1 /* 2 * apb_timer.c: Driver for Langwell APB timers 3 * 4 * (C) Copyright 2009 Intel Corporation 5 * Author: Jacob Pan (jacob.jun.pan@intel.com) 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; version 2 10 * of the License. 11 * 12 * Note: 13 * Langwell is the south complex of Intel Moorestown MID platform. There are 14 * eight external timers in total that can be used by the operating system. 15 * The timer information, such as frequency and addresses, is provided to the 16 * OS via SFI tables. 17 * Timer interrupts are routed via FW/HW emulated IOAPIC independently via 18 * individual redirection table entries (RTE). 19 * Unlike HPET, there is no master counter, therefore one of the timers are 20 * used as clocksource. The overall allocation looks like: 21 * - timer 0 - NR_CPUs for per cpu timer 22 * - one timer for clocksource 23 * - one timer for watchdog driver. 24 * It is also worth notice that APB timer does not support true one-shot mode, 25 * free-running mode will be used here to emulate one-shot mode. 26 * APB timer can also be used as broadcast timer along with per cpu local APIC 27 * timer, but by default APB timer has higher rating than local APIC timers. 28 */ 29 30 #include <linux/delay.h> 31 #include <linux/dw_apb_timer.h> 32 #include <linux/errno.h> 33 #include <linux/init.h> 34 #include <linux/slab.h> 35 #include <linux/pm.h> 36 #include <linux/sfi.h> 37 #include <linux/interrupt.h> 38 #include <linux/cpu.h> 39 #include <linux/irq.h> 40 41 #include <asm/fixmap.h> 42 #include <asm/apb_timer.h> 43 #include <asm/intel-mid.h> 44 #include <asm/time.h> 45 46 #define APBT_CLOCKEVENT_RATING 110 47 #define APBT_CLOCKSOURCE_RATING 250 48 49 #define APBT_CLOCKEVENT0_NUM (0) 50 #define APBT_CLOCKSOURCE_NUM (2) 51 52 static phys_addr_t apbt_address; 53 static int apb_timer_block_enabled; 54 static void __iomem *apbt_virt_address; 55 56 /* 57 * Common DW APB timer info 58 */ 59 static unsigned long apbt_freq; 60 61 struct apbt_dev { 62 struct dw_apb_clock_event_device *timer; 63 unsigned int num; 64 int cpu; 65 unsigned int irq; 66 char name[10]; 67 }; 68 69 static struct dw_apb_clocksource *clocksource_apbt; 70 71 static inline void __iomem *adev_virt_addr(struct apbt_dev *adev) 72 { 73 return apbt_virt_address + adev->num * APBTMRS_REG_SIZE; 74 } 75 76 static DEFINE_PER_CPU(struct apbt_dev, cpu_apbt_dev); 77 78 #ifdef CONFIG_SMP 79 static unsigned int apbt_num_timers_used; 80 #endif 81 82 static inline void apbt_set_mapping(void) 83 { 84 struct sfi_timer_table_entry *mtmr; 85 int phy_cs_timer_id = 0; 86 87 if (apbt_virt_address) { 88 pr_debug("APBT base already mapped\n"); 89 return; 90 } 91 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); 92 if (mtmr == NULL) { 93 printk(KERN_ERR "Failed to get MTMR %d from SFI\n", 94 APBT_CLOCKEVENT0_NUM); 95 return; 96 } 97 apbt_address = (phys_addr_t)mtmr->phys_addr; 98 if (!apbt_address) { 99 printk(KERN_WARNING "No timer base from SFI, use default\n"); 100 apbt_address = APBT_DEFAULT_BASE; 101 } 102 apbt_virt_address = ioremap_nocache(apbt_address, APBT_MMAP_SIZE); 103 if (!apbt_virt_address) { 104 pr_debug("Failed mapping APBT phy address at %lu\n",\ 105 (unsigned long)apbt_address); 106 goto panic_noapbt; 107 } 108 apbt_freq = mtmr->freq_hz; 109 sfi_free_mtmr(mtmr); 110 111 /* Now figure out the physical timer id for clocksource device */ 112 mtmr = sfi_get_mtmr(APBT_CLOCKSOURCE_NUM); 113 if (mtmr == NULL) 114 goto panic_noapbt; 115 116 /* Now figure out the physical timer id */ 117 pr_debug("Use timer %d for clocksource\n", 118 (int)(mtmr->phys_addr & 0xff) / APBTMRS_REG_SIZE); 119 phy_cs_timer_id = (unsigned int)(mtmr->phys_addr & 0xff) / 120 APBTMRS_REG_SIZE; 121 122 clocksource_apbt = dw_apb_clocksource_init(APBT_CLOCKSOURCE_RATING, 123 "apbt0", apbt_virt_address + phy_cs_timer_id * 124 APBTMRS_REG_SIZE, apbt_freq); 125 return; 126 127 panic_noapbt: 128 panic("Failed to setup APB system timer\n"); 129 130 } 131 132 static inline void apbt_clear_mapping(void) 133 { 134 iounmap(apbt_virt_address); 135 apbt_virt_address = NULL; 136 } 137 138 static int __init apbt_clockevent_register(void) 139 { 140 struct sfi_timer_table_entry *mtmr; 141 struct apbt_dev *adev = this_cpu_ptr(&cpu_apbt_dev); 142 143 mtmr = sfi_get_mtmr(APBT_CLOCKEVENT0_NUM); 144 if (mtmr == NULL) { 145 printk(KERN_ERR "Failed to get MTMR %d from SFI\n", 146 APBT_CLOCKEVENT0_NUM); 147 return -ENODEV; 148 } 149 150 adev->num = smp_processor_id(); 151 adev->timer = dw_apb_clockevent_init(smp_processor_id(), "apbt0", 152 intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT ? 153 APBT_CLOCKEVENT_RATING - 100 : APBT_CLOCKEVENT_RATING, 154 adev_virt_addr(adev), 0, apbt_freq); 155 /* Firmware does EOI handling for us. */ 156 adev->timer->eoi = NULL; 157 158 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { 159 global_clock_event = &adev->timer->ced; 160 printk(KERN_DEBUG "%s clockevent registered as global\n", 161 global_clock_event->name); 162 } 163 164 dw_apb_clockevent_register(adev->timer); 165 166 sfi_free_mtmr(mtmr); 167 return 0; 168 } 169 170 #ifdef CONFIG_SMP 171 172 static void apbt_setup_irq(struct apbt_dev *adev) 173 { 174 irq_modify_status(adev->irq, 0, IRQ_MOVE_PCNTXT); 175 irq_set_affinity(adev->irq, cpumask_of(adev->cpu)); 176 } 177 178 /* Should be called with per cpu */ 179 void apbt_setup_secondary_clock(void) 180 { 181 struct apbt_dev *adev; 182 int cpu; 183 184 /* Don't register boot CPU clockevent */ 185 cpu = smp_processor_id(); 186 if (!cpu) 187 return; 188 189 adev = this_cpu_ptr(&cpu_apbt_dev); 190 if (!adev->timer) { 191 adev->timer = dw_apb_clockevent_init(cpu, adev->name, 192 APBT_CLOCKEVENT_RATING, adev_virt_addr(adev), 193 adev->irq, apbt_freq); 194 adev->timer->eoi = NULL; 195 } else { 196 dw_apb_clockevent_resume(adev->timer); 197 } 198 199 printk(KERN_INFO "Registering CPU %d clockevent device %s, cpu %08x\n", 200 cpu, adev->name, adev->cpu); 201 202 apbt_setup_irq(adev); 203 dw_apb_clockevent_register(adev->timer); 204 205 return; 206 } 207 208 /* 209 * this notify handler process CPU hotplug events. in case of S0i3, nonboot 210 * cpus are disabled/enabled frequently, for performance reasons, we keep the 211 * per cpu timer irq registered so that we do need to do free_irq/request_irq. 212 * 213 * TODO: it might be more reliable to directly disable percpu clockevent device 214 * without the notifier chain. currently, cpu 0 may get interrupts from other 215 * cpu timers during the offline process due to the ordering of notification. 216 * the extra interrupt is harmless. 217 */ 218 static int apbt_cpu_dead(unsigned int cpu) 219 { 220 struct apbt_dev *adev = &per_cpu(cpu_apbt_dev, cpu); 221 222 dw_apb_clockevent_pause(adev->timer); 223 if (system_state == SYSTEM_RUNNING) { 224 pr_debug("skipping APBT CPU %u offline\n", cpu); 225 } else { 226 pr_debug("APBT clockevent for cpu %u offline\n", cpu); 227 dw_apb_clockevent_stop(adev->timer); 228 } 229 return 0; 230 } 231 232 static __init int apbt_late_init(void) 233 { 234 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT || 235 !apb_timer_block_enabled) 236 return 0; 237 return cpuhp_setup_state(CPUHP_X86_APB_DEAD, "x86/apb:dead", NULL, 238 apbt_cpu_dead); 239 } 240 fs_initcall(apbt_late_init); 241 #else 242 243 void apbt_setup_secondary_clock(void) {} 244 245 #endif /* CONFIG_SMP */ 246 247 static int apbt_clocksource_register(void) 248 { 249 u64 start, now; 250 u64 t1; 251 252 /* Start the counter, use timer 2 as source, timer 0/1 for event */ 253 dw_apb_clocksource_start(clocksource_apbt); 254 255 /* Verify whether apbt counter works */ 256 t1 = dw_apb_clocksource_read(clocksource_apbt); 257 start = rdtsc(); 258 259 /* 260 * We don't know the TSC frequency yet, but waiting for 261 * 200000 TSC cycles is safe: 262 * 4 GHz == 50us 263 * 1 GHz == 200us 264 */ 265 do { 266 rep_nop(); 267 now = rdtsc(); 268 } while ((now - start) < 200000UL); 269 270 /* APBT is the only always on clocksource, it has to work! */ 271 if (t1 == dw_apb_clocksource_read(clocksource_apbt)) 272 panic("APBT counter not counting. APBT disabled\n"); 273 274 dw_apb_clocksource_register(clocksource_apbt); 275 276 return 0; 277 } 278 279 /* 280 * Early setup the APBT timer, only use timer 0 for booting then switch to 281 * per CPU timer if possible. 282 * returns 1 if per cpu apbt is setup 283 * returns 0 if no per cpu apbt is chosen 284 * panic if set up failed, this is the only platform timer on Moorestown. 285 */ 286 void __init apbt_time_init(void) 287 { 288 #ifdef CONFIG_SMP 289 int i; 290 struct sfi_timer_table_entry *p_mtmr; 291 struct apbt_dev *adev; 292 #endif 293 294 if (apb_timer_block_enabled) 295 return; 296 apbt_set_mapping(); 297 if (!apbt_virt_address) 298 goto out_noapbt; 299 /* 300 * Read the frequency and check for a sane value, for ESL model 301 * we extend the possible clock range to allow time scaling. 302 */ 303 304 if (apbt_freq < APBT_MIN_FREQ || apbt_freq > APBT_MAX_FREQ) { 305 pr_debug("APBT has invalid freq 0x%lx\n", apbt_freq); 306 goto out_noapbt; 307 } 308 if (apbt_clocksource_register()) { 309 pr_debug("APBT has failed to register clocksource\n"); 310 goto out_noapbt; 311 } 312 if (!apbt_clockevent_register()) 313 apb_timer_block_enabled = 1; 314 else { 315 pr_debug("APBT has failed to register clockevent\n"); 316 goto out_noapbt; 317 } 318 #ifdef CONFIG_SMP 319 /* kernel cmdline disable apb timer, so we will use lapic timers */ 320 if (intel_mid_timer_options == INTEL_MID_TIMER_LAPIC_APBT) { 321 printk(KERN_INFO "apbt: disabled per cpu timer\n"); 322 return; 323 } 324 pr_debug("%s: %d CPUs online\n", __func__, num_online_cpus()); 325 if (num_possible_cpus() <= sfi_mtimer_num) 326 apbt_num_timers_used = num_possible_cpus(); 327 else 328 apbt_num_timers_used = 1; 329 pr_debug("%s: %d APB timers used\n", __func__, apbt_num_timers_used); 330 331 /* here we set up per CPU timer data structure */ 332 for (i = 0; i < apbt_num_timers_used; i++) { 333 adev = &per_cpu(cpu_apbt_dev, i); 334 adev->num = i; 335 adev->cpu = i; 336 p_mtmr = sfi_get_mtmr(i); 337 if (p_mtmr) 338 adev->irq = p_mtmr->irq; 339 else 340 printk(KERN_ERR "Failed to get timer for cpu %d\n", i); 341 snprintf(adev->name, sizeof(adev->name) - 1, "apbt%d", i); 342 } 343 #endif 344 345 return; 346 347 out_noapbt: 348 apbt_clear_mapping(); 349 apb_timer_block_enabled = 0; 350 panic("failed to enable APB timer\n"); 351 } 352 353 /* called before apb_timer_enable, use early map */ 354 unsigned long apbt_quick_calibrate(void) 355 { 356 int i, scale; 357 u64 old, new; 358 u64 t1, t2; 359 unsigned long khz = 0; 360 u32 loop, shift; 361 362 apbt_set_mapping(); 363 dw_apb_clocksource_start(clocksource_apbt); 364 365 /* check if the timer can count down, otherwise return */ 366 old = dw_apb_clocksource_read(clocksource_apbt); 367 i = 10000; 368 while (--i) { 369 if (old != dw_apb_clocksource_read(clocksource_apbt)) 370 break; 371 } 372 if (!i) 373 goto failed; 374 375 /* count 16 ms */ 376 loop = (apbt_freq / 1000) << 4; 377 378 /* restart the timer to ensure it won't get to 0 in the calibration */ 379 dw_apb_clocksource_start(clocksource_apbt); 380 381 old = dw_apb_clocksource_read(clocksource_apbt); 382 old += loop; 383 384 t1 = rdtsc(); 385 386 do { 387 new = dw_apb_clocksource_read(clocksource_apbt); 388 } while (new < old); 389 390 t2 = rdtsc(); 391 392 shift = 5; 393 if (unlikely(loop >> shift == 0)) { 394 printk(KERN_INFO 395 "APBT TSC calibration failed, not enough resolution\n"); 396 return 0; 397 } 398 scale = (int)div_u64((t2 - t1), loop >> shift); 399 khz = (scale * (apbt_freq / 1000)) >> shift; 400 printk(KERN_INFO "TSC freq calculated by APB timer is %lu khz\n", khz); 401 return khz; 402 failed: 403 return 0; 404 } 405
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.