1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/kernel.h> 4 #include <linux/sched.h> 5 #include <linux/init.h> 6 #include <linux/module.h> 7 #include <linux/timer.h> 8 #include <linux/acpi_pmtmr.h> 9 #include <linux/cpufreq.h> 10 #include <linux/delay.h> 11 #include <linux/clocksource.h> 12 #include <linux/percpu.h> 13 #include <linux/timex.h> 14 15 #include <asm/hpet.h> 16 #include <asm/timer.h> 17 #include <asm/vgtod.h> 18 #include <asm/time.h> 19 #include <asm/delay.h> 20 #include <asm/hypervisor.h> 21 #include <asm/nmi.h> 22 #include <asm/x86_init.h> 23 #include <asm/geode.h> 24 25 unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ 26 EXPORT_SYMBOL(cpu_khz); 27 28 unsigned int __read_mostly tsc_khz; 29 EXPORT_SYMBOL(tsc_khz); 30 31 /* 32 * TSC can be unstable due to cpufreq or due to unsynced TSCs 33 */ 34 static int __read_mostly tsc_unstable; 35 36 /* native_sched_clock() is called before tsc_init(), so 37 we must start with the TSC soft disabled to prevent 38 erroneous rdtsc usage on !cpu_has_tsc processors */ 39 static int __read_mostly tsc_disabled = -1; 40 41 int tsc_clocksource_reliable; 42 /* 43 * Scheduler clock - returns current time in nanosec units. 44 */ 45 u64 native_sched_clock(void) 46 { 47 u64 this_offset; 48 49 /* 50 * Fall back to jiffies if there's no TSC available: 51 * ( But note that we still use it if the TSC is marked 52 * unstable. We do this because unlike Time Of Day, 53 * the scheduler clock tolerates small errors and it's 54 * very important for it to be as fast as the platform 55 * can achieve it. ) 56 */ 57 if (unlikely(tsc_disabled)) { 58 /* No locking but a rare wrong value is not a big deal: */ 59 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); 60 } 61 62 /* read the Time Stamp Counter: */ 63 rdtscll(this_offset); 64 65 /* return the value in ns */ 66 return __cycles_2_ns(this_offset); 67 } 68 69 /* We need to define a real function for sched_clock, to override the 70 weak default version */ 71 #ifdef CONFIG_PARAVIRT 72 unsigned long long sched_clock(void) 73 { 74 return paravirt_sched_clock(); 75 } 76 #else 77 unsigned long long 78 sched_clock(void) __attribute__((alias("native_sched_clock"))); 79 #endif 80 81 unsigned long long native_read_tsc(void) 82 { 83 return __native_read_tsc(); 84 } 85 EXPORT_SYMBOL(native_read_tsc); 86 87 int check_tsc_unstable(void) 88 { 89 return tsc_unstable; 90 } 91 EXPORT_SYMBOL_GPL(check_tsc_unstable); 92 93 #ifdef CONFIG_X86_TSC 94 int __init notsc_setup(char *str) 95 { 96 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n"); 97 tsc_disabled = 1; 98 return 1; 99 } 100 #else 101 /* 102 * disable flag for tsc. Takes effect by clearing the TSC cpu flag 103 * in cpu/common.c 104 */ 105 int __init notsc_setup(char *str) 106 { 107 setup_clear_cpu_cap(X86_FEATURE_TSC); 108 return 1; 109 } 110 #endif 111 112 __setup("notsc", notsc_setup); 113 114 static int no_sched_irq_time; 115 116 static int __init tsc_setup(char *str) 117 { 118 if (!strcmp(str, "reliable")) 119 tsc_clocksource_reliable = 1; 120 if (!strncmp(str, "noirqtime", 9)) 121 no_sched_irq_time = 1; 122 return 1; 123 } 124 125 __setup("tsc=", tsc_setup); 126 127 #define MAX_RETRIES 5 128 #define SMI_TRESHOLD 50000 129 130 /* 131 * Read TSC and the reference counters. Take care of SMI disturbance 132 */ 133 static u64 tsc_read_refs(u64 *p, int hpet) 134 { 135 u64 t1, t2; 136 int i; 137 138 for (i = 0; i < MAX_RETRIES; i++) { 139 t1 = get_cycles(); 140 if (hpet) 141 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; 142 else 143 *p = acpi_pm_read_early(); 144 t2 = get_cycles(); 145 if ((t2 - t1) < SMI_TRESHOLD) 146 return t2; 147 } 148 return ULLONG_MAX; 149 } 150 151 /* 152 * Calculate the TSC frequency from HPET reference 153 */ 154 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) 155 { 156 u64 tmp; 157 158 if (hpet2 < hpet1) 159 hpet2 += 0x100000000ULL; 160 hpet2 -= hpet1; 161 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); 162 do_div(tmp, 1000000); 163 do_div(deltatsc, tmp); 164 165 return (unsigned long) deltatsc; 166 } 167 168 /* 169 * Calculate the TSC frequency from PMTimer reference 170 */ 171 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) 172 { 173 u64 tmp; 174 175 if (!pm1 && !pm2) 176 return ULONG_MAX; 177 178 if (pm2 < pm1) 179 pm2 += (u64)ACPI_PM_OVRRUN; 180 pm2 -= pm1; 181 tmp = pm2 * 1000000000LL; 182 do_div(tmp, PMTMR_TICKS_PER_SEC); 183 do_div(deltatsc, tmp); 184 185 return (unsigned long) deltatsc; 186 } 187 188 #define CAL_MS 10 189 #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) 190 #define CAL_PIT_LOOPS 1000 191 192 #define CAL2_MS 50 193 #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) 194 #define CAL2_PIT_LOOPS 5000 195 196 197 /* 198 * Try to calibrate the TSC against the Programmable 199 * Interrupt Timer and return the frequency of the TSC 200 * in kHz. 201 * 202 * Return ULONG_MAX on failure to calibrate. 203 */ 204 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) 205 { 206 u64 tsc, t1, t2, delta; 207 unsigned long tscmin, tscmax; 208 int pitcnt; 209 210 /* Set the Gate high, disable speaker */ 211 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 212 213 /* 214 * Setup CTC channel 2* for mode 0, (interrupt on terminal 215 * count mode), binary count. Set the latch register to 50ms 216 * (LSB then MSB) to begin countdown. 217 */ 218 outb(0xb0, 0x43); 219 outb(latch & 0xff, 0x42); 220 outb(latch >> 8, 0x42); 221 222 tsc = t1 = t2 = get_cycles(); 223 224 pitcnt = 0; 225 tscmax = 0; 226 tscmin = ULONG_MAX; 227 while ((inb(0x61) & 0x20) == 0) { 228 t2 = get_cycles(); 229 delta = t2 - tsc; 230 tsc = t2; 231 if ((unsigned long) delta < tscmin) 232 tscmin = (unsigned int) delta; 233 if ((unsigned long) delta > tscmax) 234 tscmax = (unsigned int) delta; 235 pitcnt++; 236 } 237 238 /* 239 * Sanity checks: 240 * 241 * If we were not able to read the PIT more than loopmin 242 * times, then we have been hit by a massive SMI 243 * 244 * If the maximum is 10 times larger than the minimum, 245 * then we got hit by an SMI as well. 246 */ 247 if (pitcnt < loopmin || tscmax > 10 * tscmin) 248 return ULONG_MAX; 249 250 /* Calculate the PIT value */ 251 delta = t2 - t1; 252 do_div(delta, ms); 253 return delta; 254 } 255 256 /* 257 * This reads the current MSB of the PIT counter, and 258 * checks if we are running on sufficiently fast and 259 * non-virtualized hardware. 260 * 261 * Our expectations are: 262 * 263 * - the PIT is running at roughly 1.19MHz 264 * 265 * - each IO is going to take about 1us on real hardware, 266 * but we allow it to be much faster (by a factor of 10) or 267 * _slightly_ slower (ie we allow up to a 2us read+counter 268 * update - anything else implies a unacceptably slow CPU 269 * or PIT for the fast calibration to work. 270 * 271 * - with 256 PIT ticks to read the value, we have 214us to 272 * see the same MSB (and overhead like doing a single TSC 273 * read per MSB value etc). 274 * 275 * - We're doing 2 reads per loop (LSB, MSB), and we expect 276 * them each to take about a microsecond on real hardware. 277 * So we expect a count value of around 100. But we'll be 278 * generous, and accept anything over 50. 279 * 280 * - if the PIT is stuck, and we see *many* more reads, we 281 * return early (and the next caller of pit_expect_msb() 282 * then consider it a failure when they don't see the 283 * next expected value). 284 * 285 * These expectations mean that we know that we have seen the 286 * transition from one expected value to another with a fairly 287 * high accuracy, and we didn't miss any events. We can thus 288 * use the TSC value at the transitions to calculate a pretty 289 * good value for the TSC frequencty. 290 */ 291 static inline int pit_verify_msb(unsigned char val) 292 { 293 /* Ignore LSB */ 294 inb(0x42); 295 return inb(0x42) == val; 296 } 297 298 static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) 299 { 300 int count; 301 u64 tsc = 0, prev_tsc = 0; 302 303 for (count = 0; count < 50000; count++) { 304 if (!pit_verify_msb(val)) 305 break; 306 prev_tsc = tsc; 307 tsc = get_cycles(); 308 } 309 *deltap = get_cycles() - prev_tsc; 310 *tscp = tsc; 311 312 /* 313 * We require _some_ success, but the quality control 314 * will be based on the error terms on the TSC values. 315 */ 316 return count > 5; 317 } 318 319 /* 320 * How many MSB values do we want to see? We aim for 321 * a maximum error rate of 500ppm (in practice the 322 * real error is much smaller), but refuse to spend 323 * more than 50ms on it. 324 */ 325 #define MAX_QUICK_PIT_MS 50 326 #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) 327 328 static unsigned long quick_pit_calibrate(void) 329 { 330 int i; 331 u64 tsc, delta; 332 unsigned long d1, d2; 333 334 /* Set the Gate high, disable speaker */ 335 outb((inb(0x61) & ~0x02) | 0x01, 0x61); 336 337 /* 338 * Counter 2, mode 0 (one-shot), binary count 339 * 340 * NOTE! Mode 2 decrements by two (and then the 341 * output is flipped each time, giving the same 342 * final output frequency as a decrement-by-one), 343 * so mode 0 is much better when looking at the 344 * individual counts. 345 */ 346 outb(0xb0, 0x43); 347 348 /* Start at 0xffff */ 349 outb(0xff, 0x42); 350 outb(0xff, 0x42); 351 352 /* 353 * The PIT starts counting at the next edge, so we 354 * need to delay for a microsecond. The easiest way 355 * to do that is to just read back the 16-bit counter 356 * once from the PIT. 357 */ 358 pit_verify_msb(0); 359 360 if (pit_expect_msb(0xff, &tsc, &d1)) { 361 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { 362 if (!pit_expect_msb(0xff-i, &delta, &d2)) 363 break; 364 365 /* 366 * Iterate until the error is less than 500 ppm 367 */ 368 delta -= tsc; 369 if (d1+d2 >= delta >> 11) 370 continue; 371 372 /* 373 * Check the PIT one more time to verify that 374 * all TSC reads were stable wrt the PIT. 375 * 376 * This also guarantees serialization of the 377 * last cycle read ('d2') in pit_expect_msb. 378 */ 379 if (!pit_verify_msb(0xfe - i)) 380 break; 381 goto success; 382 } 383 } 384 pr_info("Fast TSC calibration failed\n"); 385 return 0; 386 387 success: 388 /* 389 * Ok, if we get here, then we've seen the 390 * MSB of the PIT decrement 'i' times, and the 391 * error has shrunk to less than 500 ppm. 392 * 393 * As a result, we can depend on there not being 394 * any odd delays anywhere, and the TSC reads are 395 * reliable (within the error). 396 * 397 * kHz = ticks / time-in-seconds / 1000; 398 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 399 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) 400 */ 401 delta *= PIT_TICK_RATE; 402 do_div(delta, i*256*1000); 403 pr_info("Fast TSC calibration using PIT\n"); 404 return delta; 405 } 406 407 /** 408 * native_calibrate_tsc - calibrate the tsc on boot 409 */ 410 unsigned long native_calibrate_tsc(void) 411 { 412 u64 tsc1, tsc2, delta, ref1, ref2; 413 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; 414 unsigned long flags, latch, ms, fast_calibrate; 415 int hpet = is_hpet_enabled(), i, loopmin; 416 417 local_irq_save(flags); 418 fast_calibrate = quick_pit_calibrate(); 419 local_irq_restore(flags); 420 if (fast_calibrate) 421 return fast_calibrate; 422 423 /* 424 * Run 5 calibration loops to get the lowest frequency value 425 * (the best estimate). We use two different calibration modes 426 * here: 427 * 428 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and 429 * load a timeout of 50ms. We read the time right after we 430 * started the timer and wait until the PIT count down reaches 431 * zero. In each wait loop iteration we read the TSC and check 432 * the delta to the previous read. We keep track of the min 433 * and max values of that delta. The delta is mostly defined 434 * by the IO time of the PIT access, so we can detect when a 435 * SMI/SMM disturbance happened between the two reads. If the 436 * maximum time is significantly larger than the minimum time, 437 * then we discard the result and have another try. 438 * 439 * 2) Reference counter. If available we use the HPET or the 440 * PMTIMER as a reference to check the sanity of that value. 441 * We use separate TSC readouts and check inside of the 442 * reference read for a SMI/SMM disturbance. We dicard 443 * disturbed values here as well. We do that around the PIT 444 * calibration delay loop as we have to wait for a certain 445 * amount of time anyway. 446 */ 447 448 /* Preset PIT loop values */ 449 latch = CAL_LATCH; 450 ms = CAL_MS; 451 loopmin = CAL_PIT_LOOPS; 452 453 for (i = 0; i < 3; i++) { 454 unsigned long tsc_pit_khz; 455 456 /* 457 * Read the start value and the reference count of 458 * hpet/pmtimer when available. Then do the PIT 459 * calibration, which will take at least 50ms, and 460 * read the end value. 461 */ 462 local_irq_save(flags); 463 tsc1 = tsc_read_refs(&ref1, hpet); 464 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); 465 tsc2 = tsc_read_refs(&ref2, hpet); 466 local_irq_restore(flags); 467 468 /* Pick the lowest PIT TSC calibration so far */ 469 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); 470 471 /* hpet or pmtimer available ? */ 472 if (ref1 == ref2) 473 continue; 474 475 /* Check, whether the sampling was disturbed by an SMI */ 476 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) 477 continue; 478 479 tsc2 = (tsc2 - tsc1) * 1000000LL; 480 if (hpet) 481 tsc2 = calc_hpet_ref(tsc2, ref1, ref2); 482 else 483 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2); 484 485 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); 486 487 /* Check the reference deviation */ 488 delta = ((u64) tsc_pit_min) * 100; 489 do_div(delta, tsc_ref_min); 490 491 /* 492 * If both calibration results are inside a 10% window 493 * then we can be sure, that the calibration 494 * succeeded. We break out of the loop right away. We 495 * use the reference value, as it is more precise. 496 */ 497 if (delta >= 90 && delta <= 110) { 498 pr_info("PIT calibration matches %s. %d loops\n", 499 hpet ? "HPET" : "PMTIMER", i + 1); 500 return tsc_ref_min; 501 } 502 503 /* 504 * Check whether PIT failed more than once. This 505 * happens in virtualized environments. We need to 506 * give the virtual PC a slightly longer timeframe for 507 * the HPET/PMTIMER to make the result precise. 508 */ 509 if (i == 1 && tsc_pit_min == ULONG_MAX) { 510 latch = CAL2_LATCH; 511 ms = CAL2_MS; 512 loopmin = CAL2_PIT_LOOPS; 513 } 514 } 515 516 /* 517 * Now check the results. 518 */ 519 if (tsc_pit_min == ULONG_MAX) { 520 /* PIT gave no useful value */ 521 pr_warn("Unable to calibrate against PIT\n"); 522 523 /* We don't have an alternative source, disable TSC */ 524 if (!hpet && !ref1 && !ref2) { 525 pr_notice("No reference (HPET/PMTIMER) available\n"); 526 return 0; 527 } 528 529 /* The alternative source failed as well, disable TSC */ 530 if (tsc_ref_min == ULONG_MAX) { 531 pr_warn("HPET/PMTIMER calibration failed\n"); 532 return 0; 533 } 534 535 /* Use the alternative source */ 536 pr_info("using %s reference calibration\n", 537 hpet ? "HPET" : "PMTIMER"); 538 539 return tsc_ref_min; 540 } 541 542 /* We don't have an alternative source, use the PIT calibration value */ 543 if (!hpet && !ref1 && !ref2) { 544 pr_info("Using PIT calibration value\n"); 545 return tsc_pit_min; 546 } 547 548 /* The alternative source failed, use the PIT calibration value */ 549 if (tsc_ref_min == ULONG_MAX) { 550 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); 551 return tsc_pit_min; 552 } 553 554 /* 555 * The calibration values differ too much. In doubt, we use 556 * the PIT value as we know that there are PMTIMERs around 557 * running at double speed. At least we let the user know: 558 */ 559 pr_warn("PIT calibration deviates from %s: %lu %lu\n", 560 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min); 561 pr_info("Using PIT calibration value\n"); 562 return tsc_pit_min; 563 } 564 565 int recalibrate_cpu_khz(void) 566 { 567 #ifndef CONFIG_SMP 568 unsigned long cpu_khz_old = cpu_khz; 569 570 if (cpu_has_tsc) { 571 tsc_khz = x86_platform.calibrate_tsc(); 572 cpu_khz = tsc_khz; 573 cpu_data(0).loops_per_jiffy = 574 cpufreq_scale(cpu_data(0).loops_per_jiffy, 575 cpu_khz_old, cpu_khz); 576 return 0; 577 } else 578 return -ENODEV; 579 #else 580 return -ENODEV; 581 #endif 582 } 583 584 EXPORT_SYMBOL(recalibrate_cpu_khz); 585 586 587 /* Accelerators for sched_clock() 588 * convert from cycles(64bits) => nanoseconds (64bits) 589 * basic equation: 590 * ns = cycles / (freq / ns_per_sec) 591 * ns = cycles * (ns_per_sec / freq) 592 * ns = cycles * (10^9 / (cpu_khz * 10^3)) 593 * ns = cycles * (10^6 / cpu_khz) 594 * 595 * Then we use scaling math (suggested by george@mvista.com) to get: 596 * ns = cycles * (10^6 * SC / cpu_khz) / SC 597 * ns = cycles * cyc2ns_scale / SC 598 * 599 * And since SC is a constant power of two, we can convert the div 600 * into a shift. 601 * 602 * We can use khz divisor instead of mhz to keep a better precision, since 603 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. 604 * (mathieu.desnoyers@polymtl.ca) 605 * 606 * -johnstul@us.ibm.com "math is hard, lets go shopping!" 607 */ 608 609 DEFINE_PER_CPU(unsigned long, cyc2ns); 610 DEFINE_PER_CPU(unsigned long long, cyc2ns_offset); 611 612 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) 613 { 614 unsigned long long tsc_now, ns_now, *offset; 615 unsigned long flags, *scale; 616 617 local_irq_save(flags); 618 sched_clock_idle_sleep_event(); 619 620 scale = &per_cpu(cyc2ns, cpu); 621 offset = &per_cpu(cyc2ns_offset, cpu); 622 623 rdtscll(tsc_now); 624 ns_now = __cycles_2_ns(tsc_now); 625 626 if (cpu_khz) { 627 *scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) + 628 cpu_khz / 2) / cpu_khz; 629 *offset = ns_now - mult_frac(tsc_now, *scale, 630 (1UL << CYC2NS_SCALE_FACTOR)); 631 } 632 633 sched_clock_idle_wakeup_event(0); 634 local_irq_restore(flags); 635 } 636 637 static unsigned long long cyc2ns_suspend; 638 639 void tsc_save_sched_clock_state(void) 640 { 641 if (!sched_clock_stable) 642 return; 643 644 cyc2ns_suspend = sched_clock(); 645 } 646 647 /* 648 * Even on processors with invariant TSC, TSC gets reset in some the 649 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to 650 * arbitrary value (still sync'd across cpu's) during resume from such sleep 651 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so 652 * that sched_clock() continues from the point where it was left off during 653 * suspend. 654 */ 655 void tsc_restore_sched_clock_state(void) 656 { 657 unsigned long long offset; 658 unsigned long flags; 659 int cpu; 660 661 if (!sched_clock_stable) 662 return; 663 664 local_irq_save(flags); 665 666 __this_cpu_write(cyc2ns_offset, 0); 667 offset = cyc2ns_suspend - sched_clock(); 668 669 for_each_possible_cpu(cpu) 670 per_cpu(cyc2ns_offset, cpu) = offset; 671 672 local_irq_restore(flags); 673 } 674 675 #ifdef CONFIG_CPU_FREQ 676 677 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency 678 * changes. 679 * 680 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's 681 * not that important because current Opteron setups do not support 682 * scaling on SMP anyroads. 683 * 684 * Should fix up last_tsc too. Currently gettimeofday in the 685 * first tick after the change will be slightly wrong. 686 */ 687 688 static unsigned int ref_freq; 689 static unsigned long loops_per_jiffy_ref; 690 static unsigned long tsc_khz_ref; 691 692 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 693 void *data) 694 { 695 struct cpufreq_freqs *freq = data; 696 unsigned long *lpj; 697 698 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC)) 699 return 0; 700 701 lpj = &boot_cpu_data.loops_per_jiffy; 702 #ifdef CONFIG_SMP 703 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 704 lpj = &cpu_data(freq->cpu).loops_per_jiffy; 705 #endif 706 707 if (!ref_freq) { 708 ref_freq = freq->old; 709 loops_per_jiffy_ref = *lpj; 710 tsc_khz_ref = tsc_khz; 711 } 712 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || 713 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || 714 (val == CPUFREQ_RESUMECHANGE)) { 715 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new); 716 717 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new); 718 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) 719 mark_tsc_unstable("cpufreq changes"); 720 } 721 722 set_cyc2ns_scale(tsc_khz, freq->cpu); 723 724 return 0; 725 } 726 727 static struct notifier_block time_cpufreq_notifier_block = { 728 .notifier_call = time_cpufreq_notifier 729 }; 730 731 static int __init cpufreq_tsc(void) 732 { 733 if (!cpu_has_tsc) 734 return 0; 735 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 736 return 0; 737 cpufreq_register_notifier(&time_cpufreq_notifier_block, 738 CPUFREQ_TRANSITION_NOTIFIER); 739 return 0; 740 } 741 742 core_initcall(cpufreq_tsc); 743 744 #endif /* CONFIG_CPU_FREQ */ 745 746 /* clocksource code */ 747 748 static struct clocksource clocksource_tsc; 749 750 /* 751 * We compare the TSC to the cycle_last value in the clocksource 752 * structure to avoid a nasty time-warp. This can be observed in a 753 * very small window right after one CPU updated cycle_last under 754 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which 755 * is smaller than the cycle_last reference value due to a TSC which 756 * is slighty behind. This delta is nowhere else observable, but in 757 * that case it results in a forward time jump in the range of hours 758 * due to the unsigned delta calculation of the time keeping core 759 * code, which is necessary to support wrapping clocksources like pm 760 * timer. 761 */ 762 static cycle_t read_tsc(struct clocksource *cs) 763 { 764 cycle_t ret = (cycle_t)get_cycles(); 765 766 return ret >= clocksource_tsc.cycle_last ? 767 ret : clocksource_tsc.cycle_last; 768 } 769 770 static void resume_tsc(struct clocksource *cs) 771 { 772 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 773 clocksource_tsc.cycle_last = 0; 774 } 775 776 static struct clocksource clocksource_tsc = { 777 .name = "tsc", 778 .rating = 300, 779 .read = read_tsc, 780 .resume = resume_tsc, 781 .mask = CLOCKSOURCE_MASK(64), 782 .flags = CLOCK_SOURCE_IS_CONTINUOUS | 783 CLOCK_SOURCE_MUST_VERIFY, 784 #ifdef CONFIG_X86_64 785 .archdata = { .vclock_mode = VCLOCK_TSC }, 786 #endif 787 }; 788 789 void mark_tsc_unstable(char *reason) 790 { 791 if (!tsc_unstable) { 792 tsc_unstable = 1; 793 sched_clock_stable = 0; 794 disable_sched_clock_irqtime(); 795 pr_info("Marking TSC unstable due to %s\n", reason); 796 /* Change only the rating, when not registered */ 797 if (clocksource_tsc.mult) 798 clocksource_mark_unstable(&clocksource_tsc); 799 else { 800 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE; 801 clocksource_tsc.rating = 0; 802 } 803 } 804 } 805 806 EXPORT_SYMBOL_GPL(mark_tsc_unstable); 807 808 static void __init check_system_tsc_reliable(void) 809 { 810 #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) 811 if (is_geode_lx()) { 812 /* RTSC counts during suspend */ 813 #define RTSC_SUSP 0x100 814 unsigned long res_low, res_high; 815 816 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); 817 /* Geode_LX - the OLPC CPU has a very reliable TSC */ 818 if (res_low & RTSC_SUSP) 819 tsc_clocksource_reliable = 1; 820 } 821 #endif 822 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) 823 tsc_clocksource_reliable = 1; 824 } 825 826 /* 827 * Make an educated guess if the TSC is trustworthy and synchronized 828 * over all CPUs. 829 */ 830 __cpuinit int unsynchronized_tsc(void) 831 { 832 if (!cpu_has_tsc || tsc_unstable) 833 return 1; 834 835 #ifdef CONFIG_SMP 836 if (apic_is_clustered_box()) 837 return 1; 838 #endif 839 840 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 841 return 0; 842 843 if (tsc_clocksource_reliable) 844 return 0; 845 /* 846 * Intel systems are normally all synchronized. 847 * Exceptions must mark TSC as unstable: 848 */ 849 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { 850 /* assume multi socket systems are not synchronized: */ 851 if (num_possible_cpus() > 1) 852 return 1; 853 } 854 855 return 0; 856 } 857 858 859 static void tsc_refine_calibration_work(struct work_struct *work); 860 static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); 861 /** 862 * tsc_refine_calibration_work - Further refine tsc freq calibration 863 * @work - ignored. 864 * 865 * This functions uses delayed work over a period of a 866 * second to further refine the TSC freq value. Since this is 867 * timer based, instead of loop based, we don't block the boot 868 * process while this longer calibration is done. 869 * 870 * If there are any calibration anomalies (too many SMIs, etc), 871 * or the refined calibration is off by 1% of the fast early 872 * calibration, we throw out the new calibration and use the 873 * early calibration. 874 */ 875 static void tsc_refine_calibration_work(struct work_struct *work) 876 { 877 static u64 tsc_start = -1, ref_start; 878 static int hpet; 879 u64 tsc_stop, ref_stop, delta; 880 unsigned long freq; 881 882 /* Don't bother refining TSC on unstable systems */ 883 if (check_tsc_unstable()) 884 goto out; 885 886 /* 887 * Since the work is started early in boot, we may be 888 * delayed the first time we expire. So set the workqueue 889 * again once we know timers are working. 890 */ 891 if (tsc_start == -1) { 892 /* 893 * Only set hpet once, to avoid mixing hardware 894 * if the hpet becomes enabled later. 895 */ 896 hpet = is_hpet_enabled(); 897 schedule_delayed_work(&tsc_irqwork, HZ); 898 tsc_start = tsc_read_refs(&ref_start, hpet); 899 return; 900 } 901 902 tsc_stop = tsc_read_refs(&ref_stop, hpet); 903 904 /* hpet or pmtimer available ? */ 905 if (ref_start == ref_stop) 906 goto out; 907 908 /* Check, whether the sampling was disturbed by an SMI */ 909 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX) 910 goto out; 911 912 delta = tsc_stop - tsc_start; 913 delta *= 1000000LL; 914 if (hpet) 915 freq = calc_hpet_ref(delta, ref_start, ref_stop); 916 else 917 freq = calc_pmtimer_ref(delta, ref_start, ref_stop); 918 919 /* Make sure we're within 1% */ 920 if (abs(tsc_khz - freq) > tsc_khz/100) 921 goto out; 922 923 tsc_khz = freq; 924 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", 925 (unsigned long)tsc_khz / 1000, 926 (unsigned long)tsc_khz % 1000); 927 928 out: 929 clocksource_register_khz(&clocksource_tsc, tsc_khz); 930 } 931 932 933 static int __init init_tsc_clocksource(void) 934 { 935 if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz) 936 return 0; 937 938 if (tsc_clocksource_reliable) 939 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; 940 /* lower the rating if we already know its unstable: */ 941 if (check_tsc_unstable()) { 942 clocksource_tsc.rating = 0; 943 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS; 944 } 945 946 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) 947 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; 948 949 /* 950 * Trust the results of the earlier calibration on systems 951 * exporting a reliable TSC. 952 */ 953 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) { 954 clocksource_register_khz(&clocksource_tsc, tsc_khz); 955 return 0; 956 } 957 958 schedule_delayed_work(&tsc_irqwork, 0); 959 return 0; 960 } 961 /* 962 * We use device_initcall here, to ensure we run after the hpet 963 * is fully initialized, which may occur at fs_initcall time. 964 */ 965 device_initcall(init_tsc_clocksource); 966 967 void __init tsc_init(void) 968 { 969 u64 lpj; 970 int cpu; 971 972 x86_init.timers.tsc_pre_init(); 973 974 if (!cpu_has_tsc) { 975 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 976 return; 977 } 978 979 tsc_khz = x86_platform.calibrate_tsc(); 980 cpu_khz = tsc_khz; 981 982 if (!tsc_khz) { 983 mark_tsc_unstable("could not calculate TSC khz"); 984 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); 985 return; 986 } 987 988 pr_info("Detected %lu.%03lu MHz processor\n", 989 (unsigned long)cpu_khz / 1000, 990 (unsigned long)cpu_khz % 1000); 991 992 /* 993 * Secondary CPUs do not run through tsc_init(), so set up 994 * all the scale factors for all CPUs, assuming the same 995 * speed as the bootup CPU. (cpufreq notifiers will fix this 996 * up if their speed diverges) 997 */ 998 for_each_possible_cpu(cpu) 999 set_cyc2ns_scale(cpu_khz, cpu); 1000 1001 if (tsc_disabled > 0) 1002 return; 1003 1004 /* now allow native_sched_clock() to use rdtsc */ 1005 tsc_disabled = 0; 1006 1007 if (!no_sched_irq_time) 1008 enable_sched_clock_irqtime(); 1009 1010 lpj = ((u64)tsc_khz * 1000); 1011 do_div(lpj, HZ); 1012 lpj_fine = lpj; 1013 1014 use_tsc_delay(); 1015 1016 if (unsynchronized_tsc()) 1017 mark_tsc_unstable("TSCs unsynchronized"); 1018 1019 check_system_tsc_reliable(); 1020 } 1021 1022 #ifdef CONFIG_SMP 1023 /* 1024 * If we have a constant TSC and are using the TSC for the delay loop, 1025 * we can skip clock calibration if another cpu in the same socket has already 1026 * been calibrated. This assumes that CONSTANT_TSC applies to all 1027 * cpus in the socket - this should be a safe assumption. 1028 */ 1029 unsigned long __cpuinit calibrate_delay_is_known(void) 1030 { 1031 int i, cpu = smp_processor_id(); 1032 1033 if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC)) 1034 return 0; 1035 1036 for_each_online_cpu(i) 1037 if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id) 1038 return cpu_data(i).loops_per_jiffy; 1039 return 0; 1040 } 1041 #endif 1042
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.