpu_dying,
3303 };
3304 
3305 static __initconst const struct x86_pmu intel_pmu = {
3306         .name                   = "Intel",
3307         .handle_irq             = intel_pmu_handle_irq,
3308         .disable_all            = intel_pmu_disable_all,
3309         .enable_all             = intel_pmu_enable_all,
3310         .enable                 = intel_pmu_enable_event,
3311         .disable                = intel_pmu_disable_event,
3312         .add                    = intel_pmu_add_event,
3313         .del                    = intel_pmu_del_event,
3314         .hw_config              = intel_pmu_hw_config,
3315         .schedule_events        = x86_schedule_events,
3316         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3317         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3318         .event_map              = intel_pmu_event_map,
3319         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3320         .apic                   = 1,
3321         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3322         /*
3323          * Intel PMCs cannot be accessed sanely above 32 bit width,
3324          * so we install an artificial 1<<31 period regardless of
3325          * the generic event period:
3326          */
3327         .max_period             = (1ULL << 31) - 1,
3328         .get_event_constraints  = intel_get_event_constraints,
3329         .put_event_constraints  = intel_put_event_constraints,
3330         .pebs_aliases           = intel_pebs_aliases_core2,
3331 
3332         .format_attrs           = intel_arch3_formats_attr,
3333         .events_sysfs_show      = intel_event_sysfs_show,
3334 
3335         .cpu_prepare            = intel_pmu_cpu_prepare,
3336         .cpu_starting           = intel_pmu_cpu_starting,
3337         .cpu_dying              = intel_pmu_cpu_dying,
3338         .guest_get_msrs         = intel_guest_get_msrs,
3339         .sched_task             = intel_pmu_sched_task,
3340 };
3341 
3342 static __init void intel_clovertown_quirk(void)
3343 {
3344         /*
3345          * PEBS is unreliable due to:
3346          *
3347          *   AJ67  - PEBS may experience CPL leaks
3348          *   AJ68  - PEBS PMI may be delayed by one event
3349          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3350          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3351          *
3352          * AJ67 could be worked around by restricting the OS/USR flags.
3353          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3354          *
3355          * AJ106 could possibly be worked around by not allowing LBR
3356          *       usage from PEBS, including the fixup.
3357          * AJ68  could possibly be worked around by always programming
3358          *       a pebs_event_reset[0] value and coping with the lost events.
3359          *
3360          * But taken together it might just make sense to not enable PEBS on
3361          * these chips.
3362          */
3363         pr_warn("PEBS disabled due to CPU errata\n");
3364         x86_pmu.pebs = 0;
3365         x86_pmu.pebs_constraints = NULL;
3366 }
3367 
3368 static int intel_snb_pebs_broken(int cpu)
3369 {
3370         u32 rev = UINT_MAX; /* default to broken for unknown models */
3371 
3372         switch (cpu_data(cpu).x86_model) {
3373         case INTEL_FAM6_SANDYBRIDGE:
3374                 rev = 0x28;
3375                 break;
3376 
3377         case INTEL_FAM6_SANDYBRIDGE_X:
3378                 switch (cpu_data(cpu).x86_mask) {
3379                 case 6: rev = 0x618; break;
3380                 case 7: rev = 0x70c; break;
3381                 }
3382         }
3383 
3384         return (cpu_data(cpu).microcode < rev);
3385 }
3386 
3387 static void intel_snb_check_microcode(void)
3388 {
3389         int pebs_broken = 0;
3390         int cpu;
3391 
3392         get_online_cpus();
3393         for_each_online_cpu(cpu) {
3394                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3395                         break;
3396         }
3397         put_online_cpus();
3398 
3399         if (pebs_broken == x86_pmu.pebs_broken)
3400                 return;
3401 
3402         /*
3403          * Serialized by the microcode lock..
3404          */
3405         if (x86_pmu.pebs_broken) {
3406                 pr_info("PEBS enabled due to microcode update\n");
3407                 x86_pmu.pebs_broken = 0;
3408         } else {
3409                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3410                 x86_pmu.pebs_broken = 1;
3411         }
3412 }
3413 
3414 static bool is_lbr_from(unsigned long msr)
3415 {
3416         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3417 
3418         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3419 }
3420 
3421 /*
3422  * Under certain circumstances, access certain MSR may cause #GP.
3423  * The function tests if the input MSR can be safely accessed.
3424  */
3425 static bool check_msr(unsigned long msr, u64 mask)
3426 {
3427         u64 val_old, val_new, val_tmp;
3428 
3429         /*
3430          * Read the current value, change it and read it back to see if it
3431          * matches, this is needed to detect certain hardware emulators
3432          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3433          */
3434         if (rdmsrl_safe(msr, &val_old))
3435                 return false;
3436 
3437         /*
3438          * Only change the bits which can be updated by wrmsrl.
3439          */
3440         val_tmp = val_old ^ mask;
3441 
3442         if (is_lbr_from(msr))
3443                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3444 
3445         if (wrmsrl_safe(msr, val_tmp) ||
3446             rdmsrl_safe(msr, &val_new))
3447                 return false;
3448 
3449         /*
3450          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3451          * should equal rdmsrl()'s even with the quirk.
3452          */
3453         if (val_new != val_tmp)
3454                 return false;
3455 
3456         if (is_lbr_from(msr))
3457                 val_old = lbr_from_signext_quirk_wr(val_old);
3458 
3459         /* Here it's sure that the MSR can be safely accessed.
3460          * Restore the old value and return.
3461          */
3462         wrmsrl(msr, val_old);
3463 
3464         return true;
3465 }
3466 
3467 static __init void intel_sandybridge_quirk(void)
3468 {
3469         x86_pmu.check_microcode = intel_snb_check_microcode;
3470         intel_snb_check_microcode();
3471 }
3472 
3473 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3474         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3475         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3476         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3477         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3478         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3479         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3480         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3481 };
3482 
3483 static __init void intel_arch_events_quirk(void)
3484 {
3485         int bit;
3486 
3487         /* disable event that reported as not presend by cpuid */
3488         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3489                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3490                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3491                         intel_arch_events_map[bit].name);
3492         }
3493 }
3494 
3495 static __init void intel_nehalem_quirk(void)
3496 {
3497         union cpuid10_ebx ebx;
3498 
3499         ebx.full = x86_pmu.events_maskl;
3500         if (ebx.split.no_branch_misses_retired) {
3501                 /*
3502                  * Erratum AAJ80 detected, we work it around by using
3503                  * the BR_MISP_EXEC.ANY event. This will over-count
3504                  * branch-misses, but it's still much better than the
3505                  * architectural event which is often completely bogus:
3506                  */
3507                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3508                 ebx.split.no_branch_misses_retired = 0;
3509                 x86_pmu.events_maskl = ebx.full;
3510                 pr_info("CPU erratum AAJ80 worked around\n");
3511         }
3512 }
3513 
3514 /*
3515  * enable software workaround for errata:
3516  * SNB: BJ122
3517  * IVB: BV98
3518  * HSW: HSD29
3519  *
3520  * Only needed when HT is enabled. However detecting
3521  * if HT is enabled is difficult (model specific). So instead,
3522  * we enable the workaround in the early boot, and verify if
3523  * it is needed in a later initcall phase once we have valid
3524  * topology information to check if HT is actually enabled
3525  */
3526 static __init void intel_ht_bug(void)
3527 {
3528         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3529 
3530         x86_pmu.start_scheduling = intel_start_scheduling;
3531         x86_pmu.commit_scheduling = intel_commit_scheduling;
3532         x86_pmu.stop_scheduling = intel_stop_scheduling;
3533 }
3534 
3535 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3536 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3537 
3538 /* Haswell special events */
3539 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3540 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3541 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3542 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3543 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3544 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3545 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3546 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3547 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3548 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3549 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3550 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3551 
3552 static struct attribute *hsw_events_attrs[] = {
3553         EVENT_PTR(tx_start),
3554         EVENT_PTR(tx_commit),
3555         EVENT_PTR(tx_abort),
3556         EVENT_PTR(tx_capacity),
3557         EVENT_PTR(tx_conflict),
3558         EVENT_PTR(el_start),
3559         EVENT_PTR(el_commit),
3560         EVENT_PTR(el_abort),
3561         EVENT_PTR(el_capacity),
3562         EVENT_PTR(el_conflict),
3563         EVENT_PTR(cycles_t),
3564         EVENT_PTR(cycles_ct),
3565         EVENT_PTR(mem_ld_hsw),
3566         EVENT_PTR(mem_st_hsw),
3567         EVENT_PTR(td_slots_issued),
3568         EVENT_PTR(td_slots_retired),
3569         EVENT_PTR(td_fetch_bubbles),
3570         EVENT_PTR(td_total_slots),
3571         EVENT_PTR(td_total_slots_scale),
3572         EVENT_PTR(td_recovery_bubbles),
3573         EVENT_PTR(td_recovery_bubbles_scale),
3574         NULL
3575 };
3576 
3577 __init int intel_pmu_init(void)
3578 {
3579         union cpuid10_edx edx;
3580         union cpuid10_eax eax;
3581         union cpuid10_ebx ebx;
3582         struct event_constraint *c;
3583         unsigned int unused;
3584         struct extra_reg *er;
3585         int version, i;
3586 
3587         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3588                 switch (boot_cpu_data.x86) {
3589                 case 0x6:
3590                         return p6_pmu_init();
3591                 case 0xb:
3592                         return knc_pmu_init();
3593                 case 0xf:
3594                         return p4_pmu_init();
3595                 }
3596                 return -ENODEV;
3597         }
3598 
3599         /*
3600          * Check whether the Architectural PerfMon supports
3601          * Branch Misses Retired hw_event or not.
3602          */
3603         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3604         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3605                 return -ENODEV;
3606 
3607         version = eax.split.version_id;
3608         if (version < 2)
3609                 x86_pmu = core_pmu;
3610         else
3611                 x86_pmu = intel_pmu;
3612 
3613         x86_pmu.version                 = version;
3614         x86_pmu.num_counters            = eax.split.num_counters;
3615         x86_pmu.cntval_bits             = eax.split.bit_width;
3616         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3617 
3618         x86_pmu.events_maskl            = ebx.full;
3619         x86_pmu.events_mask_len         = eax.split.mask_length;
3620 
3621         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3622 
3623         /*
3624          * Quirk: v2 perfmon does not report fixed-purpose events, so
3625          * assume at least 3 events, when not running in a hypervisor:
3626          */
3627         if (version > 1) {
3628                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3629 
3630                 x86_pmu.num_counters_fixed =
3631                         max((int)edx.split.num_counters_fixed, assume);
3632         }
3633 
3634         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3635                 u64 capabilities;
3636 
3637                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3638                 x86_pmu.intel_cap.capabilities = capabilities;
3639         }
3640 
3641         intel_ds_init();
3642 
3643         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3644 
3645         /*
3646          * Install the hw-cache-events table:
3647          */
3648         switch (boot_cpu_data.x86_model) {
3649         case INTEL_FAM6_CORE_YONAH:
3650                 pr_cont("Core events, ");
3651                 break;
3652 
3653         case INTEL_FAM6_CORE2_MEROM:
3654                 x86_add_quirk(intel_clovertown_quirk);
3655         case INTEL_FAM6_CORE2_MEROM_L:
3656         case INTEL_FAM6_CORE2_PENRYN:
3657         case INTEL_FAM6_CORE2_DUNNINGTON:
3658                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3659                        sizeof(hw_cache_event_ids));
3660 
3661                 intel_pmu_lbr_init_core();
3662 
3663                 x86_pmu.event_constraints = intel_core2_event_constraints;
3664                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3665                 pr_cont("Core2 events, ");
3666                 break;
3667 
3668         case INTEL_FAM6_NEHALEM:
3669         case INTEL_FAM6_NEHALEM_EP:
3670         case INTEL_FAM6_NEHALEM_EX:
3671                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3672                        sizeof(hw_cache_event_ids));
3673                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3674                        sizeof(hw_cache_extra_regs));
3675 
3676                 intel_pmu_lbr_init_nhm();
3677 
3678                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3679                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3680                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3681                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3682 
3683                 x86_pmu.cpu_events = nhm_events_attrs;
3684 
3685                 /* UOPS_ISSUED.STALLED_CYCLES */
3686                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3687                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3688                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3689                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3690                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3691 
3692                 intel_pmu_pebs_data_source_nhm();
3693                 x86_add_quirk(intel_nehalem_quirk);
3694 
3695                 pr_cont("Nehalem events, ");
3696                 break;
3697 
3698         case INTEL_FAM6_ATOM_PINEVIEW:
3699         case INTEL_FAM6_ATOM_LINCROFT:
3700         case INTEL_FAM6_ATOM_PENWELL:
3701         case INTEL_FAM6_ATOM_CLOVERVIEW:
3702         case INTEL_FAM6_ATOM_CEDARVIEW:
3703                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3704                        sizeof(hw_cache_event_ids));
3705 
3706                 intel_pmu_lbr_init_atom();
3707 
3708                 x86_pmu.event_constraints = intel_gen_event_constraints;
3709                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3710                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3711                 pr_cont("Atom events, ");
3712                 break;
3713 
3714         case INTEL_FAM6_ATOM_SILVERMONT1:
3715         case INTEL_FAM6_ATOM_SILVERMONT2:
3716         case INTEL_FAM6_ATOM_AIRMONT:
3717                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3718                         sizeof(hw_cache_event_ids));
3719                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3720                        sizeof(hw_cache_extra_regs));
3721 
3722                 intel_pmu_lbr_init_slm();
3723 
3724                 x86_pmu.event_constraints = intel_slm_event_constraints;
3725                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3726                 x86_pmu.extra_regs = intel_slm_extra_regs;
3727                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3728                 x86_pmu.cpu_events = slm_events_attrs;
3729                 pr_cont("Silvermont events, ");
3730                 break;
3731 
3732         case INTEL_FAM6_ATOM_GOLDMONT:
3733         case INTEL_FAM6_ATOM_DENVERTON:
3734                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3735                        sizeof(hw_cache_event_ids));
3736                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3737                        sizeof(hw_cache_extra_regs));
3738 
3739                 intel_pmu_lbr_init_skl();
3740 
3741                 x86_pmu.event_constraints = intel_slm_event_constraints;
3742                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3743                 x86_pmu.extra_regs = intel_glm_extra_regs;
3744                 /*
3745                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3746                  * for precise cycles.
3747                  * :pp is identical to :ppp
3748                  */
3749                 x86_pmu.pebs_aliases = NULL;
3750                 x86_pmu.pebs_prec_dist = true;
3751                 x86_pmu.lbr_pt_coexist = true;
3752                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3753                 pr_cont("Goldmont events, ");
3754                 break;
3755 
3756         case INTEL_FAM6_WESTMERE:
3757         case INTEL_FAM6_WESTMERE_EP:
3758         case INTEL_FAM6_WESTMERE_EX:
3759                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3760                        sizeof(hw_cache_event_ids));
3761                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3762                        sizeof(hw_cache_extra_regs));
3763 
3764                 intel_pmu_lbr_init_nhm();
3765 
3766                 x86_pmu.event_constraints = intel_westmere_event_constraints;
3767                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3768                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3769                 x86_pmu.extra_regs = intel_westmere_extra_regs;
3770                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3771 
3772                 x86_pmu.cpu_events = nhm_events_attrs;
3773 
3774                 /* UOPS_ISSUED.STALLED_CYCLES */
3775                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3776                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3777                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3778                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3779                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3780 
3781                 intel_pmu_pebs_data_source_nhm();
3782                 pr_cont("Westmere events, ");
3783                 break;
3784 
3785         case INTEL_FAM6_SANDYBRIDGE:
3786         case INTEL_FAM6_SANDYBRIDGE_X:
3787                 x86_add_quirk(intel_sandybridge_quirk);
3788                 x86_add_quirk(intel_ht_bug);
3789                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3790                        sizeof(hw_cache_event_ids));
3791                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3792                        sizeof(hw_cache_extra_regs));
3793 
3794                 intel_pmu_lbr_init_snb();
3795 
3796                 x86_pmu.event_constraints = intel_snb_event_constraints;
3797                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3798                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3799                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
3800                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3801                 else
3802                         x86_pmu.extra_regs = intel_snb_extra_regs;
3803 
3804 
3805                 /* all extra regs are per-cpu when HT is on */
3806                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3807                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3808 
3809                 x86_pmu.cpu_events = snb_events_attrs;
3810 
3811                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3812                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3813                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3814                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3815                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3816                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3817 
3818                 pr_cont("SandyBridge events, ");
3819                 break;
3820 
3821         case INTEL_FAM6_IVYBRIDGE:
3822         case INTEL_FAM6_IVYBRIDGE_X:
3823                 x86_add_quirk(intel_ht_bug);
3824                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3825                        sizeof(hw_cache_event_ids));
3826                 /* dTLB-load-misses on IVB is different than SNB */
3827                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3828 
3829                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3830                        sizeof(hw_cache_extra_regs));
3831 
3832                 intel_pmu_lbr_init_snb();
3833 
3834                 x86_pmu.event_constraints = intel_ivb_event_constraints;
3835                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3836                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3837                 x86_pmu.pebs_prec_dist = true;
3838                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
3839                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3840                 else
3841                         x86_pmu.extra_regs = intel_snb_extra_regs;
3842                 /* all extra regs are per-cpu when HT is on */
3843                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3844                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3845 
3846                 x86_pmu.cpu_events = snb_events_attrs;
3847 
3848                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3849                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3850                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3851 
3852                 pr_cont("IvyBridge events, ");
3853                 break;
3854 
3855 
3856         case INTEL_FAM6_HASWELL_CORE:
3857         case INTEL_FAM6_HASWELL_X:
3858         case INTEL_FAM6_HASWELL_ULT:
3859         case INTEL_FAM6_HASWELL_GT3E:
3860                 x86_add_quirk(intel_ht_bug);
3861                 x86_pmu.late_ack = true;
3862                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3863                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3864 
3865                 intel_pmu_lbr_init_hsw();
3866 
3867                 x86_pmu.event_constraints = intel_hsw_event_constraints;
3868                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3869                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3870                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3871                 x86_pmu.pebs_prec_dist = true;
3872                 /* all extra regs are per-cpu when HT is on */
3873                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3874                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3875 
3876                 x86_pmu.hw_config = hsw_hw_config;
3877                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3878                 x86_pmu.cpu_events = hsw_events_attrs;
3879                 x86_pmu.lbr_double_abort = true;
3880                 pr_cont("Haswell events, ");
3881                 break;
3882 
3883         case INTEL_FAM6_BROADWELL_CORE:
3884         case INTEL_FAM6_BROADWELL_XEON_D:
3885         case INTEL_FAM6_BROADWELL_GT3E:
3886         case INTEL_FAM6_BROADWELL_X:
3887                 x86_pmu.late_ack = true;
3888                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3889                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3890 
3891                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3892                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3893                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
3894                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3895                                                                           HSW_SNOOP_DRAM;
3896                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3897                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3898                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3899                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3900 
3901                 intel_pmu_lbr_init_hsw();
3902 
3903                 x86_pmu.event_constraints = intel_bdw_event_constraints;
3904                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3905                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3906                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3907                 x86_pmu.pebs_prec_dist = true;
3908                 /* all extra regs are per-cpu when HT is on */
3909                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3910                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3911 
3912                 x86_pmu.hw_config = hsw_hw_config;
3913                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3914                 x86_pmu.cpu_events = hsw_events_attrs;
3915                 x86_pmu.limit_period = bdw_limit_period;
3916                 pr_cont("Broadwell events, ");
3917                 break;
3918 
3919         case INTEL_FAM6_XEON_PHI_KNL:
3920         case INTEL_FAM6_XEON_PHI_KNM:
3921                 memcpy(hw_cache_event_ids,
3922                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3923                 memcpy(hw_cache_extra_regs,
3924                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3925                 intel_pmu_lbr_init_knl();
3926 
3927                 x86_pmu.event_constraints = intel_slm_event_constraints;
3928                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3929                 x86_pmu.extra_regs = intel_knl_extra_regs;
3930 
3931                 /* all extra regs are per-cpu when HT is on */
3932                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3933                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3934 
3935                 pr_cont("Knights Landing/Mill events, ");
3936                 break;
3937 
3938         case INTEL_FAM6_SKYLAKE_MOBILE:
3939         case INTEL_FAM6_SKYLAKE_DESKTOP:
3940         case INTEL_FAM6_SKYLAKE_X:
3941         case INTEL_FAM6_KABYLAKE_MOBILE:
3942         case INTEL_FAM6_KABYLAKE_DESKTOP:
3943                 x86_pmu.late_ack = true;
3944                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3945                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3946                 intel_pmu_lbr_init_skl();
3947 
3948                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
3949                 event_attr_td_recovery_bubbles.event_str_noht =
3950                         "event=0xd,umask=0x1,cmask=1";
3951                 event_attr_td_recovery_bubbles.event_str_ht =
3952                         "event=0xd,umask=0x1,cmask=1,any=1";
3953 
3954                 x86_pmu.event_constraints = intel_skl_event_constraints;
3955                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3956                 x86_pmu.extra_regs = intel_skl_extra_regs;
3957                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3958                 x86_pmu.pebs_prec_dist = true;
3959                 /* all extra regs are per-cpu when HT is on */
3960                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3961                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3962 
3963                 x86_pmu.hw_config = hsw_hw_config;
3964                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3965                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3966                                                   skl_format_attr);
3967                 WARN_ON(!x86_pmu.format_attrs);
3968                 x86_pmu.cpu_events = hsw_events_attrs;
3969                 pr_cont("Skylake events, ");
3970                 break;
3971 
3972         default:
3973                 switch (x86_pmu.version) {
3974                 case 1:
3975                         x86_pmu.event_constraints = intel_v1_event_constraints;
3976                         pr_cont("generic architected perfmon v1, ");
3977                         break;
3978                 default:
3979                         /*
3980                          * default constraints for v2 and up
3981                          */
3982                         x86_pmu.event_constraints = intel_gen_event_constraints;
3983                         pr_cont("generic architected perfmon, ");
3984                         break;
3985                 }
3986         }
3987 
3988         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3989                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3990                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3991                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3992         }
3993         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
3994 
3995         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3996                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3997                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3998                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3999         }
4000 
4001         x86_pmu.intel_ctrl |=
4002                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4003 
4004         if (x86_pmu.event_constraints) {
4005                 /*
4006                  * event on fixed counter2 (REF_CYCLES) only works on this
4007                  * counter, so do not extend mask to generic counters
4008                  */
4009                 for_each_event_constraint(c, x86_pmu.event_constraints) {
4010                         if (c->cmask == FIXED_EVENT_FLAGS
4011                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4012                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4013                         }
4014                         c->idxmsk64 &=
4015                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4016                         c->weight = hweight64(c->idxmsk64);
4017                 }
4018         }
4019 
4020         /*
4021          * Access LBR MSR may cause #GP under certain circumstances.
4022          * E.g. KVM doesn't support LBR MSR
4023          * Check all LBT MSR here.
4024          * Disable LBR access if any LBR MSRs can not be accessed.
4025          */
4026         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4027                 x86_pmu.lbr_nr = 0;
4028         for (i = 0; i < x86_pmu.lbr_nr; i++) {
4029                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4030                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4031                         x86_pmu.lbr_nr = 0;
4032         }
4033 
4034         if (x86_pmu.lbr_nr)
4035                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4036         /*
4037          * Access extra MSR may cause #GP under certain circumstances.
4038          * E.g. KVM doesn't support offcore event
4039          * Check all extra_regs here.
4040          */
4041         if (x86_pmu.extra_regs) {
4042                 for (er = x86_pmu.extra_regs; er->msr; er++) {
4043                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
4044                         /* Disable LBR select mapping */
4045                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4046                                 x86_pmu.lbr_sel_map = NULL;
4047                 }
4048         }
4049 
4050         /* Support full width counters using alternative MSR range */
4051         if (x86_pmu.intel_cap.full_width_write) {
4052                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4053                 x86_pmu.perfctr = MSR_IA32_PMC0;
4054                 pr_cont("full-width counters, ");
4055         }
4056 
4057         return 0;
4058 }
4059 
4060 /*
4061  * HT bug: phase 2 init
4062  * Called once we have valid topology information to check
4063  * whether or not HT is enabled
4064  * If HT is off, then we disable the workaround
4065  */
4066 static __init int fixup_ht_bug(void)
4067 {
4068         int c;
4069         /*
4070          * problem not present on this CPU model, nothing to do
4071          */
4072         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4073                 return 0;
4074 
4075         if (topology_max_smt_threads() > 1) {
4076                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4077                 return 0;
4078         }
4079 
4080         if (lockup_detector_suspend() != 0) {
4081                 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
4082                 return 0;
4083         }
4084 
4085         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4086 
4087         x86_pmu.start_scheduling = NULL;
4088         x86_pmu.commit_scheduling = NULL;
4089         x86_pmu.stop_scheduling = NULL;
4090 
4091         lockup_detector_resume();
4092 
4093         get_online_cpus();
4094 
4095         for_each_online_cpu(c) {
4096                 free_excl_cntrs(c);
4097         }
4098 
4099         put_online_cpus();
4100         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4101         return 0;
4102 }
4103 subsys_initcall(fixup_ht_bug)
4104 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp