~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/hyperv.c

Version: ~ [ linux-5.1-rc1 ] ~ [ linux-5.0.2 ] ~ [ linux-4.20.16 ] ~ [ linux-4.19.29 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.106 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.163 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.176 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.136 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.63 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.39.4 ] ~ [ linux-2.6.38.8 ] ~ [ linux-2.6.37.6 ] ~ [ linux-2.6.36.4 ] ~ [ linux-2.6.35.14 ] ~ [ linux-2.6.34.15 ] ~ [ linux-2.6.33.20 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * KVM Microsoft Hyper-V emulation
  3  *
  4  * derived from arch/x86/kvm/x86.c
  5  *
  6  * Copyright (C) 2006 Qumranet, Inc.
  7  * Copyright (C) 2008 Qumranet, Inc.
  8  * Copyright IBM Corporation, 2008
  9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 10  * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
 11  *
 12  * Authors:
 13  *   Avi Kivity   <avi@qumranet.com>
 14  *   Yaniv Kamay  <yaniv@qumranet.com>
 15  *   Amit Shah    <amit.shah@qumranet.com>
 16  *   Ben-Ami Yassour <benami@il.ibm.com>
 17  *   Andrey Smetanin <asmetanin@virtuozzo.com>
 18  *
 19  * This work is licensed under the terms of the GNU GPL, version 2.  See
 20  * the COPYING file in the top-level directory.
 21  *
 22  */
 23 
 24 #include "x86.h"
 25 #include "lapic.h"
 26 #include "ioapic.h"
 27 #include "hyperv.h"
 28 
 29 #include <linux/kvm_host.h>
 30 #include <linux/highmem.h>
 31 #include <linux/sched/cputime.h>
 32 #include <linux/eventfd.h>
 33 
 34 #include <asm/apicdef.h>
 35 #include <trace/events/kvm.h>
 36 
 37 #include "trace.h"
 38 
 39 #define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
 40 
 41 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
 42                                 bool vcpu_kick);
 43 
 44 static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
 45 {
 46         return atomic64_read(&synic->sint[sint]);
 47 }
 48 
 49 static inline int synic_get_sint_vector(u64 sint_value)
 50 {
 51         if (sint_value & HV_SYNIC_SINT_MASKED)
 52                 return -1;
 53         return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
 54 }
 55 
 56 static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
 57                                       int vector)
 58 {
 59         int i;
 60 
 61         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
 62                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
 63                         return true;
 64         }
 65         return false;
 66 }
 67 
 68 static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
 69                                      int vector)
 70 {
 71         int i;
 72         u64 sint_value;
 73 
 74         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
 75                 sint_value = synic_read_sint(synic, i);
 76                 if (synic_get_sint_vector(sint_value) == vector &&
 77                     sint_value & HV_SYNIC_SINT_AUTO_EOI)
 78                         return true;
 79         }
 80         return false;
 81 }
 82 
 83 static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
 84                                 int vector)
 85 {
 86         if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
 87                 return;
 88 
 89         if (synic_has_vector_connected(synic, vector))
 90                 __set_bit(vector, synic->vec_bitmap);
 91         else
 92                 __clear_bit(vector, synic->vec_bitmap);
 93 
 94         if (synic_has_vector_auto_eoi(synic, vector))
 95                 __set_bit(vector, synic->auto_eoi_bitmap);
 96         else
 97                 __clear_bit(vector, synic->auto_eoi_bitmap);
 98 }
 99 
100 static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
101                           u64 data, bool host)
102 {
103         int vector, old_vector;
104         bool masked;
105 
106         vector = data & HV_SYNIC_SINT_VECTOR_MASK;
107         masked = data & HV_SYNIC_SINT_MASKED;
108 
109         /*
110          * Valid vectors are 16-255, however, nested Hyper-V attempts to write
111          * default '0x10000' value on boot and this should not #GP. We need to
112          * allow zero-initing the register from host as well.
113          */
114         if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
115                 return 1;
116         /*
117          * Guest may configure multiple SINTs to use the same vector, so
118          * we maintain a bitmap of vectors handled by synic, and a
119          * bitmap of vectors with auto-eoi behavior.  The bitmaps are
120          * updated here, and atomically queried on fast paths.
121          */
122         old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
123 
124         atomic64_set(&synic->sint[sint], data);
125 
126         synic_update_vector(synic, old_vector);
127 
128         synic_update_vector(synic, vector);
129 
130         /* Load SynIC vectors into EOI exit bitmap */
131         kvm_make_request(KVM_REQ_SCAN_IOAPIC, synic_to_vcpu(synic));
132         return 0;
133 }
134 
135 static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
136 {
137         struct kvm_vcpu *vcpu = NULL;
138         int i;
139 
140         if (vpidx >= KVM_MAX_VCPUS)
141                 return NULL;
142 
143         vcpu = kvm_get_vcpu(kvm, vpidx);
144         if (vcpu && vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
145                 return vcpu;
146         kvm_for_each_vcpu(i, vcpu, kvm)
147                 if (vcpu_to_hv_vcpu(vcpu)->vp_index == vpidx)
148                         return vcpu;
149         return NULL;
150 }
151 
152 static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
153 {
154         struct kvm_vcpu *vcpu;
155         struct kvm_vcpu_hv_synic *synic;
156 
157         vcpu = get_vcpu_by_vpidx(kvm, vpidx);
158         if (!vcpu)
159                 return NULL;
160         synic = vcpu_to_synic(vcpu);
161         return (synic->active) ? synic : NULL;
162 }
163 
164 static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
165 {
166         struct kvm *kvm = vcpu->kvm;
167         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
168         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
169         struct kvm_vcpu_hv_stimer *stimer;
170         int gsi, idx;
171 
172         trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
173 
174         /* Try to deliver pending Hyper-V SynIC timers messages */
175         for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
176                 stimer = &hv_vcpu->stimer[idx];
177                 if (stimer->msg_pending && stimer->config.enable &&
178                     !stimer->config.direct_mode &&
179                     stimer->config.sintx == sint)
180                         stimer_mark_pending(stimer, false);
181         }
182 
183         idx = srcu_read_lock(&kvm->irq_srcu);
184         gsi = atomic_read(&synic->sint_to_gsi[sint]);
185         if (gsi != -1)
186                 kvm_notify_acked_gsi(kvm, gsi);
187         srcu_read_unlock(&kvm->irq_srcu, idx);
188 }
189 
190 static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
191 {
192         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
193         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
194 
195         hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
196         hv_vcpu->exit.u.synic.msr = msr;
197         hv_vcpu->exit.u.synic.control = synic->control;
198         hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
199         hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
200 
201         kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
202 }
203 
204 static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
205                          u32 msr, u64 data, bool host)
206 {
207         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
208         int ret;
209 
210         if (!synic->active && !host)
211                 return 1;
212 
213         trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);
214 
215         ret = 0;
216         switch (msr) {
217         case HV_X64_MSR_SCONTROL:
218                 synic->control = data;
219                 if (!host)
220                         synic_exit(synic, msr);
221                 break;
222         case HV_X64_MSR_SVERSION:
223                 if (!host) {
224                         ret = 1;
225                         break;
226                 }
227                 synic->version = data;
228                 break;
229         case HV_X64_MSR_SIEFP:
230                 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
231                     !synic->dont_zero_synic_pages)
232                         if (kvm_clear_guest(vcpu->kvm,
233                                             data & PAGE_MASK, PAGE_SIZE)) {
234                                 ret = 1;
235                                 break;
236                         }
237                 synic->evt_page = data;
238                 if (!host)
239                         synic_exit(synic, msr);
240                 break;
241         case HV_X64_MSR_SIMP:
242                 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
243                     !synic->dont_zero_synic_pages)
244                         if (kvm_clear_guest(vcpu->kvm,
245                                             data & PAGE_MASK, PAGE_SIZE)) {
246                                 ret = 1;
247                                 break;
248                         }
249                 synic->msg_page = data;
250                 if (!host)
251                         synic_exit(synic, msr);
252                 break;
253         case HV_X64_MSR_EOM: {
254                 int i;
255 
256                 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
257                         kvm_hv_notify_acked_sint(vcpu, i);
258                 break;
259         }
260         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
261                 ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
262                 break;
263         default:
264                 ret = 1;
265                 break;
266         }
267         return ret;
268 }
269 
270 static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
271                          bool host)
272 {
273         int ret;
274 
275         if (!synic->active && !host)
276                 return 1;
277 
278         ret = 0;
279         switch (msr) {
280         case HV_X64_MSR_SCONTROL:
281                 *pdata = synic->control;
282                 break;
283         case HV_X64_MSR_SVERSION:
284                 *pdata = synic->version;
285                 break;
286         case HV_X64_MSR_SIEFP:
287                 *pdata = synic->evt_page;
288                 break;
289         case HV_X64_MSR_SIMP:
290                 *pdata = synic->msg_page;
291                 break;
292         case HV_X64_MSR_EOM:
293                 *pdata = 0;
294                 break;
295         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
296                 *pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
297                 break;
298         default:
299                 ret = 1;
300                 break;
301         }
302         return ret;
303 }
304 
305 static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
306 {
307         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
308         struct kvm_lapic_irq irq;
309         int ret, vector;
310 
311         if (sint >= ARRAY_SIZE(synic->sint))
312                 return -EINVAL;
313 
314         vector = synic_get_sint_vector(synic_read_sint(synic, sint));
315         if (vector < 0)
316                 return -ENOENT;
317 
318         memset(&irq, 0, sizeof(irq));
319         irq.shorthand = APIC_DEST_SELF;
320         irq.dest_mode = APIC_DEST_PHYSICAL;
321         irq.delivery_mode = APIC_DM_FIXED;
322         irq.vector = vector;
323         irq.level = 1;
324 
325         ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
326         trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
327         return ret;
328 }
329 
330 int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
331 {
332         struct kvm_vcpu_hv_synic *synic;
333 
334         synic = synic_get(kvm, vpidx);
335         if (!synic)
336                 return -EINVAL;
337 
338         return synic_set_irq(synic, sint);
339 }
340 
341 void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
342 {
343         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
344         int i;
345 
346         trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);
347 
348         for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
349                 if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
350                         kvm_hv_notify_acked_sint(vcpu, i);
351 }
352 
353 static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
354 {
355         struct kvm_vcpu_hv_synic *synic;
356 
357         synic = synic_get(kvm, vpidx);
358         if (!synic)
359                 return -EINVAL;
360 
361         if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
362                 return -EINVAL;
363 
364         atomic_set(&synic->sint_to_gsi[sint], gsi);
365         return 0;
366 }
367 
368 void kvm_hv_irq_routing_update(struct kvm *kvm)
369 {
370         struct kvm_irq_routing_table *irq_rt;
371         struct kvm_kernel_irq_routing_entry *e;
372         u32 gsi;
373 
374         irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
375                                         lockdep_is_held(&kvm->irq_lock));
376 
377         for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
378                 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
379                         if (e->type == KVM_IRQ_ROUTING_HV_SINT)
380                                 kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
381                                                     e->hv_sint.sint, gsi);
382                 }
383         }
384 }
385 
386 static void synic_init(struct kvm_vcpu_hv_synic *synic)
387 {
388         int i;
389 
390         memset(synic, 0, sizeof(*synic));
391         synic->version = HV_SYNIC_VERSION_1;
392         for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
393                 atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
394                 atomic_set(&synic->sint_to_gsi[i], -1);
395         }
396 }
397 
398 static u64 get_time_ref_counter(struct kvm *kvm)
399 {
400         struct kvm_hv *hv = &kvm->arch.hyperv;
401         struct kvm_vcpu *vcpu;
402         u64 tsc;
403 
404         /*
405          * The guest has not set up the TSC page or the clock isn't
406          * stable, fall back to get_kvmclock_ns.
407          */
408         if (!hv->tsc_ref.tsc_sequence)
409                 return div_u64(get_kvmclock_ns(kvm), 100);
410 
411         vcpu = kvm_get_vcpu(kvm, 0);
412         tsc = kvm_read_l1_tsc(vcpu, rdtsc());
413         return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
414                 + hv->tsc_ref.tsc_offset;
415 }
416 
417 static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
418                                 bool vcpu_kick)
419 {
420         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
421 
422         set_bit(stimer->index,
423                 vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
424         kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
425         if (vcpu_kick)
426                 kvm_vcpu_kick(vcpu);
427 }
428 
429 static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
430 {
431         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
432 
433         trace_kvm_hv_stimer_cleanup(stimer_to_vcpu(stimer)->vcpu_id,
434                                     stimer->index);
435 
436         hrtimer_cancel(&stimer->timer);
437         clear_bit(stimer->index,
438                   vcpu_to_hv_vcpu(vcpu)->stimer_pending_bitmap);
439         stimer->msg_pending = false;
440         stimer->exp_time = 0;
441 }
442 
443 static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
444 {
445         struct kvm_vcpu_hv_stimer *stimer;
446 
447         stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
448         trace_kvm_hv_stimer_callback(stimer_to_vcpu(stimer)->vcpu_id,
449                                      stimer->index);
450         stimer_mark_pending(stimer, true);
451 
452         return HRTIMER_NORESTART;
453 }
454 
455 /*
456  * stimer_start() assumptions:
457  * a) stimer->count is not equal to 0
458  * b) stimer->config has HV_STIMER_ENABLE flag
459  */
460 static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
461 {
462         u64 time_now;
463         ktime_t ktime_now;
464 
465         time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
466         ktime_now = ktime_get();
467 
468         if (stimer->config.periodic) {
469                 if (stimer->exp_time) {
470                         if (time_now >= stimer->exp_time) {
471                                 u64 remainder;
472 
473                                 div64_u64_rem(time_now - stimer->exp_time,
474                                               stimer->count, &remainder);
475                                 stimer->exp_time =
476                                         time_now + (stimer->count - remainder);
477                         }
478                 } else
479                         stimer->exp_time = time_now + stimer->count;
480 
481                 trace_kvm_hv_stimer_start_periodic(
482                                         stimer_to_vcpu(stimer)->vcpu_id,
483                                         stimer->index,
484                                         time_now, stimer->exp_time);
485 
486                 hrtimer_start(&stimer->timer,
487                               ktime_add_ns(ktime_now,
488                                            100 * (stimer->exp_time - time_now)),
489                               HRTIMER_MODE_ABS);
490                 return 0;
491         }
492         stimer->exp_time = stimer->count;
493         if (time_now >= stimer->count) {
494                 /*
495                  * Expire timer according to Hypervisor Top-Level Functional
496                  * specification v4(15.3.1):
497                  * "If a one shot is enabled and the specified count is in
498                  * the past, it will expire immediately."
499                  */
500                 stimer_mark_pending(stimer, false);
501                 return 0;
502         }
503 
504         trace_kvm_hv_stimer_start_one_shot(stimer_to_vcpu(stimer)->vcpu_id,
505                                            stimer->index,
506                                            time_now, stimer->count);
507 
508         hrtimer_start(&stimer->timer,
509                       ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
510                       HRTIMER_MODE_ABS);
511         return 0;
512 }
513 
514 static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
515                              bool host)
516 {
517         union hv_stimer_config new_config = {.as_uint64 = config},
518                 old_config = {.as_uint64 = stimer->config.as_uint64};
519 
520         trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
521                                        stimer->index, config, host);
522 
523         stimer_cleanup(stimer);
524         if (old_config.enable &&
525             !new_config.direct_mode && new_config.sintx == 0)
526                 new_config.enable = 0;
527         stimer->config.as_uint64 = new_config.as_uint64;
528 
529         stimer_mark_pending(stimer, false);
530         return 0;
531 }
532 
533 static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
534                             bool host)
535 {
536         trace_kvm_hv_stimer_set_count(stimer_to_vcpu(stimer)->vcpu_id,
537                                       stimer->index, count, host);
538 
539         stimer_cleanup(stimer);
540         stimer->count = count;
541         if (stimer->count == 0)
542                 stimer->config.enable = 0;
543         else if (stimer->config.auto_enable)
544                 stimer->config.enable = 1;
545         stimer_mark_pending(stimer, false);
546         return 0;
547 }
548 
549 static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
550 {
551         *pconfig = stimer->config.as_uint64;
552         return 0;
553 }
554 
555 static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
556 {
557         *pcount = stimer->count;
558         return 0;
559 }
560 
561 static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
562                              struct hv_message *src_msg, bool no_retry)
563 {
564         struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
565         int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
566         gfn_t msg_page_gfn;
567         struct hv_message_header hv_hdr;
568         int r;
569 
570         if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
571                 return -ENOENT;
572 
573         msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
574 
575         /*
576          * Strictly following the spec-mandated ordering would assume setting
577          * .msg_pending before checking .message_type.  However, this function
578          * is only called in vcpu context so the entire update is atomic from
579          * guest POV and thus the exact order here doesn't matter.
580          */
581         r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
582                                      msg_off + offsetof(struct hv_message,
583                                                         header.message_type),
584                                      sizeof(hv_hdr.message_type));
585         if (r < 0)
586                 return r;
587 
588         if (hv_hdr.message_type != HVMSG_NONE) {
589                 if (no_retry)
590                         return 0;
591 
592                 hv_hdr.message_flags.msg_pending = 1;
593                 r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
594                                               &hv_hdr.message_flags,
595                                               msg_off +
596                                               offsetof(struct hv_message,
597                                                        header.message_flags),
598                                               sizeof(hv_hdr.message_flags));
599                 if (r < 0)
600                         return r;
601                 return -EAGAIN;
602         }
603 
604         r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
605                                       sizeof(src_msg->header) +
606                                       src_msg->header.payload_size);
607         if (r < 0)
608                 return r;
609 
610         r = synic_set_irq(synic, sint);
611         if (r < 0)
612                 return r;
613         if (r == 0)
614                 return -EFAULT;
615         return 0;
616 }
617 
618 static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
619 {
620         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
621         struct hv_message *msg = &stimer->msg;
622         struct hv_timer_message_payload *payload =
623                         (struct hv_timer_message_payload *)&msg->u.payload;
624 
625         /*
626          * To avoid piling up periodic ticks, don't retry message
627          * delivery for them (within "lazy" lost ticks policy).
628          */
629         bool no_retry = stimer->config.periodic;
630 
631         payload->expiration_time = stimer->exp_time;
632         payload->delivery_time = get_time_ref_counter(vcpu->kvm);
633         return synic_deliver_msg(vcpu_to_synic(vcpu),
634                                  stimer->config.sintx, msg,
635                                  no_retry);
636 }
637 
638 static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
639 {
640         struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
641         struct kvm_lapic_irq irq = {
642                 .delivery_mode = APIC_DM_FIXED,
643                 .vector = stimer->config.apic_vector
644         };
645 
646         return !kvm_apic_set_irq(vcpu, &irq, NULL);
647 }
648 
649 static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
650 {
651         int r, direct = stimer->config.direct_mode;
652 
653         stimer->msg_pending = true;
654         if (!direct)
655                 r = stimer_send_msg(stimer);
656         else
657                 r = stimer_notify_direct(stimer);
658         trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
659                                        stimer->index, direct, r);
660         if (!r) {
661                 stimer->msg_pending = false;
662                 if (!(stimer->config.periodic))
663                         stimer->config.enable = 0;
664         }
665 }
666 
667 void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
668 {
669         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
670         struct kvm_vcpu_hv_stimer *stimer;
671         u64 time_now, exp_time;
672         int i;
673 
674         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
675                 if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
676                         stimer = &hv_vcpu->stimer[i];
677                         if (stimer->config.enable) {
678                                 exp_time = stimer->exp_time;
679 
680                                 if (exp_time) {
681                                         time_now =
682                                                 get_time_ref_counter(vcpu->kvm);
683                                         if (time_now >= exp_time)
684                                                 stimer_expiration(stimer);
685                                 }
686 
687                                 if ((stimer->config.enable) &&
688                                     stimer->count) {
689                                         if (!stimer->msg_pending)
690                                                 stimer_start(stimer);
691                                 } else
692                                         stimer_cleanup(stimer);
693                         }
694                 }
695 }
696 
697 void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
698 {
699         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
700         int i;
701 
702         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
703                 stimer_cleanup(&hv_vcpu->stimer[i]);
704 }
705 
706 bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
707 {
708         if (!(vcpu->arch.hyperv.hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
709                 return false;
710         return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
711 }
712 EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
713 
714 bool kvm_hv_get_assist_page(struct kvm_vcpu *vcpu,
715                             struct hv_vp_assist_page *assist_page)
716 {
717         if (!kvm_hv_assist_page_enabled(vcpu))
718                 return false;
719         return !kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
720                                       assist_page, sizeof(*assist_page));
721 }
722 EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
723 
724 static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
725 {
726         struct hv_message *msg = &stimer->msg;
727         struct hv_timer_message_payload *payload =
728                         (struct hv_timer_message_payload *)&msg->u.payload;
729 
730         memset(&msg->header, 0, sizeof(msg->header));
731         msg->header.message_type = HVMSG_TIMER_EXPIRED;
732         msg->header.payload_size = sizeof(*payload);
733 
734         payload->timer_index = stimer->index;
735         payload->expiration_time = 0;
736         payload->delivery_time = 0;
737 }
738 
739 static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
740 {
741         memset(stimer, 0, sizeof(*stimer));
742         stimer->index = timer_index;
743         hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
744         stimer->timer.function = stimer_timer_callback;
745         stimer_prepare_msg(stimer);
746 }
747 
748 void kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
749 {
750         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
751         int i;
752 
753         synic_init(&hv_vcpu->synic);
754 
755         bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
756         for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
757                 stimer_init(&hv_vcpu->stimer[i], i);
758 }
759 
760 void kvm_hv_vcpu_postcreate(struct kvm_vcpu *vcpu)
761 {
762         struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
763 
764         hv_vcpu->vp_index = kvm_vcpu_get_idx(vcpu);
765 }
766 
767 int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
768 {
769         struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
770 
771         /*
772          * Hyper-V SynIC auto EOI SINT's are
773          * not compatible with APICV, so deactivate APICV
774          */
775         kvm_vcpu_deactivate_apicv(vcpu);
776         synic->active = true;
777         synic->dont_zero_synic_pages = dont_zero_synic_pages;
778         return 0;
779 }
780 
781 static bool kvm_hv_msr_partition_wide(u32 msr)
782 {
783         bool r = false;
784 
785         switch (msr) {
786         case HV_X64_MSR_GUEST_OS_ID:
787         case HV_X64_MSR_HYPERCALL:
788         case HV_X64_MSR_REFERENCE_TSC:
789         case HV_X64_MSR_TIME_REF_COUNT:
790         case HV_X64_MSR_CRASH_CTL:
791         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
792         case HV_X64_MSR_RESET:
793         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
794         case HV_X64_MSR_TSC_EMULATION_CONTROL:
795         case HV_X64_MSR_TSC_EMULATION_STATUS:
796                 r = true;
797                 break;
798         }
799 
800         return r;
801 }
802 
803 static int kvm_hv_msr_get_crash_data(struct kvm_vcpu *vcpu,
804                                      u32 index, u64 *pdata)
805 {
806         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
807 
808         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
809                 return -EINVAL;
810 
811         *pdata = hv->hv_crash_param[index];
812         return 0;
813 }
814 
815 static int kvm_hv_msr_get_crash_ctl(struct kvm_vcpu *vcpu, u64 *pdata)
816 {
817         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
818 
819         *pdata = hv->hv_crash_ctl;
820         return 0;
821 }
822 
823 static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
824 {
825         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
826 
827         if (host)
828                 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
829 
830         if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
831 
832                 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
833                           hv->hv_crash_param[0],
834                           hv->hv_crash_param[1],
835                           hv->hv_crash_param[2],
836                           hv->hv_crash_param[3],
837                           hv->hv_crash_param[4]);
838 
839                 /* Send notification about crash to user space */
840                 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
841         }
842 
843         return 0;
844 }
845 
846 static int kvm_hv_msr_set_crash_data(struct kvm_vcpu *vcpu,
847                                      u32 index, u64 data)
848 {
849         struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
850 
851         if (WARN_ON_ONCE(index >= ARRAY_SIZE(hv->hv_crash_param)))
852                 return -EINVAL;
853 
854         hv->hv_crash_param[index] = data;
855         return 0;
856 }
857 
858 /*
859  * The kvmclock and Hyper-V TSC page use similar formulas, and converting
860  * between them is possible:
861  *
862  * kvmclock formula:
863  *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
864  *           + system_time
865  *
866  * Hyper-V formula:
867  *    nsec/100 = ticks * scale / 2^64 + offset
868  *
869  * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
870  * By dividing the kvmclock formula by 100 and equating what's left we get:
871  *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
872  *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
873  *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
874  *
875  * Now expand the kvmclock formula and divide by 100:
876  *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
877  *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
878  *           + system_time
879  *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
880  *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
881  *               + system_time / 100
882  *
883  * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
884  *    nsec/100 = ticks * scale / 2^64
885  *               - tsc_timestamp * scale / 2^64
886  *               + system_time / 100
887  *
888  * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
889  *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
890  *
891  * These two equivalencies are implemented in this function.
892  */
893 static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
894                                         HV_REFERENCE_TSC_PAGE *tsc_ref)
895 {
896         u64 max_mul;
897 
898         if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
899                 return false;
900 
901         /*
902          * check if scale would overflow, if so we use the time ref counter
903          *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
904          *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
905          *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
906          */
907         max_mul = 100ull << (32 - hv_clock->tsc_shift);
908         if (hv_clock->tsc_to_system_mul >= max_mul)
909                 return false;
910 
911         /*
912          * Otherwise compute the scale and offset according to the formulas
913          * derived above.
914          */
915         tsc_ref->tsc_scale =
916                 mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
917                                 hv_clock->tsc_to_system_mul,
918                                 100);
919 
920         tsc_ref->tsc_offset = hv_clock->system_time;
921         do_div(tsc_ref->tsc_offset, 100);
922         tsc_ref->tsc_offset -=
923                 mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
924         return true;
925 }
926 
927 void kvm_hv_setup_tsc_page(struct kvm *kvm,
928                            struct pvclock_vcpu_time_info *hv_clock)
929 {
930         struct kvm_hv *hv = &kvm->arch.hyperv;
931         u32 tsc_seq;
932         u64 gfn;
933 
934         BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
935         BUILD_BUG_ON(offsetof(HV_REFERENCE_TSC_PAGE, tsc_sequence) != 0);
936 
937         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
938                 return;
939 
940         mutex_lock(&kvm->arch.hyperv.hv_lock);
941         if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
942                 goto out_unlock;
943 
944         gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
945         /*
946          * Because the TSC parameters only vary when there is a
947          * change in the master clock, do not bother with caching.
948          */
949         if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
950                                     &tsc_seq, sizeof(tsc_seq))))
951                 goto out_unlock;
952 
953         /*
954          * While we're computing and writing the parameters, force the
955          * guest to use the time reference count MSR.
956          */
957         hv->tsc_ref.tsc_sequence = 0;
958         if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
959                             &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
960                 goto out_unlock;
961 
962         if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
963                 goto out_unlock;
964 
965         /* Ensure sequence is zero before writing the rest of the struct.  */
966         smp_wmb();
967         if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
968                 goto out_unlock;
969 
970         /*
971          * Now switch to the TSC page mechanism by writing the sequence.
972          */
973         tsc_seq++;
974         if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
975                 tsc_seq = 1;
976 
977         /* Write the struct entirely before the non-zero sequence.  */
978         smp_wmb();
979 
980         hv->tsc_ref.tsc_sequence = tsc_seq;
981         kvm_write_guest(kvm, gfn_to_gpa(gfn),
982                         &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence));
983 out_unlock:
984         mutex_unlock(&kvm->arch.hyperv.hv_lock);
985 }
986 
987 static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
988                              bool host)
989 {
990         struct kvm *kvm = vcpu->kvm;
991         struct kvm_hv *hv = &kvm->arch.hyperv;
992 
993         switch (msr) {
994         case HV_X64_MSR_GUEST_OS_ID:
995                 hv->hv_guest_os_id = data;
996                 /* setting guest os id to zero disables hypercall page */
997                 if (!hv->hv_guest_os_id)
998                         hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
999                 break;
1000         case HV_X64_MSR_HYPERCALL: {
1001                 u64 gfn;
1002                 unsigned long addr;
1003                 u8 instructions[4];
1004 
1005                 /* if guest os id is not set hypercall should remain disabled */
1006                 if (!hv->hv_guest_os_id)
1007                         break;
1008                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1009                         hv->hv_hypercall = data;
1010                         break;
1011                 }
1012                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1013                 addr = gfn_to_hva(kvm, gfn);
1014                 if (kvm_is_error_hva(addr))
1015                         return 1;
1016                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1017                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1018                 if (__copy_to_user((void __user *)addr, instructions, 4))
1019                         return 1;
1020                 hv->hv_hypercall = data;
1021                 mark_page_dirty(kvm, gfn);
1022                 break;
1023         }
1024         case HV_X64_MSR_REFERENCE_TSC:
1025                 hv->hv_tsc_page = data;
1026                 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE)
1027                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1028                 break;
1029         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1030                 return kvm_hv_msr_set_crash_data(vcpu,
1031                                                  msr - HV_X64_MSR_CRASH_P0,
1032                                                  data);
1033         case HV_X64_MSR_CRASH_CTL:
1034                 return kvm_hv_msr_set_crash_ctl(vcpu, data, host);
1035         case HV_X64_MSR_RESET:
1036                 if (data == 1) {
1037                         vcpu_debug(vcpu, "hyper-v reset requested\n");
1038                         kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1039                 }
1040                 break;
1041         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1042                 hv->hv_reenlightenment_control = data;
1043                 break;
1044         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1045                 hv->hv_tsc_emulation_control = data;
1046                 break;
1047         case HV_X64_MSR_TSC_EMULATION_STATUS:
1048                 hv->hv_tsc_emulation_status = data;
1049                 break;
1050         case HV_X64_MSR_TIME_REF_COUNT:
1051                 /* read-only, but still ignore it if host-initiated */
1052                 if (!host)
1053                         return 1;
1054                 break;
1055         default:
1056                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1057                             msr, data);
1058                 return 1;
1059         }
1060         return 0;
1061 }
1062 
1063 /* Calculate cpu time spent by current task in 100ns units */
1064 static u64 current_task_runtime_100ns(void)
1065 {
1066         u64 utime, stime;
1067 
1068         task_cputime_adjusted(current, &utime, &stime);
1069 
1070         return div_u64(utime + stime, 100);
1071 }
1072 
1073 static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1074 {
1075         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1076 
1077         switch (msr) {
1078         case HV_X64_MSR_VP_INDEX: {
1079                 struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
1080                 int vcpu_idx = kvm_vcpu_get_idx(vcpu);
1081                 u32 new_vp_index = (u32)data;
1082 
1083                 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1084                         return 1;
1085 
1086                 if (new_vp_index == hv_vcpu->vp_index)
1087                         return 0;
1088 
1089                 /*
1090                  * The VP index is initialized to vcpu_index by
1091                  * kvm_hv_vcpu_postcreate so they initially match.  Now the
1092                  * VP index is changing, adjust num_mismatched_vp_indexes if
1093                  * it now matches or no longer matches vcpu_idx.
1094                  */
1095                 if (hv_vcpu->vp_index == vcpu_idx)
1096                         atomic_inc(&hv->num_mismatched_vp_indexes);
1097                 else if (new_vp_index == vcpu_idx)
1098                         atomic_dec(&hv->num_mismatched_vp_indexes);
1099 
1100                 hv_vcpu->vp_index = new_vp_index;
1101                 break;
1102         }
1103         case HV_X64_MSR_VP_ASSIST_PAGE: {
1104                 u64 gfn;
1105                 unsigned long addr;
1106 
1107                 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1108                         hv_vcpu->hv_vapic = data;
1109                         if (kvm_lapic_enable_pv_eoi(vcpu, 0, 0))
1110                                 return 1;
1111                         break;
1112                 }
1113                 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1114                 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1115                 if (kvm_is_error_hva(addr))
1116                         return 1;
1117 
1118                 /*
1119                  * Clear apic_assist portion of f(struct hv_vp_assist_page
1120                  * only, there can be valuable data in the rest which needs
1121                  * to be preserved e.g. on migration.
1122                  */
1123                 if (__clear_user((void __user *)addr, sizeof(u32)))
1124                         return 1;
1125                 hv_vcpu->hv_vapic = data;
1126                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1127                 if (kvm_lapic_enable_pv_eoi(vcpu,
1128                                             gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1129                                             sizeof(struct hv_vp_assist_page)))
1130                         return 1;
1131                 break;
1132         }
1133         case HV_X64_MSR_EOI:
1134                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1135         case HV_X64_MSR_ICR:
1136                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1137         case HV_X64_MSR_TPR:
1138                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1139         case HV_X64_MSR_VP_RUNTIME:
1140                 if (!host)
1141                         return 1;
1142                 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1143                 break;
1144         case HV_X64_MSR_SCONTROL:
1145         case HV_X64_MSR_SVERSION:
1146         case HV_X64_MSR_SIEFP:
1147         case HV_X64_MSR_SIMP:
1148         case HV_X64_MSR_EOM:
1149         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1150                 return synic_set_msr(vcpu_to_synic(vcpu), msr, data, host);
1151         case HV_X64_MSR_STIMER0_CONFIG:
1152         case HV_X64_MSR_STIMER1_CONFIG:
1153         case HV_X64_MSR_STIMER2_CONFIG:
1154         case HV_X64_MSR_STIMER3_CONFIG: {
1155                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1156 
1157                 return stimer_set_config(vcpu_to_stimer(vcpu, timer_index),
1158                                          data, host);
1159         }
1160         case HV_X64_MSR_STIMER0_COUNT:
1161         case HV_X64_MSR_STIMER1_COUNT:
1162         case HV_X64_MSR_STIMER2_COUNT:
1163         case HV_X64_MSR_STIMER3_COUNT: {
1164                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1165 
1166                 return stimer_set_count(vcpu_to_stimer(vcpu, timer_index),
1167                                         data, host);
1168         }
1169         case HV_X64_MSR_TSC_FREQUENCY:
1170         case HV_X64_MSR_APIC_FREQUENCY:
1171                 /* read-only, but still ignore it if host-initiated */
1172                 if (!host)
1173                         return 1;
1174                 break;
1175         default:
1176                 vcpu_unimpl(vcpu, "Hyper-V uhandled wrmsr: 0x%x data 0x%llx\n",
1177                             msr, data);
1178                 return 1;
1179         }
1180 
1181         return 0;
1182 }
1183 
1184 static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1185 {
1186         u64 data = 0;
1187         struct kvm *kvm = vcpu->kvm;
1188         struct kvm_hv *hv = &kvm->arch.hyperv;
1189 
1190         switch (msr) {
1191         case HV_X64_MSR_GUEST_OS_ID:
1192                 data = hv->hv_guest_os_id;
1193                 break;
1194         case HV_X64_MSR_HYPERCALL:
1195                 data = hv->hv_hypercall;
1196                 break;
1197         case HV_X64_MSR_TIME_REF_COUNT:
1198                 data = get_time_ref_counter(kvm);
1199                 break;
1200         case HV_X64_MSR_REFERENCE_TSC:
1201                 data = hv->hv_tsc_page;
1202                 break;
1203         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1204                 return kvm_hv_msr_get_crash_data(vcpu,
1205                                                  msr - HV_X64_MSR_CRASH_P0,
1206                                                  pdata);
1207         case HV_X64_MSR_CRASH_CTL:
1208                 return kvm_hv_msr_get_crash_ctl(vcpu, pdata);
1209         case HV_X64_MSR_RESET:
1210                 data = 0;
1211                 break;
1212         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1213                 data = hv->hv_reenlightenment_control;
1214                 break;
1215         case HV_X64_MSR_TSC_EMULATION_CONTROL:
1216                 data = hv->hv_tsc_emulation_control;
1217                 break;
1218         case HV_X64_MSR_TSC_EMULATION_STATUS:
1219                 data = hv->hv_tsc_emulation_status;
1220                 break;
1221         default:
1222                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1223                 return 1;
1224         }
1225 
1226         *pdata = data;
1227         return 0;
1228 }
1229 
1230 static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1231                           bool host)
1232 {
1233         u64 data = 0;
1234         struct kvm_vcpu_hv *hv_vcpu = &vcpu->arch.hyperv;
1235 
1236         switch (msr) {
1237         case HV_X64_MSR_VP_INDEX:
1238                 data = hv_vcpu->vp_index;
1239                 break;
1240         case HV_X64_MSR_EOI:
1241                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1242         case HV_X64_MSR_ICR:
1243                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1244         case HV_X64_MSR_TPR:
1245                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1246         case HV_X64_MSR_VP_ASSIST_PAGE:
1247                 data = hv_vcpu->hv_vapic;
1248                 break;
1249         case HV_X64_MSR_VP_RUNTIME:
1250                 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1251                 break;
1252         case HV_X64_MSR_SCONTROL:
1253         case HV_X64_MSR_SVERSION:
1254         case HV_X64_MSR_SIEFP:
1255         case HV_X64_MSR_SIMP:
1256         case HV_X64_MSR_EOM:
1257         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1258                 return synic_get_msr(vcpu_to_synic(vcpu), msr, pdata, host);
1259         case HV_X64_MSR_STIMER0_CONFIG:
1260         case HV_X64_MSR_STIMER1_CONFIG:
1261         case HV_X64_MSR_STIMER2_CONFIG:
1262         case HV_X64_MSR_STIMER3_CONFIG: {
1263                 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1264 
1265                 return stimer_get_config(vcpu_to_stimer(vcpu, timer_index),
1266                                          pdata);
1267         }
1268         case HV_X64_MSR_STIMER0_COUNT:
1269         case HV_X64_MSR_STIMER1_COUNT:
1270         case HV_X64_MSR_STIMER2_COUNT:
1271         case HV_X64_MSR_STIMER3_COUNT: {
1272                 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1273 
1274                 return stimer_get_count(vcpu_to_stimer(vcpu, timer_index),
1275                                         pdata);
1276         }
1277         case HV_X64_MSR_TSC_FREQUENCY:
1278                 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1279                 break;
1280         case HV_X64_MSR_APIC_FREQUENCY:
1281                 data = APIC_BUS_FREQUENCY;
1282                 break;
1283         default:
1284                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1285                 return 1;
1286         }
1287         *pdata = data;
1288         return 0;
1289 }
1290 
1291 int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1292 {
1293         if (kvm_hv_msr_partition_wide(msr)) {
1294                 int r;
1295 
1296                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1297                 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1298                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1299                 return r;
1300         } else
1301                 return kvm_hv_set_msr(vcpu, msr, data, host);
1302 }
1303 
1304 int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1305 {
1306         if (kvm_hv_msr_partition_wide(msr)) {
1307                 int r;
1308 
1309                 mutex_lock(&vcpu->kvm->arch.hyperv.hv_lock);
1310                 r = kvm_hv_get_msr_pw(vcpu, msr, pdata);
1311                 mutex_unlock(&vcpu->kvm->arch.hyperv.hv_lock);
1312                 return r;
1313         } else
1314                 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1315 }
1316 
1317 static __always_inline unsigned long *sparse_set_to_vcpu_mask(
1318         struct kvm *kvm, u64 *sparse_banks, u64 valid_bank_mask,
1319         u64 *vp_bitmap, unsigned long *vcpu_bitmap)
1320 {
1321         struct kvm_hv *hv = &kvm->arch.hyperv;
1322         struct kvm_vcpu *vcpu;
1323         int i, bank, sbank = 0;
1324 
1325         memset(vp_bitmap, 0,
1326                KVM_HV_MAX_SPARSE_VCPU_SET_BITS * sizeof(*vp_bitmap));
1327         for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1328                          KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1329                 vp_bitmap[bank] = sparse_banks[sbank++];
1330 
1331         if (likely(!atomic_read(&hv->num_mismatched_vp_indexes))) {
1332                 /* for all vcpus vp_index == vcpu_idx */
1333                 return (unsigned long *)vp_bitmap;
1334         }
1335 
1336         bitmap_zero(vcpu_bitmap, KVM_MAX_VCPUS);
1337         kvm_for_each_vcpu(i, vcpu, kvm) {
1338                 if (test_bit(vcpu_to_hv_vcpu(vcpu)->vp_index,
1339                              (unsigned long *)vp_bitmap))
1340                         __set_bit(i, vcpu_bitmap);
1341         }
1342         return vcpu_bitmap;
1343 }
1344 
1345 static u64 kvm_hv_flush_tlb(struct kvm_vcpu *current_vcpu, u64 ingpa,
1346                             u16 rep_cnt, bool ex)
1347 {
1348         struct kvm *kvm = current_vcpu->kvm;
1349         struct kvm_vcpu_hv *hv_vcpu = &current_vcpu->arch.hyperv;
1350         struct hv_tlb_flush_ex flush_ex;
1351         struct hv_tlb_flush flush;
1352         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1353         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1354         unsigned long *vcpu_mask;
1355         u64 valid_bank_mask;
1356         u64 sparse_banks[64];
1357         int sparse_banks_len;
1358         bool all_cpus;
1359 
1360         if (!ex) {
1361                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush, sizeof(flush))))
1362                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1363 
1364                 trace_kvm_hv_flush_tlb(flush.processor_mask,
1365                                        flush.address_space, flush.flags);
1366 
1367                 valid_bank_mask = BIT_ULL(0);
1368                 sparse_banks[0] = flush.processor_mask;
1369                 all_cpus = flush.flags & HV_FLUSH_ALL_PROCESSORS;
1370         } else {
1371                 if (unlikely(kvm_read_guest(kvm, ingpa, &flush_ex,
1372                                             sizeof(flush_ex))))
1373                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1374 
1375                 trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
1376                                           flush_ex.hv_vp_set.format,
1377                                           flush_ex.address_space,
1378                                           flush_ex.flags);
1379 
1380                 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
1381                 all_cpus = flush_ex.hv_vp_set.format !=
1382                         HV_GENERIC_SET_SPARSE_4K;
1383 
1384                 sparse_banks_len =
1385                         bitmap_weight((unsigned long *)&valid_bank_mask, 64) *
1386                         sizeof(sparse_banks[0]);
1387 
1388                 if (!sparse_banks_len && !all_cpus)
1389                         goto ret_success;
1390 
1391                 if (!all_cpus &&
1392                     kvm_read_guest(kvm,
1393                                    ingpa + offsetof(struct hv_tlb_flush_ex,
1394                                                     hv_vp_set.bank_contents),
1395                                    sparse_banks,
1396                                    sparse_banks_len))
1397                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1398         }
1399 
1400         cpumask_clear(&hv_vcpu->tlb_flush);
1401 
1402         vcpu_mask = all_cpus ? NULL :
1403                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1404                                         vp_bitmap, vcpu_bitmap);
1405 
1406         /*
1407          * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
1408          * analyze it here, flush TLB regardless of the specified address space.
1409          */
1410         kvm_make_vcpus_request_mask(kvm,
1411                                     KVM_REQ_TLB_FLUSH | KVM_REQUEST_NO_WAKEUP,
1412                                     vcpu_mask, &hv_vcpu->tlb_flush);
1413 
1414 ret_success:
1415         /* We always do full TLB flush, set rep_done = rep_cnt. */
1416         return (u64)HV_STATUS_SUCCESS |
1417                 ((u64)rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
1418 }
1419 
1420 static void kvm_send_ipi_to_many(struct kvm *kvm, u32 vector,
1421                                  unsigned long *vcpu_bitmap)
1422 {
1423         struct kvm_lapic_irq irq = {
1424                 .delivery_mode = APIC_DM_FIXED,
1425                 .vector = vector
1426         };
1427         struct kvm_vcpu *vcpu;
1428         int i;
1429 
1430         kvm_for_each_vcpu(i, vcpu, kvm) {
1431                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
1432                         continue;
1433 
1434                 /* We fail only when APIC is disabled */
1435                 kvm_apic_set_irq(vcpu, &irq, NULL);
1436         }
1437 }
1438 
1439 static u64 kvm_hv_send_ipi(struct kvm_vcpu *current_vcpu, u64 ingpa, u64 outgpa,
1440                            bool ex, bool fast)
1441 {
1442         struct kvm *kvm = current_vcpu->kvm;
1443         struct hv_send_ipi_ex send_ipi_ex;
1444         struct hv_send_ipi send_ipi;
1445         u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1446         DECLARE_BITMAP(vcpu_bitmap, KVM_MAX_VCPUS);
1447         unsigned long *vcpu_mask;
1448         unsigned long valid_bank_mask;
1449         u64 sparse_banks[64];
1450         int sparse_banks_len;
1451         u32 vector;
1452         bool all_cpus;
1453 
1454         if (!ex) {
1455                 if (!fast) {
1456                         if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi,
1457                                                     sizeof(send_ipi))))
1458                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1459                         sparse_banks[0] = send_ipi.cpu_mask;
1460                         vector = send_ipi.vector;
1461                 } else {
1462                         /* 'reserved' part of hv_send_ipi should be 0 */
1463                         if (unlikely(ingpa >> 32 != 0))
1464                                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1465                         sparse_banks[0] = outgpa;
1466                         vector = (u32)ingpa;
1467                 }
1468                 all_cpus = false;
1469                 valid_bank_mask = BIT_ULL(0);
1470 
1471                 trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
1472         } else {
1473                 if (unlikely(kvm_read_guest(kvm, ingpa, &send_ipi_ex,
1474                                             sizeof(send_ipi_ex))))
1475                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1476 
1477                 trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
1478                                          send_ipi_ex.vp_set.format,
1479                                          send_ipi_ex.vp_set.valid_bank_mask);
1480 
1481                 vector = send_ipi_ex.vector;
1482                 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
1483                 sparse_banks_len = bitmap_weight(&valid_bank_mask, 64) *
1484                         sizeof(sparse_banks[0]);
1485 
1486                 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
1487 
1488                 if (!sparse_banks_len)
1489                         goto ret_success;
1490 
1491                 if (!all_cpus &&
1492                     kvm_read_guest(kvm,
1493                                    ingpa + offsetof(struct hv_send_ipi_ex,
1494                                                     vp_set.bank_contents),
1495                                    sparse_banks,
1496                                    sparse_banks_len))
1497                         return HV_STATUS_INVALID_HYPERCALL_INPUT;
1498         }
1499 
1500         if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
1501                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1502 
1503         vcpu_mask = all_cpus ? NULL :
1504                 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask,
1505                                         vp_bitmap, vcpu_bitmap);
1506 
1507         kvm_send_ipi_to_many(kvm, vector, vcpu_mask);
1508 
1509 ret_success:
1510         return HV_STATUS_SUCCESS;
1511 }
1512 
1513 bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1514 {
1515         return READ_ONCE(kvm->arch.hyperv.hv_hypercall) & HV_X64_MSR_HYPERCALL_ENABLE;
1516 }
1517 
1518 static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1519 {
1520         bool longmode;
1521 
1522         longmode = is_64_bit_mode(vcpu);
1523         if (longmode)
1524                 kvm_register_write(vcpu, VCPU_REGS_RAX, result);
1525         else {
1526                 kvm_register_write(vcpu, VCPU_REGS_RDX, result >> 32);
1527                 kvm_register_write(vcpu, VCPU_REGS_RAX, result & 0xffffffff);
1528         }
1529 }
1530 
1531 static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
1532 {
1533         kvm_hv_hypercall_set_result(vcpu, result);
1534         ++vcpu->stat.hypercalls;
1535         return kvm_skip_emulated_instruction(vcpu);
1536 }
1537 
1538 static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1539 {
1540         return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
1541 }
1542 
1543 static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, bool fast, u64 param)
1544 {
1545         struct eventfd_ctx *eventfd;
1546 
1547         if (unlikely(!fast)) {
1548                 int ret;
1549                 gpa_t gpa = param;
1550 
1551                 if ((gpa & (__alignof__(param) - 1)) ||
1552                     offset_in_page(gpa) + sizeof(param) > PAGE_SIZE)
1553                         return HV_STATUS_INVALID_ALIGNMENT;
1554 
1555                 ret = kvm_vcpu_read_guest(vcpu, gpa, &param, sizeof(param));
1556                 if (ret < 0)
1557                         return HV_STATUS_INVALID_ALIGNMENT;
1558         }
1559 
1560         /*
1561          * Per spec, bits 32-47 contain the extra "flag number".  However, we
1562          * have no use for it, and in all known usecases it is zero, so just
1563          * report lookup failure if it isn't.
1564          */
1565         if (param & 0xffff00000000ULL)
1566                 return HV_STATUS_INVALID_PORT_ID;
1567         /* remaining bits are reserved-zero */
1568         if (param & ~KVM_HYPERV_CONN_ID_MASK)
1569                 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1570 
1571         /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
1572         rcu_read_lock();
1573         eventfd = idr_find(&vcpu->kvm->arch.hyperv.conn_to_evt, param);
1574         rcu_read_unlock();
1575         if (!eventfd)
1576                 return HV_STATUS_INVALID_PORT_ID;
1577 
1578         eventfd_signal(eventfd, 1);
1579         return HV_STATUS_SUCCESS;
1580 }
1581 
1582 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
1583 {
1584         u64 param, ingpa, outgpa, ret = HV_STATUS_SUCCESS;
1585         uint16_t code, rep_idx, rep_cnt;
1586         bool fast, longmode, rep;
1587 
1588         /*
1589          * hypercall generates UD from non zero cpl and real mode
1590          * per HYPER-V spec
1591          */
1592         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
1593                 kvm_queue_exception(vcpu, UD_VECTOR);
1594                 return 1;
1595         }
1596 
1597         longmode = is_64_bit_mode(vcpu);
1598 
1599         if (!longmode) {
1600                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
1601                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
1602                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
1603                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
1604                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
1605                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
1606         }
1607 #ifdef CONFIG_X86_64
1608         else {
1609                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
1610                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
1611                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
1612         }
1613 #endif
1614 
1615         code = param & 0xffff;
1616         fast = !!(param & HV_HYPERCALL_FAST_BIT);
1617         rep_cnt = (param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
1618         rep_idx = (param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
1619         rep = !!(rep_cnt || rep_idx);
1620 
1621         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
1622 
1623         switch (code) {
1624         case HVCALL_NOTIFY_LONG_SPIN_WAIT:
1625                 if (unlikely(rep)) {
1626                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1627                         break;
1628                 }
1629                 kvm_vcpu_on_spin(vcpu, true);
1630                 break;
1631         case HVCALL_SIGNAL_EVENT:
1632                 if (unlikely(rep)) {
1633                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1634                         break;
1635                 }
1636                 ret = kvm_hvcall_signal_event(vcpu, fast, ingpa);
1637                 if (ret != HV_STATUS_INVALID_PORT_ID)
1638                         break;
1639                 /* fall through - maybe userspace knows this conn_id. */
1640         case HVCALL_POST_MESSAGE:
1641                 /* don't bother userspace if it has no way to handle it */
1642                 if (unlikely(rep || !vcpu_to_synic(vcpu)->active)) {
1643                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1644                         break;
1645                 }
1646                 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
1647                 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
1648                 vcpu->run->hyperv.u.hcall.input = param;
1649                 vcpu->run->hyperv.u.hcall.params[0] = ingpa;
1650                 vcpu->run->hyperv.u.hcall.params[1] = outgpa;
1651                 vcpu->arch.complete_userspace_io =
1652                                 kvm_hv_hypercall_complete_userspace;
1653                 return 0;
1654         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
1655                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1656                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1657                         break;
1658                 }
1659                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1660                 break;
1661         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
1662                 if (unlikely(fast || rep)) {
1663                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1664                         break;
1665                 }
1666                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, false);
1667                 break;
1668         case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
1669                 if (unlikely(fast || !rep_cnt || rep_idx)) {
1670                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1671                         break;
1672                 }
1673                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1674                 break;
1675         case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
1676                 if (unlikely(fast || rep)) {
1677                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1678                         break;
1679                 }
1680                 ret = kvm_hv_flush_tlb(vcpu, ingpa, rep_cnt, true);
1681                 break;
1682         case HVCALL_SEND_IPI:
1683                 if (unlikely(rep)) {
1684                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1685                         break;
1686                 }
1687                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, false, fast);
1688                 break;
1689         case HVCALL_SEND_IPI_EX:
1690                 if (unlikely(fast || rep)) {
1691                         ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
1692                         break;
1693                 }
1694                 ret = kvm_hv_send_ipi(vcpu, ingpa, outgpa, true, false);
1695                 break;
1696         default:
1697                 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
1698                 break;
1699         }
1700 
1701         return kvm_hv_hypercall_complete(vcpu, ret);
1702 }
1703 
1704 void kvm_hv_init_vm(struct kvm *kvm)
1705 {
1706         mutex_init(&kvm->arch.hyperv.hv_lock);
1707         idr_init(&kvm->arch.hyperv.conn_to_evt);
1708 }
1709 
1710 void kvm_hv_destroy_vm(struct kvm *kvm)
1711 {
1712         struct eventfd_ctx *eventfd;
1713         int i;
1714 
1715         idr_for_each_entry(&kvm->arch.hyperv.conn_to_evt, eventfd, i)
1716                 eventfd_ctx_put(eventfd);
1717         idr_destroy(&kvm->arch.hyperv.conn_to_evt);
1718 }
1719 
1720 static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
1721 {
1722         struct kvm_hv *hv = &kvm->arch.hyperv;
1723         struct eventfd_ctx *eventfd;
1724         int ret;
1725 
1726         eventfd = eventfd_ctx_fdget(fd);
1727         if (IS_ERR(eventfd))
1728                 return PTR_ERR(eventfd);
1729 
1730         mutex_lock(&hv->hv_lock);
1731         ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
1732                         GFP_KERNEL_ACCOUNT);
1733         mutex_unlock(&hv->hv_lock);
1734 
1735         if (ret >= 0)
1736                 return 0;
1737 
1738         if (ret == -ENOSPC)
1739                 ret = -EEXIST;
1740         eventfd_ctx_put(eventfd);
1741         return ret;
1742 }
1743 
1744 static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
1745 {
1746         struct kvm_hv *hv = &kvm->arch.hyperv;
1747         struct eventfd_ctx *eventfd;
1748 
1749         mutex_lock(&hv->hv_lock);
1750         eventfd = idr_remove(&hv->conn_to_evt, conn_id);
1751         mutex_unlock(&hv->hv_lock);
1752 
1753         if (!eventfd)
1754                 return -ENOENT;
1755 
1756         synchronize_srcu(&kvm->srcu);
1757         eventfd_ctx_put(eventfd);
1758         return 0;
1759 }
1760 
1761 int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
1762 {
1763         if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
1764             (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
1765                 return -EINVAL;
1766 
1767         if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
1768                 return kvm_hv_eventfd_deassign(kvm, args->conn_id);
1769         return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
1770 }
1771 
1772 int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
1773                                 struct kvm_cpuid_entry2 __user *entries)
1774 {
1775         uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
1776         struct kvm_cpuid_entry2 cpuid_entries[] = {
1777                 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
1778                 { .function = HYPERV_CPUID_INTERFACE },
1779                 { .function = HYPERV_CPUID_VERSION },
1780                 { .function = HYPERV_CPUID_FEATURES },
1781                 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
1782                 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
1783                 { .function = HYPERV_CPUID_NESTED_FEATURES },
1784         };
1785         int i, nent = ARRAY_SIZE(cpuid_entries);
1786 
1787         /* Skip NESTED_FEATURES if eVMCS is not supported */
1788         if (!evmcs_ver)
1789                 --nent;
1790 
1791         if (cpuid->nent < nent)
1792                 return -E2BIG;
1793 
1794         if (cpuid->nent > nent)
1795                 cpuid->nent = nent;
1796 
1797         for (i = 0; i < nent; i++) {
1798                 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
1799                 u32 signature[3];
1800 
1801                 switch (ent->function) {
1802                 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
1803                         memcpy(signature, "Linux KVM Hv", 12);
1804 
1805                         ent->eax = HYPERV_CPUID_NESTED_FEATURES;
1806                         ent->ebx = signature[0];
1807                         ent->ecx = signature[1];
1808                         ent->edx = signature[2];
1809                         break;
1810 
1811                 case HYPERV_CPUID_INTERFACE:
1812                         memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1813                         ent->eax = signature[0];
1814                         break;
1815 
1816                 case HYPERV_CPUID_VERSION:
1817                         /*
1818                          * We implement some Hyper-V 2016 functions so let's use
1819                          * this version.
1820                          */
1821                         ent->eax = 0x00003839;
1822                         ent->ebx = 0x000A0000;
1823                         break;
1824 
1825                 case HYPERV_CPUID_FEATURES:
1826                         ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
1827                         ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
1828                         ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
1829                         ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
1830                         ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
1831                         ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
1832                         ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
1833                         ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
1834                         ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
1835                         ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
1836                         ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
1837 
1838                         ent->ebx |= HV_X64_POST_MESSAGES;
1839                         ent->ebx |= HV_X64_SIGNAL_EVENTS;
1840 
1841                         ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
1842                         ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1843                         ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
1844 
1845                         break;
1846 
1847                 case HYPERV_CPUID_ENLIGHTMENT_INFO:
1848                         ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
1849                         ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
1850                         ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
1851                         ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
1852                         ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
1853                         if (evmcs_ver)
1854                                 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
1855 
1856                         /*
1857                          * Default number of spinlock retry attempts, matches
1858                          * HyperV 2016.
1859                          */
1860                         ent->ebx = 0x00000FFF;
1861 
1862                         break;
1863 
1864                 case HYPERV_CPUID_IMPLEMENT_LIMITS:
1865                         /* Maximum number of virtual processors */
1866                         ent->eax = KVM_MAX_VCPUS;
1867                         /*
1868                          * Maximum number of logical processors, matches
1869                          * HyperV 2016.
1870                          */
1871                         ent->ebx = 64;
1872 
1873                         break;
1874 
1875                 case HYPERV_CPUID_NESTED_FEATURES:
1876                         ent->eax = evmcs_ver;
1877 
1878                         break;
1879 
1880                 default:
1881                         break;
1882                 }
1883         }
1884 
1885         if (copy_to_user(entries, cpuid_entries,
1886                          nent * sizeof(struct kvm_cpuid_entry2)))
1887                 return -EFAULT;
1888 
1889         return 0;
1890 }
1891 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp