1 /* 2 * Local APIC handling, local APIC timers 3 * 4 * (c) 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com> 5 * 6 * Fixes 7 * Maciej W. Rozycki : Bits for genuine 82489DX APICs; 8 * thanks to Eric Gilmore 9 * and Rolf G. Tews 10 * for testing these extensively. 11 * Maciej W. Rozycki : Various updates and fixes. 12 * Mikael Pettersson : Power Management for UP-APIC. 13 * Pavel Machek and 14 * Mikael Pettersson : PM converted to driver model. 15 */ 16 17 #include <linux/perf_event.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/mc146818rtc.h> 20 #include <linux/acpi_pmtmr.h> 21 #include <linux/clockchips.h> 22 #include <linux/interrupt.h> 23 #include <linux/bootmem.h> 24 #include <linux/ftrace.h> 25 #include <linux/ioport.h> 26 #include <linux/export.h> 27 #include <linux/syscore_ops.h> 28 #include <linux/delay.h> 29 #include <linux/timex.h> 30 #include <linux/i8253.h> 31 #include <linux/dmar.h> 32 #include <linux/init.h> 33 #include <linux/cpu.h> 34 #include <linux/dmi.h> 35 #include <linux/smp.h> 36 #include <linux/mm.h> 37 38 #include <asm/trace/irq_vectors.h> 39 #include <asm/irq_remapping.h> 40 #include <asm/perf_event.h> 41 #include <asm/x86_init.h> 42 #include <asm/pgalloc.h> 43 #include <linux/atomic.h> 44 #include <asm/mpspec.h> 45 #include <asm/i8259.h> 46 #include <asm/proto.h> 47 #include <asm/apic.h> 48 #include <asm/io_apic.h> 49 #include <asm/desc.h> 50 #include <asm/hpet.h> 51 #include <asm/mtrr.h> 52 #include <asm/time.h> 53 #include <asm/smp.h> 54 #include <asm/mce.h> 55 #include <asm/tsc.h> 56 #include <asm/hypervisor.h> 57 #include <asm/cpu_device_id.h> 58 #include <asm/intel-family.h> 59 60 unsigned int num_processors; 61 62 unsigned disabled_cpus; 63 64 /* Processor that is doing the boot up */ 65 unsigned int boot_cpu_physical_apicid = -1U; 66 EXPORT_SYMBOL_GPL(boot_cpu_physical_apicid); 67 68 u8 boot_cpu_apic_version; 69 70 /* 71 * The highest APIC ID seen during enumeration. 72 */ 73 static unsigned int max_physical_apicid; 74 75 /* 76 * Bitmask of physically existing CPUs: 77 */ 78 physid_mask_t phys_cpu_present_map; 79 80 /* 81 * Processor to be disabled specified by kernel parameter 82 * disable_cpu_apicid=<int>, mostly used for the kdump 2nd kernel to 83 * avoid undefined behaviour caused by sending INIT from AP to BSP. 84 */ 85 static unsigned int disabled_cpu_apicid __read_mostly = BAD_APICID; 86 87 /* 88 * This variable controls which CPUs receive external NMIs. By default, 89 * external NMIs are delivered only to the BSP. 90 */ 91 static int apic_extnmi = APIC_EXTNMI_BSP; 92 93 /* 94 * Map cpu index to physical APIC ID 95 */ 96 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_cpu_to_apicid, BAD_APICID); 97 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u16, x86_bios_cpu_apicid, BAD_APICID); 98 DEFINE_EARLY_PER_CPU_READ_MOSTLY(u32, x86_cpu_to_acpiid, U32_MAX); 99 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_apicid); 100 EXPORT_EARLY_PER_CPU_SYMBOL(x86_bios_cpu_apicid); 101 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_acpiid); 102 103 #ifdef CONFIG_X86_32 104 105 /* 106 * On x86_32, the mapping between cpu and logical apicid may vary 107 * depending on apic in use. The following early percpu variable is 108 * used for the mapping. This is where the behaviors of x86_64 and 32 109 * actually diverge. Let's keep it ugly for now. 110 */ 111 DEFINE_EARLY_PER_CPU_READ_MOSTLY(int, x86_cpu_to_logical_apicid, BAD_APICID); 112 113 /* Local APIC was disabled by the BIOS and enabled by the kernel */ 114 static int enabled_via_apicbase; 115 116 /* 117 * Handle interrupt mode configuration register (IMCR). 118 * This register controls whether the interrupt signals 119 * that reach the BSP come from the master PIC or from the 120 * local APIC. Before entering Symmetric I/O Mode, either 121 * the BIOS or the operating system must switch out of 122 * PIC Mode by changing the IMCR. 123 */ 124 static inline void imcr_pic_to_apic(void) 125 { 126 /* select IMCR register */ 127 outb(0x70, 0x22); 128 /* NMI and 8259 INTR go through APIC */ 129 outb(0x01, 0x23); 130 } 131 132 static inline void imcr_apic_to_pic(void) 133 { 134 /* select IMCR register */ 135 outb(0x70, 0x22); 136 /* NMI and 8259 INTR go directly to BSP */ 137 outb(0x00, 0x23); 138 } 139 #endif 140 141 /* 142 * Knob to control our willingness to enable the local APIC. 143 * 144 * +1=force-enable 145 */ 146 static int force_enable_local_apic __initdata; 147 148 /* 149 * APIC command line parameters 150 */ 151 static int __init parse_lapic(char *arg) 152 { 153 if (IS_ENABLED(CONFIG_X86_32) && !arg) 154 force_enable_local_apic = 1; 155 else if (arg && !strncmp(arg, "notscdeadline", 13)) 156 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 157 return 0; 158 } 159 early_param("lapic", parse_lapic); 160 161 #ifdef CONFIG_X86_64 162 static int apic_calibrate_pmtmr __initdata; 163 static __init int setup_apicpmtimer(char *s) 164 { 165 apic_calibrate_pmtmr = 1; 166 notsc_setup(NULL); 167 return 0; 168 } 169 __setup("apicpmtimer", setup_apicpmtimer); 170 #endif 171 172 unsigned long mp_lapic_addr; 173 int disable_apic; 174 /* Disable local APIC timer from the kernel commandline or via dmi quirk */ 175 static int disable_apic_timer __initdata; 176 /* Local APIC timer works in C2 */ 177 int local_apic_timer_c2_ok; 178 EXPORT_SYMBOL_GPL(local_apic_timer_c2_ok); 179 180 int first_system_vector = FIRST_SYSTEM_VECTOR; 181 182 /* 183 * Debug level, exported for io_apic.c 184 */ 185 unsigned int apic_verbosity; 186 187 int pic_mode; 188 189 /* Have we found an MP table */ 190 int smp_found_config; 191 192 static struct resource lapic_resource = { 193 .name = "Local APIC", 194 .flags = IORESOURCE_MEM | IORESOURCE_BUSY, 195 }; 196 197 unsigned int lapic_timer_frequency = 0; 198 199 static void apic_pm_activate(void); 200 201 static unsigned long apic_phys; 202 203 /* 204 * Get the LAPIC version 205 */ 206 static inline int lapic_get_version(void) 207 { 208 return GET_APIC_VERSION(apic_read(APIC_LVR)); 209 } 210 211 /* 212 * Check, if the APIC is integrated or a separate chip 213 */ 214 static inline int lapic_is_integrated(void) 215 { 216 #ifdef CONFIG_X86_64 217 return 1; 218 #else 219 return APIC_INTEGRATED(lapic_get_version()); 220 #endif 221 } 222 223 /* 224 * Check, whether this is a modern or a first generation APIC 225 */ 226 static int modern_apic(void) 227 { 228 /* AMD systems use old APIC versions, so check the CPU */ 229 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && 230 boot_cpu_data.x86 >= 0xf) 231 return 1; 232 return lapic_get_version() >= 0x14; 233 } 234 235 /* 236 * right after this call apic become NOOP driven 237 * so apic->write/read doesn't do anything 238 */ 239 static void __init apic_disable(void) 240 { 241 pr_info("APIC: switched to apic NOOP\n"); 242 apic = &apic_noop; 243 } 244 245 void native_apic_wait_icr_idle(void) 246 { 247 while (apic_read(APIC_ICR) & APIC_ICR_BUSY) 248 cpu_relax(); 249 } 250 251 u32 native_safe_apic_wait_icr_idle(void) 252 { 253 u32 send_status; 254 int timeout; 255 256 timeout = 0; 257 do { 258 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; 259 if (!send_status) 260 break; 261 inc_irq_stat(icr_read_retry_count); 262 udelay(100); 263 } while (timeout++ < 1000); 264 265 return send_status; 266 } 267 268 void native_apic_icr_write(u32 low, u32 id) 269 { 270 unsigned long flags; 271 272 local_irq_save(flags); 273 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(id)); 274 apic_write(APIC_ICR, low); 275 local_irq_restore(flags); 276 } 277 278 u64 native_apic_icr_read(void) 279 { 280 u32 icr1, icr2; 281 282 icr2 = apic_read(APIC_ICR2); 283 icr1 = apic_read(APIC_ICR); 284 285 return icr1 | ((u64)icr2 << 32); 286 } 287 288 #ifdef CONFIG_X86_32 289 /** 290 * get_physical_broadcast - Get number of physical broadcast IDs 291 */ 292 int get_physical_broadcast(void) 293 { 294 return modern_apic() ? 0xff : 0xf; 295 } 296 #endif 297 298 /** 299 * lapic_get_maxlvt - get the maximum number of local vector table entries 300 */ 301 int lapic_get_maxlvt(void) 302 { 303 unsigned int v; 304 305 v = apic_read(APIC_LVR); 306 /* 307 * - we always have APIC integrated on 64bit mode 308 * - 82489DXs do not report # of LVT entries 309 */ 310 return APIC_INTEGRATED(GET_APIC_VERSION(v)) ? GET_APIC_MAXLVT(v) : 2; 311 } 312 313 /* 314 * Local APIC timer 315 */ 316 317 /* Clock divisor */ 318 #define APIC_DIVISOR 16 319 #define TSC_DIVISOR 8 320 321 /* 322 * This function sets up the local APIC timer, with a timeout of 323 * 'clocks' APIC bus clock. During calibration we actually call 324 * this function twice on the boot CPU, once with a bogus timeout 325 * value, second time for real. The other (noncalibrating) CPUs 326 * call this function only once, with the real, calibrated value. 327 * 328 * We do reads before writes even if unnecessary, to get around the 329 * P5 APIC double write bug. 330 */ 331 static void __setup_APIC_LVTT(unsigned int clocks, int oneshot, int irqen) 332 { 333 unsigned int lvtt_value, tmp_value; 334 335 lvtt_value = LOCAL_TIMER_VECTOR; 336 if (!oneshot) 337 lvtt_value |= APIC_LVT_TIMER_PERIODIC; 338 else if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 339 lvtt_value |= APIC_LVT_TIMER_TSCDEADLINE; 340 341 if (!lapic_is_integrated()) 342 lvtt_value |= SET_APIC_TIMER_BASE(APIC_TIMER_BASE_DIV); 343 344 if (!irqen) 345 lvtt_value |= APIC_LVT_MASKED; 346 347 apic_write(APIC_LVTT, lvtt_value); 348 349 if (lvtt_value & APIC_LVT_TIMER_TSCDEADLINE) { 350 /* 351 * See Intel SDM: TSC-Deadline Mode chapter. In xAPIC mode, 352 * writing to the APIC LVTT and TSC_DEADLINE MSR isn't serialized. 353 * According to Intel, MFENCE can do the serialization here. 354 */ 355 asm volatile("mfence" : : : "memory"); 356 357 printk_once(KERN_DEBUG "TSC deadline timer enabled\n"); 358 return; 359 } 360 361 /* 362 * Divide PICLK by 16 363 */ 364 tmp_value = apic_read(APIC_TDCR); 365 apic_write(APIC_TDCR, 366 (tmp_value & ~(APIC_TDR_DIV_1 | APIC_TDR_DIV_TMBASE)) | 367 APIC_TDR_DIV_16); 368 369 if (!oneshot) 370 apic_write(APIC_TMICT, clocks / APIC_DIVISOR); 371 } 372 373 /* 374 * Setup extended LVT, AMD specific 375 * 376 * Software should use the LVT offsets the BIOS provides. The offsets 377 * are determined by the subsystems using it like those for MCE 378 * threshold or IBS. On K8 only offset 0 (APIC500) and MCE interrupts 379 * are supported. Beginning with family 10h at least 4 offsets are 380 * available. 381 * 382 * Since the offsets must be consistent for all cores, we keep track 383 * of the LVT offsets in software and reserve the offset for the same 384 * vector also to be used on other cores. An offset is freed by 385 * setting the entry to APIC_EILVT_MASKED. 386 * 387 * If the BIOS is right, there should be no conflicts. Otherwise a 388 * "[Firmware Bug]: ..." error message is generated. However, if 389 * software does not properly determines the offsets, it is not 390 * necessarily a BIOS bug. 391 */ 392 393 static atomic_t eilvt_offsets[APIC_EILVT_NR_MAX]; 394 395 static inline int eilvt_entry_is_changeable(unsigned int old, unsigned int new) 396 { 397 return (old & APIC_EILVT_MASKED) 398 || (new == APIC_EILVT_MASKED) 399 || ((new & ~APIC_EILVT_MASKED) == old); 400 } 401 402 static unsigned int reserve_eilvt_offset(int offset, unsigned int new) 403 { 404 unsigned int rsvd, vector; 405 406 if (offset >= APIC_EILVT_NR_MAX) 407 return ~0; 408 409 rsvd = atomic_read(&eilvt_offsets[offset]); 410 do { 411 vector = rsvd & ~APIC_EILVT_MASKED; /* 0: unassigned */ 412 if (vector && !eilvt_entry_is_changeable(vector, new)) 413 /* may not change if vectors are different */ 414 return rsvd; 415 rsvd = atomic_cmpxchg(&eilvt_offsets[offset], rsvd, new); 416 } while (rsvd != new); 417 418 rsvd &= ~APIC_EILVT_MASKED; 419 if (rsvd && rsvd != vector) 420 pr_info("LVT offset %d assigned for vector 0x%02x\n", 421 offset, rsvd); 422 423 return new; 424 } 425 426 /* 427 * If mask=1, the LVT entry does not generate interrupts while mask=0 428 * enables the vector. See also the BKDGs. Must be called with 429 * preemption disabled. 430 */ 431 432 int setup_APIC_eilvt(u8 offset, u8 vector, u8 msg_type, u8 mask) 433 { 434 unsigned long reg = APIC_EILVTn(offset); 435 unsigned int new, old, reserved; 436 437 new = (mask << 16) | (msg_type << 8) | vector; 438 old = apic_read(reg); 439 reserved = reserve_eilvt_offset(offset, new); 440 441 if (reserved != new) { 442 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 443 "vector 0x%x, but the register is already in use for " 444 "vector 0x%x on another cpu\n", 445 smp_processor_id(), reg, offset, new, reserved); 446 return -EINVAL; 447 } 448 449 if (!eilvt_entry_is_changeable(old, new)) { 450 pr_err(FW_BUG "cpu %d, try to use APIC%lX (LVT offset %d) for " 451 "vector 0x%x, but the register is already in use for " 452 "vector 0x%x on this cpu\n", 453 smp_processor_id(), reg, offset, new, old); 454 return -EBUSY; 455 } 456 457 apic_write(reg, new); 458 459 return 0; 460 } 461 EXPORT_SYMBOL_GPL(setup_APIC_eilvt); 462 463 /* 464 * Program the next event, relative to now 465 */ 466 static int lapic_next_event(unsigned long delta, 467 struct clock_event_device *evt) 468 { 469 apic_write(APIC_TMICT, delta); 470 return 0; 471 } 472 473 static int lapic_next_deadline(unsigned long delta, 474 struct clock_event_device *evt) 475 { 476 u64 tsc; 477 478 tsc = rdtsc(); 479 wrmsrl(MSR_IA32_TSC_DEADLINE, tsc + (((u64) delta) * TSC_DIVISOR)); 480 return 0; 481 } 482 483 static int lapic_timer_shutdown(struct clock_event_device *evt) 484 { 485 unsigned int v; 486 487 /* Lapic used as dummy for broadcast ? */ 488 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 489 return 0; 490 491 v = apic_read(APIC_LVTT); 492 v |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 493 apic_write(APIC_LVTT, v); 494 apic_write(APIC_TMICT, 0); 495 return 0; 496 } 497 498 static inline int 499 lapic_timer_set_periodic_oneshot(struct clock_event_device *evt, bool oneshot) 500 { 501 /* Lapic used as dummy for broadcast ? */ 502 if (evt->features & CLOCK_EVT_FEAT_DUMMY) 503 return 0; 504 505 __setup_APIC_LVTT(lapic_timer_frequency, oneshot, 1); 506 return 0; 507 } 508 509 static int lapic_timer_set_periodic(struct clock_event_device *evt) 510 { 511 return lapic_timer_set_periodic_oneshot(evt, false); 512 } 513 514 static int lapic_timer_set_oneshot(struct clock_event_device *evt) 515 { 516 return lapic_timer_set_periodic_oneshot(evt, true); 517 } 518 519 /* 520 * Local APIC timer broadcast function 521 */ 522 static void lapic_timer_broadcast(const struct cpumask *mask) 523 { 524 #ifdef CONFIG_SMP 525 apic->send_IPI_mask(mask, LOCAL_TIMER_VECTOR); 526 #endif 527 } 528 529 530 /* 531 * The local apic timer can be used for any function which is CPU local. 532 */ 533 static struct clock_event_device lapic_clockevent = { 534 .name = "lapic", 535 .features = CLOCK_EVT_FEAT_PERIODIC | 536 CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP 537 | CLOCK_EVT_FEAT_DUMMY, 538 .shift = 32, 539 .set_state_shutdown = lapic_timer_shutdown, 540 .set_state_periodic = lapic_timer_set_periodic, 541 .set_state_oneshot = lapic_timer_set_oneshot, 542 .set_state_oneshot_stopped = lapic_timer_shutdown, 543 .set_next_event = lapic_next_event, 544 .broadcast = lapic_timer_broadcast, 545 .rating = 100, 546 .irq = -1, 547 }; 548 static DEFINE_PER_CPU(struct clock_event_device, lapic_events); 549 550 #define DEADLINE_MODEL_MATCH_FUNC(model, func) \ 551 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&func } 552 553 #define DEADLINE_MODEL_MATCH_REV(model, rev) \ 554 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)rev } 555 556 static u32 hsx_deadline_rev(void) 557 { 558 switch (boot_cpu_data.x86_mask) { 559 case 0x02: return 0x3a; /* EP */ 560 case 0x04: return 0x0f; /* EX */ 561 } 562 563 return ~0U; 564 } 565 566 static u32 bdx_deadline_rev(void) 567 { 568 switch (boot_cpu_data.x86_mask) { 569 case 0x02: return 0x00000011; 570 case 0x03: return 0x0700000e; 571 case 0x04: return 0x0f00000c; 572 case 0x05: return 0x0e000003; 573 } 574 575 return ~0U; 576 } 577 578 static const struct x86_cpu_id deadline_match[] = { 579 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_HASWELL_X, hsx_deadline_rev), 580 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_X, 0x0b000020), 581 DEADLINE_MODEL_MATCH_FUNC( INTEL_FAM6_BROADWELL_XEON_D, bdx_deadline_rev), 582 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_X, 0x02000014), 583 584 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_CORE, 0x22), 585 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_ULT, 0x20), 586 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_HASWELL_GT3E, 0x17), 587 588 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_CORE, 0x25), 589 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_BROADWELL_GT3E, 0x17), 590 591 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_MOBILE, 0xb2), 592 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_SKYLAKE_DESKTOP, 0xb2), 593 594 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_MOBILE, 0x52), 595 DEADLINE_MODEL_MATCH_REV ( INTEL_FAM6_KABYLAKE_DESKTOP, 0x52), 596 597 {}, 598 }; 599 600 static void apic_check_deadline_errata(void) 601 { 602 const struct x86_cpu_id *m; 603 u32 rev; 604 605 if (!boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER) || 606 boot_cpu_has(X86_FEATURE_HYPERVISOR)) 607 return; 608 609 m = x86_match_cpu(deadline_match); 610 if (!m) 611 return; 612 613 /* 614 * Function pointers will have the MSB set due to address layout, 615 * immediate revisions will not. 616 */ 617 if ((long)m->driver_data < 0) 618 rev = ((u32 (*)(void))(m->driver_data))(); 619 else 620 rev = (u32)m->driver_data; 621 622 if (boot_cpu_data.microcode >= rev) 623 return; 624 625 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 626 pr_err(FW_BUG "TSC_DEADLINE disabled due to Errata; " 627 "please update microcode to version: 0x%x (or later)\n", rev); 628 } 629 630 /* 631 * Setup the local APIC timer for this CPU. Copy the initialized values 632 * of the boot CPU and register the clock event in the framework. 633 */ 634 static void setup_APIC_timer(void) 635 { 636 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 637 638 if (this_cpu_has(X86_FEATURE_ARAT)) { 639 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_C3STOP; 640 /* Make LAPIC timer preferrable over percpu HPET */ 641 lapic_clockevent.rating = 150; 642 } 643 644 memcpy(levt, &lapic_clockevent, sizeof(*levt)); 645 levt->cpumask = cpumask_of(smp_processor_id()); 646 647 if (this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { 648 levt->name = "lapic-deadline"; 649 levt->features &= ~(CLOCK_EVT_FEAT_PERIODIC | 650 CLOCK_EVT_FEAT_DUMMY); 651 levt->set_next_event = lapic_next_deadline; 652 clockevents_config_and_register(levt, 653 tsc_khz * (1000 / TSC_DIVISOR), 654 0xF, ~0UL); 655 } else 656 clockevents_register_device(levt); 657 } 658 659 /* 660 * Install the updated TSC frequency from recalibration at the TSC 661 * deadline clockevent devices. 662 */ 663 static void __lapic_update_tsc_freq(void *info) 664 { 665 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 666 667 if (!this_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) 668 return; 669 670 clockevents_update_freq(levt, tsc_khz * (1000 / TSC_DIVISOR)); 671 } 672 673 void lapic_update_tsc_freq(void) 674 { 675 /* 676 * The clockevent device's ->mult and ->shift can both be 677 * changed. In order to avoid races, schedule the frequency 678 * update code on each CPU. 679 */ 680 on_each_cpu(__lapic_update_tsc_freq, NULL, 0); 681 } 682 683 /* 684 * In this functions we calibrate APIC bus clocks to the external timer. 685 * 686 * We want to do the calibration only once since we want to have local timer 687 * irqs syncron. CPUs connected by the same APIC bus have the very same bus 688 * frequency. 689 * 690 * This was previously done by reading the PIT/HPET and waiting for a wrap 691 * around to find out, that a tick has elapsed. I have a box, where the PIT 692 * readout is broken, so it never gets out of the wait loop again. This was 693 * also reported by others. 694 * 695 * Monitoring the jiffies value is inaccurate and the clockevents 696 * infrastructure allows us to do a simple substitution of the interrupt 697 * handler. 698 * 699 * The calibration routine also uses the pm_timer when possible, as the PIT 700 * happens to run way too slow (factor 2.3 on my VAIO CoreDuo, which goes 701 * back to normal later in the boot process). 702 */ 703 704 #define LAPIC_CAL_LOOPS (HZ/10) 705 706 static __initdata int lapic_cal_loops = -1; 707 static __initdata long lapic_cal_t1, lapic_cal_t2; 708 static __initdata unsigned long long lapic_cal_tsc1, lapic_cal_tsc2; 709 static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2; 710 static __initdata unsigned long lapic_cal_j1, lapic_cal_j2; 711 712 /* 713 * Temporary interrupt handler. 714 */ 715 static void __init lapic_cal_handler(struct clock_event_device *dev) 716 { 717 unsigned long long tsc = 0; 718 long tapic = apic_read(APIC_TMCCT); 719 unsigned long pm = acpi_pm_read_early(); 720 721 if (boot_cpu_has(X86_FEATURE_TSC)) 722 tsc = rdtsc(); 723 724 switch (lapic_cal_loops++) { 725 case 0: 726 lapic_cal_t1 = tapic; 727 lapic_cal_tsc1 = tsc; 728 lapic_cal_pm1 = pm; 729 lapic_cal_j1 = jiffies; 730 break; 731 732 case LAPIC_CAL_LOOPS: 733 lapic_cal_t2 = tapic; 734 lapic_cal_tsc2 = tsc; 735 if (pm < lapic_cal_pm1) 736 pm += ACPI_PM_OVRRUN; 737 lapic_cal_pm2 = pm; 738 lapic_cal_j2 = jiffies; 739 break; 740 } 741 } 742 743 static int __init 744 calibrate_by_pmtimer(long deltapm, long *delta, long *deltatsc) 745 { 746 const long pm_100ms = PMTMR_TICKS_PER_SEC / 10; 747 const long pm_thresh = pm_100ms / 100; 748 unsigned long mult; 749 u64 res; 750 751 #ifndef CONFIG_X86_PM_TIMER 752 return -1; 753 #endif 754 755 apic_printk(APIC_VERBOSE, "... PM-Timer delta = %ld\n", deltapm); 756 757 /* Check, if the PM timer is available */ 758 if (!deltapm) 759 return -1; 760 761 mult = clocksource_hz2mult(PMTMR_TICKS_PER_SEC, 22); 762 763 if (deltapm > (pm_100ms - pm_thresh) && 764 deltapm < (pm_100ms + pm_thresh)) { 765 apic_printk(APIC_VERBOSE, "... PM-Timer result ok\n"); 766 return 0; 767 } 768 769 res = (((u64)deltapm) * mult) >> 22; 770 do_div(res, 1000000); 771 pr_warning("APIC calibration not consistent " 772 "with PM-Timer: %ldms instead of 100ms\n",(long)res); 773 774 /* Correct the lapic counter value */ 775 res = (((u64)(*delta)) * pm_100ms); 776 do_div(res, deltapm); 777 pr_info("APIC delta adjusted to PM-Timer: " 778 "%lu (%ld)\n", (unsigned long)res, *delta); 779 *delta = (long)res; 780 781 /* Correct the tsc counter value */ 782 if (boot_cpu_has(X86_FEATURE_TSC)) { 783 res = (((u64)(*deltatsc)) * pm_100ms); 784 do_div(res, deltapm); 785 apic_printk(APIC_VERBOSE, "TSC delta adjusted to " 786 "PM-Timer: %lu (%ld)\n", 787 (unsigned long)res, *deltatsc); 788 *deltatsc = (long)res; 789 } 790 791 return 0; 792 } 793 794 static int __init calibrate_APIC_clock(void) 795 { 796 struct clock_event_device *levt = this_cpu_ptr(&lapic_events); 797 void (*real_handler)(struct clock_event_device *dev); 798 unsigned long deltaj; 799 long delta, deltatsc; 800 int pm_referenced = 0; 801 802 /** 803 * check if lapic timer has already been calibrated by platform 804 * specific routine, such as tsc calibration code. if so, we just fill 805 * in the clockevent structure and return. 806 */ 807 808 if (boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER)) { 809 return 0; 810 } else if (lapic_timer_frequency) { 811 apic_printk(APIC_VERBOSE, "lapic timer already calibrated %d\n", 812 lapic_timer_frequency); 813 lapic_clockevent.mult = div_sc(lapic_timer_frequency/APIC_DIVISOR, 814 TICK_NSEC, lapic_clockevent.shift); 815 lapic_clockevent.max_delta_ns = 816 clockevent_delta2ns(0x7FFFFF, &lapic_clockevent); 817 lapic_clockevent.max_delta_ticks = 0x7FFFFF; 818 lapic_clockevent.min_delta_ns = 819 clockevent_delta2ns(0xF, &lapic_clockevent); 820 lapic_clockevent.min_delta_ticks = 0xF; 821 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 822 return 0; 823 } 824 825 apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n" 826 "calibrating APIC timer ...\n"); 827 828 local_irq_disable(); 829 830 /* Replace the global interrupt handler */ 831 real_handler = global_clock_event->event_handler; 832 global_clock_event->event_handler = lapic_cal_handler; 833 834 /* 835 * Setup the APIC counter to maximum. There is no way the lapic 836 * can underflow in the 100ms detection time frame 837 */ 838 __setup_APIC_LVTT(0xffffffff, 0, 0); 839 840 /* Let the interrupts run */ 841 local_irq_enable(); 842 843 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) 844 cpu_relax(); 845 846 local_irq_disable(); 847 848 /* Restore the real event handler */ 849 global_clock_event->event_handler = real_handler; 850 851 /* Build delta t1-t2 as apic timer counts down */ 852 delta = lapic_cal_t1 - lapic_cal_t2; 853 apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta); 854 855 deltatsc = (long)(lapic_cal_tsc2 - lapic_cal_tsc1); 856 857 /* we trust the PM based calibration if possible */ 858 pm_referenced = !calibrate_by_pmtimer(lapic_cal_pm2 - lapic_cal_pm1, 859 &delta, &deltatsc); 860 861 /* Calculate the scaled math multiplication factor */ 862 lapic_clockevent.mult = div_sc(delta, TICK_NSEC * LAPIC_CAL_LOOPS, 863 lapic_clockevent.shift); 864 lapic_clockevent.max_delta_ns = 865 clockevent_delta2ns(0x7FFFFFFF, &lapic_clockevent); 866 lapic_clockevent.max_delta_ticks = 0x7FFFFFFF; 867 lapic_clockevent.min_delta_ns = 868 clockevent_delta2ns(0xF, &lapic_clockevent); 869 lapic_clockevent.min_delta_ticks = 0xF; 870 871 lapic_timer_frequency = (delta * APIC_DIVISOR) / LAPIC_CAL_LOOPS; 872 873 apic_printk(APIC_VERBOSE, "..... delta %ld\n", delta); 874 apic_printk(APIC_VERBOSE, "..... mult: %u\n", lapic_clockevent.mult); 875 apic_printk(APIC_VERBOSE, "..... calibration result: %u\n", 876 lapic_timer_frequency); 877 878 if (boot_cpu_has(X86_FEATURE_TSC)) { 879 apic_printk(APIC_VERBOSE, "..... CPU clock speed is " 880 "%ld.%04ld MHz.\n", 881 (deltatsc / LAPIC_CAL_LOOPS) / (1000000 / HZ), 882 (deltatsc / LAPIC_CAL_LOOPS) % (1000000 / HZ)); 883 } 884 885 apic_printk(APIC_VERBOSE, "..... host bus clock speed is " 886 "%u.%04u MHz.\n", 887 lapic_timer_frequency / (1000000 / HZ), 888 lapic_timer_frequency % (1000000 / HZ)); 889 890 /* 891 * Do a sanity check on the APIC calibration result 892 */ 893 if (lapic_timer_frequency < (1000000 / HZ)) { 894 local_irq_enable(); 895 pr_warning("APIC frequency too slow, disabling apic timer\n"); 896 return -1; 897 } 898 899 levt->features &= ~CLOCK_EVT_FEAT_DUMMY; 900 901 /* 902 * PM timer calibration failed or not turned on 903 * so lets try APIC timer based calibration 904 */ 905 if (!pm_referenced) { 906 apic_printk(APIC_VERBOSE, "... verify APIC timer\n"); 907 908 /* 909 * Setup the apic timer manually 910 */ 911 levt->event_handler = lapic_cal_handler; 912 lapic_timer_set_periodic(levt); 913 lapic_cal_loops = -1; 914 915 /* Let the interrupts run */ 916 local_irq_enable(); 917 918 while (lapic_cal_loops <= LAPIC_CAL_LOOPS) 919 cpu_relax(); 920 921 /* Stop the lapic timer */ 922 local_irq_disable(); 923 lapic_timer_shutdown(levt); 924 925 /* Jiffies delta */ 926 deltaj = lapic_cal_j2 - lapic_cal_j1; 927 apic_printk(APIC_VERBOSE, "... jiffies delta = %lu\n", deltaj); 928 929 /* Check, if the jiffies result is consistent */ 930 if (deltaj >= LAPIC_CAL_LOOPS-2 && deltaj <= LAPIC_CAL_LOOPS+2) 931 apic_printk(APIC_VERBOSE, "... jiffies result ok\n"); 932 else 933 levt->features |= CLOCK_EVT_FEAT_DUMMY; 934 } 935 local_irq_enable(); 936 937 if (levt->features & CLOCK_EVT_FEAT_DUMMY) { 938 pr_warning("APIC timer disabled due to verification failure\n"); 939 return -1; 940 } 941 942 return 0; 943 } 944 945 /* 946 * Setup the boot APIC 947 * 948 * Calibrate and verify the result. 949 */ 950 void __init setup_boot_APIC_clock(void) 951 { 952 /* 953 * The local apic timer can be disabled via the kernel 954 * commandline or from the CPU detection code. Register the lapic 955 * timer as a dummy clock event source on SMP systems, so the 956 * broadcast mechanism is used. On UP systems simply ignore it. 957 */ 958 if (disable_apic_timer) { 959 pr_info("Disabling APIC timer\n"); 960 /* No broadcast on UP ! */ 961 if (num_possible_cpus() > 1) { 962 lapic_clockevent.mult = 1; 963 setup_APIC_timer(); 964 } 965 return; 966 } 967 968 if (calibrate_APIC_clock()) { 969 /* No broadcast on UP ! */ 970 if (num_possible_cpus() > 1) 971 setup_APIC_timer(); 972 return; 973 } 974 975 /* 976 * If nmi_watchdog is set to IO_APIC, we need the 977 * PIT/HPET going. Otherwise register lapic as a dummy 978 * device. 979 */ 980 lapic_clockevent.features &= ~CLOCK_EVT_FEAT_DUMMY; 981 982 /* Setup the lapic or request the broadcast */ 983 setup_APIC_timer(); 984 amd_e400_c1e_apic_setup(); 985 } 986 987 void setup_secondary_APIC_clock(void) 988 { 989 setup_APIC_timer(); 990 amd_e400_c1e_apic_setup(); 991 } 992 993 /* 994 * The guts of the apic timer interrupt 995 */ 996 static void local_apic_timer_interrupt(void) 997 { 998 int cpu = smp_processor_id(); 999 struct clock_event_device *evt = &per_cpu(lapic_events, cpu); 1000 1001 /* 1002 * Normally we should not be here till LAPIC has been initialized but 1003 * in some cases like kdump, its possible that there is a pending LAPIC 1004 * timer interrupt from previous kernel's context and is delivered in 1005 * new kernel the moment interrupts are enabled. 1006 * 1007 * Interrupts are enabled early and LAPIC is setup much later, hence 1008 * its possible that when we get here evt->event_handler is NULL. 1009 * Check for event_handler being NULL and discard the interrupt as 1010 * spurious. 1011 */ 1012 if (!evt->event_handler) { 1013 pr_warning("Spurious LAPIC timer interrupt on cpu %d\n", cpu); 1014 /* Switch it off */ 1015 lapic_timer_shutdown(evt); 1016 return; 1017 } 1018 1019 /* 1020 * the NMI deadlock-detector uses this. 1021 */ 1022 inc_irq_stat(apic_timer_irqs); 1023 1024 evt->event_handler(evt); 1025 } 1026 1027 /* 1028 * Local APIC timer interrupt. This is the most natural way for doing 1029 * local interrupts, but local timer interrupts can be emulated by 1030 * broadcast interrupts too. [in case the hw doesn't support APIC timers] 1031 * 1032 * [ if a single-CPU system runs an SMP kernel then we call the local 1033 * interrupt as well. Thus we cannot inline the local irq ... ] 1034 */ 1035 __visible void __irq_entry smp_apic_timer_interrupt(struct pt_regs *regs) 1036 { 1037 struct pt_regs *old_regs = set_irq_regs(regs); 1038 1039 /* 1040 * NOTE! We'd better ACK the irq immediately, 1041 * because timer handling can be slow. 1042 * 1043 * update_process_times() expects us to have done irq_enter(). 1044 * Besides, if we don't timer interrupts ignore the global 1045 * interrupt lock, which is the WrongThing (tm) to do. 1046 */ 1047 entering_ack_irq(); 1048 local_apic_timer_interrupt(); 1049 exiting_irq(); 1050 1051 set_irq_regs(old_regs); 1052 } 1053 1054 __visible void __irq_entry smp_trace_apic_timer_interrupt(struct pt_regs *regs) 1055 { 1056 struct pt_regs *old_regs = set_irq_regs(regs); 1057 1058 /* 1059 * NOTE! We'd better ACK the irq immediately, 1060 * because timer handling can be slow. 1061 * 1062 * update_process_times() expects us to have done irq_enter(). 1063 * Besides, if we don't timer interrupts ignore the global 1064 * interrupt lock, which is the WrongThing (tm) to do. 1065 */ 1066 entering_ack_irq(); 1067 trace_local_timer_entry(LOCAL_TIMER_VECTOR); 1068 local_apic_timer_interrupt(); 1069 trace_local_timer_exit(LOCAL_TIMER_VECTOR); 1070 exiting_irq(); 1071 1072 set_irq_regs(old_regs); 1073 } 1074 1075 int setup_profiling_timer(unsigned int multiplier) 1076 { 1077 return -EINVAL; 1078 } 1079 1080 /* 1081 * Local APIC start and shutdown 1082 */ 1083 1084 /** 1085 * clear_local_APIC - shutdown the local APIC 1086 * 1087 * This is called, when a CPU is disabled and before rebooting, so the state of 1088 * the local APIC has no dangling leftovers. Also used to cleanout any BIOS 1089 * leftovers during boot. 1090 */ 1091 void clear_local_APIC(void) 1092 { 1093 int maxlvt; 1094 u32 v; 1095 1096 /* APIC hasn't been mapped yet */ 1097 if (!x2apic_mode && !apic_phys) 1098 return; 1099 1100 maxlvt = lapic_get_maxlvt(); 1101 /* 1102 * Masking an LVT entry can trigger a local APIC error 1103 * if the vector is zero. Mask LVTERR first to prevent this. 1104 */ 1105 if (maxlvt >= 3) { 1106 v = ERROR_APIC_VECTOR; /* any non-zero vector will do */ 1107 apic_write(APIC_LVTERR, v | APIC_LVT_MASKED); 1108 } 1109 /* 1110 * Careful: we have to set masks only first to deassert 1111 * any level-triggered sources. 1112 */ 1113 v = apic_read(APIC_LVTT); 1114 apic_write(APIC_LVTT, v | APIC_LVT_MASKED); 1115 v = apic_read(APIC_LVT0); 1116 apic_write(APIC_LVT0, v | APIC_LVT_MASKED); 1117 v = apic_read(APIC_LVT1); 1118 apic_write(APIC_LVT1, v | APIC_LVT_MASKED); 1119 if (maxlvt >= 4) { 1120 v = apic_read(APIC_LVTPC); 1121 apic_write(APIC_LVTPC, v | APIC_LVT_MASKED); 1122 } 1123 1124 /* lets not touch this if we didn't frob it */ 1125 #ifdef CONFIG_X86_THERMAL_VECTOR 1126 if (maxlvt >= 5) { 1127 v = apic_read(APIC_LVTTHMR); 1128 apic_write(APIC_LVTTHMR, v | APIC_LVT_MASKED); 1129 } 1130 #endif 1131 #ifdef CONFIG_X86_MCE_INTEL 1132 if (maxlvt >= 6) { 1133 v = apic_read(APIC_LVTCMCI); 1134 if (!(v & APIC_LVT_MASKED)) 1135 apic_write(APIC_LVTCMCI, v | APIC_LVT_MASKED); 1136 } 1137 #endif 1138 1139 /* 1140 * Clean APIC state for other OSs: 1141 */ 1142 apic_write(APIC_LVTT, APIC_LVT_MASKED); 1143 apic_write(APIC_LVT0, APIC_LVT_MASKED); 1144 apic_write(APIC_LVT1, APIC_LVT_MASKED); 1145 if (maxlvt >= 3) 1146 apic_write(APIC_LVTERR, APIC_LVT_MASKED); 1147 if (maxlvt >= 4) 1148 apic_write(APIC_LVTPC, APIC_LVT_MASKED); 1149 1150 /* Integrated APIC (!82489DX) ? */ 1151 if (lapic_is_integrated()) { 1152 if (maxlvt > 3) 1153 /* Clear ESR due to Pentium errata 3AP and 11AP */ 1154 apic_write(APIC_ESR, 0); 1155 apic_read(APIC_ESR); 1156 } 1157 } 1158 1159 /** 1160 * disable_local_APIC - clear and disable the local APIC 1161 */ 1162 void disable_local_APIC(void) 1163 { 1164 unsigned int value; 1165 1166 /* APIC hasn't been mapped yet */ 1167 if (!x2apic_mode && !apic_phys) 1168 return; 1169 1170 clear_local_APIC(); 1171 1172 /* 1173 * Disable APIC (implies clearing of registers 1174 * for 82489DX!). 1175 */ 1176 value = apic_read(APIC_SPIV); 1177 value &= ~APIC_SPIV_APIC_ENABLED; 1178 apic_write(APIC_SPIV, value); 1179 1180 #ifdef CONFIG_X86_32 1181 /* 1182 * When LAPIC was disabled by the BIOS and enabled by the kernel, 1183 * restore the disabled state. 1184 */ 1185 if (enabled_via_apicbase) { 1186 unsigned int l, h; 1187 1188 rdmsr(MSR_IA32_APICBASE, l, h); 1189 l &= ~MSR_IA32_APICBASE_ENABLE; 1190 wrmsr(MSR_IA32_APICBASE, l, h); 1191 } 1192 #endif 1193 } 1194 1195 /* 1196 * If Linux enabled the LAPIC against the BIOS default disable it down before 1197 * re-entering the BIOS on shutdown. Otherwise the BIOS may get confused and 1198 * not power-off. Additionally clear all LVT entries before disable_local_APIC 1199 * for the case where Linux didn't enable the LAPIC. 1200 */ 1201 void lapic_shutdown(void) 1202 { 1203 unsigned long flags; 1204 1205 if (!boot_cpu_has(X86_FEATURE_APIC) && !apic_from_smp_config()) 1206 return; 1207 1208 local_irq_save(flags); 1209 1210 #ifdef CONFIG_X86_32 1211 if (!enabled_via_apicbase) 1212 clear_local_APIC(); 1213 else 1214 #endif 1215 disable_local_APIC(); 1216 1217 1218 local_irq_restore(flags); 1219 } 1220 1221 /** 1222 * sync_Arb_IDs - synchronize APIC bus arbitration IDs 1223 */ 1224 void __init sync_Arb_IDs(void) 1225 { 1226 /* 1227 * Unsupported on P4 - see Intel Dev. Manual Vol. 3, Ch. 8.6.1 And not 1228 * needed on AMD. 1229 */ 1230 if (modern_apic() || boot_cpu_data.x86_vendor == X86_VENDOR_AMD) 1231 return; 1232 1233 /* 1234 * Wait for idle. 1235 */ 1236 apic_wait_icr_idle(); 1237 1238 apic_printk(APIC_DEBUG, "Synchronizing Arb IDs.\n"); 1239 apic_write(APIC_ICR, APIC_DEST_ALLINC | 1240 APIC_INT_LEVELTRIG | APIC_DM_INIT); 1241 } 1242 1243 /* 1244 * An initial setup of the virtual wire mode. 1245 */ 1246 void __init init_bsp_APIC(void) 1247 { 1248 unsigned int value; 1249 1250 /* 1251 * Don't do the setup now if we have a SMP BIOS as the 1252 * through-I/O-APIC virtual wire mode might be active. 1253 */ 1254 if (smp_found_config || !boot_cpu_has(X86_FEATURE_APIC)) 1255 return; 1256 1257 /* 1258 * Do not trust the local APIC being empty at bootup. 1259 */ 1260 clear_local_APIC(); 1261 1262 /* 1263 * Enable APIC. 1264 */ 1265 value = apic_read(APIC_SPIV); 1266 value &= ~APIC_VECTOR_MASK; 1267 value |= APIC_SPIV_APIC_ENABLED; 1268 1269 #ifdef CONFIG_X86_32 1270 /* This bit is reserved on P4/Xeon and should be cleared */ 1271 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && 1272 (boot_cpu_data.x86 == 15)) 1273 value &= ~APIC_SPIV_FOCUS_DISABLED; 1274 else 1275 #endif 1276 value |= APIC_SPIV_FOCUS_DISABLED; 1277 value |= SPURIOUS_APIC_VECTOR; 1278 apic_write(APIC_SPIV, value); 1279 1280 /* 1281 * Set up the virtual wire mode. 1282 */ 1283 apic_write(APIC_LVT0, APIC_DM_EXTINT); 1284 value = APIC_DM_NMI; 1285 if (!lapic_is_integrated()) /* 82489DX */ 1286 value |= APIC_LVT_LEVEL_TRIGGER; 1287 if (apic_extnmi == APIC_EXTNMI_NONE) 1288 value |= APIC_LVT_MASKED; 1289 apic_write(APIC_LVT1, value); 1290 } 1291 1292 static void lapic_setup_esr(void) 1293 { 1294 unsigned int oldvalue, value, maxlvt; 1295 1296 if (!lapic_is_integrated()) { 1297 pr_info("No ESR for 82489DX.\n"); 1298 return; 1299 } 1300 1301 if (apic->disable_esr) { 1302 /* 1303 * Something untraceable is creating bad interrupts on 1304 * secondary quads ... for the moment, just leave the 1305 * ESR disabled - we can't do anything useful with the 1306 * errors anyway - mbligh 1307 */ 1308 pr_info("Leaving ESR disabled.\n"); 1309 return; 1310 } 1311 1312 maxlvt = lapic_get_maxlvt(); 1313 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */ 1314 apic_write(APIC_ESR, 0); 1315 oldvalue = apic_read(APIC_ESR); 1316 1317 /* enables sending errors */ 1318 value = ERROR_APIC_VECTOR; 1319 apic_write(APIC_LVTERR, value); 1320 1321 /* 1322 * spec says clear errors after enabling vector. 1323 */ 1324 if (maxlvt > 3) 1325 apic_write(APIC_ESR, 0); 1326 value = apic_read(APIC_ESR); 1327 if (value != oldvalue) 1328 apic_printk(APIC_VERBOSE, "ESR value before enabling " 1329 "vector: 0x%08x after: 0x%08x\n", 1330 oldvalue, value); 1331 } 1332 1333 /** 1334 * setup_local_APIC - setup the local APIC 1335 * 1336 * Used to setup local APIC while initializing BSP or bringing up APs. 1337 * Always called with preemption disabled. 1338 */ 1339 void setup_local_APIC(void) 1340 { 1341 int cpu = smp_processor_id(); 1342 unsigned int value, queued; 1343 int i, j, acked = 0; 1344 unsigned long long tsc = 0, ntsc; 1345 long long max_loops = cpu_khz ? cpu_khz : 1000000; 1346 1347 if (boot_cpu_has(X86_FEATURE_TSC)) 1348 tsc = rdtsc(); 1349 1350 if (disable_apic) { 1351 disable_ioapic_support(); 1352 return; 1353 } 1354 1355 #ifdef CONFIG_X86_32 1356 /* Pound the ESR really hard over the head with a big hammer - mbligh */ 1357 if (lapic_is_integrated() && apic->disable_esr) { 1358 apic_write(APIC_ESR, 0); 1359 apic_write(APIC_ESR, 0); 1360 apic_write(APIC_ESR, 0); 1361 apic_write(APIC_ESR, 0); 1362 } 1363 #endif 1364 perf_events_lapic_init(); 1365 1366 /* 1367 * Double-check whether this APIC is really registered. 1368 * This is meaningless in clustered apic mode, so we skip it. 1369 */ 1370 BUG_ON(!apic->apic_id_registered()); 1371 1372 /* 1373 * Intel recommends to set DFR, LDR and TPR before enabling 1374 * an APIC. See e.g. "AP-388 82489DX User's Manual" (Intel 1375 * document number 292116). So here it goes... 1376 */ 1377 apic->init_apic_ldr(); 1378 1379 #ifdef CONFIG_X86_32 1380 /* 1381 * APIC LDR is initialized. If logical_apicid mapping was 1382 * initialized during get_smp_config(), make sure it matches the 1383 * actual value. 1384 */ 1385 i = early_per_cpu(x86_cpu_to_logical_apicid, cpu); 1386 WARN_ON(i != BAD_APICID && i != logical_smp_processor_id()); 1387 /* always use the value from LDR */ 1388 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = 1389 logical_smp_processor_id(); 1390 #endif 1391 1392 /* 1393 * Set Task Priority to 'accept all'. We never change this 1394 * later on. 1395 */ 1396 value = apic_read(APIC_TASKPRI); 1397 value &= ~APIC_TPRI_MASK; 1398 apic_write(APIC_TASKPRI, value); 1399 1400 /* 1401 * After a crash, we no longer service the interrupts and a pending 1402 * interrupt from previous kernel might still have ISR bit set. 1403 * 1404 * Most probably by now CPU has serviced that pending interrupt and 1405 * it might not have done the ack_APIC_irq() because it thought, 1406 * interrupt came from i8259 as ExtInt. LAPIC did not get EOI so it 1407 * does not clear the ISR bit and cpu thinks it has already serivced 1408 * the interrupt. Hence a vector might get locked. It was noticed 1409 * for timer irq (vector 0x31). Issue an extra EOI to clear ISR. 1410 */ 1411 do { 1412 queued = 0; 1413 for (i = APIC_ISR_NR - 1; i >= 0; i--) 1414 queued |= apic_read(APIC_IRR + i*0x10); 1415 1416 for (i = APIC_ISR_NR - 1; i >= 0; i--) { 1417 value = apic_read(APIC_ISR + i*0x10); 1418 for (j = 31; j >= 0; j--) { 1419 if (value & (1<<j)) { 1420 ack_APIC_irq(); 1421 acked++; 1422 } 1423 } 1424 } 1425 if (acked > 256) { 1426 printk(KERN_ERR "LAPIC pending interrupts after %d EOI\n", 1427 acked); 1428 break; 1429 } 1430 if (queued) { 1431 if (boot_cpu_has(X86_FEATURE_TSC) && cpu_khz) { 1432 ntsc = rdtsc(); 1433 max_loops = (cpu_khz << 10) - (ntsc - tsc); 1434 } else 1435 max_loops--; 1436 } 1437 } while (queued && max_loops > 0); 1438 WARN_ON(max_loops <= 0); 1439 1440 /* 1441 * Now that we are all set up, enable the APIC 1442 */ 1443 value = apic_read(APIC_SPIV); 1444 value &= ~APIC_VECTOR_MASK; 1445 /* 1446 * Enable APIC 1447 */ 1448 value |= APIC_SPIV_APIC_ENABLED; 1449 1450 #ifdef CONFIG_X86_32 1451 /* 1452 * Some unknown Intel IO/APIC (or APIC) errata is biting us with 1453 * certain networking cards. If high frequency interrupts are 1454 * happening on a particular IOAPIC pin, plus the IOAPIC routing 1455 * entry is masked/unmasked at a high rate as well then sooner or 1456 * later IOAPIC line gets 'stuck', no more interrupts are received 1457 * from the device. If focus CPU is disabled then the hang goes 1458 * away, oh well :-( 1459 * 1460 * [ This bug can be reproduced easily with a level-triggered 1461 * PCI Ne2000 networking cards and PII/PIII processors, dual 1462 * BX chipset. ] 1463 */ 1464 /* 1465 * Actually disabling the focus CPU check just makes the hang less 1466 * frequent as it makes the interrupt distributon model be more 1467 * like LRU than MRU (the short-term load is more even across CPUs). 1468 */ 1469 1470 /* 1471 * - enable focus processor (bit==0) 1472 * - 64bit mode always use processor focus 1473 * so no need to set it 1474 */ 1475 value &= ~APIC_SPIV_FOCUS_DISABLED; 1476 #endif 1477 1478 /* 1479 * Set spurious IRQ vector 1480 */ 1481 value |= SPURIOUS_APIC_VECTOR; 1482 apic_write(APIC_SPIV, value); 1483 1484 /* 1485 * Set up LVT0, LVT1: 1486 * 1487 * set up through-local-APIC on the BP's LINT0. This is not 1488 * strictly necessary in pure symmetric-IO mode, but sometimes 1489 * we delegate interrupts to the 8259A. 1490 */ 1491 /* 1492 * TODO: set up through-local-APIC from through-I/O-APIC? --macro 1493 */ 1494 value = apic_read(APIC_LVT0) & APIC_LVT_MASKED; 1495 if (!cpu && (pic_mode || !value)) { 1496 value = APIC_DM_EXTINT; 1497 apic_printk(APIC_VERBOSE, "enabled ExtINT on CPU#%d\n", cpu); 1498 } else { 1499 value = APIC_DM_EXTINT | APIC_LVT_MASKED; 1500 apic_printk(APIC_VERBOSE, "masked ExtINT on CPU#%d\n", cpu); 1501 } 1502 apic_write(APIC_LVT0, value); 1503 1504 /* 1505 * Only the BSP sees the LINT1 NMI signal by default. This can be 1506 * modified by apic_extnmi= boot option. 1507 */ 1508 if ((!cpu && apic_extnmi != APIC_EXTNMI_NONE) || 1509 apic_extnmi == APIC_EXTNMI_ALL) 1510 value = APIC_DM_NMI; 1511 else 1512 value = APIC_DM_NMI | APIC_LVT_MASKED; 1513 if (!lapic_is_integrated()) /* 82489DX */ 1514 value |= APIC_LVT_LEVEL_TRIGGER; 1515 apic_write(APIC_LVT1, value); 1516 1517 #ifdef CONFIG_X86_MCE_INTEL 1518 /* Recheck CMCI information after local APIC is up on CPU #0 */ 1519 if (!cpu) 1520 cmci_recheck(); 1521 #endif 1522 } 1523 1524 static void end_local_APIC_setup(void) 1525 { 1526 lapic_setup_esr(); 1527 1528 #ifdef CONFIG_X86_32 1529 { 1530 unsigned int value; 1531 /* Disable the local apic timer */ 1532 value = apic_read(APIC_LVTT); 1533 value |= (APIC_LVT_MASKED | LOCAL_TIMER_VECTOR); 1534 apic_write(APIC_LVTT, value); 1535 } 1536 #endif 1537 1538 apic_pm_activate(); 1539 } 1540 1541 /* 1542 * APIC setup function for application processors. Called from smpboot.c 1543 */ 1544 void apic_ap_setup(void) 1545 { 1546 setup_local_APIC(); 1547 end_local_APIC_setup(); 1548 } 1549 1550 #ifdef CONFIG_X86_X2APIC 1551 int x2apic_mode; 1552 1553 enum { 1554 X2APIC_OFF, 1555 X2APIC_ON, 1556 X2APIC_DISABLED, 1557 }; 1558 static int x2apic_state; 1559 1560 static void __x2apic_disable(void) 1561 { 1562 u64 msr; 1563 1564 if (!boot_cpu_has(X86_FEATURE_APIC)) 1565 return; 1566 1567 rdmsrl(MSR_IA32_APICBASE, msr); 1568 if (!(msr & X2APIC_ENABLE)) 1569 return; 1570 /* Disable xapic and x2apic first and then reenable xapic mode */ 1571 wrmsrl(MSR_IA32_APICBASE, msr & ~(X2APIC_ENABLE | XAPIC_ENABLE)); 1572 wrmsrl(MSR_IA32_APICBASE, msr & ~X2APIC_ENABLE); 1573 printk_once(KERN_INFO "x2apic disabled\n"); 1574 } 1575 1576 static void __x2apic_enable(void) 1577 { 1578 u64 msr; 1579 1580 rdmsrl(MSR_IA32_APICBASE, msr); 1581 if (msr & X2APIC_ENABLE) 1582 return; 1583 wrmsrl(MSR_IA32_APICBASE, msr | X2APIC_ENABLE); 1584 printk_once(KERN_INFO "x2apic enabled\n"); 1585 } 1586 1587 static int __init setup_nox2apic(char *str) 1588 { 1589 if (x2apic_enabled()) { 1590 int apicid = native_apic_msr_read(APIC_ID); 1591 1592 if (apicid >= 255) { 1593 pr_warning("Apicid: %08x, cannot enforce nox2apic\n", 1594 apicid); 1595 return 0; 1596 } 1597 pr_warning("x2apic already enabled.\n"); 1598 __x2apic_disable(); 1599 } 1600 setup_clear_cpu_cap(X86_FEATURE_X2APIC); 1601 x2apic_state = X2APIC_DISABLED; 1602 x2apic_mode = 0; 1603 return 0; 1604 } 1605 early_param("nox2apic", setup_nox2apic); 1606 1607 /* Called from cpu_init() to enable x2apic on (secondary) cpus */ 1608 void x2apic_setup(void) 1609 { 1610 /* 1611 * If x2apic is not in ON state, disable it if already enabled 1612 * from BIOS. 1613 */ 1614 if (x2apic_state != X2APIC_ON) { 1615 __x2apic_disable(); 1616 return; 1617 } 1618 __x2apic_enable(); 1619 } 1620 1621 static __init void x2apic_disable(void) 1622 { 1623 u32 x2apic_id, state = x2apic_state; 1624 1625 x2apic_mode = 0; 1626 x2apic_state = X2APIC_DISABLED; 1627 1628 if (state != X2APIC_ON) 1629 return; 1630 1631 x2apic_id = read_apic_id(); 1632 if (x2apic_id >= 255) 1633 panic("Cannot disable x2apic, id: %08x\n", x2apic_id); 1634 1635 __x2apic_disable(); 1636 register_lapic_address(mp_lapic_addr); 1637 } 1638 1639 static __init void x2apic_enable(void) 1640 { 1641 if (x2apic_state != X2APIC_OFF) 1642 return; 1643 1644 x2apic_mode = 1; 1645 x2apic_state = X2APIC_ON; 1646 __x2apic_enable(); 1647 } 1648 1649 static __init void try_to_enable_x2apic(int remap_mode) 1650 { 1651 if (x2apic_state == X2APIC_DISABLED) 1652 return; 1653 1654 if (remap_mode != IRQ_REMAP_X2APIC_MODE) { 1655 /* IR is required if there is APIC ID > 255 even when running 1656 * under KVM 1657 */ 1658 if (max_physical_apicid > 255 || 1659 !hypervisor_x2apic_available()) { 1660 pr_info("x2apic: IRQ remapping doesn't support X2APIC mode\n"); 1661 x2apic_disable(); 1662 return; 1663 } 1664 1665 /* 1666 * without IR all CPUs can be addressed by IOAPIC/MSI 1667 * only in physical mode 1668 */ 1669 x2apic_phys = 1; 1670 } 1671 x2apic_enable(); 1672 } 1673 1674 void __init check_x2apic(void) 1675 { 1676 if (x2apic_enabled()) { 1677 pr_info("x2apic: enabled by BIOS, switching to x2apic ops\n"); 1678 x2apic_mode = 1; 1679 x2apic_state = X2APIC_ON; 1680 } else if (!boot_cpu_has(X86_FEATURE_X2APIC)) { 1681 x2apic_state = X2APIC_DISABLED; 1682 } 1683 } 1684 #else /* CONFIG_X86_X2APIC */ 1685 static int __init validate_x2apic(void) 1686 { 1687 if (!apic_is_x2apic_enabled()) 1688 return 0; 1689 /* 1690 * Checkme: Can we simply turn off x2apic here instead of panic? 1691 */ 1692 panic("BIOS has enabled x2apic but kernel doesn't support x2apic, please disable x2apic in BIOS.\n"); 1693 } 1694 early_initcall(validate_x2apic); 1695 1696 static inline void try_to_enable_x2apic(int remap_mode) { } 1697 static inline void __x2apic_enable(void) { } 1698 #endif /* !CONFIG_X86_X2APIC */ 1699 1700 void __init enable_IR_x2apic(void) 1701 { 1702 unsigned long flags; 1703 int ret, ir_stat; 1704 1705 if (skip_ioapic_setup) { 1706 pr_info("Not enabling interrupt remapping due to skipped IO-APIC setup\n"); 1707 return; 1708 } 1709 1710 ir_stat = irq_remapping_prepare(); 1711 if (ir_stat < 0 && !x2apic_supported()) 1712 return; 1713 1714 ret = save_ioapic_entries(); 1715 if (ret) { 1716 pr_info("Saving IO-APIC state failed: %d\n", ret); 1717 return; 1718 } 1719 1720 local_irq_save(flags); 1721 legacy_pic->mask_all(); 1722 mask_ioapic_entries(); 1723 1724 /* If irq_remapping_prepare() succeeded, try to enable it */ 1725 if (ir_stat >= 0) 1726 ir_stat = irq_remapping_enable(); 1727 /* ir_stat contains the remap mode or an error code */ 1728 try_to_enable_x2apic(ir_stat); 1729 1730 if (ir_stat < 0) 1731 restore_ioapic_entries(); 1732 legacy_pic->restore_mask(); 1733 local_irq_restore(flags); 1734 } 1735 1736 #ifdef CONFIG_X86_64 1737 /* 1738 * Detect and enable local APICs on non-SMP boards. 1739 * Original code written by Keir Fraser. 1740 * On AMD64 we trust the BIOS - if it says no APIC it is likely 1741 * not correctly set up (usually the APIC timer won't work etc.) 1742 */ 1743 static int __init detect_init_APIC(void) 1744 { 1745 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1746 pr_info("No local APIC present\n"); 1747 return -1; 1748 } 1749 1750 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1751 return 0; 1752 } 1753 #else 1754 1755 static int __init apic_verify(void) 1756 { 1757 u32 features, h, l; 1758 1759 /* 1760 * The APIC feature bit should now be enabled 1761 * in `cpuid' 1762 */ 1763 features = cpuid_edx(1); 1764 if (!(features & (1 << X86_FEATURE_APIC))) { 1765 pr_warning("Could not enable APIC!\n"); 1766 return -1; 1767 } 1768 set_cpu_cap(&boot_cpu_data, X86_FEATURE_APIC); 1769 mp_lapic_addr = APIC_DEFAULT_PHYS_BASE; 1770 1771 /* The BIOS may have set up the APIC at some other address */ 1772 if (boot_cpu_data.x86 >= 6) { 1773 rdmsr(MSR_IA32_APICBASE, l, h); 1774 if (l & MSR_IA32_APICBASE_ENABLE) 1775 mp_lapic_addr = l & MSR_IA32_APICBASE_BASE; 1776 } 1777 1778 pr_info("Found and enabled local APIC!\n"); 1779 return 0; 1780 } 1781 1782 int __init apic_force_enable(unsigned long addr) 1783 { 1784 u32 h, l; 1785 1786 if (disable_apic) 1787 return -1; 1788 1789 /* 1790 * Some BIOSes disable the local APIC in the APIC_BASE 1791 * MSR. This can only be done in software for Intel P6 or later 1792 * and AMD K7 (Model > 1) or later. 1793 */ 1794 if (boot_cpu_data.x86 >= 6) { 1795 rdmsr(MSR_IA32_APICBASE, l, h); 1796 if (!(l & MSR_IA32_APICBASE_ENABLE)) { 1797 pr_info("Local APIC disabled by BIOS -- reenabling.\n"); 1798 l &= ~MSR_IA32_APICBASE_BASE; 1799 l |= MSR_IA32_APICBASE_ENABLE | addr; 1800 wrmsr(MSR_IA32_APICBASE, l, h); 1801 enabled_via_apicbase = 1; 1802 } 1803 } 1804 return apic_verify(); 1805 } 1806 1807 /* 1808 * Detect and initialize APIC 1809 */ 1810 static int __init detect_init_APIC(void) 1811 { 1812 /* Disabled by kernel option? */ 1813 if (disable_apic) 1814 return -1; 1815 1816 switch (boot_cpu_data.x86_vendor) { 1817 case X86_VENDOR_AMD: 1818 if ((boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model > 1) || 1819 (boot_cpu_data.x86 >= 15)) 1820 break; 1821 goto no_apic; 1822 case X86_VENDOR_INTEL: 1823 if (boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15 || 1824 (boot_cpu_data.x86 == 5 && boot_cpu_has(X86_FEATURE_APIC))) 1825 break; 1826 goto no_apic; 1827 default: 1828 goto no_apic; 1829 } 1830 1831 if (!boot_cpu_has(X86_FEATURE_APIC)) { 1832 /* 1833 * Over-ride BIOS and try to enable the local APIC only if 1834 * "lapic" specified. 1835 */ 1836 if (!force_enable_local_apic) { 1837 pr_info("Local APIC disabled by BIOS -- " 1838 "you can enable it with \"lapic\"\n"); 1839 return -1; 1840 } 1841 if (apic_force_enable(APIC_DEFAULT_PHYS_BASE)) 1842 return -1; 1843 } else { 1844 if (apic_verify()) 1845 return -1; 1846 } 1847 1848 apic_pm_activate(); 1849 1850 return 0; 1851 1852 no_apic: 1853 pr_info("No local APIC present or hardware disabled\n"); 1854 return -1; 1855 } 1856 #endif 1857 1858 /** 1859 * init_apic_mappings - initialize APIC mappings 1860 */ 1861 void __init init_apic_mappings(void) 1862 { 1863 unsigned int new_apicid; 1864 1865 apic_check_deadline_errata(); 1866 1867 if (x2apic_mode) { 1868 boot_cpu_physical_apicid = read_apic_id(); 1869 return; 1870 } 1871 1872 /* If no local APIC can be found return early */ 1873 if (!smp_found_config && detect_init_APIC()) { 1874 /* lets NOP'ify apic operations */ 1875 pr_info("APIC: disable apic facility\n"); 1876 apic_disable(); 1877 } else { 1878 apic_phys = mp_lapic_addr; 1879 1880 /* 1881 * If the system has ACPI MADT tables or MP info, the LAPIC 1882 * address is already registered. 1883 */ 1884 if (!acpi_lapic && !smp_found_config) 1885 register_lapic_address(apic_phys); 1886 } 1887 1888 /* 1889 * Fetch the APIC ID of the BSP in case we have a 1890 * default configuration (or the MP table is broken). 1891 */ 1892 new_apicid = read_apic_id(); 1893 if (boot_cpu_physical_apicid != new_apicid) { 1894 boot_cpu_physical_apicid = new_apicid; 1895 /* 1896 * yeah -- we lie about apic_version 1897 * in case if apic was disabled via boot option 1898 * but it's not a problem for SMP compiled kernel 1899 * since smp_sanity_check is prepared for such a case 1900 * and disable smp mode 1901 */ 1902 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 1903 } 1904 } 1905 1906 void __init register_lapic_address(unsigned long address) 1907 { 1908 mp_lapic_addr = address; 1909 1910 if (!x2apic_mode) { 1911 set_fixmap_nocache(FIX_APIC_BASE, address); 1912 apic_printk(APIC_VERBOSE, "mapped APIC to %16lx (%16lx)\n", 1913 APIC_BASE, address); 1914 } 1915 if (boot_cpu_physical_apicid == -1U) { 1916 boot_cpu_physical_apicid = read_apic_id(); 1917 boot_cpu_apic_version = GET_APIC_VERSION(apic_read(APIC_LVR)); 1918 } 1919 } 1920 1921 /* 1922 * Local APIC interrupts 1923 */ 1924 1925 /* 1926 * This interrupt should _never_ happen with our APIC/SMP architecture 1927 */ 1928 static void __smp_spurious_interrupt(u8 vector) 1929 { 1930 u32 v; 1931 1932 /* 1933 * Check if this really is a spurious interrupt and ACK it 1934 * if it is a vectored one. Just in case... 1935 * Spurious interrupts should not be ACKed. 1936 */ 1937 v = apic_read(APIC_ISR + ((vector & ~0x1f) >> 1)); 1938 if (v & (1 << (vector & 0x1f))) 1939 ack_APIC_irq(); 1940 1941 inc_irq_stat(irq_spurious_count); 1942 1943 /* see sw-dev-man vol 3, chapter 7.4.13.5 */ 1944 pr_info("spurious APIC interrupt through vector %02x on CPU#%d, " 1945 "should never happen.\n", vector, smp_processor_id()); 1946 } 1947 1948 __visible void __irq_entry smp_spurious_interrupt(struct pt_regs *regs) 1949 { 1950 entering_irq(); 1951 __smp_spurious_interrupt(~regs->orig_ax); 1952 exiting_irq(); 1953 } 1954 1955 __visible void __irq_entry smp_trace_spurious_interrupt(struct pt_regs *regs) 1956 { 1957 u8 vector = ~regs->orig_ax; 1958 1959 entering_irq(); 1960 trace_spurious_apic_entry(vector); 1961 __smp_spurious_interrupt(vector); 1962 trace_spurious_apic_exit(vector); 1963 exiting_irq(); 1964 } 1965 1966 /* 1967 * This interrupt should never happen with our APIC/SMP architecture 1968 */ 1969 static void __smp_error_interrupt(struct pt_regs *regs) 1970 { 1971 u32 v; 1972 u32 i = 0; 1973 static const char * const error_interrupt_reason[] = { 1974 "Send CS error", /* APIC Error Bit 0 */ 1975 "Receive CS error", /* APIC Error Bit 1 */ 1976 "Send accept error", /* APIC Error Bit 2 */ 1977 "Receive accept error", /* APIC Error Bit 3 */ 1978 "Redirectable IPI", /* APIC Error Bit 4 */ 1979 "Send illegal vector", /* APIC Error Bit 5 */ 1980 "Received illegal vector", /* APIC Error Bit 6 */ 1981 "Illegal register address", /* APIC Error Bit 7 */ 1982 }; 1983 1984 /* First tickle the hardware, only then report what went on. -- REW */ 1985 if (lapic_get_maxlvt() > 3) /* Due to the Pentium erratum 3AP. */ 1986 apic_write(APIC_ESR, 0); 1987 v = apic_read(APIC_ESR); 1988 ack_APIC_irq(); 1989 atomic_inc(&irq_err_count); 1990 1991 apic_printk(APIC_DEBUG, KERN_DEBUG "APIC error on CPU%d: %02x", 1992 smp_processor_id(), v); 1993 1994 v &= 0xff; 1995 while (v) { 1996 if (v & 0x1) 1997 apic_printk(APIC_DEBUG, KERN_CONT " : %s", error_interrupt_reason[i]); 1998 i++; 1999 v >>= 1; 2000 } 2001 2002 apic_printk(APIC_DEBUG, KERN_CONT "\n"); 2003 2004 } 2005 2006 __visible void __irq_entry smp_error_interrupt(struct pt_regs *regs) 2007 { 2008 entering_irq(); 2009 __smp_error_interrupt(regs); 2010 exiting_irq(); 2011 } 2012 2013 __visible void __irq_entry smp_trace_error_interrupt(struct pt_regs *regs) 2014 { 2015 entering_irq(); 2016 trace_error_apic_entry(ERROR_APIC_VECTOR); 2017 __smp_error_interrupt(regs); 2018 trace_error_apic_exit(ERROR_APIC_VECTOR); 2019 exiting_irq(); 2020 } 2021 2022 /** 2023 * connect_bsp_APIC - attach the APIC to the interrupt system 2024 */ 2025 static void __init connect_bsp_APIC(void) 2026 { 2027 #ifdef CONFIG_X86_32 2028 if (pic_mode) { 2029 /* 2030 * Do not trust the local APIC being empty at bootup. 2031 */ 2032 clear_local_APIC(); 2033 /* 2034 * PIC mode, enable APIC mode in the IMCR, i.e. connect BSP's 2035 * local APIC to INT and NMI lines. 2036 */ 2037 apic_printk(APIC_VERBOSE, "leaving PIC mode, " 2038 "enabling APIC mode.\n"); 2039 imcr_pic_to_apic(); 2040 } 2041 #endif 2042 } 2043 2044 /** 2045 * disconnect_bsp_APIC - detach the APIC from the interrupt system 2046 * @virt_wire_setup: indicates, whether virtual wire mode is selected 2047 * 2048 * Virtual wire mode is necessary to deliver legacy interrupts even when the 2049 * APIC is disabled. 2050 */ 2051 void disconnect_bsp_APIC(int virt_wire_setup) 2052 { 2053 unsigned int value; 2054 2055 #ifdef CONFIG_X86_32 2056 if (pic_mode) { 2057 /* 2058 * Put the board back into PIC mode (has an effect only on 2059 * certain older boards). Note that APIC interrupts, including 2060 * IPIs, won't work beyond this point! The only exception are 2061 * INIT IPIs. 2062 */ 2063 apic_printk(APIC_VERBOSE, "disabling APIC mode, " 2064 "entering PIC mode.\n"); 2065 imcr_apic_to_pic(); 2066 return; 2067 } 2068 #endif 2069 2070 /* Go back to Virtual Wire compatibility mode */ 2071 2072 /* For the spurious interrupt use vector F, and enable it */ 2073 value = apic_read(APIC_SPIV); 2074 value &= ~APIC_VECTOR_MASK; 2075 value |= APIC_SPIV_APIC_ENABLED; 2076 value |= 0xf; 2077 apic_write(APIC_SPIV, value); 2078 2079 if (!virt_wire_setup) { 2080 /* 2081 * For LVT0 make it edge triggered, active high, 2082 * external and enabled 2083 */ 2084 value = apic_read(APIC_LVT0); 2085 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2086 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2087 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2088 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2089 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_EXTINT); 2090 apic_write(APIC_LVT0, value); 2091 } else { 2092 /* Disable LVT0 */ 2093 apic_write(APIC_LVT0, APIC_LVT_MASKED); 2094 } 2095 2096 /* 2097 * For LVT1 make it edge triggered, active high, 2098 * nmi and enabled 2099 */ 2100 value = apic_read(APIC_LVT1); 2101 value &= ~(APIC_MODE_MASK | APIC_SEND_PENDING | 2102 APIC_INPUT_POLARITY | APIC_LVT_REMOTE_IRR | 2103 APIC_LVT_LEVEL_TRIGGER | APIC_LVT_MASKED); 2104 value |= APIC_LVT_REMOTE_IRR | APIC_SEND_PENDING; 2105 value = SET_APIC_DELIVERY_MODE(value, APIC_MODE_NMI); 2106 apic_write(APIC_LVT1, value); 2107 } 2108 2109 /* 2110 * The number of allocated logical CPU IDs. Since logical CPU IDs are allocated 2111 * contiguously, it equals to current allocated max logical CPU ID plus 1. 2112 * All allocated CPU IDs should be in the [0, nr_logical_cpuids) range, 2113 * so the maximum of nr_logical_cpuids is nr_cpu_ids. 2114 * 2115 * NOTE: Reserve 0 for BSP. 2116 */ 2117 static int nr_logical_cpuids = 1; 2118 2119 /* 2120 * Used to store mapping between logical CPU IDs and APIC IDs. 2121 */ 2122 static int cpuid_to_apicid[] = { 2123 [0 ... NR_CPUS - 1] = -1, 2124 }; 2125 2126 /* 2127 * Should use this API to allocate logical CPU IDs to keep nr_logical_cpuids 2128 * and cpuid_to_apicid[] synchronized. 2129 */ 2130 static int allocate_logical_cpuid(int apicid) 2131 { 2132 int i; 2133 2134 /* 2135 * cpuid <-> apicid mapping is persistent, so when a cpu is up, 2136 * check if the kernel has allocated a cpuid for it. 2137 */ 2138 for (i = 0; i < nr_logical_cpuids; i++) { 2139 if (cpuid_to_apicid[i] == apicid) 2140 return i; 2141 } 2142 2143 /* Allocate a new cpuid. */ 2144 if (nr_logical_cpuids >= nr_cpu_ids) { 2145 WARN_ONCE(1, "APIC: NR_CPUS/possible_cpus limit of %i reached. " 2146 "Processor %d/0x%x and the rest are ignored.\n", 2147 nr_cpu_ids, nr_logical_cpuids, apicid); 2148 return -EINVAL; 2149 } 2150 2151 cpuid_to_apicid[nr_logical_cpuids] = apicid; 2152 return nr_logical_cpuids++; 2153 } 2154 2155 int generic_processor_info(int apicid, int version) 2156 { 2157 int cpu, max = nr_cpu_ids; 2158 bool boot_cpu_detected = physid_isset(boot_cpu_physical_apicid, 2159 phys_cpu_present_map); 2160 2161 /* 2162 * boot_cpu_physical_apicid is designed to have the apicid 2163 * returned by read_apic_id(), i.e, the apicid of the 2164 * currently booting-up processor. However, on some platforms, 2165 * it is temporarily modified by the apicid reported as BSP 2166 * through MP table. Concretely: 2167 * 2168 * - arch/x86/kernel/mpparse.c: MP_processor_info() 2169 * - arch/x86/mm/amdtopology.c: amd_numa_init() 2170 * 2171 * This function is executed with the modified 2172 * boot_cpu_physical_apicid. So, disabled_cpu_apicid kernel 2173 * parameter doesn't work to disable APs on kdump 2nd kernel. 2174 * 2175 * Since fixing handling of boot_cpu_physical_apicid requires 2176 * another discussion and tests on each platform, we leave it 2177 * for now and here we use read_apic_id() directly in this 2178 * function, __generic_processor_info(). 2179 */ 2180 if (disabled_cpu_apicid != BAD_APICID && 2181 disabled_cpu_apicid != read_apic_id() && 2182 disabled_cpu_apicid == apicid) { 2183 int thiscpu = num_processors + disabled_cpus; 2184 2185 pr_warning("APIC: Disabling requested cpu." 2186 " Processor %d/0x%x ignored.\n", 2187 thiscpu, apicid); 2188 2189 disabled_cpus++; 2190 return -ENODEV; 2191 } 2192 2193 /* 2194 * If boot cpu has not been detected yet, then only allow upto 2195 * nr_cpu_ids - 1 processors and keep one slot free for boot cpu 2196 */ 2197 if (!boot_cpu_detected && num_processors >= nr_cpu_ids - 1 && 2198 apicid != boot_cpu_physical_apicid) { 2199 int thiscpu = max + disabled_cpus - 1; 2200 2201 pr_warning( 2202 "APIC: NR_CPUS/possible_cpus limit of %i almost" 2203 " reached. Keeping one slot for boot cpu." 2204 " Processor %d/0x%x ignored.\n", max, thiscpu, apicid); 2205 2206 disabled_cpus++; 2207 return -ENODEV; 2208 } 2209 2210 if (num_processors >= nr_cpu_ids) { 2211 int thiscpu = max + disabled_cpus; 2212 2213 pr_warning("APIC: NR_CPUS/possible_cpus limit of %i " 2214 "reached. Processor %d/0x%x ignored.\n", 2215 max, thiscpu, apicid); 2216 2217 disabled_cpus++; 2218 return -EINVAL; 2219 } 2220 2221 if (apicid == boot_cpu_physical_apicid) { 2222 /* 2223 * x86_bios_cpu_apicid is required to have processors listed 2224 * in same order as logical cpu numbers. Hence the first 2225 * entry is BSP, and so on. 2226 * boot_cpu_init() already hold bit 0 in cpu_present_mask 2227 * for BSP. 2228 */ 2229 cpu = 0; 2230 2231 /* Logical cpuid 0 is reserved for BSP. */ 2232 cpuid_to_apicid[0] = apicid; 2233 } else { 2234 cpu = allocate_logical_cpuid(apicid); 2235 if (cpu < 0) { 2236 disabled_cpus++; 2237 return -EINVAL; 2238 } 2239 } 2240 2241 /* 2242 * Validate version 2243 */ 2244 if (version == 0x0) { 2245 pr_warning("BIOS bug: APIC version is 0 for CPU %d/0x%x, fixing up to 0x10\n", 2246 cpu, apicid); 2247 version = 0x10; 2248 } 2249 2250 if (version != boot_cpu_apic_version) { 2251 pr_warning("BIOS bug: APIC version mismatch, boot CPU: %x, CPU %d: version %x\n", 2252 boot_cpu_apic_version, cpu, version); 2253 } 2254 2255 if (apicid > max_physical_apicid) 2256 max_physical_apicid = apicid; 2257 2258 #if defined(CONFIG_SMP) || defined(CONFIG_X86_64) 2259 early_per_cpu(x86_cpu_to_apicid, cpu) = apicid; 2260 early_per_cpu(x86_bios_cpu_apicid, cpu) = apicid; 2261 #endif 2262 #ifdef CONFIG_X86_32 2263 early_per_cpu(x86_cpu_to_logical_apicid, cpu) = 2264 apic->x86_32_early_logical_apicid(cpu); 2265 #endif 2266 set_cpu_possible(cpu, true); 2267 physid_set(apicid, phys_cpu_present_map); 2268 set_cpu_present(cpu, true); 2269 num_processors++; 2270 2271 return cpu; 2272 } 2273 2274 int hard_smp_processor_id(void) 2275 { 2276 return read_apic_id(); 2277 } 2278 2279 void default_init_apic_ldr(void) 2280 { 2281 unsigned long val; 2282 2283 apic_write(APIC_DFR, APIC_DFR_VALUE); 2284 val = apic_read(APIC_LDR) & ~APIC_LDR_MASK; 2285 val |= SET_APIC_LOGICAL_ID(1UL << smp_processor_id()); 2286 apic_write(APIC_LDR, val); 2287 } 2288 2289 int default_cpu_mask_to_apicid(const struct cpumask *mask, 2290 struct irq_data *irqdata, 2291 unsigned int *apicid) 2292 { 2293 unsigned int cpu = cpumask_first(mask); 2294 2295 if (cpu >= nr_cpu_ids) 2296 return -EINVAL; 2297 *apicid = per_cpu(x86_cpu_to_apicid, cpu); 2298 irq_data_update_effective_affinity(irqdata, cpumask_of(cpu)); 2299 return 0; 2300 } 2301 2302 int flat_cpu_mask_to_apicid(const struct cpumask *mask, 2303 struct irq_data *irqdata, 2304 unsigned int *apicid) 2305 2306 { 2307 struct cpumask *effmsk = irq_data_get_effective_affinity_mask(irqdata); 2308 unsigned long cpu_mask = cpumask_bits(mask)[0] & APIC_ALL_CPUS; 2309 2310 if (!cpu_mask) 2311 return -EINVAL; 2312 *apicid = (unsigned int)cpu_mask; 2313 cpumask_bits(effmsk)[0] = cpu_mask; 2314 return 0; 2315 } 2316 2317 /* 2318 * Override the generic EOI implementation with an optimized version. 2319 * Only called during early boot when only one CPU is active and with 2320 * interrupts disabled, so we know this does not race with actual APIC driver 2321 * use. 2322 */ 2323 void __init apic_set_eoi_write(void (*eoi_write)(u32 reg, u32 v)) 2324 { 2325 struct apic **drv; 2326 2327 for (drv = __apicdrivers; drv < __apicdrivers_end; drv++) { 2328 /* Should happen once for each apic */ 2329 WARN_ON((*drv)->eoi_write == eoi_write); 2330 (*drv)->native_eoi_write = (*drv)->eoi_write; 2331 (*drv)->eoi_write = eoi_write; 2332 } 2333 } 2334 2335 static void __init apic_bsp_up_setup(void) 2336 { 2337 #ifdef CONFIG_X86_64 2338 apic_write(APIC_ID, apic->set_apic_id(boot_cpu_physical_apicid)); 2339 #else 2340 /* 2341 * Hack: In case of kdump, after a crash, kernel might be booting 2342 * on a cpu with non-zero lapic id. But boot_cpu_physical_apicid 2343 * might be zero if read from MP tables. Get it from LAPIC. 2344 */ 2345 # ifdef CONFIG_CRASH_DUMP 2346 boot_cpu_physical_apicid = read_apic_id(); 2347 # endif 2348 #endif 2349 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map); 2350 } 2351 2352 /** 2353 * apic_bsp_setup - Setup function for local apic and io-apic 2354 * @upmode: Force UP mode (for APIC_init_uniprocessor) 2355 * 2356 * Returns: 2357 * apic_id of BSP APIC 2358 */ 2359 int __init apic_bsp_setup(bool upmode) 2360 { 2361 int id; 2362 2363 connect_bsp_APIC(); 2364 if (upmode) 2365 apic_bsp_up_setup(); 2366 setup_local_APIC(); 2367 2368 if (x2apic_mode) 2369 id = apic_read(APIC_LDR); 2370 else 2371 id = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR)); 2372 2373 enable_IO_APIC(); 2374 end_local_APIC_setup(); 2375 irq_remap_enable_fault_handling(); 2376 setup_IO_APIC(); 2377 /* Setup local timer */ 2378 x86_init.timers.setup_percpu_clockev(); 2379 return id; 2380 } 2381 2382 /* 2383 * This initializes the IO-APIC and APIC hardware if this is 2384 * a UP kernel. 2385 */ 2386 int __init APIC_init_uniprocessor(void) 2387 { 2388 if (disable_apic) { 2389 pr_info("Apic disabled\n"); 2390 return -1; 2391 } 2392 #ifdef CONFIG_X86_64 2393 if (!boot_cpu_has(X86_FEATURE_APIC)) { 2394 disable_apic = 1; 2395 pr_info("Apic disabled by BIOS\n"); 2396 return -1; 2397 } 2398 #else 2399 if (!smp_found_config && !boot_cpu_has(X86_FEATURE_APIC)) 2400 return -1; 2401 2402 /* 2403 * Complain if the BIOS pretends there is one. 2404 */ 2405 if (!boot_cpu_has(X86_FEATURE_APIC) && 2406 APIC_INTEGRATED(boot_cpu_apic_version)) { 2407 pr_err("BIOS bug, local APIC 0x%x not detected!...\n", 2408 boot_cpu_physical_apicid); 2409 return -1; 2410 } 2411 #endif 2412 2413 if (!smp_found_config) 2414 disable_ioapic_support(); 2415 2416 default_setup_apic_routing(); 2417 apic_bsp_setup(true); 2418 return 0; 2419 } 2420 2421 #ifdef CONFIG_UP_LATE_INIT 2422 void __init up_late_init(void) 2423 { 2424 APIC_init_uniprocessor(); 2425 } 2426 #endif 2427 2428 /* 2429 * Power management 2430 */ 2431 #ifdef CONFIG_PM 2432 2433 static struct { 2434 /* 2435 * 'active' is true if the local APIC was enabled by us and 2436 * not the BIOS; this signifies that we are also responsible 2437 * for disabling it before entering apm/acpi suspend 2438 */ 2439 int active; 2440 /* r/w apic fields */ 2441 unsigned int apic_id; 2442 unsigned int apic_taskpri; 2443 unsigned int apic_ldr; 2444 unsigned int apic_dfr; 2445 unsigned int apic_spiv; 2446 unsigned int apic_lvtt; 2447 unsigned int apic_lvtpc; 2448 unsigned int apic_lvt0; 2449 unsigned int apic_lvt1; 2450 unsigned int apic_lvterr; 2451 unsigned int apic_tmict; 2452 unsigned int apic_tdcr; 2453 unsigned int apic_thmr; 2454 unsigned int apic_cmci; 2455 } apic_pm_state; 2456 2457 static int lapic_suspend(void) 2458 { 2459 unsigned long flags; 2460 int maxlvt; 2461 2462 if (!apic_pm_state.active) 2463 return 0; 2464 2465 maxlvt = lapic_get_maxlvt(); 2466 2467 apic_pm_state.apic_id = apic_read(APIC_ID); 2468 apic_pm_state.apic_taskpri = apic_read(APIC_TASKPRI); 2469 apic_pm_state.apic_ldr = apic_read(APIC_LDR); 2470 apic_pm_state.apic_dfr = apic_read(APIC_DFR); 2471 apic_pm_state.apic_spiv = apic_read(APIC_SPIV); 2472 apic_pm_state.apic_lvtt = apic_read(APIC_LVTT); 2473 if (maxlvt >= 4) 2474 apic_pm_state.apic_lvtpc = apic_read(APIC_LVTPC); 2475 apic_pm_state.apic_lvt0 = apic_read(APIC_LVT0); 2476 apic_pm_state.apic_lvt1 = apic_read(APIC_LVT1); 2477 apic_pm_state.apic_lvterr = apic_read(APIC_LVTERR); 2478 apic_pm_state.apic_tmict = apic_read(APIC_TMICT); 2479 apic_pm_state.apic_tdcr = apic_read(APIC_TDCR); 2480 #ifdef CONFIG_X86_THERMAL_VECTOR 2481 if (maxlvt >= 5) 2482 apic_pm_state.apic_thmr = apic_read(APIC_LVTTHMR); 2483 #endif 2484 #ifdef CONFIG_X86_MCE_INTEL 2485 if (maxlvt >= 6) 2486 apic_pm_state.apic_cmci = apic_read(APIC_LVTCMCI); 2487 #endif 2488 2489 local_irq_save(flags); 2490 disable_local_APIC(); 2491 2492 irq_remapping_disable(); 2493 2494 local_irq_restore(flags); 2495 return 0; 2496 } 2497 2498 static void lapic_resume(void) 2499 { 2500 unsigned int l, h; 2501 unsigned long flags; 2502 int maxlvt; 2503 2504 if (!apic_pm_state.active) 2505 return; 2506 2507 local_irq_save(flags); 2508 2509 /* 2510 * IO-APIC and PIC have their own resume routines. 2511 * We just mask them here to make sure the interrupt 2512 * subsystem is completely quiet while we enable x2apic 2513 * and interrupt-remapping. 2514 */ 2515 mask_ioapic_entries(); 2516 legacy_pic->mask_all(); 2517 2518 if (x2apic_mode) { 2519 __x2apic_enable(); 2520 } else { 2521 /* 2522 * Make sure the APICBASE points to the right address 2523 * 2524 * FIXME! This will be wrong if we ever support suspend on 2525 * SMP! We'll need to do this as part of the CPU restore! 2526 */ 2527 if (boot_cpu_data.x86 >= 6) { 2528 rdmsr(MSR_IA32_APICBASE, l, h); 2529 l &= ~MSR_IA32_APICBASE_BASE; 2530 l |= MSR_IA32_APICBASE_ENABLE | mp_lapic_addr; 2531 wrmsr(MSR_IA32_APICBASE, l, h); 2532 } 2533 } 2534 2535 maxlvt = lapic_get_maxlvt(); 2536 apic_write(APIC_LVTERR, ERROR_APIC_VECTOR | APIC_LVT_MASKED); 2537 apic_write(APIC_ID, apic_pm_state.apic_id); 2538 apic_write(APIC_DFR, apic_pm_state.apic_dfr); 2539 apic_write(APIC_LDR, apic_pm_state.apic_ldr); 2540 apic_write(APIC_TASKPRI, apic_pm_state.apic_taskpri); 2541 apic_write(APIC_SPIV, apic_pm_state.apic_spiv); 2542 apic_write(APIC_LVT0, apic_pm_state.apic_lvt0); 2543 apic_write(APIC_LVT1, apic_pm_state.apic_lvt1); 2544 #ifdef CONFIG_X86_THERMAL_VECTOR 2545 if (maxlvt >= 5) 2546 apic_write(APIC_LVTTHMR, apic_pm_state.apic_thmr); 2547 #endif 2548 #ifdef CONFIG_X86_MCE_INTEL 2549 if (maxlvt >= 6) 2550 apic_write(APIC_LVTCMCI, apic_pm_state.apic_cmci); 2551 #endif 2552 if (maxlvt >= 4) 2553 apic_write(APIC_LVTPC, apic_pm_state.apic_lvtpc); 2554 apic_write(APIC_LVTT, apic_pm_state.apic_lvtt); 2555 apic_write(APIC_TDCR, apic_pm_state.apic_tdcr); 2556 apic_write(APIC_TMICT, apic_pm_state.apic_tmict); 2557 apic_write(APIC_ESR, 0); 2558 apic_read(APIC_ESR); 2559 apic_write(APIC_LVTERR, apic_pm_state.apic_lvterr); 2560 apic_write(APIC_ESR, 0); 2561 apic_read(APIC_ESR); 2562 2563 irq_remapping_reenable(x2apic_mode); 2564 2565 local_irq_restore(flags); 2566 } 2567 2568 /* 2569 * This device has no shutdown method - fully functioning local APICs 2570 * are needed on every CPU up until machine_halt/restart/poweroff. 2571 */ 2572 2573 static struct syscore_ops lapic_syscore_ops = { 2574 .resume = lapic_resume, 2575 .suspend = lapic_suspend, 2576 }; 2577 2578 static void apic_pm_activate(void) 2579 { 2580 apic_pm_state.active = 1; 2581 } 2582 2583 static int __init init_lapic_sysfs(void) 2584 { 2585 /* XXX: remove suspend/resume procs if !apic_pm_state.active? */ 2586 if (boot_cpu_has(X86_FEATURE_APIC)) 2587 register_syscore_ops(&lapic_syscore_ops); 2588 2589 return 0; 2590 } 2591 2592 /* local apic needs to resume before other devices access its registers. */ 2593 core_initcall(init_lapic_sysfs); 2594 2595 #else /* CONFIG_PM */ 2596 2597 static void apic_pm_activate(void) { } 2598 2599 #endif /* CONFIG_PM */ 2600 2601 #ifdef CONFIG_X86_64 2602 2603 static int multi_checked; 2604 static int multi; 2605 2606 static int set_multi(const struct dmi_system_id *d) 2607 { 2608 if (multi) 2609 return 0; 2610 pr_info("APIC: %s detected, Multi Chassis\n", d->ident); 2611 multi = 1; 2612 return 0; 2613 } 2614 2615 static const struct dmi_system_id multi_dmi_table[] = { 2616 { 2617 .callback = set_multi, 2618 .ident = "IBM System Summit2", 2619 .matches = { 2620 DMI_MATCH(DMI_SYS_VENDOR, "IBM"), 2621 DMI_MATCH(DMI_PRODUCT_NAME, "Summit2"), 2622 }, 2623 }, 2624 {} 2625 }; 2626 2627 static void dmi_check_multi(void) 2628 { 2629 if (multi_checked) 2630 return; 2631 2632 dmi_check_system(multi_dmi_table); 2633 multi_checked = 1; 2634 } 2635 2636 /* 2637 * apic_is_clustered_box() -- Check if we can expect good TSC 2638 * 2639 * Thus far, the major user of this is IBM's Summit2 series: 2640 * Clustered boxes may have unsynced TSC problems if they are 2641 * multi-chassis. 2642 * Use DMI to check them 2643 */ 2644 int apic_is_clustered_box(void) 2645 { 2646 dmi_check_multi(); 2647 return multi; 2648 } 2649 #endif 2650 2651 /* 2652 * APIC command line parameters 2653 */ 2654 static int __init setup_disableapic(char *arg) 2655 { 2656 disable_apic = 1; 2657 setup_clear_cpu_cap(X86_FEATURE_APIC); 2658 return 0; 2659 } 2660 early_param("disableapic", setup_disableapic); 2661 2662 /* same as disableapic, for compatibility */ 2663 static int __init setup_nolapic(char *arg) 2664 { 2665 return setup_disableapic(arg); 2666 } 2667 early_param("nolapic", setup_nolapic); 2668 2669 static int __init parse_lapic_timer_c2_ok(char *arg) 2670 { 2671 local_apic_timer_c2_ok = 1; 2672 return 0; 2673 } 2674 early_param("lapic_timer_c2_ok", parse_lapic_timer_c2_ok); 2675 2676 static int __init parse_disable_apic_timer(char *arg) 2677 { 2678 disable_apic_timer = 1; 2679 return 0; 2680 } 2681 early_param("noapictimer", parse_disable_apic_timer); 2682 2683 static int __init parse_nolapic_timer(char *arg) 2684 { 2685 disable_apic_timer = 1; 2686 return 0; 2687 } 2688 early_param("nolapic_timer", parse_nolapic_timer); 2689 2690 static int __init apic_set_verbosity(char *arg) 2691 { 2692 if (!arg) { 2693 #ifdef CONFIG_X86_64 2694 skip_ioapic_setup = 0; 2695 return 0; 2696 #endif 2697 return -EINVAL; 2698 } 2699 2700 if (strcmp("debug", arg) == 0) 2701 apic_verbosity = APIC_DEBUG; 2702 else if (strcmp("verbose", arg) == 0) 2703 apic_verbosity = APIC_VERBOSE; 2704 else { 2705 pr_warning("APIC Verbosity level %s not recognised" 2706 " use apic=verbose or apic=debug\n", arg); 2707 return -EINVAL; 2708 } 2709 2710 return 0; 2711 } 2712 early_param("apic", apic_set_verbosity); 2713 2714 static int __init lapic_insert_resource(void) 2715 { 2716 if (!apic_phys) 2717 return -1; 2718 2719 /* Put local APIC into the resource map. */ 2720 lapic_resource.start = apic_phys; 2721 lapic_resource.end = lapic_resource.start + PAGE_SIZE - 1; 2722 insert_resource(&iomem_resource, &lapic_resource); 2723 2724 return 0; 2725 } 2726 2727 /* 2728 * need call insert after e820__reserve_resources() 2729 * that is using request_resource 2730 */ 2731 late_initcall(lapic_insert_resource); 2732 2733 static int __init apic_set_disabled_cpu_apicid(char *arg) 2734 { 2735 if (!arg || !get_option(&arg, &disabled_cpu_apicid)) 2736 return -EINVAL; 2737 2738 return 0; 2739 } 2740 early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid); 2741 2742 static int __init apic_set_extnmi(char *arg) 2743 { 2744 if (!arg) 2745 return -EINVAL; 2746 2747 if (!strncmp("all", arg, 3)) 2748 apic_extnmi = APIC_EXTNMI_ALL; 2749 else if (!strncmp("none", arg, 4)) 2750 apic_extnmi = APIC_EXTNMI_NONE; 2751 else if (!strncmp("bsp", arg, 3)) 2752 apic_extnmi = APIC_EXTNMI_BSP; 2753 else { 2754 pr_warn("Unknown external NMI delivery mode `%s' ignored\n", arg); 2755 return -EINVAL; 2756 } 2757 2758 return 0; 2759 } 2760 early_param("apic_extnmi", apic_set_extnmi); 2761
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.