1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * MMU support 9 * 10 * Copyright (C) 2006 Qumranet, Inc. 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 12 * 13 * Authors: 14 * Yaniv Kamay <yaniv@qumranet.com> 15 * Avi Kivity <avi@qumranet.com> 16 */ 17 18 #include "irq.h" 19 #include "ioapic.h" 20 #include "mmu.h" 21 #include "mmu_internal.h" 22 #include "tdp_mmu.h" 23 #include "x86.h" 24 #include "kvm_cache_regs.h" 25 #include "kvm_emulate.h" 26 #include "cpuid.h" 27 #include "spte.h" 28 29 #include <linux/kvm_host.h> 30 #include <linux/types.h> 31 #include <linux/string.h> 32 #include <linux/mm.h> 33 #include <linux/highmem.h> 34 #include <linux/moduleparam.h> 35 #include <linux/export.h> 36 #include <linux/swap.h> 37 #include <linux/hugetlb.h> 38 #include <linux/compiler.h> 39 #include <linux/srcu.h> 40 #include <linux/slab.h> 41 #include <linux/sched/signal.h> 42 #include <linux/uaccess.h> 43 #include <linux/hash.h> 44 #include <linux/kern_levels.h> 45 #include <linux/kthread.h> 46 47 #include <asm/page.h> 48 #include <asm/memtype.h> 49 #include <asm/cmpxchg.h> 50 #include <asm/io.h> 51 #include <asm/set_memory.h> 52 #include <asm/vmx.h> 53 #include <asm/kvm_page_track.h> 54 #include "trace.h" 55 56 #include "paging.h" 57 58 extern bool itlb_multihit_kvm_mitigation; 59 60 static int __read_mostly nx_huge_pages = -1; 61 #ifdef CONFIG_PREEMPT_RT 62 /* Recovery can cause latency spikes, disable it for PREEMPT_RT. */ 63 static uint __read_mostly nx_huge_pages_recovery_ratio = 0; 64 #else 65 static uint __read_mostly nx_huge_pages_recovery_ratio = 60; 66 #endif 67 68 static int set_nx_huge_pages(const char *val, const struct kernel_param *kp); 69 static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp); 70 71 static const struct kernel_param_ops nx_huge_pages_ops = { 72 .set = set_nx_huge_pages, 73 .get = param_get_bool, 74 }; 75 76 static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = { 77 .set = set_nx_huge_pages_recovery_ratio, 78 .get = param_get_uint, 79 }; 80 81 module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644); 82 __MODULE_PARM_TYPE(nx_huge_pages, "bool"); 83 module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops, 84 &nx_huge_pages_recovery_ratio, 0644); 85 __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint"); 86 87 static bool __read_mostly force_flush_and_sync_on_reuse; 88 module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644); 89 90 /* 91 * When setting this variable to true it enables Two-Dimensional-Paging 92 * where the hardware walks 2 page tables: 93 * 1. the guest-virtual to guest-physical 94 * 2. while doing 1. it walks guest-physical to host-physical 95 * If the hardware supports that we don't need to do shadow paging. 96 */ 97 bool tdp_enabled = false; 98 99 static int max_huge_page_level __read_mostly; 100 static int max_tdp_level __read_mostly; 101 102 enum { 103 AUDIT_PRE_PAGE_FAULT, 104 AUDIT_POST_PAGE_FAULT, 105 AUDIT_PRE_PTE_WRITE, 106 AUDIT_POST_PTE_WRITE, 107 AUDIT_PRE_SYNC, 108 AUDIT_POST_SYNC 109 }; 110 111 #ifdef MMU_DEBUG 112 bool dbg = 0; 113 module_param(dbg, bool, 0644); 114 #endif 115 116 #define PTE_PREFETCH_NUM 8 117 118 #define PT32_LEVEL_BITS 10 119 120 #define PT32_LEVEL_SHIFT(level) \ 121 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS) 122 123 #define PT32_LVL_OFFSET_MASK(level) \ 124 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \ 125 * PT32_LEVEL_BITS))) - 1)) 126 127 #define PT32_INDEX(address, level)\ 128 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) 129 130 131 #define PT32_BASE_ADDR_MASK PAGE_MASK 132 #define PT32_DIR_BASE_ADDR_MASK \ 133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) 134 #define PT32_LVL_ADDR_MASK(level) \ 135 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \ 136 * PT32_LEVEL_BITS))) - 1)) 137 138 #include <trace/events/kvm.h> 139 140 /* make pte_list_desc fit well in cache line */ 141 #define PTE_LIST_EXT 3 142 143 struct pte_list_desc { 144 u64 *sptes[PTE_LIST_EXT]; 145 struct pte_list_desc *more; 146 }; 147 148 struct kvm_shadow_walk_iterator { 149 u64 addr; 150 hpa_t shadow_addr; 151 u64 *sptep; 152 int level; 153 unsigned index; 154 }; 155 156 #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \ 157 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \ 158 (_root), (_addr)); \ 159 shadow_walk_okay(&(_walker)); \ 160 shadow_walk_next(&(_walker))) 161 162 #define for_each_shadow_entry(_vcpu, _addr, _walker) \ 163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 164 shadow_walk_okay(&(_walker)); \ 165 shadow_walk_next(&(_walker))) 166 167 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \ 168 for (shadow_walk_init(&(_walker), _vcpu, _addr); \ 169 shadow_walk_okay(&(_walker)) && \ 170 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \ 171 __shadow_walk_next(&(_walker), spte)) 172 173 static struct kmem_cache *pte_list_desc_cache; 174 struct kmem_cache *mmu_page_header_cache; 175 static struct percpu_counter kvm_total_used_mmu_pages; 176 177 static void mmu_spte_set(u64 *sptep, u64 spte); 178 static union kvm_mmu_page_role 179 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu); 180 181 #define CREATE_TRACE_POINTS 182 #include "mmutrace.h" 183 184 185 static inline bool kvm_available_flush_tlb_with_range(void) 186 { 187 return kvm_x86_ops.tlb_remote_flush_with_range; 188 } 189 190 static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm, 191 struct kvm_tlb_range *range) 192 { 193 int ret = -ENOTSUPP; 194 195 if (range && kvm_x86_ops.tlb_remote_flush_with_range) 196 ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range); 197 198 if (ret) 199 kvm_flush_remote_tlbs(kvm); 200 } 201 202 void kvm_flush_remote_tlbs_with_address(struct kvm *kvm, 203 u64 start_gfn, u64 pages) 204 { 205 struct kvm_tlb_range range; 206 207 range.start_gfn = start_gfn; 208 range.pages = pages; 209 210 kvm_flush_remote_tlbs_with_range(kvm, &range); 211 } 212 213 bool is_nx_huge_page_enabled(void) 214 { 215 return READ_ONCE(nx_huge_pages); 216 } 217 218 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn, 219 unsigned int access) 220 { 221 u64 spte = make_mmio_spte(vcpu, gfn, access); 222 223 trace_mark_mmio_spte(sptep, gfn, spte); 224 mmu_spte_set(sptep, spte); 225 } 226 227 static gfn_t get_mmio_spte_gfn(u64 spte) 228 { 229 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask; 230 231 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN) 232 & shadow_nonpresent_or_rsvd_mask; 233 234 return gpa >> PAGE_SHIFT; 235 } 236 237 static unsigned get_mmio_spte_access(u64 spte) 238 { 239 return spte & shadow_mmio_access_mask; 240 } 241 242 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte) 243 { 244 u64 kvm_gen, spte_gen, gen; 245 246 gen = kvm_vcpu_memslots(vcpu)->generation; 247 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS)) 248 return false; 249 250 kvm_gen = gen & MMIO_SPTE_GEN_MASK; 251 spte_gen = get_mmio_spte_generation(spte); 252 253 trace_check_mmio_spte(spte, kvm_gen, spte_gen); 254 return likely(kvm_gen == spte_gen); 255 } 256 257 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 258 struct x86_exception *exception) 259 { 260 return gpa; 261 } 262 263 static int is_cpuid_PSE36(void) 264 { 265 return 1; 266 } 267 268 static int is_nx(struct kvm_vcpu *vcpu) 269 { 270 return vcpu->arch.efer & EFER_NX; 271 } 272 273 static gfn_t pse36_gfn_delta(u32 gpte) 274 { 275 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT; 276 277 return (gpte & PT32_DIR_PSE36_MASK) << shift; 278 } 279 280 #ifdef CONFIG_X86_64 281 static void __set_spte(u64 *sptep, u64 spte) 282 { 283 WRITE_ONCE(*sptep, spte); 284 } 285 286 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 287 { 288 WRITE_ONCE(*sptep, spte); 289 } 290 291 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 292 { 293 return xchg(sptep, spte); 294 } 295 296 static u64 __get_spte_lockless(u64 *sptep) 297 { 298 return READ_ONCE(*sptep); 299 } 300 #else 301 union split_spte { 302 struct { 303 u32 spte_low; 304 u32 spte_high; 305 }; 306 u64 spte; 307 }; 308 309 static void count_spte_clear(u64 *sptep, u64 spte) 310 { 311 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 312 313 if (is_shadow_present_pte(spte)) 314 return; 315 316 /* Ensure the spte is completely set before we increase the count */ 317 smp_wmb(); 318 sp->clear_spte_count++; 319 } 320 321 static void __set_spte(u64 *sptep, u64 spte) 322 { 323 union split_spte *ssptep, sspte; 324 325 ssptep = (union split_spte *)sptep; 326 sspte = (union split_spte)spte; 327 328 ssptep->spte_high = sspte.spte_high; 329 330 /* 331 * If we map the spte from nonpresent to present, We should store 332 * the high bits firstly, then set present bit, so cpu can not 333 * fetch this spte while we are setting the spte. 334 */ 335 smp_wmb(); 336 337 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 338 } 339 340 static void __update_clear_spte_fast(u64 *sptep, u64 spte) 341 { 342 union split_spte *ssptep, sspte; 343 344 ssptep = (union split_spte *)sptep; 345 sspte = (union split_spte)spte; 346 347 WRITE_ONCE(ssptep->spte_low, sspte.spte_low); 348 349 /* 350 * If we map the spte from present to nonpresent, we should clear 351 * present bit firstly to avoid vcpu fetch the old high bits. 352 */ 353 smp_wmb(); 354 355 ssptep->spte_high = sspte.spte_high; 356 count_spte_clear(sptep, spte); 357 } 358 359 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte) 360 { 361 union split_spte *ssptep, sspte, orig; 362 363 ssptep = (union split_spte *)sptep; 364 sspte = (union split_spte)spte; 365 366 /* xchg acts as a barrier before the setting of the high bits */ 367 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low); 368 orig.spte_high = ssptep->spte_high; 369 ssptep->spte_high = sspte.spte_high; 370 count_spte_clear(sptep, spte); 371 372 return orig.spte; 373 } 374 375 /* 376 * The idea using the light way get the spte on x86_32 guest is from 377 * gup_get_pte (mm/gup.c). 378 * 379 * An spte tlb flush may be pending, because kvm_set_pte_rmapp 380 * coalesces them and we are running out of the MMU lock. Therefore 381 * we need to protect against in-progress updates of the spte. 382 * 383 * Reading the spte while an update is in progress may get the old value 384 * for the high part of the spte. The race is fine for a present->non-present 385 * change (because the high part of the spte is ignored for non-present spte), 386 * but for a present->present change we must reread the spte. 387 * 388 * All such changes are done in two steps (present->non-present and 389 * non-present->present), hence it is enough to count the number of 390 * present->non-present updates: if it changed while reading the spte, 391 * we might have hit the race. This is done using clear_spte_count. 392 */ 393 static u64 __get_spte_lockless(u64 *sptep) 394 { 395 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 396 union split_spte spte, *orig = (union split_spte *)sptep; 397 int count; 398 399 retry: 400 count = sp->clear_spte_count; 401 smp_rmb(); 402 403 spte.spte_low = orig->spte_low; 404 smp_rmb(); 405 406 spte.spte_high = orig->spte_high; 407 smp_rmb(); 408 409 if (unlikely(spte.spte_low != orig->spte_low || 410 count != sp->clear_spte_count)) 411 goto retry; 412 413 return spte.spte; 414 } 415 #endif 416 417 static bool spte_has_volatile_bits(u64 spte) 418 { 419 if (!is_shadow_present_pte(spte)) 420 return false; 421 422 /* 423 * Always atomically update spte if it can be updated 424 * out of mmu-lock, it can ensure dirty bit is not lost, 425 * also, it can help us to get a stable is_writable_pte() 426 * to ensure tlb flush is not missed. 427 */ 428 if (spte_can_locklessly_be_made_writable(spte) || 429 is_access_track_spte(spte)) 430 return true; 431 432 if (spte_ad_enabled(spte)) { 433 if ((spte & shadow_accessed_mask) == 0 || 434 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0)) 435 return true; 436 } 437 438 return false; 439 } 440 441 /* Rules for using mmu_spte_set: 442 * Set the sptep from nonpresent to present. 443 * Note: the sptep being assigned *must* be either not present 444 * or in a state where the hardware will not attempt to update 445 * the spte. 446 */ 447 static void mmu_spte_set(u64 *sptep, u64 new_spte) 448 { 449 WARN_ON(is_shadow_present_pte(*sptep)); 450 __set_spte(sptep, new_spte); 451 } 452 453 /* 454 * Update the SPTE (excluding the PFN), but do not track changes in its 455 * accessed/dirty status. 456 */ 457 static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte) 458 { 459 u64 old_spte = *sptep; 460 461 WARN_ON(!is_shadow_present_pte(new_spte)); 462 463 if (!is_shadow_present_pte(old_spte)) { 464 mmu_spte_set(sptep, new_spte); 465 return old_spte; 466 } 467 468 if (!spte_has_volatile_bits(old_spte)) 469 __update_clear_spte_fast(sptep, new_spte); 470 else 471 old_spte = __update_clear_spte_slow(sptep, new_spte); 472 473 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte)); 474 475 return old_spte; 476 } 477 478 /* Rules for using mmu_spte_update: 479 * Update the state bits, it means the mapped pfn is not changed. 480 * 481 * Whenever we overwrite a writable spte with a read-only one we 482 * should flush remote TLBs. Otherwise rmap_write_protect 483 * will find a read-only spte, even though the writable spte 484 * might be cached on a CPU's TLB, the return value indicates this 485 * case. 486 * 487 * Returns true if the TLB needs to be flushed 488 */ 489 static bool mmu_spte_update(u64 *sptep, u64 new_spte) 490 { 491 bool flush = false; 492 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte); 493 494 if (!is_shadow_present_pte(old_spte)) 495 return false; 496 497 /* 498 * For the spte updated out of mmu-lock is safe, since 499 * we always atomically update it, see the comments in 500 * spte_has_volatile_bits(). 501 */ 502 if (spte_can_locklessly_be_made_writable(old_spte) && 503 !is_writable_pte(new_spte)) 504 flush = true; 505 506 /* 507 * Flush TLB when accessed/dirty states are changed in the page tables, 508 * to guarantee consistency between TLB and page tables. 509 */ 510 511 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) { 512 flush = true; 513 kvm_set_pfn_accessed(spte_to_pfn(old_spte)); 514 } 515 516 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) { 517 flush = true; 518 kvm_set_pfn_dirty(spte_to_pfn(old_spte)); 519 } 520 521 return flush; 522 } 523 524 /* 525 * Rules for using mmu_spte_clear_track_bits: 526 * It sets the sptep from present to nonpresent, and track the 527 * state bits, it is used to clear the last level sptep. 528 * Returns non-zero if the PTE was previously valid. 529 */ 530 static int mmu_spte_clear_track_bits(u64 *sptep) 531 { 532 kvm_pfn_t pfn; 533 u64 old_spte = *sptep; 534 535 if (!spte_has_volatile_bits(old_spte)) 536 __update_clear_spte_fast(sptep, 0ull); 537 else 538 old_spte = __update_clear_spte_slow(sptep, 0ull); 539 540 if (!is_shadow_present_pte(old_spte)) 541 return 0; 542 543 pfn = spte_to_pfn(old_spte); 544 545 /* 546 * KVM does not hold the refcount of the page used by 547 * kvm mmu, before reclaiming the page, we should 548 * unmap it from mmu first. 549 */ 550 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn))); 551 552 if (is_accessed_spte(old_spte)) 553 kvm_set_pfn_accessed(pfn); 554 555 if (is_dirty_spte(old_spte)) 556 kvm_set_pfn_dirty(pfn); 557 558 return 1; 559 } 560 561 /* 562 * Rules for using mmu_spte_clear_no_track: 563 * Directly clear spte without caring the state bits of sptep, 564 * it is used to set the upper level spte. 565 */ 566 static void mmu_spte_clear_no_track(u64 *sptep) 567 { 568 __update_clear_spte_fast(sptep, 0ull); 569 } 570 571 static u64 mmu_spte_get_lockless(u64 *sptep) 572 { 573 return __get_spte_lockless(sptep); 574 } 575 576 /* Restore an acc-track PTE back to a regular PTE */ 577 static u64 restore_acc_track_spte(u64 spte) 578 { 579 u64 new_spte = spte; 580 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT) 581 & SHADOW_ACC_TRACK_SAVED_BITS_MASK; 582 583 WARN_ON_ONCE(spte_ad_enabled(spte)); 584 WARN_ON_ONCE(!is_access_track_spte(spte)); 585 586 new_spte &= ~shadow_acc_track_mask; 587 new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK << 588 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT); 589 new_spte |= saved_bits; 590 591 return new_spte; 592 } 593 594 /* Returns the Accessed status of the PTE and resets it at the same time. */ 595 static bool mmu_spte_age(u64 *sptep) 596 { 597 u64 spte = mmu_spte_get_lockless(sptep); 598 599 if (!is_accessed_spte(spte)) 600 return false; 601 602 if (spte_ad_enabled(spte)) { 603 clear_bit((ffs(shadow_accessed_mask) - 1), 604 (unsigned long *)sptep); 605 } else { 606 /* 607 * Capture the dirty status of the page, so that it doesn't get 608 * lost when the SPTE is marked for access tracking. 609 */ 610 if (is_writable_pte(spte)) 611 kvm_set_pfn_dirty(spte_to_pfn(spte)); 612 613 spte = mark_spte_for_access_track(spte); 614 mmu_spte_update_no_track(sptep, spte); 615 } 616 617 return true; 618 } 619 620 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu) 621 { 622 /* 623 * Prevent page table teardown by making any free-er wait during 624 * kvm_flush_remote_tlbs() IPI to all active vcpus. 625 */ 626 local_irq_disable(); 627 628 /* 629 * Make sure a following spte read is not reordered ahead of the write 630 * to vcpu->mode. 631 */ 632 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES); 633 } 634 635 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu) 636 { 637 /* 638 * Make sure the write to vcpu->mode is not reordered in front of 639 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us 640 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table. 641 */ 642 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE); 643 local_irq_enable(); 644 } 645 646 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect) 647 { 648 int r; 649 650 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */ 651 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache, 652 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM); 653 if (r) 654 return r; 655 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache, 656 PT64_ROOT_MAX_LEVEL); 657 if (r) 658 return r; 659 if (maybe_indirect) { 660 r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache, 661 PT64_ROOT_MAX_LEVEL); 662 if (r) 663 return r; 664 } 665 return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache, 666 PT64_ROOT_MAX_LEVEL); 667 } 668 669 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) 670 { 671 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache); 672 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache); 673 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache); 674 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache); 675 } 676 677 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu) 678 { 679 return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache); 680 } 681 682 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc) 683 { 684 kmem_cache_free(pte_list_desc_cache, pte_list_desc); 685 } 686 687 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index) 688 { 689 if (!sp->role.direct) 690 return sp->gfns[index]; 691 692 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS)); 693 } 694 695 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn) 696 { 697 if (!sp->role.direct) { 698 sp->gfns[index] = gfn; 699 return; 700 } 701 702 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index))) 703 pr_err_ratelimited("gfn mismatch under direct page %llx " 704 "(expected %llx, got %llx)\n", 705 sp->gfn, 706 kvm_mmu_page_get_gfn(sp, index), gfn); 707 } 708 709 /* 710 * Return the pointer to the large page information for a given gfn, 711 * handling slots that are not large page aligned. 712 */ 713 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn, 714 const struct kvm_memory_slot *slot, int level) 715 { 716 unsigned long idx; 717 718 idx = gfn_to_index(gfn, slot->base_gfn, level); 719 return &slot->arch.lpage_info[level - 2][idx]; 720 } 721 722 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot, 723 gfn_t gfn, int count) 724 { 725 struct kvm_lpage_info *linfo; 726 int i; 727 728 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 729 linfo = lpage_info_slot(gfn, slot, i); 730 linfo->disallow_lpage += count; 731 WARN_ON(linfo->disallow_lpage < 0); 732 } 733 } 734 735 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 736 { 737 update_gfn_disallow_lpage_count(slot, gfn, 1); 738 } 739 740 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn) 741 { 742 update_gfn_disallow_lpage_count(slot, gfn, -1); 743 } 744 745 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 746 { 747 struct kvm_memslots *slots; 748 struct kvm_memory_slot *slot; 749 gfn_t gfn; 750 751 kvm->arch.indirect_shadow_pages++; 752 gfn = sp->gfn; 753 slots = kvm_memslots_for_spte_role(kvm, sp->role); 754 slot = __gfn_to_memslot(slots, gfn); 755 756 /* the non-leaf shadow pages are keeping readonly. */ 757 if (sp->role.level > PG_LEVEL_4K) 758 return kvm_slot_page_track_add_page(kvm, slot, gfn, 759 KVM_PAGE_TRACK_WRITE); 760 761 kvm_mmu_gfn_disallow_lpage(slot, gfn); 762 } 763 764 void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 765 { 766 if (sp->lpage_disallowed) 767 return; 768 769 ++kvm->stat.nx_lpage_splits; 770 list_add_tail(&sp->lpage_disallowed_link, 771 &kvm->arch.lpage_disallowed_mmu_pages); 772 sp->lpage_disallowed = true; 773 } 774 775 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp) 776 { 777 struct kvm_memslots *slots; 778 struct kvm_memory_slot *slot; 779 gfn_t gfn; 780 781 kvm->arch.indirect_shadow_pages--; 782 gfn = sp->gfn; 783 slots = kvm_memslots_for_spte_role(kvm, sp->role); 784 slot = __gfn_to_memslot(slots, gfn); 785 if (sp->role.level > PG_LEVEL_4K) 786 return kvm_slot_page_track_remove_page(kvm, slot, gfn, 787 KVM_PAGE_TRACK_WRITE); 788 789 kvm_mmu_gfn_allow_lpage(slot, gfn); 790 } 791 792 void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp) 793 { 794 --kvm->stat.nx_lpage_splits; 795 sp->lpage_disallowed = false; 796 list_del(&sp->lpage_disallowed_link); 797 } 798 799 static struct kvm_memory_slot * 800 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn, 801 bool no_dirty_log) 802 { 803 struct kvm_memory_slot *slot; 804 805 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 806 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 807 return NULL; 808 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot)) 809 return NULL; 810 811 return slot; 812 } 813 814 /* 815 * About rmap_head encoding: 816 * 817 * If the bit zero of rmap_head->val is clear, then it points to the only spte 818 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct 819 * pte_list_desc containing more mappings. 820 */ 821 822 /* 823 * Returns the number of pointers in the rmap chain, not counting the new one. 824 */ 825 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte, 826 struct kvm_rmap_head *rmap_head) 827 { 828 struct pte_list_desc *desc; 829 int i, count = 0; 830 831 if (!rmap_head->val) { 832 rmap_printk("%p %llx 0->1\n", spte, *spte); 833 rmap_head->val = (unsigned long)spte; 834 } else if (!(rmap_head->val & 1)) { 835 rmap_printk("%p %llx 1->many\n", spte, *spte); 836 desc = mmu_alloc_pte_list_desc(vcpu); 837 desc->sptes[0] = (u64 *)rmap_head->val; 838 desc->sptes[1] = spte; 839 rmap_head->val = (unsigned long)desc | 1; 840 ++count; 841 } else { 842 rmap_printk("%p %llx many->many\n", spte, *spte); 843 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 844 while (desc->sptes[PTE_LIST_EXT-1]) { 845 count += PTE_LIST_EXT; 846 847 if (!desc->more) { 848 desc->more = mmu_alloc_pte_list_desc(vcpu); 849 desc = desc->more; 850 break; 851 } 852 desc = desc->more; 853 } 854 for (i = 0; desc->sptes[i]; ++i) 855 ++count; 856 desc->sptes[i] = spte; 857 } 858 return count; 859 } 860 861 static void 862 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head, 863 struct pte_list_desc *desc, int i, 864 struct pte_list_desc *prev_desc) 865 { 866 int j; 867 868 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j) 869 ; 870 desc->sptes[i] = desc->sptes[j]; 871 desc->sptes[j] = NULL; 872 if (j != 0) 873 return; 874 if (!prev_desc && !desc->more) 875 rmap_head->val = 0; 876 else 877 if (prev_desc) 878 prev_desc->more = desc->more; 879 else 880 rmap_head->val = (unsigned long)desc->more | 1; 881 mmu_free_pte_list_desc(desc); 882 } 883 884 static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head) 885 { 886 struct pte_list_desc *desc; 887 struct pte_list_desc *prev_desc; 888 int i; 889 890 if (!rmap_head->val) { 891 pr_err("%s: %p 0->BUG\n", __func__, spte); 892 BUG(); 893 } else if (!(rmap_head->val & 1)) { 894 rmap_printk("%p 1->0\n", spte); 895 if ((u64 *)rmap_head->val != spte) { 896 pr_err("%s: %p 1->BUG\n", __func__, spte); 897 BUG(); 898 } 899 rmap_head->val = 0; 900 } else { 901 rmap_printk("%p many->many\n", spte); 902 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 903 prev_desc = NULL; 904 while (desc) { 905 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) { 906 if (desc->sptes[i] == spte) { 907 pte_list_desc_remove_entry(rmap_head, 908 desc, i, prev_desc); 909 return; 910 } 911 } 912 prev_desc = desc; 913 desc = desc->more; 914 } 915 pr_err("%s: %p many->many\n", __func__, spte); 916 BUG(); 917 } 918 } 919 920 static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep) 921 { 922 mmu_spte_clear_track_bits(sptep); 923 __pte_list_remove(sptep, rmap_head); 924 } 925 926 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level, 927 struct kvm_memory_slot *slot) 928 { 929 unsigned long idx; 930 931 idx = gfn_to_index(gfn, slot->base_gfn, level); 932 return &slot->arch.rmap[level - PG_LEVEL_4K][idx]; 933 } 934 935 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, 936 struct kvm_mmu_page *sp) 937 { 938 struct kvm_memslots *slots; 939 struct kvm_memory_slot *slot; 940 941 slots = kvm_memslots_for_spte_role(kvm, sp->role); 942 slot = __gfn_to_memslot(slots, gfn); 943 return __gfn_to_rmap(gfn, sp->role.level, slot); 944 } 945 946 static bool rmap_can_add(struct kvm_vcpu *vcpu) 947 { 948 struct kvm_mmu_memory_cache *mc; 949 950 mc = &vcpu->arch.mmu_pte_list_desc_cache; 951 return kvm_mmu_memory_cache_nr_free_objects(mc); 952 } 953 954 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 955 { 956 struct kvm_mmu_page *sp; 957 struct kvm_rmap_head *rmap_head; 958 959 sp = sptep_to_sp(spte); 960 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn); 961 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 962 return pte_list_add(vcpu, spte, rmap_head); 963 } 964 965 static void rmap_remove(struct kvm *kvm, u64 *spte) 966 { 967 struct kvm_mmu_page *sp; 968 gfn_t gfn; 969 struct kvm_rmap_head *rmap_head; 970 971 sp = sptep_to_sp(spte); 972 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt); 973 rmap_head = gfn_to_rmap(kvm, gfn, sp); 974 __pte_list_remove(spte, rmap_head); 975 } 976 977 /* 978 * Used by the following functions to iterate through the sptes linked by a 979 * rmap. All fields are private and not assumed to be used outside. 980 */ 981 struct rmap_iterator { 982 /* private fields */ 983 struct pte_list_desc *desc; /* holds the sptep if not NULL */ 984 int pos; /* index of the sptep */ 985 }; 986 987 /* 988 * Iteration must be started by this function. This should also be used after 989 * removing/dropping sptes from the rmap link because in such cases the 990 * information in the iterator may not be valid. 991 * 992 * Returns sptep if found, NULL otherwise. 993 */ 994 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head, 995 struct rmap_iterator *iter) 996 { 997 u64 *sptep; 998 999 if (!rmap_head->val) 1000 return NULL; 1001 1002 if (!(rmap_head->val & 1)) { 1003 iter->desc = NULL; 1004 sptep = (u64 *)rmap_head->val; 1005 goto out; 1006 } 1007 1008 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul); 1009 iter->pos = 0; 1010 sptep = iter->desc->sptes[iter->pos]; 1011 out: 1012 BUG_ON(!is_shadow_present_pte(*sptep)); 1013 return sptep; 1014 } 1015 1016 /* 1017 * Must be used with a valid iterator: e.g. after rmap_get_first(). 1018 * 1019 * Returns sptep if found, NULL otherwise. 1020 */ 1021 static u64 *rmap_get_next(struct rmap_iterator *iter) 1022 { 1023 u64 *sptep; 1024 1025 if (iter->desc) { 1026 if (iter->pos < PTE_LIST_EXT - 1) { 1027 ++iter->pos; 1028 sptep = iter->desc->sptes[iter->pos]; 1029 if (sptep) 1030 goto out; 1031 } 1032 1033 iter->desc = iter->desc->more; 1034 1035 if (iter->desc) { 1036 iter->pos = 0; 1037 /* desc->sptes[0] cannot be NULL */ 1038 sptep = iter->desc->sptes[iter->pos]; 1039 goto out; 1040 } 1041 } 1042 1043 return NULL; 1044 out: 1045 BUG_ON(!is_shadow_present_pte(*sptep)); 1046 return sptep; 1047 } 1048 1049 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \ 1050 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \ 1051 _spte_; _spte_ = rmap_get_next(_iter_)) 1052 1053 static void drop_spte(struct kvm *kvm, u64 *sptep) 1054 { 1055 if (mmu_spte_clear_track_bits(sptep)) 1056 rmap_remove(kvm, sptep); 1057 } 1058 1059 1060 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep) 1061 { 1062 if (is_large_pte(*sptep)) { 1063 WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K); 1064 drop_spte(kvm, sptep); 1065 --kvm->stat.lpages; 1066 return true; 1067 } 1068 1069 return false; 1070 } 1071 1072 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep) 1073 { 1074 if (__drop_large_spte(vcpu->kvm, sptep)) { 1075 struct kvm_mmu_page *sp = sptep_to_sp(sptep); 1076 1077 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1078 KVM_PAGES_PER_HPAGE(sp->role.level)); 1079 } 1080 } 1081 1082 /* 1083 * Write-protect on the specified @sptep, @pt_protect indicates whether 1084 * spte write-protection is caused by protecting shadow page table. 1085 * 1086 * Note: write protection is difference between dirty logging and spte 1087 * protection: 1088 * - for dirty logging, the spte can be set to writable at anytime if 1089 * its dirty bitmap is properly set. 1090 * - for spte protection, the spte can be writable only after unsync-ing 1091 * shadow page. 1092 * 1093 * Return true if tlb need be flushed. 1094 */ 1095 static bool spte_write_protect(u64 *sptep, bool pt_protect) 1096 { 1097 u64 spte = *sptep; 1098 1099 if (!is_writable_pte(spte) && 1100 !(pt_protect && spte_can_locklessly_be_made_writable(spte))) 1101 return false; 1102 1103 rmap_printk("spte %p %llx\n", sptep, *sptep); 1104 1105 if (pt_protect) 1106 spte &= ~shadow_mmu_writable_mask; 1107 spte = spte & ~PT_WRITABLE_MASK; 1108 1109 return mmu_spte_update(sptep, spte); 1110 } 1111 1112 static bool __rmap_write_protect(struct kvm *kvm, 1113 struct kvm_rmap_head *rmap_head, 1114 bool pt_protect) 1115 { 1116 u64 *sptep; 1117 struct rmap_iterator iter; 1118 bool flush = false; 1119 1120 for_each_rmap_spte(rmap_head, &iter, sptep) 1121 flush |= spte_write_protect(sptep, pt_protect); 1122 1123 return flush; 1124 } 1125 1126 static bool spte_clear_dirty(u64 *sptep) 1127 { 1128 u64 spte = *sptep; 1129 1130 rmap_printk("spte %p %llx\n", sptep, *sptep); 1131 1132 MMU_WARN_ON(!spte_ad_enabled(spte)); 1133 spte &= ~shadow_dirty_mask; 1134 return mmu_spte_update(sptep, spte); 1135 } 1136 1137 static bool spte_wrprot_for_clear_dirty(u64 *sptep) 1138 { 1139 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT, 1140 (unsigned long *)sptep); 1141 if (was_writable && !spte_ad_enabled(*sptep)) 1142 kvm_set_pfn_dirty(spte_to_pfn(*sptep)); 1143 1144 return was_writable; 1145 } 1146 1147 /* 1148 * Gets the GFN ready for another round of dirty logging by clearing the 1149 * - D bit on ad-enabled SPTEs, and 1150 * - W bit on ad-disabled SPTEs. 1151 * Returns true iff any D or W bits were cleared. 1152 */ 1153 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1154 struct kvm_memory_slot *slot) 1155 { 1156 u64 *sptep; 1157 struct rmap_iterator iter; 1158 bool flush = false; 1159 1160 for_each_rmap_spte(rmap_head, &iter, sptep) 1161 if (spte_ad_need_write_protect(*sptep)) 1162 flush |= spte_wrprot_for_clear_dirty(sptep); 1163 else 1164 flush |= spte_clear_dirty(sptep); 1165 1166 return flush; 1167 } 1168 1169 /** 1170 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages 1171 * @kvm: kvm instance 1172 * @slot: slot to protect 1173 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1174 * @mask: indicates which pages we should protect 1175 * 1176 * Used when we do not need to care about huge page mappings: e.g. during dirty 1177 * logging we do not have any such mappings. 1178 */ 1179 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm, 1180 struct kvm_memory_slot *slot, 1181 gfn_t gfn_offset, unsigned long mask) 1182 { 1183 struct kvm_rmap_head *rmap_head; 1184 1185 if (is_tdp_mmu_enabled(kvm)) 1186 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1187 slot->base_gfn + gfn_offset, mask, true); 1188 while (mask) { 1189 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1190 PG_LEVEL_4K, slot); 1191 __rmap_write_protect(kvm, rmap_head, false); 1192 1193 /* clear the first set bit */ 1194 mask &= mask - 1; 1195 } 1196 } 1197 1198 /** 1199 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write 1200 * protect the page if the D-bit isn't supported. 1201 * @kvm: kvm instance 1202 * @slot: slot to clear D-bit 1203 * @gfn_offset: start of the BITS_PER_LONG pages we care about 1204 * @mask: indicates which pages we should clear D-bit 1205 * 1206 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap. 1207 */ 1208 static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm, 1209 struct kvm_memory_slot *slot, 1210 gfn_t gfn_offset, unsigned long mask) 1211 { 1212 struct kvm_rmap_head *rmap_head; 1213 1214 if (is_tdp_mmu_enabled(kvm)) 1215 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot, 1216 slot->base_gfn + gfn_offset, mask, false); 1217 while (mask) { 1218 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask), 1219 PG_LEVEL_4K, slot); 1220 __rmap_clear_dirty(kvm, rmap_head, slot); 1221 1222 /* clear the first set bit */ 1223 mask &= mask - 1; 1224 } 1225 } 1226 1227 /** 1228 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected 1229 * PT level pages. 1230 * 1231 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to 1232 * enable dirty logging for them. 1233 * 1234 * Used when we do not need to care about huge page mappings: e.g. during dirty 1235 * logging we do not have any such mappings. 1236 */ 1237 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1238 struct kvm_memory_slot *slot, 1239 gfn_t gfn_offset, unsigned long mask) 1240 { 1241 if (kvm_x86_ops.cpu_dirty_log_size) 1242 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask); 1243 else 1244 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask); 1245 } 1246 1247 int kvm_cpu_dirty_log_size(void) 1248 { 1249 return kvm_x86_ops.cpu_dirty_log_size; 1250 } 1251 1252 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, 1253 struct kvm_memory_slot *slot, u64 gfn) 1254 { 1255 struct kvm_rmap_head *rmap_head; 1256 int i; 1257 bool write_protected = false; 1258 1259 for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) { 1260 rmap_head = __gfn_to_rmap(gfn, i, slot); 1261 write_protected |= __rmap_write_protect(kvm, rmap_head, true); 1262 } 1263 1264 if (is_tdp_mmu_enabled(kvm)) 1265 write_protected |= 1266 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn); 1267 1268 return write_protected; 1269 } 1270 1271 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) 1272 { 1273 struct kvm_memory_slot *slot; 1274 1275 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 1276 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn); 1277 } 1278 1279 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1280 struct kvm_memory_slot *slot) 1281 { 1282 u64 *sptep; 1283 struct rmap_iterator iter; 1284 bool flush = false; 1285 1286 while ((sptep = rmap_get_first(rmap_head, &iter))) { 1287 rmap_printk("spte %p %llx.\n", sptep, *sptep); 1288 1289 pte_list_remove(rmap_head, sptep); 1290 flush = true; 1291 } 1292 1293 return flush; 1294 } 1295 1296 static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1297 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1298 pte_t unused) 1299 { 1300 return kvm_zap_rmapp(kvm, rmap_head, slot); 1301 } 1302 1303 static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1304 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1305 pte_t pte) 1306 { 1307 u64 *sptep; 1308 struct rmap_iterator iter; 1309 int need_flush = 0; 1310 u64 new_spte; 1311 kvm_pfn_t new_pfn; 1312 1313 WARN_ON(pte_huge(pte)); 1314 new_pfn = pte_pfn(pte); 1315 1316 restart: 1317 for_each_rmap_spte(rmap_head, &iter, sptep) { 1318 rmap_printk("spte %p %llx gfn %llx (%d)\n", 1319 sptep, *sptep, gfn, level); 1320 1321 need_flush = 1; 1322 1323 if (pte_write(pte)) { 1324 pte_list_remove(rmap_head, sptep); 1325 goto restart; 1326 } else { 1327 new_spte = kvm_mmu_changed_pte_notifier_make_spte( 1328 *sptep, new_pfn); 1329 1330 mmu_spte_clear_track_bits(sptep); 1331 mmu_spte_set(sptep, new_spte); 1332 } 1333 } 1334 1335 if (need_flush && kvm_available_flush_tlb_with_range()) { 1336 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1); 1337 return 0; 1338 } 1339 1340 return need_flush; 1341 } 1342 1343 struct slot_rmap_walk_iterator { 1344 /* input fields. */ 1345 struct kvm_memory_slot *slot; 1346 gfn_t start_gfn; 1347 gfn_t end_gfn; 1348 int start_level; 1349 int end_level; 1350 1351 /* output fields. */ 1352 gfn_t gfn; 1353 struct kvm_rmap_head *rmap; 1354 int level; 1355 1356 /* private field. */ 1357 struct kvm_rmap_head *end_rmap; 1358 }; 1359 1360 static void 1361 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level) 1362 { 1363 iterator->level = level; 1364 iterator->gfn = iterator->start_gfn; 1365 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot); 1366 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level, 1367 iterator->slot); 1368 } 1369 1370 static void 1371 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator, 1372 struct kvm_memory_slot *slot, int start_level, 1373 int end_level, gfn_t start_gfn, gfn_t end_gfn) 1374 { 1375 iterator->slot = slot; 1376 iterator->start_level = start_level; 1377 iterator->end_level = end_level; 1378 iterator->start_gfn = start_gfn; 1379 iterator->end_gfn = end_gfn; 1380 1381 rmap_walk_init_level(iterator, iterator->start_level); 1382 } 1383 1384 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator) 1385 { 1386 return !!iterator->rmap; 1387 } 1388 1389 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator) 1390 { 1391 if (++iterator->rmap <= iterator->end_rmap) { 1392 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level)); 1393 return; 1394 } 1395 1396 if (++iterator->level > iterator->end_level) { 1397 iterator->rmap = NULL; 1398 return; 1399 } 1400 1401 rmap_walk_init_level(iterator, iterator->level); 1402 } 1403 1404 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \ 1405 _start_gfn, _end_gfn, _iter_) \ 1406 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \ 1407 _end_level_, _start_gfn, _end_gfn); \ 1408 slot_rmap_walk_okay(_iter_); \ 1409 slot_rmap_walk_next(_iter_)) 1410 1411 typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1412 struct kvm_memory_slot *slot, gfn_t gfn, 1413 int level, pte_t pte); 1414 1415 static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm, 1416 struct kvm_gfn_range *range, 1417 rmap_handler_t handler) 1418 { 1419 struct slot_rmap_walk_iterator iterator; 1420 bool ret = false; 1421 1422 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL, 1423 range->start, range->end - 1, &iterator) 1424 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn, 1425 iterator.level, range->pte); 1426 1427 return ret; 1428 } 1429 1430 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) 1431 { 1432 bool flush; 1433 1434 flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp); 1435 1436 if (is_tdp_mmu_enabled(kvm)) 1437 flush |= kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush); 1438 1439 return flush; 1440 } 1441 1442 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1443 { 1444 bool flush; 1445 1446 flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp); 1447 1448 if (is_tdp_mmu_enabled(kvm)) 1449 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range); 1450 1451 return flush; 1452 } 1453 1454 static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1455 struct kvm_memory_slot *slot, gfn_t gfn, int level, 1456 pte_t unused) 1457 { 1458 u64 *sptep; 1459 struct rmap_iterator iter; 1460 int young = 0; 1461 1462 for_each_rmap_spte(rmap_head, &iter, sptep) 1463 young |= mmu_spte_age(sptep); 1464 1465 return young; 1466 } 1467 1468 static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head, 1469 struct kvm_memory_slot *slot, gfn_t gfn, 1470 int level, pte_t unused) 1471 { 1472 u64 *sptep; 1473 struct rmap_iterator iter; 1474 1475 for_each_rmap_spte(rmap_head, &iter, sptep) 1476 if (is_accessed_spte(*sptep)) 1477 return 1; 1478 return 0; 1479 } 1480 1481 #define RMAP_RECYCLE_THRESHOLD 1000 1482 1483 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn) 1484 { 1485 struct kvm_rmap_head *rmap_head; 1486 struct kvm_mmu_page *sp; 1487 1488 sp = sptep_to_sp(spte); 1489 1490 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp); 1491 1492 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0)); 1493 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn, 1494 KVM_PAGES_PER_HPAGE(sp->role.level)); 1495 } 1496 1497 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1498 { 1499 bool young; 1500 1501 young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp); 1502 1503 if (is_tdp_mmu_enabled(kvm)) 1504 young |= kvm_tdp_mmu_age_gfn_range(kvm, range); 1505 1506 return young; 1507 } 1508 1509 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) 1510 { 1511 bool young; 1512 1513 young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp); 1514 1515 if (is_tdp_mmu_enabled(kvm)) 1516 young |= kvm_tdp_mmu_test_age_gfn(kvm, range); 1517 1518 return young; 1519 } 1520 1521 #ifdef MMU_DEBUG 1522 static int is_empty_shadow_page(u64 *spt) 1523 { 1524 u64 *pos; 1525 u64 *end; 1526 1527 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++) 1528 if (is_shadow_present_pte(*pos)) { 1529 printk(KERN_ERR "%s: %p %llx\n", __func__, 1530 pos, *pos); 1531 return 0; 1532 } 1533 return 1; 1534 } 1535 #endif 1536 1537 /* 1538 * This value is the sum of all of the kvm instances's 1539 * kvm->arch.n_used_mmu_pages values. We need a global, 1540 * aggregate version in order to make the slab shrinker 1541 * faster 1542 */ 1543 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr) 1544 { 1545 kvm->arch.n_used_mmu_pages += nr; 1546 percpu_counter_add(&kvm_total_used_mmu_pages, nr); 1547 } 1548 1549 static void kvm_mmu_free_page(struct kvm_mmu_page *sp) 1550 { 1551 MMU_WARN_ON(!is_empty_shadow_page(sp->spt)); 1552 hlist_del(&sp->hash_link); 1553 list_del(&sp->link); 1554 free_page((unsigned long)sp->spt); 1555 if (!sp->role.direct) 1556 free_page((unsigned long)sp->gfns); 1557 kmem_cache_free(mmu_page_header_cache, sp); 1558 } 1559 1560 static unsigned kvm_page_table_hashfn(gfn_t gfn) 1561 { 1562 return hash_64(gfn, KVM_MMU_HASH_SHIFT); 1563 } 1564 1565 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, 1566 struct kvm_mmu_page *sp, u64 *parent_pte) 1567 { 1568 if (!parent_pte) 1569 return; 1570 1571 pte_list_add(vcpu, parent_pte, &sp->parent_ptes); 1572 } 1573 1574 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp, 1575 u64 *parent_pte) 1576 { 1577 __pte_list_remove(parent_pte, &sp->parent_ptes); 1578 } 1579 1580 static void drop_parent_pte(struct kvm_mmu_page *sp, 1581 u64 *parent_pte) 1582 { 1583 mmu_page_remove_parent_pte(sp, parent_pte); 1584 mmu_spte_clear_no_track(parent_pte); 1585 } 1586 1587 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct) 1588 { 1589 struct kvm_mmu_page *sp; 1590 1591 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache); 1592 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache); 1593 if (!direct) 1594 sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache); 1595 set_page_private(virt_to_page(sp->spt), (unsigned long)sp); 1596 1597 /* 1598 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages() 1599 * depends on valid pages being added to the head of the list. See 1600 * comments in kvm_zap_obsolete_pages(). 1601 */ 1602 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen; 1603 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages); 1604 kvm_mod_used_mmu_pages(vcpu->kvm, +1); 1605 return sp; 1606 } 1607 1608 static void mark_unsync(u64 *spte); 1609 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp) 1610 { 1611 u64 *sptep; 1612 struct rmap_iterator iter; 1613 1614 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) { 1615 mark_unsync(sptep); 1616 } 1617 } 1618 1619 static void mark_unsync(u64 *spte) 1620 { 1621 struct kvm_mmu_page *sp; 1622 unsigned int index; 1623 1624 sp = sptep_to_sp(spte); 1625 index = spte - sp->spt; 1626 if (__test_and_set_bit(index, sp->unsync_child_bitmap)) 1627 return; 1628 if (sp->unsync_children++) 1629 return; 1630 kvm_mmu_mark_parents_unsync(sp); 1631 } 1632 1633 static int nonpaging_sync_page(struct kvm_vcpu *vcpu, 1634 struct kvm_mmu_page *sp) 1635 { 1636 return 0; 1637 } 1638 1639 #define KVM_PAGE_ARRAY_NR 16 1640 1641 struct kvm_mmu_pages { 1642 struct mmu_page_and_offset { 1643 struct kvm_mmu_page *sp; 1644 unsigned int idx; 1645 } page[KVM_PAGE_ARRAY_NR]; 1646 unsigned int nr; 1647 }; 1648 1649 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp, 1650 int idx) 1651 { 1652 int i; 1653 1654 if (sp->unsync) 1655 for (i=0; i < pvec->nr; i++) 1656 if (pvec->page[i].sp == sp) 1657 return 0; 1658 1659 pvec->page[pvec->nr].sp = sp; 1660 pvec->page[pvec->nr].idx = idx; 1661 pvec->nr++; 1662 return (pvec->nr == KVM_PAGE_ARRAY_NR); 1663 } 1664 1665 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx) 1666 { 1667 --sp->unsync_children; 1668 WARN_ON((int)sp->unsync_children < 0); 1669 __clear_bit(idx, sp->unsync_child_bitmap); 1670 } 1671 1672 static int __mmu_unsync_walk(struct kvm_mmu_page *sp, 1673 struct kvm_mmu_pages *pvec) 1674 { 1675 int i, ret, nr_unsync_leaf = 0; 1676 1677 for_each_set_bit(i, sp->unsync_child_bitmap, 512) { 1678 struct kvm_mmu_page *child; 1679 u64 ent = sp->spt[i]; 1680 1681 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) { 1682 clear_unsync_child_bit(sp, i); 1683 continue; 1684 } 1685 1686 child = to_shadow_page(ent & PT64_BASE_ADDR_MASK); 1687 1688 if (child->unsync_children) { 1689 if (mmu_pages_add(pvec, child, i)) 1690 return -ENOSPC; 1691 1692 ret = __mmu_unsync_walk(child, pvec); 1693 if (!ret) { 1694 clear_unsync_child_bit(sp, i); 1695 continue; 1696 } else if (ret > 0) { 1697 nr_unsync_leaf += ret; 1698 } else 1699 return ret; 1700 } else if (child->unsync) { 1701 nr_unsync_leaf++; 1702 if (mmu_pages_add(pvec, child, i)) 1703 return -ENOSPC; 1704 } else 1705 clear_unsync_child_bit(sp, i); 1706 } 1707 1708 return nr_unsync_leaf; 1709 } 1710 1711 #define INVALID_INDEX (-1) 1712 1713 static int mmu_unsync_walk(struct kvm_mmu_page *sp, 1714 struct kvm_mmu_pages *pvec) 1715 { 1716 pvec->nr = 0; 1717 if (!sp->unsync_children) 1718 return 0; 1719 1720 mmu_pages_add(pvec, sp, INVALID_INDEX); 1721 return __mmu_unsync_walk(sp, pvec); 1722 } 1723 1724 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp) 1725 { 1726 WARN_ON(!sp->unsync); 1727 trace_kvm_mmu_sync_page(sp); 1728 sp->unsync = 0; 1729 --kvm->stat.mmu_unsync; 1730 } 1731 1732 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 1733 struct list_head *invalid_list); 1734 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 1735 struct list_head *invalid_list); 1736 1737 #define for_each_valid_sp(_kvm, _sp, _list) \ 1738 hlist_for_each_entry(_sp, _list, hash_link) \ 1739 if (is_obsolete_sp((_kvm), (_sp))) { \ 1740 } else 1741 1742 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \ 1743 for_each_valid_sp(_kvm, _sp, \ 1744 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \ 1745 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else 1746 1747 static inline bool is_ept_sp(struct kvm_mmu_page *sp) 1748 { 1749 return sp->role.cr0_wp && sp->role.smap_andnot_wp; 1750 } 1751 1752 /* @sp->gfn should be write-protected at the call site */ 1753 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1754 struct list_head *invalid_list) 1755 { 1756 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) || 1757 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) { 1758 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list); 1759 return false; 1760 } 1761 1762 return true; 1763 } 1764 1765 static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm, 1766 struct list_head *invalid_list, 1767 bool remote_flush) 1768 { 1769 if (!remote_flush && list_empty(invalid_list)) 1770 return false; 1771 1772 if (!list_empty(invalid_list)) 1773 kvm_mmu_commit_zap_page(kvm, invalid_list); 1774 else 1775 kvm_flush_remote_tlbs(kvm); 1776 return true; 1777 } 1778 1779 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu, 1780 struct list_head *invalid_list, 1781 bool remote_flush, bool local_flush) 1782 { 1783 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush)) 1784 return; 1785 1786 if (local_flush) 1787 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1788 } 1789 1790 #ifdef CONFIG_KVM_MMU_AUDIT 1791 #include "mmu_audit.c" 1792 #else 1793 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { } 1794 static void mmu_audit_disable(void) { } 1795 #endif 1796 1797 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp) 1798 { 1799 return sp->role.invalid || 1800 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen); 1801 } 1802 1803 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 1804 struct list_head *invalid_list) 1805 { 1806 kvm_unlink_unsync_page(vcpu->kvm, sp); 1807 return __kvm_sync_page(vcpu, sp, invalid_list); 1808 } 1809 1810 /* @gfn should be write-protected at the call site */ 1811 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn, 1812 struct list_head *invalid_list) 1813 { 1814 struct kvm_mmu_page *s; 1815 bool ret = false; 1816 1817 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) { 1818 if (!s->unsync) 1819 continue; 1820 1821 WARN_ON(s->role.level != PG_LEVEL_4K); 1822 ret |= kvm_sync_page(vcpu, s, invalid_list); 1823 } 1824 1825 return ret; 1826 } 1827 1828 struct mmu_page_path { 1829 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL]; 1830 unsigned int idx[PT64_ROOT_MAX_LEVEL]; 1831 }; 1832 1833 #define for_each_sp(pvec, sp, parents, i) \ 1834 for (i = mmu_pages_first(&pvec, &parents); \ 1835 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \ 1836 i = mmu_pages_next(&pvec, &parents, i)) 1837 1838 static int mmu_pages_next(struct kvm_mmu_pages *pvec, 1839 struct mmu_page_path *parents, 1840 int i) 1841 { 1842 int n; 1843 1844 for (n = i+1; n < pvec->nr; n++) { 1845 struct kvm_mmu_page *sp = pvec->page[n].sp; 1846 unsigned idx = pvec->page[n].idx; 1847 int level = sp->role.level; 1848 1849 parents->idx[level-1] = idx; 1850 if (level == PG_LEVEL_4K) 1851 break; 1852 1853 parents->parent[level-2] = sp; 1854 } 1855 1856 return n; 1857 } 1858 1859 static int mmu_pages_first(struct kvm_mmu_pages *pvec, 1860 struct mmu_page_path *parents) 1861 { 1862 struct kvm_mmu_page *sp; 1863 int level; 1864 1865 if (pvec->nr == 0) 1866 return 0; 1867 1868 WARN_ON(pvec->page[0].idx != INVALID_INDEX); 1869 1870 sp = pvec->page[0].sp; 1871 level = sp->role.level; 1872 WARN_ON(level == PG_LEVEL_4K); 1873 1874 parents->parent[level-2] = sp; 1875 1876 /* Also set up a sentinel. Further entries in pvec are all 1877 * children of sp, so this element is never overwritten. 1878 */ 1879 parents->parent[level-1] = NULL; 1880 return mmu_pages_next(pvec, parents, 0); 1881 } 1882 1883 static void mmu_pages_clear_parents(struct mmu_page_path *parents) 1884 { 1885 struct kvm_mmu_page *sp; 1886 unsigned int level = 0; 1887 1888 do { 1889 unsigned int idx = parents->idx[level]; 1890 sp = parents->parent[level]; 1891 if (!sp) 1892 return; 1893 1894 WARN_ON(idx == INVALID_INDEX); 1895 clear_unsync_child_bit(sp, idx); 1896 level++; 1897 } while (!sp->unsync_children); 1898 } 1899 1900 static void mmu_sync_children(struct kvm_vcpu *vcpu, 1901 struct kvm_mmu_page *parent) 1902 { 1903 int i; 1904 struct kvm_mmu_page *sp; 1905 struct mmu_page_path parents; 1906 struct kvm_mmu_pages pages; 1907 LIST_HEAD(invalid_list); 1908 bool flush = false; 1909 1910 while (mmu_unsync_walk(parent, &pages)) { 1911 bool protected = false; 1912 1913 for_each_sp(pages, sp, parents, i) 1914 protected |= rmap_write_protect(vcpu, sp->gfn); 1915 1916 if (protected) { 1917 kvm_flush_remote_tlbs(vcpu->kvm); 1918 flush = false; 1919 } 1920 1921 for_each_sp(pages, sp, parents, i) { 1922 flush |= kvm_sync_page(vcpu, sp, &invalid_list); 1923 mmu_pages_clear_parents(&parents); 1924 } 1925 if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) { 1926 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 1927 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock); 1928 flush = false; 1929 } 1930 } 1931 1932 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 1933 } 1934 1935 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp) 1936 { 1937 atomic_set(&sp->write_flooding_count, 0); 1938 } 1939 1940 static void clear_sp_write_flooding_count(u64 *spte) 1941 { 1942 __clear_sp_write_flooding_count(sptep_to_sp(spte)); 1943 } 1944 1945 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, 1946 gfn_t gfn, 1947 gva_t gaddr, 1948 unsigned level, 1949 int direct, 1950 unsigned int access) 1951 { 1952 bool direct_mmu = vcpu->arch.mmu->direct_map; 1953 union kvm_mmu_page_role role; 1954 struct hlist_head *sp_list; 1955 unsigned quadrant; 1956 struct kvm_mmu_page *sp; 1957 bool need_sync = false; 1958 bool flush = false; 1959 int collisions = 0; 1960 LIST_HEAD(invalid_list); 1961 1962 role = vcpu->arch.mmu->mmu_role.base; 1963 role.level = level; 1964 role.direct = direct; 1965 if (role.direct) 1966 role.gpte_is_8_bytes = true; 1967 role.access = access; 1968 if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) { 1969 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); 1970 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; 1971 role.quadrant = quadrant; 1972 } 1973 1974 sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]; 1975 for_each_valid_sp(vcpu->kvm, sp, sp_list) { 1976 if (sp->gfn != gfn) { 1977 collisions++; 1978 continue; 1979 } 1980 1981 if (!need_sync && sp->unsync) 1982 need_sync = true; 1983 1984 if (sp->role.word != role.word) 1985 continue; 1986 1987 if (direct_mmu) 1988 goto trace_get_page; 1989 1990 if (sp->unsync) { 1991 /* The page is good, but __kvm_sync_page might still end 1992 * up zapping it. If so, break in order to rebuild it. 1993 */ 1994 if (!__kvm_sync_page(vcpu, sp, &invalid_list)) 1995 break; 1996 1997 WARN_ON(!list_empty(&invalid_list)); 1998 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 1999 } 2000 2001 if (sp->unsync_children) 2002 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 2003 2004 __clear_sp_write_flooding_count(sp); 2005 2006 trace_get_page: 2007 trace_kvm_mmu_get_page(sp, false); 2008 goto out; 2009 } 2010 2011 ++vcpu->kvm->stat.mmu_cache_miss; 2012 2013 sp = kvm_mmu_alloc_page(vcpu, direct); 2014 2015 sp->gfn = gfn; 2016 sp->role = role; 2017 hlist_add_head(&sp->hash_link, sp_list); 2018 if (!direct) { 2019 /* 2020 * we should do write protection before syncing pages 2021 * otherwise the content of the synced shadow page may 2022 * be inconsistent with guest page table. 2023 */ 2024 account_shadowed(vcpu->kvm, sp); 2025 if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn)) 2026 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1); 2027 2028 if (level > PG_LEVEL_4K && need_sync) 2029 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list); 2030 } 2031 trace_kvm_mmu_get_page(sp, true); 2032 2033 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush); 2034 out: 2035 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions) 2036 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions; 2037 return sp; 2038 } 2039 2040 static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator, 2041 struct kvm_vcpu *vcpu, hpa_t root, 2042 u64 addr) 2043 { 2044 iterator->addr = addr; 2045 iterator->shadow_addr = root; 2046 iterator->level = vcpu->arch.mmu->shadow_root_level; 2047 2048 if (iterator->level == PT64_ROOT_4LEVEL && 2049 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL && 2050 !vcpu->arch.mmu->direct_map) 2051 --iterator->level; 2052 2053 if (iterator->level == PT32E_ROOT_LEVEL) { 2054 /* 2055 * prev_root is currently only used for 64-bit hosts. So only 2056 * the active root_hpa is valid here. 2057 */ 2058 BUG_ON(root != vcpu->arch.mmu->root_hpa); 2059 2060 iterator->shadow_addr 2061 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3]; 2062 iterator->shadow_addr &= PT64_BASE_ADDR_MASK; 2063 --iterator->level; 2064 if (!iterator->shadow_addr) 2065 iterator->level = 0; 2066 } 2067 } 2068 2069 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator, 2070 struct kvm_vcpu *vcpu, u64 addr) 2071 { 2072 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa, 2073 addr); 2074 } 2075 2076 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator) 2077 { 2078 if (iterator->level < PG_LEVEL_4K) 2079 return false; 2080 2081 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level); 2082 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index; 2083 return true; 2084 } 2085 2086 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator, 2087 u64 spte) 2088 { 2089 if (is_last_spte(spte, iterator->level)) { 2090 iterator->level = 0; 2091 return; 2092 } 2093 2094 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK; 2095 --iterator->level; 2096 } 2097 2098 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator) 2099 { 2100 __shadow_walk_next(iterator, *iterator->sptep); 2101 } 2102 2103 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep, 2104 struct kvm_mmu_page *sp) 2105 { 2106 u64 spte; 2107 2108 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK); 2109 2110 spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp)); 2111 2112 mmu_spte_set(sptep, spte); 2113 2114 mmu_page_add_parent_pte(vcpu, sp, sptep); 2115 2116 if (sp->unsync_children || sp->unsync) 2117 mark_unsync(sptep); 2118 } 2119 2120 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2121 unsigned direct_access) 2122 { 2123 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) { 2124 struct kvm_mmu_page *child; 2125 2126 /* 2127 * For the direct sp, if the guest pte's dirty bit 2128 * changed form clean to dirty, it will corrupt the 2129 * sp's access: allow writable in the read-only sp, 2130 * so we should update the spte at this point to get 2131 * a new sp with the correct access. 2132 */ 2133 child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK); 2134 if (child->role.access == direct_access) 2135 return; 2136 2137 drop_parent_pte(child, sptep); 2138 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1); 2139 } 2140 } 2141 2142 /* Returns the number of zapped non-leaf child shadow pages. */ 2143 static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp, 2144 u64 *spte, struct list_head *invalid_list) 2145 { 2146 u64 pte; 2147 struct kvm_mmu_page *child; 2148 2149 pte = *spte; 2150 if (is_shadow_present_pte(pte)) { 2151 if (is_last_spte(pte, sp->role.level)) { 2152 drop_spte(kvm, spte); 2153 if (is_large_pte(pte)) 2154 --kvm->stat.lpages; 2155 } else { 2156 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2157 drop_parent_pte(child, spte); 2158 2159 /* 2160 * Recursively zap nested TDP SPs, parentless SPs are 2161 * unlikely to be used again in the near future. This 2162 * avoids retaining a large number of stale nested SPs. 2163 */ 2164 if (tdp_enabled && invalid_list && 2165 child->role.guest_mode && !child->parent_ptes.val) 2166 return kvm_mmu_prepare_zap_page(kvm, child, 2167 invalid_list); 2168 } 2169 } else if (is_mmio_spte(pte)) { 2170 mmu_spte_clear_no_track(spte); 2171 } 2172 return 0; 2173 } 2174 2175 static int kvm_mmu_page_unlink_children(struct kvm *kvm, 2176 struct kvm_mmu_page *sp, 2177 struct list_head *invalid_list) 2178 { 2179 int zapped = 0; 2180 unsigned i; 2181 2182 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) 2183 zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list); 2184 2185 return zapped; 2186 } 2187 2188 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp) 2189 { 2190 u64 *sptep; 2191 struct rmap_iterator iter; 2192 2193 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter))) 2194 drop_parent_pte(sp, sptep); 2195 } 2196 2197 static int mmu_zap_unsync_children(struct kvm *kvm, 2198 struct kvm_mmu_page *parent, 2199 struct list_head *invalid_list) 2200 { 2201 int i, zapped = 0; 2202 struct mmu_page_path parents; 2203 struct kvm_mmu_pages pages; 2204 2205 if (parent->role.level == PG_LEVEL_4K) 2206 return 0; 2207 2208 while (mmu_unsync_walk(parent, &pages)) { 2209 struct kvm_mmu_page *sp; 2210 2211 for_each_sp(pages, sp, parents, i) { 2212 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 2213 mmu_pages_clear_parents(&parents); 2214 zapped++; 2215 } 2216 } 2217 2218 return zapped; 2219 } 2220 2221 static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm, 2222 struct kvm_mmu_page *sp, 2223 struct list_head *invalid_list, 2224 int *nr_zapped) 2225 { 2226 bool list_unstable; 2227 2228 trace_kvm_mmu_prepare_zap_page(sp); 2229 ++kvm->stat.mmu_shadow_zapped; 2230 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list); 2231 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list); 2232 kvm_mmu_unlink_parents(kvm, sp); 2233 2234 /* Zapping children means active_mmu_pages has become unstable. */ 2235 list_unstable = *nr_zapped; 2236 2237 if (!sp->role.invalid && !sp->role.direct) 2238 unaccount_shadowed(kvm, sp); 2239 2240 if (sp->unsync) 2241 kvm_unlink_unsync_page(kvm, sp); 2242 if (!sp->root_count) { 2243 /* Count self */ 2244 (*nr_zapped)++; 2245 2246 /* 2247 * Already invalid pages (previously active roots) are not on 2248 * the active page list. See list_del() in the "else" case of 2249 * !sp->root_count. 2250 */ 2251 if (sp->role.invalid) 2252 list_add(&sp->link, invalid_list); 2253 else 2254 list_move(&sp->link, invalid_list); 2255 kvm_mod_used_mmu_pages(kvm, -1); 2256 } else { 2257 /* 2258 * Remove the active root from the active page list, the root 2259 * will be explicitly freed when the root_count hits zero. 2260 */ 2261 list_del(&sp->link); 2262 2263 /* 2264 * Obsolete pages cannot be used on any vCPUs, see the comment 2265 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also 2266 * treats invalid shadow pages as being obsolete. 2267 */ 2268 if (!is_obsolete_sp(kvm, sp)) 2269 kvm_reload_remote_mmus(kvm); 2270 } 2271 2272 if (sp->lpage_disallowed) 2273 unaccount_huge_nx_page(kvm, sp); 2274 2275 sp->role.invalid = 1; 2276 return list_unstable; 2277 } 2278 2279 static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp, 2280 struct list_head *invalid_list) 2281 { 2282 int nr_zapped; 2283 2284 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped); 2285 return nr_zapped; 2286 } 2287 2288 static void kvm_mmu_commit_zap_page(struct kvm *kvm, 2289 struct list_head *invalid_list) 2290 { 2291 struct kvm_mmu_page *sp, *nsp; 2292 2293 if (list_empty(invalid_list)) 2294 return; 2295 2296 /* 2297 * We need to make sure everyone sees our modifications to 2298 * the page tables and see changes to vcpu->mode here. The barrier 2299 * in the kvm_flush_remote_tlbs() achieves this. This pairs 2300 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end. 2301 * 2302 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit 2303 * guest mode and/or lockless shadow page table walks. 2304 */ 2305 kvm_flush_remote_tlbs(kvm); 2306 2307 list_for_each_entry_safe(sp, nsp, invalid_list, link) { 2308 WARN_ON(!sp->role.invalid || sp->root_count); 2309 kvm_mmu_free_page(sp); 2310 } 2311 } 2312 2313 static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm, 2314 unsigned long nr_to_zap) 2315 { 2316 unsigned long total_zapped = 0; 2317 struct kvm_mmu_page *sp, *tmp; 2318 LIST_HEAD(invalid_list); 2319 bool unstable; 2320 int nr_zapped; 2321 2322 if (list_empty(&kvm->arch.active_mmu_pages)) 2323 return 0; 2324 2325 restart: 2326 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) { 2327 /* 2328 * Don't zap active root pages, the page itself can't be freed 2329 * and zapping it will just force vCPUs to realloc and reload. 2330 */ 2331 if (sp->root_count) 2332 continue; 2333 2334 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, 2335 &nr_zapped); 2336 total_zapped += nr_zapped; 2337 if (total_zapped >= nr_to_zap) 2338 break; 2339 2340 if (unstable) 2341 goto restart; 2342 } 2343 2344 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2345 2346 kvm->stat.mmu_recycled += total_zapped; 2347 return total_zapped; 2348 } 2349 2350 static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) 2351 { 2352 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) 2353 return kvm->arch.n_max_mmu_pages - 2354 kvm->arch.n_used_mmu_pages; 2355 2356 return 0; 2357 } 2358 2359 static int make_mmu_pages_available(struct kvm_vcpu *vcpu) 2360 { 2361 unsigned long avail = kvm_mmu_available_pages(vcpu->kvm); 2362 2363 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES)) 2364 return 0; 2365 2366 kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail); 2367 2368 /* 2369 * Note, this check is intentionally soft, it only guarantees that one 2370 * page is available, while the caller may end up allocating as many as 2371 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily 2372 * exceeding the (arbitrary by default) limit will not harm the host, 2373 * being too agressive may unnecessarily kill the guest, and getting an 2374 * exact count is far more trouble than it's worth, especially in the 2375 * page fault paths. 2376 */ 2377 if (!kvm_mmu_available_pages(vcpu->kvm)) 2378 return -ENOSPC; 2379 return 0; 2380 } 2381 2382 /* 2383 * Changing the number of mmu pages allocated to the vm 2384 * Note: if goal_nr_mmu_pages is too small, you will get dead lock 2385 */ 2386 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages) 2387 { 2388 write_lock(&kvm->mmu_lock); 2389 2390 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) { 2391 kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages - 2392 goal_nr_mmu_pages); 2393 2394 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages; 2395 } 2396 2397 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages; 2398 2399 write_unlock(&kvm->mmu_lock); 2400 } 2401 2402 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn) 2403 { 2404 struct kvm_mmu_page *sp; 2405 LIST_HEAD(invalid_list); 2406 int r; 2407 2408 pgprintk("%s: looking for gfn %llx\n", __func__, gfn); 2409 r = 0; 2410 write_lock(&kvm->mmu_lock); 2411 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) { 2412 pgprintk("%s: gfn %llx role %x\n", __func__, gfn, 2413 sp->role.word); 2414 r = 1; 2415 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list); 2416 } 2417 kvm_mmu_commit_zap_page(kvm, &invalid_list); 2418 write_unlock(&kvm->mmu_lock); 2419 2420 return r; 2421 } 2422 2423 static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) 2424 { 2425 gpa_t gpa; 2426 int r; 2427 2428 if (vcpu->arch.mmu->direct_map) 2429 return 0; 2430 2431 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL); 2432 2433 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT); 2434 2435 return r; 2436 } 2437 2438 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 2439 { 2440 trace_kvm_mmu_unsync_page(sp); 2441 ++vcpu->kvm->stat.mmu_unsync; 2442 sp->unsync = 1; 2443 2444 kvm_mmu_mark_parents_unsync(sp); 2445 } 2446 2447 bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn, 2448 bool can_unsync) 2449 { 2450 struct kvm_mmu_page *sp; 2451 bool locked = false; 2452 2453 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 2454 return true; 2455 2456 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 2457 if (!can_unsync) 2458 return true; 2459 2460 if (sp->unsync) 2461 continue; 2462 2463 /* 2464 * TDP MMU page faults require an additional spinlock as they 2465 * run with mmu_lock held for read, not write, and the unsync 2466 * logic is not thread safe. Take the spinklock regardless of 2467 * the MMU type to avoid extra conditionals/parameters, there's 2468 * no meaningful penalty if mmu_lock is held for write. 2469 */ 2470 if (!locked) { 2471 locked = true; 2472 spin_lock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2473 2474 /* 2475 * Recheck after taking the spinlock, a different vCPU 2476 * may have since marked the page unsync. A false 2477 * positive on the unprotected check above is not 2478 * possible as clearing sp->unsync _must_ hold mmu_lock 2479 * for write, i.e. unsync cannot transition from 0->1 2480 * while this CPU holds mmu_lock for read (or write). 2481 */ 2482 if (READ_ONCE(sp->unsync)) 2483 continue; 2484 } 2485 2486 WARN_ON(sp->role.level != PG_LEVEL_4K); 2487 kvm_unsync_page(vcpu, sp); 2488 } 2489 if (locked) 2490 spin_unlock(&vcpu->kvm->arch.mmu_unsync_pages_lock); 2491 2492 /* 2493 * We need to ensure that the marking of unsync pages is visible 2494 * before the SPTE is updated to allow writes because 2495 * kvm_mmu_sync_roots() checks the unsync flags without holding 2496 * the MMU lock and so can race with this. If the SPTE was updated 2497 * before the page had been marked as unsync-ed, something like the 2498 * following could happen: 2499 * 2500 * CPU 1 CPU 2 2501 * --------------------------------------------------------------------- 2502 * 1.2 Host updates SPTE 2503 * to be writable 2504 * 2.1 Guest writes a GPTE for GVA X. 2505 * (GPTE being in the guest page table shadowed 2506 * by the SP from CPU 1.) 2507 * This reads SPTE during the page table walk. 2508 * Since SPTE.W is read as 1, there is no 2509 * fault. 2510 * 2511 * 2.2 Guest issues TLB flush. 2512 * That causes a VM Exit. 2513 * 2514 * 2.3 kvm_mmu_sync_pages() reads sp->unsync. 2515 * Since it is false, so it just returns. 2516 * 2517 * 2.4 Guest accesses GVA X. 2518 * Since the mapping in the SP was not updated, 2519 * so the old mapping for GVA X incorrectly 2520 * gets used. 2521 * 1.1 Host marks SP 2522 * as unsync 2523 * (sp->unsync = true) 2524 * 2525 * The write barrier below ensures that 1.1 happens before 1.2 and thus 2526 * the situation in 2.4 does not arise. The implicit barrier in 2.2 2527 * pairs with this write barrier. 2528 */ 2529 smp_wmb(); 2530 2531 return false; 2532 } 2533 2534 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2535 unsigned int pte_access, int level, 2536 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2537 bool can_unsync, bool host_writable) 2538 { 2539 u64 spte; 2540 struct kvm_mmu_page *sp; 2541 int ret; 2542 2543 sp = sptep_to_sp(sptep); 2544 2545 ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative, 2546 can_unsync, host_writable, sp_ad_disabled(sp), &spte); 2547 2548 if (spte & PT_WRITABLE_MASK) 2549 kvm_vcpu_mark_page_dirty(vcpu, gfn); 2550 2551 if (*sptep == spte) 2552 ret |= SET_SPTE_SPURIOUS; 2553 else if (mmu_spte_update(sptep, spte)) 2554 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH; 2555 return ret; 2556 } 2557 2558 static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, 2559 unsigned int pte_access, bool write_fault, int level, 2560 gfn_t gfn, kvm_pfn_t pfn, bool speculative, 2561 bool host_writable) 2562 { 2563 int was_rmapped = 0; 2564 int rmap_count; 2565 int set_spte_ret; 2566 int ret = RET_PF_FIXED; 2567 bool flush = false; 2568 2569 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__, 2570 *sptep, write_fault, gfn); 2571 2572 if (unlikely(is_noslot_pfn(pfn))) { 2573 mark_mmio_spte(vcpu, sptep, gfn, pte_access); 2574 return RET_PF_EMULATE; 2575 } 2576 2577 if (is_shadow_present_pte(*sptep)) { 2578 /* 2579 * If we overwrite a PTE page pointer with a 2MB PMD, unlink 2580 * the parent of the now unreachable PTE. 2581 */ 2582 if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) { 2583 struct kvm_mmu_page *child; 2584 u64 pte = *sptep; 2585 2586 child = to_shadow_page(pte & PT64_BASE_ADDR_MASK); 2587 drop_parent_pte(child, sptep); 2588 flush = true; 2589 } else if (pfn != spte_to_pfn(*sptep)) { 2590 pgprintk("hfn old %llx new %llx\n", 2591 spte_to_pfn(*sptep), pfn); 2592 drop_spte(vcpu->kvm, sptep); 2593 flush = true; 2594 } else 2595 was_rmapped = 1; 2596 } 2597 2598 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn, 2599 speculative, true, host_writable); 2600 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) { 2601 if (write_fault) 2602 ret = RET_PF_EMULATE; 2603 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 2604 } 2605 2606 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush) 2607 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 2608 KVM_PAGES_PER_HPAGE(level)); 2609 2610 /* 2611 * The fault is fully spurious if and only if the new SPTE and old SPTE 2612 * are identical, and emulation is not required. 2613 */ 2614 if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) { 2615 WARN_ON_ONCE(!was_rmapped); 2616 return RET_PF_SPURIOUS; 2617 } 2618 2619 pgprintk("%s: setting spte %llx\n", __func__, *sptep); 2620 trace_kvm_mmu_set_spte(level, gfn, sptep); 2621 if (!was_rmapped && is_large_pte(*sptep)) 2622 ++vcpu->kvm->stat.lpages; 2623 2624 if (is_shadow_present_pte(*sptep)) { 2625 if (!was_rmapped) { 2626 rmap_count = rmap_add(vcpu, sptep, gfn); 2627 if (rmap_count > RMAP_RECYCLE_THRESHOLD) 2628 rmap_recycle(vcpu, sptep, gfn); 2629 } 2630 } 2631 2632 return ret; 2633 } 2634 2635 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn, 2636 bool no_dirty_log) 2637 { 2638 struct kvm_memory_slot *slot; 2639 2640 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log); 2641 if (!slot) 2642 return KVM_PFN_ERR_FAULT; 2643 2644 return gfn_to_pfn_memslot_atomic(slot, gfn); 2645 } 2646 2647 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu, 2648 struct kvm_mmu_page *sp, 2649 u64 *start, u64 *end) 2650 { 2651 struct page *pages[PTE_PREFETCH_NUM]; 2652 struct kvm_memory_slot *slot; 2653 unsigned int access = sp->role.access; 2654 int i, ret; 2655 gfn_t gfn; 2656 2657 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt); 2658 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK); 2659 if (!slot) 2660 return -1; 2661 2662 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start); 2663 if (ret <= 0) 2664 return -1; 2665 2666 for (i = 0; i < ret; i++, gfn++, start++) { 2667 mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn, 2668 page_to_pfn(pages[i]), true, true); 2669 put_page(pages[i]); 2670 } 2671 2672 return 0; 2673 } 2674 2675 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu, 2676 struct kvm_mmu_page *sp, u64 *sptep) 2677 { 2678 u64 *spte, *start = NULL; 2679 int i; 2680 2681 WARN_ON(!sp->role.direct); 2682 2683 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 2684 spte = sp->spt + i; 2685 2686 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 2687 if (is_shadow_present_pte(*spte) || spte == sptep) { 2688 if (!start) 2689 continue; 2690 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0) 2691 break; 2692 start = NULL; 2693 } else if (!start) 2694 start = spte; 2695 } 2696 } 2697 2698 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep) 2699 { 2700 struct kvm_mmu_page *sp; 2701 2702 sp = sptep_to_sp(sptep); 2703 2704 /* 2705 * Without accessed bits, there's no way to distinguish between 2706 * actually accessed translations and prefetched, so disable pte 2707 * prefetch if accessed bits aren't available. 2708 */ 2709 if (sp_ad_disabled(sp)) 2710 return; 2711 2712 if (sp->role.level > PG_LEVEL_4K) 2713 return; 2714 2715 /* 2716 * If addresses are being invalidated, skip prefetching to avoid 2717 * accidentally prefetching those addresses. 2718 */ 2719 if (unlikely(vcpu->kvm->mmu_notifier_count)) 2720 return; 2721 2722 __direct_pte_prefetch(vcpu, sp, sptep); 2723 } 2724 2725 static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, 2726 const struct kvm_memory_slot *slot) 2727 { 2728 unsigned long hva; 2729 pte_t *pte; 2730 int level; 2731 2732 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn)) 2733 return PG_LEVEL_4K; 2734 2735 /* 2736 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot() 2737 * is not solely for performance, it's also necessary to avoid the 2738 * "writable" check in __gfn_to_hva_many(), which will always fail on 2739 * read-only memslots due to gfn_to_hva() assuming writes. Earlier 2740 * page fault steps have already verified the guest isn't writing a 2741 * read-only memslot. 2742 */ 2743 hva = __gfn_to_hva_memslot(slot, gfn); 2744 2745 pte = lookup_address_in_mm(kvm->mm, hva, &level); 2746 if (unlikely(!pte)) 2747 return PG_LEVEL_4K; 2748 2749 return level; 2750 } 2751 2752 int kvm_mmu_max_mapping_level(struct kvm *kvm, 2753 const struct kvm_memory_slot *slot, gfn_t gfn, 2754 kvm_pfn_t pfn, int max_level) 2755 { 2756 struct kvm_lpage_info *linfo; 2757 int host_level; 2758 2759 max_level = min(max_level, max_huge_page_level); 2760 for ( ; max_level > PG_LEVEL_4K; max_level--) { 2761 linfo = lpage_info_slot(gfn, slot, max_level); 2762 if (!linfo->disallow_lpage) 2763 break; 2764 } 2765 2766 if (max_level == PG_LEVEL_4K) 2767 return PG_LEVEL_4K; 2768 2769 host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot); 2770 return min(host_level, max_level); 2771 } 2772 2773 int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn, 2774 int max_level, kvm_pfn_t *pfnp, 2775 bool huge_page_disallowed, int *req_level) 2776 { 2777 struct kvm_memory_slot *slot; 2778 kvm_pfn_t pfn = *pfnp; 2779 kvm_pfn_t mask; 2780 int level; 2781 2782 *req_level = PG_LEVEL_4K; 2783 2784 if (unlikely(max_level == PG_LEVEL_4K)) 2785 return PG_LEVEL_4K; 2786 2787 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn)) 2788 return PG_LEVEL_4K; 2789 2790 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true); 2791 if (!slot) 2792 return PG_LEVEL_4K; 2793 2794 /* 2795 * Enforce the iTLB multihit workaround after capturing the requested 2796 * level, which will be used to do precise, accurate accounting. 2797 */ 2798 *req_level = level = kvm_mmu_max_mapping_level(vcpu->kvm, slot, gfn, pfn, max_level); 2799 if (level == PG_LEVEL_4K || huge_page_disallowed) 2800 return PG_LEVEL_4K; 2801 2802 /* 2803 * mmu_notifier_retry() was successful and mmu_lock is held, so 2804 * the pmd can't be split from under us. 2805 */ 2806 mask = KVM_PAGES_PER_HPAGE(level) - 1; 2807 VM_BUG_ON((gfn & mask) != (pfn & mask)); 2808 *pfnp = pfn & ~mask; 2809 2810 return level; 2811 } 2812 2813 void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level, 2814 kvm_pfn_t *pfnp, int *goal_levelp) 2815 { 2816 int level = *goal_levelp; 2817 2818 if (cur_level == level && level > PG_LEVEL_4K && 2819 is_shadow_present_pte(spte) && 2820 !is_large_pte(spte)) { 2821 /* 2822 * A small SPTE exists for this pfn, but FNAME(fetch) 2823 * and __direct_map would like to create a large PTE 2824 * instead: just force them to go down another level, 2825 * patching back for them into pfn the next 9 bits of 2826 * the address. 2827 */ 2828 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - 2829 KVM_PAGES_PER_HPAGE(level - 1); 2830 *pfnp |= gfn & page_mask; 2831 (*goal_levelp)--; 2832 } 2833 } 2834 2835 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 2836 int map_writable, int max_level, kvm_pfn_t pfn, 2837 bool prefault, bool is_tdp) 2838 { 2839 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled(); 2840 bool write = error_code & PFERR_WRITE_MASK; 2841 bool exec = error_code & PFERR_FETCH_MASK; 2842 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled; 2843 struct kvm_shadow_walk_iterator it; 2844 struct kvm_mmu_page *sp; 2845 int level, req_level, ret; 2846 gfn_t gfn = gpa >> PAGE_SHIFT; 2847 gfn_t base_gfn = gfn; 2848 2849 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 2850 return RET_PF_RETRY; 2851 2852 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn, 2853 huge_page_disallowed, &req_level); 2854 2855 trace_kvm_mmu_spte_requested(gpa, level, pfn); 2856 for_each_shadow_entry(vcpu, gpa, it) { 2857 /* 2858 * We cannot overwrite existing page tables with an NX 2859 * large page, as the leaf could be executable. 2860 */ 2861 if (nx_huge_page_workaround_enabled) 2862 disallowed_hugepage_adjust(*it.sptep, gfn, it.level, 2863 &pfn, &level); 2864 2865 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 2866 if (it.level == level) 2867 break; 2868 2869 drop_large_spte(vcpu, it.sptep); 2870 if (!is_shadow_present_pte(*it.sptep)) { 2871 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr, 2872 it.level - 1, true, ACC_ALL); 2873 2874 link_shadow_page(vcpu, it.sptep, sp); 2875 if (is_tdp && huge_page_disallowed && 2876 req_level >= it.level) 2877 account_huge_nx_page(vcpu->kvm, sp); 2878 } 2879 } 2880 2881 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL, 2882 write, level, base_gfn, pfn, prefault, 2883 map_writable); 2884 if (ret == RET_PF_SPURIOUS) 2885 return ret; 2886 2887 direct_pte_prefetch(vcpu, it.sptep); 2888 ++vcpu->stat.pf_fixed; 2889 return ret; 2890 } 2891 2892 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk) 2893 { 2894 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk); 2895 } 2896 2897 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn) 2898 { 2899 /* 2900 * Do not cache the mmio info caused by writing the readonly gfn 2901 * into the spte otherwise read access on readonly gfn also can 2902 * caused mmio page fault and treat it as mmio access. 2903 */ 2904 if (pfn == KVM_PFN_ERR_RO_FAULT) 2905 return RET_PF_EMULATE; 2906 2907 if (pfn == KVM_PFN_ERR_HWPOISON) { 2908 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current); 2909 return RET_PF_RETRY; 2910 } 2911 2912 return -EFAULT; 2913 } 2914 2915 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn, 2916 kvm_pfn_t pfn, unsigned int access, 2917 int *ret_val) 2918 { 2919 /* The pfn is invalid, report the error! */ 2920 if (unlikely(is_error_pfn(pfn))) { 2921 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn); 2922 return true; 2923 } 2924 2925 if (unlikely(is_noslot_pfn(pfn))) { 2926 vcpu_cache_mmio_info(vcpu, gva, gfn, 2927 access & shadow_mmio_access_mask); 2928 /* 2929 * If MMIO caching is disabled, emulate immediately without 2930 * touching the shadow page tables as attempting to install an 2931 * MMIO SPTE will just be an expensive nop. 2932 */ 2933 if (unlikely(!shadow_mmio_value)) { 2934 *ret_val = RET_PF_EMULATE; 2935 return true; 2936 } 2937 } 2938 2939 return false; 2940 } 2941 2942 static bool page_fault_can_be_fast(u32 error_code) 2943 { 2944 /* 2945 * Do not fix the mmio spte with invalid generation number which 2946 * need to be updated by slow page fault path. 2947 */ 2948 if (unlikely(error_code & PFERR_RSVD_MASK)) 2949 return false; 2950 2951 /* See if the page fault is due to an NX violation */ 2952 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)) 2953 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK)))) 2954 return false; 2955 2956 /* 2957 * #PF can be fast if: 2958 * 1. The shadow page table entry is not present, which could mean that 2959 * the fault is potentially caused by access tracking (if enabled). 2960 * 2. The shadow page table entry is present and the fault 2961 * is caused by write-protect, that means we just need change the W 2962 * bit of the spte which can be done out of mmu-lock. 2963 * 2964 * However, if access tracking is disabled we know that a non-present 2965 * page must be a genuine page fault where we have to create a new SPTE. 2966 * So, if access tracking is disabled, we return true only for write 2967 * accesses to a present page. 2968 */ 2969 2970 return shadow_acc_track_mask != 0 || 2971 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)) 2972 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK)); 2973 } 2974 2975 /* 2976 * Returns true if the SPTE was fixed successfully. Otherwise, 2977 * someone else modified the SPTE from its original value. 2978 */ 2979 static bool 2980 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 2981 u64 *sptep, u64 old_spte, u64 new_spte) 2982 { 2983 gfn_t gfn; 2984 2985 WARN_ON(!sp->role.direct); 2986 2987 /* 2988 * Theoretically we could also set dirty bit (and flush TLB) here in 2989 * order to eliminate unnecessary PML logging. See comments in 2990 * set_spte. But fast_page_fault is very unlikely to happen with PML 2991 * enabled, so we do not do this. This might result in the same GPA 2992 * to be logged in PML buffer again when the write really happens, and 2993 * eventually to be called by mark_page_dirty twice. But it's also no 2994 * harm. This also avoids the TLB flush needed after setting dirty bit 2995 * so non-PML cases won't be impacted. 2996 * 2997 * Compare with set_spte where instead shadow_dirty_mask is set. 2998 */ 2999 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte) 3000 return false; 3001 3002 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) { 3003 /* 3004 * The gfn of direct spte is stable since it is 3005 * calculated by sp->gfn. 3006 */ 3007 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt); 3008 kvm_vcpu_mark_page_dirty(vcpu, gfn); 3009 } 3010 3011 return true; 3012 } 3013 3014 static bool is_access_allowed(u32 fault_err_code, u64 spte) 3015 { 3016 if (fault_err_code & PFERR_FETCH_MASK) 3017 return is_executable_pte(spte); 3018 3019 if (fault_err_code & PFERR_WRITE_MASK) 3020 return is_writable_pte(spte); 3021 3022 /* Fault was on Read access */ 3023 return spte & PT_PRESENT_MASK; 3024 } 3025 3026 /* 3027 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS. 3028 */ 3029 static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3030 u32 error_code) 3031 { 3032 struct kvm_shadow_walk_iterator iterator; 3033 struct kvm_mmu_page *sp; 3034 int ret = RET_PF_INVALID; 3035 u64 spte = 0ull; 3036 uint retry_count = 0; 3037 3038 if (!page_fault_can_be_fast(error_code)) 3039 return ret; 3040 3041 walk_shadow_page_lockless_begin(vcpu); 3042 3043 do { 3044 u64 new_spte; 3045 3046 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte) 3047 if (!is_shadow_present_pte(spte)) 3048 break; 3049 3050 if (!is_shadow_present_pte(spte)) 3051 break; 3052 3053 sp = sptep_to_sp(iterator.sptep); 3054 if (!is_last_spte(spte, sp->role.level)) 3055 break; 3056 3057 /* 3058 * Check whether the memory access that caused the fault would 3059 * still cause it if it were to be performed right now. If not, 3060 * then this is a spurious fault caused by TLB lazily flushed, 3061 * or some other CPU has already fixed the PTE after the 3062 * current CPU took the fault. 3063 * 3064 * Need not check the access of upper level table entries since 3065 * they are always ACC_ALL. 3066 */ 3067 if (is_access_allowed(error_code, spte)) { 3068 ret = RET_PF_SPURIOUS; 3069 break; 3070 } 3071 3072 new_spte = spte; 3073 3074 if (is_access_track_spte(spte)) 3075 new_spte = restore_acc_track_spte(new_spte); 3076 3077 /* 3078 * Currently, to simplify the code, write-protection can 3079 * be removed in the fast path only if the SPTE was 3080 * write-protected for dirty-logging or access tracking. 3081 */ 3082 if ((error_code & PFERR_WRITE_MASK) && 3083 spte_can_locklessly_be_made_writable(spte)) { 3084 new_spte |= PT_WRITABLE_MASK; 3085 3086 /* 3087 * Do not fix write-permission on the large spte. Since 3088 * we only dirty the first page into the dirty-bitmap in 3089 * fast_pf_fix_direct_spte(), other pages are missed 3090 * if its slot has dirty logging enabled. 3091 * 3092 * Instead, we let the slow page fault path create a 3093 * normal spte to fix the access. 3094 * 3095 * See the comments in kvm_arch_commit_memory_region(). 3096 */ 3097 if (sp->role.level > PG_LEVEL_4K) 3098 break; 3099 } 3100 3101 /* Verify that the fault can be handled in the fast path */ 3102 if (new_spte == spte || 3103 !is_access_allowed(error_code, new_spte)) 3104 break; 3105 3106 /* 3107 * Currently, fast page fault only works for direct mapping 3108 * since the gfn is not stable for indirect shadow page. See 3109 * Documentation/virt/kvm/locking.rst to get more detail. 3110 */ 3111 if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte, 3112 new_spte)) { 3113 ret = RET_PF_FIXED; 3114 break; 3115 } 3116 3117 if (++retry_count > 4) { 3118 printk_once(KERN_WARNING 3119 "kvm: Fast #PF retrying more than 4 times.\n"); 3120 break; 3121 } 3122 3123 } while (true); 3124 3125 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep, 3126 spte, ret); 3127 walk_shadow_page_lockless_end(vcpu); 3128 3129 return ret; 3130 } 3131 3132 static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa, 3133 struct list_head *invalid_list) 3134 { 3135 struct kvm_mmu_page *sp; 3136 3137 if (!VALID_PAGE(*root_hpa)) 3138 return; 3139 3140 sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK); 3141 3142 if (is_tdp_mmu_page(sp)) 3143 kvm_tdp_mmu_put_root(kvm, sp, false); 3144 else if (!--sp->root_count && sp->role.invalid) 3145 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list); 3146 3147 *root_hpa = INVALID_PAGE; 3148 } 3149 3150 /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */ 3151 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 3152 ulong roots_to_free) 3153 { 3154 struct kvm *kvm = vcpu->kvm; 3155 int i; 3156 LIST_HEAD(invalid_list); 3157 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT; 3158 3159 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG); 3160 3161 /* Before acquiring the MMU lock, see if we need to do any real work. */ 3162 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) { 3163 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3164 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) && 3165 VALID_PAGE(mmu->prev_roots[i].hpa)) 3166 break; 3167 3168 if (i == KVM_MMU_NUM_PREV_ROOTS) 3169 return; 3170 } 3171 3172 write_lock(&kvm->mmu_lock); 3173 3174 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 3175 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) 3176 mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa, 3177 &invalid_list); 3178 3179 if (free_active_root) { 3180 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3181 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) { 3182 mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list); 3183 } else if (mmu->pae_root) { 3184 for (i = 0; i < 4; ++i) { 3185 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i])) 3186 continue; 3187 3188 mmu_free_root_page(kvm, &mmu->pae_root[i], 3189 &invalid_list); 3190 mmu->pae_root[i] = INVALID_PAE_ROOT; 3191 } 3192 } 3193 mmu->root_hpa = INVALID_PAGE; 3194 mmu->root_pgd = 0; 3195 } 3196 3197 kvm_mmu_commit_zap_page(kvm, &invalid_list); 3198 write_unlock(&kvm->mmu_lock); 3199 } 3200 EXPORT_SYMBOL_GPL(kvm_mmu_free_roots); 3201 3202 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn) 3203 { 3204 int ret = 0; 3205 3206 if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) { 3207 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3208 ret = 1; 3209 } 3210 3211 return ret; 3212 } 3213 3214 static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva, 3215 u8 level, bool direct) 3216 { 3217 struct kvm_mmu_page *sp; 3218 3219 sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL); 3220 ++sp->root_count; 3221 3222 return __pa(sp->spt); 3223 } 3224 3225 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu) 3226 { 3227 struct kvm_mmu *mmu = vcpu->arch.mmu; 3228 u8 shadow_root_level = mmu->shadow_root_level; 3229 hpa_t root; 3230 unsigned i; 3231 int r; 3232 3233 write_lock(&vcpu->kvm->mmu_lock); 3234 r = make_mmu_pages_available(vcpu); 3235 if (r < 0) 3236 goto out_unlock; 3237 3238 if (is_tdp_mmu_enabled(vcpu->kvm)) { 3239 root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu); 3240 mmu->root_hpa = root; 3241 } else if (shadow_root_level >= PT64_ROOT_4LEVEL) { 3242 root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true); 3243 mmu->root_hpa = root; 3244 } else if (shadow_root_level == PT32E_ROOT_LEVEL) { 3245 if (WARN_ON_ONCE(!mmu->pae_root)) { 3246 r = -EIO; 3247 goto out_unlock; 3248 } 3249 3250 for (i = 0; i < 4; ++i) { 3251 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3252 3253 root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT), 3254 i << 30, PT32_ROOT_LEVEL, true); 3255 mmu->pae_root[i] = root | PT_PRESENT_MASK | 3256 shadow_me_mask; 3257 } 3258 mmu->root_hpa = __pa(mmu->pae_root); 3259 } else { 3260 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level); 3261 r = -EIO; 3262 goto out_unlock; 3263 } 3264 3265 /* root_pgd is ignored for direct MMUs. */ 3266 mmu->root_pgd = 0; 3267 out_unlock: 3268 write_unlock(&vcpu->kvm->mmu_lock); 3269 return r; 3270 } 3271 3272 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu) 3273 { 3274 struct kvm_mmu *mmu = vcpu->arch.mmu; 3275 u64 pdptrs[4], pm_mask; 3276 gfn_t root_gfn, root_pgd; 3277 hpa_t root; 3278 unsigned i; 3279 int r; 3280 3281 root_pgd = mmu->get_guest_pgd(vcpu); 3282 root_gfn = root_pgd >> PAGE_SHIFT; 3283 3284 if (mmu_check_root(vcpu, root_gfn)) 3285 return 1; 3286 3287 /* 3288 * On SVM, reading PDPTRs might access guest memory, which might fault 3289 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock. 3290 */ 3291 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3292 for (i = 0; i < 4; ++i) { 3293 pdptrs[i] = mmu->get_pdptr(vcpu, i); 3294 if (!(pdptrs[i] & PT_PRESENT_MASK)) 3295 continue; 3296 3297 if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT)) 3298 return 1; 3299 } 3300 } 3301 3302 write_lock(&vcpu->kvm->mmu_lock); 3303 r = make_mmu_pages_available(vcpu); 3304 if (r < 0) 3305 goto out_unlock; 3306 3307 /* 3308 * Do we shadow a long mode page table? If so we need to 3309 * write-protect the guests page table root. 3310 */ 3311 if (mmu->root_level >= PT64_ROOT_4LEVEL) { 3312 root = mmu_alloc_root(vcpu, root_gfn, 0, 3313 mmu->shadow_root_level, false); 3314 mmu->root_hpa = root; 3315 goto set_root_pgd; 3316 } 3317 3318 if (WARN_ON_ONCE(!mmu->pae_root)) { 3319 r = -EIO; 3320 goto out_unlock; 3321 } 3322 3323 /* 3324 * We shadow a 32 bit page table. This may be a legacy 2-level 3325 * or a PAE 3-level page table. In either case we need to be aware that 3326 * the shadow page table may be a PAE or a long mode page table. 3327 */ 3328 pm_mask = PT_PRESENT_MASK | shadow_me_mask; 3329 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) { 3330 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK; 3331 3332 if (WARN_ON_ONCE(!mmu->pml4_root)) { 3333 r = -EIO; 3334 goto out_unlock; 3335 } 3336 3337 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask; 3338 } 3339 3340 for (i = 0; i < 4; ++i) { 3341 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i])); 3342 3343 if (mmu->root_level == PT32E_ROOT_LEVEL) { 3344 if (!(pdptrs[i] & PT_PRESENT_MASK)) { 3345 mmu->pae_root[i] = INVALID_PAE_ROOT; 3346 continue; 3347 } 3348 root_gfn = pdptrs[i] >> PAGE_SHIFT; 3349 } 3350 3351 root = mmu_alloc_root(vcpu, root_gfn, i << 30, 3352 PT32_ROOT_LEVEL, false); 3353 mmu->pae_root[i] = root | pm_mask; 3354 } 3355 3356 if (mmu->shadow_root_level == PT64_ROOT_4LEVEL) 3357 mmu->root_hpa = __pa(mmu->pml4_root); 3358 else 3359 mmu->root_hpa = __pa(mmu->pae_root); 3360 3361 set_root_pgd: 3362 mmu->root_pgd = root_pgd; 3363 out_unlock: 3364 write_unlock(&vcpu->kvm->mmu_lock); 3365 3366 return 0; 3367 } 3368 3369 static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu) 3370 { 3371 struct kvm_mmu *mmu = vcpu->arch.mmu; 3372 u64 *pml4_root, *pae_root; 3373 3374 /* 3375 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP 3376 * tables are allocated and initialized at root creation as there is no 3377 * equivalent level in the guest's NPT to shadow. Allocate the tables 3378 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare. 3379 */ 3380 if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL || 3381 mmu->shadow_root_level < PT64_ROOT_4LEVEL) 3382 return 0; 3383 3384 /* 3385 * This mess only works with 4-level paging and needs to be updated to 3386 * work with 5-level paging. 3387 */ 3388 if (WARN_ON_ONCE(mmu->shadow_root_level != PT64_ROOT_4LEVEL)) 3389 return -EIO; 3390 3391 if (mmu->pae_root && mmu->pml4_root) 3392 return 0; 3393 3394 /* 3395 * The special roots should always be allocated in concert. Yell and 3396 * bail if KVM ends up in a state where only one of the roots is valid. 3397 */ 3398 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root)) 3399 return -EIO; 3400 3401 /* 3402 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and 3403 * doesn't need to be decrypted. 3404 */ 3405 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3406 if (!pae_root) 3407 return -ENOMEM; 3408 3409 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT); 3410 if (!pml4_root) { 3411 free_page((unsigned long)pae_root); 3412 return -ENOMEM; 3413 } 3414 3415 mmu->pae_root = pae_root; 3416 mmu->pml4_root = pml4_root; 3417 3418 return 0; 3419 } 3420 3421 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu) 3422 { 3423 int i; 3424 struct kvm_mmu_page *sp; 3425 3426 if (vcpu->arch.mmu->direct_map) 3427 return; 3428 3429 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) 3430 return; 3431 3432 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3433 3434 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) { 3435 hpa_t root = vcpu->arch.mmu->root_hpa; 3436 sp = to_shadow_page(root); 3437 3438 /* 3439 * Even if another CPU was marking the SP as unsync-ed 3440 * simultaneously, any guest page table changes are not 3441 * guaranteed to be visible anyway until this VCPU issues a TLB 3442 * flush strictly after those changes are made. We only need to 3443 * ensure that the other CPU sets these flags before any actual 3444 * changes to the page tables are made. The comments in 3445 * mmu_need_write_protect() describe what could go wrong if this 3446 * requirement isn't satisfied. 3447 */ 3448 if (!smp_load_acquire(&sp->unsync) && 3449 !smp_load_acquire(&sp->unsync_children)) 3450 return; 3451 3452 write_lock(&vcpu->kvm->mmu_lock); 3453 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3454 3455 mmu_sync_children(vcpu, sp); 3456 3457 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3458 write_unlock(&vcpu->kvm->mmu_lock); 3459 return; 3460 } 3461 3462 write_lock(&vcpu->kvm->mmu_lock); 3463 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC); 3464 3465 for (i = 0; i < 4; ++i) { 3466 hpa_t root = vcpu->arch.mmu->pae_root[i]; 3467 3468 if (IS_VALID_PAE_ROOT(root)) { 3469 root &= PT64_BASE_ADDR_MASK; 3470 sp = to_shadow_page(root); 3471 mmu_sync_children(vcpu, sp); 3472 } 3473 } 3474 3475 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC); 3476 write_unlock(&vcpu->kvm->mmu_lock); 3477 } 3478 3479 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr, 3480 u32 access, struct x86_exception *exception) 3481 { 3482 if (exception) 3483 exception->error_code = 0; 3484 return vaddr; 3485 } 3486 3487 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr, 3488 u32 access, 3489 struct x86_exception *exception) 3490 { 3491 if (exception) 3492 exception->error_code = 0; 3493 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception); 3494 } 3495 3496 static bool 3497 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level) 3498 { 3499 int bit7 = (pte >> 7) & 1; 3500 3501 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1]; 3502 } 3503 3504 static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte) 3505 { 3506 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f); 3507 } 3508 3509 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3510 { 3511 /* 3512 * A nested guest cannot use the MMIO cache if it is using nested 3513 * page tables, because cr2 is a nGPA while the cache stores GPAs. 3514 */ 3515 if (mmu_is_nested(vcpu)) 3516 return false; 3517 3518 if (direct) 3519 return vcpu_match_mmio_gpa(vcpu, addr); 3520 3521 return vcpu_match_mmio_gva(vcpu, addr); 3522 } 3523 3524 /* 3525 * Return the level of the lowest level SPTE added to sptes. 3526 * That SPTE may be non-present. 3527 */ 3528 static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level) 3529 { 3530 struct kvm_shadow_walk_iterator iterator; 3531 int leaf = -1; 3532 u64 spte; 3533 3534 walk_shadow_page_lockless_begin(vcpu); 3535 3536 for (shadow_walk_init(&iterator, vcpu, addr), 3537 *root_level = iterator.level; 3538 shadow_walk_okay(&iterator); 3539 __shadow_walk_next(&iterator, spte)) { 3540 leaf = iterator.level; 3541 spte = mmu_spte_get_lockless(iterator.sptep); 3542 3543 sptes[leaf] = spte; 3544 3545 if (!is_shadow_present_pte(spte)) 3546 break; 3547 } 3548 3549 walk_shadow_page_lockless_end(vcpu); 3550 3551 return leaf; 3552 } 3553 3554 /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */ 3555 static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep) 3556 { 3557 u64 sptes[PT64_ROOT_MAX_LEVEL + 1]; 3558 struct rsvd_bits_validate *rsvd_check; 3559 int root, leaf, level; 3560 bool reserved = false; 3561 3562 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) { 3563 *sptep = 0ull; 3564 return reserved; 3565 } 3566 3567 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3568 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root); 3569 else 3570 leaf = get_walk(vcpu, addr, sptes, &root); 3571 3572 if (unlikely(leaf < 0)) { 3573 *sptep = 0ull; 3574 return reserved; 3575 } 3576 3577 *sptep = sptes[leaf]; 3578 3579 /* 3580 * Skip reserved bits checks on the terminal leaf if it's not a valid 3581 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by 3582 * design, always have reserved bits set. The purpose of the checks is 3583 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs. 3584 */ 3585 if (!is_shadow_present_pte(sptes[leaf])) 3586 leaf++; 3587 3588 rsvd_check = &vcpu->arch.mmu->shadow_zero_check; 3589 3590 for (level = root; level >= leaf; level--) 3591 /* 3592 * Use a bitwise-OR instead of a logical-OR to aggregate the 3593 * reserved bit and EPT's invalid memtype/XWR checks to avoid 3594 * adding a Jcc in the loop. 3595 */ 3596 reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level]) | 3597 __is_rsvd_bits_set(rsvd_check, sptes[level], level); 3598 3599 if (reserved) { 3600 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n", 3601 __func__, addr); 3602 for (level = root; level >= leaf; level--) 3603 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx", 3604 sptes[level], level, 3605 rsvd_check->rsvd_bits_mask[(sptes[level] >> 7) & 1][level-1]); 3606 } 3607 3608 return reserved; 3609 } 3610 3611 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct) 3612 { 3613 u64 spte; 3614 bool reserved; 3615 3616 if (mmio_info_in_cache(vcpu, addr, direct)) 3617 return RET_PF_EMULATE; 3618 3619 reserved = get_mmio_spte(vcpu, addr, &spte); 3620 if (WARN_ON(reserved)) 3621 return -EINVAL; 3622 3623 if (is_mmio_spte(spte)) { 3624 gfn_t gfn = get_mmio_spte_gfn(spte); 3625 unsigned int access = get_mmio_spte_access(spte); 3626 3627 if (!check_mmio_spte(vcpu, spte)) 3628 return RET_PF_INVALID; 3629 3630 if (direct) 3631 addr = 0; 3632 3633 trace_handle_mmio_page_fault(addr, gfn, access); 3634 vcpu_cache_mmio_info(vcpu, addr, gfn, access); 3635 return RET_PF_EMULATE; 3636 } 3637 3638 /* 3639 * If the page table is zapped by other cpus, let CPU fault again on 3640 * the address. 3641 */ 3642 return RET_PF_RETRY; 3643 } 3644 3645 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu, 3646 u32 error_code, gfn_t gfn) 3647 { 3648 if (unlikely(error_code & PFERR_RSVD_MASK)) 3649 return false; 3650 3651 if (!(error_code & PFERR_PRESENT_MASK) || 3652 !(error_code & PFERR_WRITE_MASK)) 3653 return false; 3654 3655 /* 3656 * guest is writing the page which is write tracked which can 3657 * not be fixed by page fault handler. 3658 */ 3659 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE)) 3660 return true; 3661 3662 return false; 3663 } 3664 3665 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr) 3666 { 3667 struct kvm_shadow_walk_iterator iterator; 3668 u64 spte; 3669 3670 walk_shadow_page_lockless_begin(vcpu); 3671 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) { 3672 clear_sp_write_flooding_count(iterator.sptep); 3673 if (!is_shadow_present_pte(spte)) 3674 break; 3675 } 3676 walk_shadow_page_lockless_end(vcpu); 3677 } 3678 3679 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 3680 gfn_t gfn) 3681 { 3682 struct kvm_arch_async_pf arch; 3683 3684 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id; 3685 arch.gfn = gfn; 3686 arch.direct_map = vcpu->arch.mmu->direct_map; 3687 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu); 3688 3689 return kvm_setup_async_pf(vcpu, cr2_or_gpa, 3690 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch); 3691 } 3692 3693 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn, 3694 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, hva_t *hva, 3695 bool write, bool *writable) 3696 { 3697 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn); 3698 bool async; 3699 3700 /* 3701 * Retry the page fault if the gfn hit a memslot that is being deleted 3702 * or moved. This ensures any existing SPTEs for the old memslot will 3703 * be zapped before KVM inserts a new MMIO SPTE for the gfn. 3704 */ 3705 if (slot && (slot->flags & KVM_MEMSLOT_INVALID)) 3706 return true; 3707 3708 /* Don't expose private memslots to L2. */ 3709 if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) { 3710 *pfn = KVM_PFN_NOSLOT; 3711 *writable = false; 3712 return false; 3713 } 3714 3715 async = false; 3716 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, 3717 write, writable, hva); 3718 if (!async) 3719 return false; /* *pfn has correct page already */ 3720 3721 if (!prefault && kvm_can_do_async_pf(vcpu)) { 3722 trace_kvm_try_async_get_page(cr2_or_gpa, gfn); 3723 if (kvm_find_async_pf_gfn(vcpu, gfn)) { 3724 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn); 3725 kvm_make_request(KVM_REQ_APF_HALT, vcpu); 3726 return true; 3727 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn)) 3728 return true; 3729 } 3730 3731 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, 3732 write, writable, hva); 3733 return false; 3734 } 3735 3736 static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3737 bool prefault, int max_level, bool is_tdp) 3738 { 3739 bool write = error_code & PFERR_WRITE_MASK; 3740 bool map_writable; 3741 3742 gfn_t gfn = gpa >> PAGE_SHIFT; 3743 unsigned long mmu_seq; 3744 kvm_pfn_t pfn; 3745 hva_t hva; 3746 int r; 3747 3748 if (page_fault_handle_page_track(vcpu, error_code, gfn)) 3749 return RET_PF_EMULATE; 3750 3751 if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) { 3752 r = fast_page_fault(vcpu, gpa, error_code); 3753 if (r != RET_PF_INVALID) 3754 return r; 3755 } 3756 3757 r = mmu_topup_memory_caches(vcpu, false); 3758 if (r) 3759 return r; 3760 3761 mmu_seq = vcpu->kvm->mmu_notifier_seq; 3762 smp_rmb(); 3763 3764 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, &hva, 3765 write, &map_writable)) 3766 return RET_PF_RETRY; 3767 3768 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r)) 3769 return r; 3770 3771 r = RET_PF_RETRY; 3772 3773 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3774 read_lock(&vcpu->kvm->mmu_lock); 3775 else 3776 write_lock(&vcpu->kvm->mmu_lock); 3777 3778 if (!is_noslot_pfn(pfn) && mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, hva)) 3779 goto out_unlock; 3780 r = make_mmu_pages_available(vcpu); 3781 if (r) 3782 goto out_unlock; 3783 3784 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3785 r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level, 3786 pfn, prefault); 3787 else 3788 r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn, 3789 prefault, is_tdp); 3790 3791 out_unlock: 3792 if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) 3793 read_unlock(&vcpu->kvm->mmu_lock); 3794 else 3795 write_unlock(&vcpu->kvm->mmu_lock); 3796 kvm_release_pfn_clean(pfn); 3797 return r; 3798 } 3799 3800 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, 3801 u32 error_code, bool prefault) 3802 { 3803 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code); 3804 3805 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */ 3806 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault, 3807 PG_LEVEL_2M, false); 3808 } 3809 3810 int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, 3811 u64 fault_address, char *insn, int insn_len) 3812 { 3813 int r = 1; 3814 u32 flags = vcpu->arch.apf.host_apf_flags; 3815 3816 #ifndef CONFIG_X86_64 3817 /* A 64-bit CR2 should be impossible on 32-bit KVM. */ 3818 if (WARN_ON_ONCE(fault_address >> 32)) 3819 return -EFAULT; 3820 #endif 3821 3822 vcpu->arch.l1tf_flush_l1d = true; 3823 if (!flags) { 3824 trace_kvm_page_fault(fault_address, error_code); 3825 3826 if (kvm_event_needs_reinjection(vcpu)) 3827 kvm_mmu_unprotect_page_virt(vcpu, fault_address); 3828 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn, 3829 insn_len); 3830 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) { 3831 vcpu->arch.apf.host_apf_flags = 0; 3832 local_irq_disable(); 3833 kvm_async_pf_task_wait_schedule(fault_address); 3834 local_irq_enable(); 3835 } else { 3836 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags); 3837 } 3838 3839 return r; 3840 } 3841 EXPORT_SYMBOL_GPL(kvm_handle_page_fault); 3842 3843 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code, 3844 bool prefault) 3845 { 3846 int max_level; 3847 3848 for (max_level = KVM_MAX_HUGEPAGE_LEVEL; 3849 max_level > PG_LEVEL_4K; 3850 max_level--) { 3851 int page_num = KVM_PAGES_PER_HPAGE(max_level); 3852 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1); 3853 3854 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num)) 3855 break; 3856 } 3857 3858 return direct_page_fault(vcpu, gpa, error_code, prefault, 3859 max_level, true); 3860 } 3861 3862 static void nonpaging_init_context(struct kvm_vcpu *vcpu, 3863 struct kvm_mmu *context) 3864 { 3865 context->page_fault = nonpaging_page_fault; 3866 context->gva_to_gpa = nonpaging_gva_to_gpa; 3867 context->sync_page = nonpaging_sync_page; 3868 context->invlpg = NULL; 3869 context->root_level = 0; 3870 context->shadow_root_level = PT32E_ROOT_LEVEL; 3871 context->direct_map = true; 3872 context->nx = false; 3873 } 3874 3875 static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd, 3876 union kvm_mmu_page_role role) 3877 { 3878 return (role.direct || pgd == root->pgd) && 3879 VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) && 3880 role.word == to_shadow_page(root->hpa)->role.word; 3881 } 3882 3883 /* 3884 * Find out if a previously cached root matching the new pgd/role is available. 3885 * The current root is also inserted into the cache. 3886 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is 3887 * returned. 3888 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and 3889 * false is returned. This root should now be freed by the caller. 3890 */ 3891 static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3892 union kvm_mmu_page_role new_role) 3893 { 3894 uint i; 3895 struct kvm_mmu_root_info root; 3896 struct kvm_mmu *mmu = vcpu->arch.mmu; 3897 3898 root.pgd = mmu->root_pgd; 3899 root.hpa = mmu->root_hpa; 3900 3901 if (is_root_usable(&root, new_pgd, new_role)) 3902 return true; 3903 3904 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 3905 swap(root, mmu->prev_roots[i]); 3906 3907 if (is_root_usable(&root, new_pgd, new_role)) 3908 break; 3909 } 3910 3911 mmu->root_hpa = root.hpa; 3912 mmu->root_pgd = root.pgd; 3913 3914 return i < KVM_MMU_NUM_PREV_ROOTS; 3915 } 3916 3917 static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3918 union kvm_mmu_page_role new_role) 3919 { 3920 struct kvm_mmu *mmu = vcpu->arch.mmu; 3921 3922 /* 3923 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid 3924 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs 3925 * later if necessary. 3926 */ 3927 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL && 3928 mmu->root_level >= PT64_ROOT_4LEVEL) 3929 return cached_root_available(vcpu, new_pgd, new_role); 3930 3931 return false; 3932 } 3933 3934 static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, 3935 union kvm_mmu_page_role new_role, 3936 bool skip_tlb_flush, bool skip_mmu_sync) 3937 { 3938 if (!fast_pgd_switch(vcpu, new_pgd, new_role)) { 3939 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT); 3940 return; 3941 } 3942 3943 /* 3944 * It's possible that the cached previous root page is obsolete because 3945 * of a change in the MMU generation number. However, changing the 3946 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will 3947 * free the root set here and allocate a new one. 3948 */ 3949 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); 3950 3951 if (!skip_mmu_sync || force_flush_and_sync_on_reuse) 3952 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); 3953 if (!skip_tlb_flush || force_flush_and_sync_on_reuse) 3954 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 3955 3956 /* 3957 * The last MMIO access's GVA and GPA are cached in the VCPU. When 3958 * switching to a new CR3, that GVA->GPA mapping may no longer be 3959 * valid. So clear any cached MMIO info even when we don't need to sync 3960 * the shadow page tables. 3961 */ 3962 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY); 3963 3964 /* 3965 * If this is a direct root page, it doesn't have a write flooding 3966 * count. Otherwise, clear the write flooding count. 3967 */ 3968 if (!new_role.direct) 3969 __clear_sp_write_flooding_count( 3970 to_shadow_page(vcpu->arch.mmu->root_hpa)); 3971 } 3972 3973 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush, 3974 bool skip_mmu_sync) 3975 { 3976 __kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu), 3977 skip_tlb_flush, skip_mmu_sync); 3978 } 3979 EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd); 3980 3981 static unsigned long get_cr3(struct kvm_vcpu *vcpu) 3982 { 3983 return kvm_read_cr3(vcpu); 3984 } 3985 3986 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn, 3987 unsigned int access, int *nr_present) 3988 { 3989 if (unlikely(is_mmio_spte(*sptep))) { 3990 if (gfn != get_mmio_spte_gfn(*sptep)) { 3991 mmu_spte_clear_no_track(sptep); 3992 return true; 3993 } 3994 3995 (*nr_present)++; 3996 mark_mmio_spte(vcpu, sptep, gfn, access); 3997 return true; 3998 } 3999 4000 return false; 4001 } 4002 4003 static inline bool is_last_gpte(struct kvm_mmu *mmu, 4004 unsigned level, unsigned gpte) 4005 { 4006 /* 4007 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level. 4008 * If it is clear, there are no large pages at this level, so clear 4009 * PT_PAGE_SIZE_MASK in gpte if that is the case. 4010 */ 4011 gpte &= level - mmu->last_nonleaf_level; 4012 4013 /* 4014 * PG_LEVEL_4K always terminates. The RHS has bit 7 set 4015 * iff level <= PG_LEVEL_4K, which for our purpose means 4016 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then. 4017 */ 4018 gpte |= level - PG_LEVEL_4K - 1; 4019 4020 return gpte & PT_PAGE_SIZE_MASK; 4021 } 4022 4023 #define PTTYPE_EPT 18 /* arbitrary */ 4024 #define PTTYPE PTTYPE_EPT 4025 #include "paging_tmpl.h" 4026 #undef PTTYPE 4027 4028 #define PTTYPE 64 4029 #include "paging_tmpl.h" 4030 #undef PTTYPE 4031 4032 #define PTTYPE 32 4033 #include "paging_tmpl.h" 4034 #undef PTTYPE 4035 4036 static void 4037 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4038 struct rsvd_bits_validate *rsvd_check, 4039 u64 pa_bits_rsvd, int level, bool nx, bool gbpages, 4040 bool pse, bool amd) 4041 { 4042 u64 gbpages_bit_rsvd = 0; 4043 u64 nonleaf_bit8_rsvd = 0; 4044 u64 high_bits_rsvd; 4045 4046 rsvd_check->bad_mt_xwr = 0; 4047 4048 if (!gbpages) 4049 gbpages_bit_rsvd = rsvd_bits(7, 7); 4050 4051 if (level == PT32E_ROOT_LEVEL) 4052 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62); 4053 else 4054 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4055 4056 /* Note, NX doesn't exist in PDPTEs, this is handled below. */ 4057 if (!nx) 4058 high_bits_rsvd |= rsvd_bits(63, 63); 4059 4060 /* 4061 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for 4062 * leaf entries) on AMD CPUs only. 4063 */ 4064 if (amd) 4065 nonleaf_bit8_rsvd = rsvd_bits(8, 8); 4066 4067 switch (level) { 4068 case PT32_ROOT_LEVEL: 4069 /* no rsvd bits for 2 level 4K page table entries */ 4070 rsvd_check->rsvd_bits_mask[0][1] = 0; 4071 rsvd_check->rsvd_bits_mask[0][0] = 0; 4072 rsvd_check->rsvd_bits_mask[1][0] = 4073 rsvd_check->rsvd_bits_mask[0][0]; 4074 4075 if (!pse) { 4076 rsvd_check->rsvd_bits_mask[1][1] = 0; 4077 break; 4078 } 4079 4080 if (is_cpuid_PSE36()) 4081 /* 36bits PSE 4MB page */ 4082 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21); 4083 else 4084 /* 32 bits PSE 4MB page */ 4085 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21); 4086 break; 4087 case PT32E_ROOT_LEVEL: 4088 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) | 4089 high_bits_rsvd | 4090 rsvd_bits(5, 8) | 4091 rsvd_bits(1, 2); /* PDPTE */ 4092 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */ 4093 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */ 4094 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4095 rsvd_bits(13, 20); /* large page */ 4096 rsvd_check->rsvd_bits_mask[1][0] = 4097 rsvd_check->rsvd_bits_mask[0][0]; 4098 break; 4099 case PT64_ROOT_5LEVEL: 4100 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | 4101 nonleaf_bit8_rsvd | 4102 rsvd_bits(7, 7); 4103 rsvd_check->rsvd_bits_mask[1][4] = 4104 rsvd_check->rsvd_bits_mask[0][4]; 4105 fallthrough; 4106 case PT64_ROOT_4LEVEL: 4107 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | 4108 nonleaf_bit8_rsvd | 4109 rsvd_bits(7, 7); 4110 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | 4111 gbpages_bit_rsvd; 4112 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; 4113 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4114 rsvd_check->rsvd_bits_mask[1][3] = 4115 rsvd_check->rsvd_bits_mask[0][3]; 4116 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | 4117 gbpages_bit_rsvd | 4118 rsvd_bits(13, 29); 4119 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | 4120 rsvd_bits(13, 20); /* large page */ 4121 rsvd_check->rsvd_bits_mask[1][0] = 4122 rsvd_check->rsvd_bits_mask[0][0]; 4123 break; 4124 } 4125 } 4126 4127 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, 4128 struct kvm_mmu *context) 4129 { 4130 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check, 4131 vcpu->arch.reserved_gpa_bits, 4132 context->root_level, context->nx, 4133 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4134 is_pse(vcpu), 4135 guest_cpuid_is_amd_or_hygon(vcpu)); 4136 } 4137 4138 static void 4139 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check, 4140 u64 pa_bits_rsvd, bool execonly) 4141 { 4142 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51); 4143 u64 bad_mt_xwr; 4144 4145 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7); 4146 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7); 4147 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6); 4148 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6); 4149 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; 4150 4151 /* large page */ 4152 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4]; 4153 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3]; 4154 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29); 4155 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20); 4156 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0]; 4157 4158 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */ 4159 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */ 4160 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */ 4161 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */ 4162 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */ 4163 if (!execonly) { 4164 /* bits 0..2 must not be 100 unless VMX capabilities allow it */ 4165 bad_mt_xwr |= REPEAT_BYTE(1ull << 4); 4166 } 4167 rsvd_check->bad_mt_xwr = bad_mt_xwr; 4168 } 4169 4170 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu, 4171 struct kvm_mmu *context, bool execonly) 4172 { 4173 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check, 4174 vcpu->arch.reserved_gpa_bits, execonly); 4175 } 4176 4177 static inline u64 reserved_hpa_bits(void) 4178 { 4179 return rsvd_bits(shadow_phys_bits, 63); 4180 } 4181 4182 /* 4183 * the page table on host is the shadow page table for the page 4184 * table in guest or amd nested guest, its mmu features completely 4185 * follow the features in guest. 4186 */ 4187 void 4188 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context) 4189 { 4190 /* 4191 * KVM uses NX when TDP is disabled to handle a variety of scenarios, 4192 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and 4193 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0. 4194 * The iTLB multi-hit workaround can be toggled at any time, so assume 4195 * NX can be used by any non-nested shadow MMU to avoid having to reset 4196 * MMU contexts. Note, KVM forces EFER.NX=1 when TDP is disabled. 4197 */ 4198 bool uses_nx = context->nx || !tdp_enabled || 4199 context->mmu_role.base.smep_andnot_wp; 4200 struct rsvd_bits_validate *shadow_zero_check; 4201 int i; 4202 4203 /* 4204 * Passing "true" to the last argument is okay; it adds a check 4205 * on bit 8 of the SPTEs which KVM doesn't use anyway. 4206 */ 4207 shadow_zero_check = &context->shadow_zero_check; 4208 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4209 reserved_hpa_bits(), 4210 context->shadow_root_level, uses_nx, 4211 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES), 4212 is_pse(vcpu), true); 4213 4214 if (!shadow_me_mask) 4215 return; 4216 4217 for (i = context->shadow_root_level; --i >= 0;) { 4218 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4219 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4220 } 4221 4222 } 4223 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask); 4224 4225 static inline bool boot_cpu_is_amd(void) 4226 { 4227 WARN_ON_ONCE(!tdp_enabled); 4228 return shadow_x_mask == 0; 4229 } 4230 4231 /* 4232 * the direct page table on host, use as much mmu features as 4233 * possible, however, kvm currently does not do execution-protection. 4234 */ 4235 static void 4236 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4237 struct kvm_mmu *context) 4238 { 4239 struct rsvd_bits_validate *shadow_zero_check; 4240 int i; 4241 4242 shadow_zero_check = &context->shadow_zero_check; 4243 4244 if (boot_cpu_is_amd()) 4245 __reset_rsvds_bits_mask(vcpu, shadow_zero_check, 4246 reserved_hpa_bits(), 4247 context->shadow_root_level, false, 4248 boot_cpu_has(X86_FEATURE_GBPAGES), 4249 true, true); 4250 else 4251 __reset_rsvds_bits_mask_ept(shadow_zero_check, 4252 reserved_hpa_bits(), false); 4253 4254 if (!shadow_me_mask) 4255 return; 4256 4257 for (i = context->shadow_root_level; --i >= 0;) { 4258 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask; 4259 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask; 4260 } 4261 } 4262 4263 /* 4264 * as the comments in reset_shadow_zero_bits_mask() except it 4265 * is the shadow page table for intel nested guest. 4266 */ 4267 static void 4268 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, 4269 struct kvm_mmu *context, bool execonly) 4270 { 4271 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check, 4272 reserved_hpa_bits(), execonly); 4273 } 4274 4275 #define BYTE_MASK(access) \ 4276 ((1 & (access) ? 2 : 0) | \ 4277 (2 & (access) ? 4 : 0) | \ 4278 (3 & (access) ? 8 : 0) | \ 4279 (4 & (access) ? 16 : 0) | \ 4280 (5 & (access) ? 32 : 0) | \ 4281 (6 & (access) ? 64 : 0) | \ 4282 (7 & (access) ? 128 : 0)) 4283 4284 4285 static void update_permission_bitmask(struct kvm_vcpu *vcpu, 4286 struct kvm_mmu *mmu, bool ept) 4287 { 4288 unsigned byte; 4289 4290 const u8 x = BYTE_MASK(ACC_EXEC_MASK); 4291 const u8 w = BYTE_MASK(ACC_WRITE_MASK); 4292 const u8 u = BYTE_MASK(ACC_USER_MASK); 4293 4294 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0; 4295 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0; 4296 bool cr0_wp = is_write_protection(vcpu); 4297 4298 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) { 4299 unsigned pfec = byte << 1; 4300 4301 /* 4302 * Each "*f" variable has a 1 bit for each UWX value 4303 * that causes a fault with the given PFEC. 4304 */ 4305 4306 /* Faults from writes to non-writable pages */ 4307 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0; 4308 /* Faults from user mode accesses to supervisor pages */ 4309 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0; 4310 /* Faults from fetches of non-executable pages*/ 4311 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0; 4312 /* Faults from kernel mode fetches of user pages */ 4313 u8 smepf = 0; 4314 /* Faults from kernel mode accesses of user pages */ 4315 u8 smapf = 0; 4316 4317 if (!ept) { 4318 /* Faults from kernel mode accesses to user pages */ 4319 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u; 4320 4321 /* Not really needed: !nx will cause pte.nx to fault */ 4322 if (!mmu->nx) 4323 ff = 0; 4324 4325 /* Allow supervisor writes if !cr0.wp */ 4326 if (!cr0_wp) 4327 wf = (pfec & PFERR_USER_MASK) ? wf : 0; 4328 4329 /* Disallow supervisor fetches of user code if cr4.smep */ 4330 if (cr4_smep) 4331 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0; 4332 4333 /* 4334 * SMAP:kernel-mode data accesses from user-mode 4335 * mappings should fault. A fault is considered 4336 * as a SMAP violation if all of the following 4337 * conditions are true: 4338 * - X86_CR4_SMAP is set in CR4 4339 * - A user page is accessed 4340 * - The access is not a fetch 4341 * - Page fault in kernel mode 4342 * - if CPL = 3 or X86_EFLAGS_AC is clear 4343 * 4344 * Here, we cover the first three conditions. 4345 * The fourth is computed dynamically in permission_fault(); 4346 * PFERR_RSVD_MASK bit will be set in PFEC if the access is 4347 * *not* subject to SMAP restrictions. 4348 */ 4349 if (cr4_smap) 4350 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf; 4351 } 4352 4353 mmu->permissions[byte] = ff | uf | wf | smepf | smapf; 4354 } 4355 } 4356 4357 /* 4358 * PKU is an additional mechanism by which the paging controls access to 4359 * user-mode addresses based on the value in the PKRU register. Protection 4360 * key violations are reported through a bit in the page fault error code. 4361 * Unlike other bits of the error code, the PK bit is not known at the 4362 * call site of e.g. gva_to_gpa; it must be computed directly in 4363 * permission_fault based on two bits of PKRU, on some machine state (CR4, 4364 * CR0, EFER, CPL), and on other bits of the error code and the page tables. 4365 * 4366 * In particular the following conditions come from the error code, the 4367 * page tables and the machine state: 4368 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1 4369 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch) 4370 * - PK is always zero if U=0 in the page tables 4371 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access. 4372 * 4373 * The PKRU bitmask caches the result of these four conditions. The error 4374 * code (minus the P bit) and the page table's U bit form an index into the 4375 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed 4376 * with the two bits of the PKRU register corresponding to the protection key. 4377 * For the first three conditions above the bits will be 00, thus masking 4378 * away both AD and WD. For all reads or if the last condition holds, WD 4379 * only will be masked away. 4380 */ 4381 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 4382 bool ept) 4383 { 4384 unsigned bit; 4385 bool wp; 4386 4387 if (ept) { 4388 mmu->pkru_mask = 0; 4389 return; 4390 } 4391 4392 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */ 4393 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) { 4394 mmu->pkru_mask = 0; 4395 return; 4396 } 4397 4398 wp = is_write_protection(vcpu); 4399 4400 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) { 4401 unsigned pfec, pkey_bits; 4402 bool check_pkey, check_write, ff, uf, wf, pte_user; 4403 4404 pfec = bit << 1; 4405 ff = pfec & PFERR_FETCH_MASK; 4406 uf = pfec & PFERR_USER_MASK; 4407 wf = pfec & PFERR_WRITE_MASK; 4408 4409 /* PFEC.RSVD is replaced by ACC_USER_MASK. */ 4410 pte_user = pfec & PFERR_RSVD_MASK; 4411 4412 /* 4413 * Only need to check the access which is not an 4414 * instruction fetch and is to a user page. 4415 */ 4416 check_pkey = (!ff && pte_user); 4417 /* 4418 * write access is controlled by PKRU if it is a 4419 * user access or CR0.WP = 1. 4420 */ 4421 check_write = check_pkey && wf && (uf || wp); 4422 4423 /* PKRU.AD stops both read and write access. */ 4424 pkey_bits = !!check_pkey; 4425 /* PKRU.WD stops write access. */ 4426 pkey_bits |= (!!check_write) << 1; 4427 4428 mmu->pkru_mask |= (pkey_bits & 3) << pfec; 4429 } 4430 } 4431 4432 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 4433 { 4434 unsigned root_level = mmu->root_level; 4435 4436 mmu->last_nonleaf_level = root_level; 4437 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu)) 4438 mmu->last_nonleaf_level++; 4439 } 4440 4441 static void paging64_init_context_common(struct kvm_vcpu *vcpu, 4442 struct kvm_mmu *context, 4443 int level) 4444 { 4445 context->nx = is_nx(vcpu); 4446 context->root_level = level; 4447 4448 reset_rsvds_bits_mask(vcpu, context); 4449 update_permission_bitmask(vcpu, context, false); 4450 update_pkru_bitmask(vcpu, context, false); 4451 update_last_nonleaf_level(vcpu, context); 4452 4453 MMU_WARN_ON(!is_pae(vcpu)); 4454 context->page_fault = paging64_page_fault; 4455 context->gva_to_gpa = paging64_gva_to_gpa; 4456 context->sync_page = paging64_sync_page; 4457 context->invlpg = paging64_invlpg; 4458 context->shadow_root_level = level; 4459 context->direct_map = false; 4460 } 4461 4462 static void paging64_init_context(struct kvm_vcpu *vcpu, 4463 struct kvm_mmu *context) 4464 { 4465 int root_level = is_la57_mode(vcpu) ? 4466 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4467 4468 paging64_init_context_common(vcpu, context, root_level); 4469 } 4470 4471 static void paging32_init_context(struct kvm_vcpu *vcpu, 4472 struct kvm_mmu *context) 4473 { 4474 context->nx = false; 4475 context->root_level = PT32_ROOT_LEVEL; 4476 4477 reset_rsvds_bits_mask(vcpu, context); 4478 update_permission_bitmask(vcpu, context, false); 4479 update_pkru_bitmask(vcpu, context, false); 4480 update_last_nonleaf_level(vcpu, context); 4481 4482 context->page_fault = paging32_page_fault; 4483 context->gva_to_gpa = paging32_gva_to_gpa; 4484 context->sync_page = paging32_sync_page; 4485 context->invlpg = paging32_invlpg; 4486 context->shadow_root_level = PT32E_ROOT_LEVEL; 4487 context->direct_map = false; 4488 } 4489 4490 static void paging32E_init_context(struct kvm_vcpu *vcpu, 4491 struct kvm_mmu *context) 4492 { 4493 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL); 4494 } 4495 4496 static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu) 4497 { 4498 union kvm_mmu_extended_role ext = {0}; 4499 4500 ext.cr0_pg = !!is_paging(vcpu); 4501 ext.cr4_pae = !!is_pae(vcpu); 4502 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP); 4503 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP); 4504 ext.cr4_pse = !!is_pse(vcpu); 4505 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE); 4506 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57); 4507 ext.maxphyaddr = cpuid_maxphyaddr(vcpu); 4508 4509 ext.valid = 1; 4510 4511 return ext; 4512 } 4513 4514 static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu, 4515 bool base_only) 4516 { 4517 union kvm_mmu_role role = {0}; 4518 4519 role.base.access = ACC_ALL; 4520 role.base.nxe = !!is_nx(vcpu); 4521 role.base.cr0_wp = is_write_protection(vcpu); 4522 role.base.smm = is_smm(vcpu); 4523 role.base.guest_mode = is_guest_mode(vcpu); 4524 4525 if (base_only) 4526 return role; 4527 4528 role.ext = kvm_calc_mmu_role_ext(vcpu); 4529 4530 return role; 4531 } 4532 4533 static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu) 4534 { 4535 /* Use 5-level TDP if and only if it's useful/necessary. */ 4536 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48) 4537 return 4; 4538 4539 return max_tdp_level; 4540 } 4541 4542 static union kvm_mmu_role 4543 kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4544 { 4545 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4546 4547 role.base.ad_disabled = (shadow_accessed_mask == 0); 4548 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4549 role.base.direct = true; 4550 role.base.gpte_is_8_bytes = true; 4551 4552 return role; 4553 } 4554 4555 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu) 4556 { 4557 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4558 union kvm_mmu_role new_role = 4559 kvm_calc_tdp_mmu_root_page_role(vcpu, false); 4560 4561 if (new_role.as_u64 == context->mmu_role.as_u64) 4562 return; 4563 4564 context->mmu_role.as_u64 = new_role.as_u64; 4565 context->page_fault = kvm_tdp_page_fault; 4566 context->sync_page = nonpaging_sync_page; 4567 context->invlpg = NULL; 4568 context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu); 4569 context->direct_map = true; 4570 context->get_guest_pgd = get_cr3; 4571 context->get_pdptr = kvm_pdptr_read; 4572 context->inject_page_fault = kvm_inject_page_fault; 4573 4574 if (!is_paging(vcpu)) { 4575 context->nx = false; 4576 context->gva_to_gpa = nonpaging_gva_to_gpa; 4577 context->root_level = 0; 4578 } else if (is_long_mode(vcpu)) { 4579 context->nx = is_nx(vcpu); 4580 context->root_level = is_la57_mode(vcpu) ? 4581 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4582 reset_rsvds_bits_mask(vcpu, context); 4583 context->gva_to_gpa = paging64_gva_to_gpa; 4584 } else if (is_pae(vcpu)) { 4585 context->nx = is_nx(vcpu); 4586 context->root_level = PT32E_ROOT_LEVEL; 4587 reset_rsvds_bits_mask(vcpu, context); 4588 context->gva_to_gpa = paging64_gva_to_gpa; 4589 } else { 4590 context->nx = false; 4591 context->root_level = PT32_ROOT_LEVEL; 4592 reset_rsvds_bits_mask(vcpu, context); 4593 context->gva_to_gpa = paging32_gva_to_gpa; 4594 } 4595 4596 update_permission_bitmask(vcpu, context, false); 4597 update_pkru_bitmask(vcpu, context, false); 4598 update_last_nonleaf_level(vcpu, context); 4599 reset_tdp_shadow_zero_bits_mask(vcpu, context); 4600 } 4601 4602 static union kvm_mmu_role 4603 kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only) 4604 { 4605 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only); 4606 4607 role.base.smep_andnot_wp = role.ext.cr4_smep && 4608 !is_write_protection(vcpu); 4609 role.base.smap_andnot_wp = role.ext.cr4_smap && 4610 !is_write_protection(vcpu); 4611 role.base.gpte_is_8_bytes = !!is_pae(vcpu); 4612 4613 return role; 4614 } 4615 4616 static union kvm_mmu_role 4617 kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only) 4618 { 4619 union kvm_mmu_role role = 4620 kvm_calc_shadow_root_page_role_common(vcpu, base_only); 4621 4622 role.base.direct = !is_paging(vcpu); 4623 4624 if (!is_long_mode(vcpu)) 4625 role.base.level = PT32E_ROOT_LEVEL; 4626 else if (is_la57_mode(vcpu)) 4627 role.base.level = PT64_ROOT_5LEVEL; 4628 else 4629 role.base.level = PT64_ROOT_4LEVEL; 4630 4631 return role; 4632 } 4633 4634 static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context, 4635 u32 cr0, u32 cr4, u32 efer, 4636 union kvm_mmu_role new_role) 4637 { 4638 if (!(cr0 & X86_CR0_PG)) 4639 nonpaging_init_context(vcpu, context); 4640 else if (efer & EFER_LMA) 4641 paging64_init_context(vcpu, context); 4642 else if (cr4 & X86_CR4_PAE) 4643 paging32E_init_context(vcpu, context); 4644 else 4645 paging32_init_context(vcpu, context); 4646 4647 context->mmu_role.as_u64 = new_role.as_u64; 4648 reset_shadow_zero_bits_mask(vcpu, context); 4649 } 4650 4651 static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer) 4652 { 4653 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4654 union kvm_mmu_role new_role = 4655 kvm_calc_shadow_mmu_root_page_role(vcpu, false); 4656 4657 if (new_role.as_u64 != context->mmu_role.as_u64) 4658 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4659 } 4660 4661 static union kvm_mmu_role 4662 kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu) 4663 { 4664 union kvm_mmu_role role = 4665 kvm_calc_shadow_root_page_role_common(vcpu, false); 4666 4667 role.base.direct = false; 4668 role.base.level = kvm_mmu_get_tdp_level(vcpu); 4669 4670 return role; 4671 } 4672 4673 void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer, 4674 gpa_t nested_cr3) 4675 { 4676 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4677 union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu); 4678 4679 __kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false); 4680 4681 if (new_role.as_u64 != context->mmu_role.as_u64) { 4682 shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role); 4683 4684 /* 4685 * Override the level set by the common init helper, nested TDP 4686 * always uses the host's TDP configuration. 4687 */ 4688 context->shadow_root_level = new_role.base.level; 4689 } 4690 } 4691 EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu); 4692 4693 static union kvm_mmu_role 4694 kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty, 4695 bool execonly, u8 level) 4696 { 4697 union kvm_mmu_role role = {0}; 4698 4699 /* SMM flag is inherited from root_mmu */ 4700 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm; 4701 4702 role.base.level = level; 4703 role.base.gpte_is_8_bytes = true; 4704 role.base.direct = false; 4705 role.base.ad_disabled = !accessed_dirty; 4706 role.base.guest_mode = true; 4707 role.base.access = ACC_ALL; 4708 4709 /* 4710 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the 4711 * SMAP variation to denote shadow EPT entries. 4712 */ 4713 role.base.cr0_wp = true; 4714 role.base.smap_andnot_wp = true; 4715 4716 role.ext = kvm_calc_mmu_role_ext(vcpu); 4717 role.ext.execonly = execonly; 4718 4719 return role; 4720 } 4721 4722 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, 4723 bool accessed_dirty, gpa_t new_eptp) 4724 { 4725 struct kvm_mmu *context = &vcpu->arch.guest_mmu; 4726 u8 level = vmx_eptp_page_walk_level(new_eptp); 4727 union kvm_mmu_role new_role = 4728 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty, 4729 execonly, level); 4730 4731 __kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true); 4732 4733 if (new_role.as_u64 == context->mmu_role.as_u64) 4734 return; 4735 4736 context->shadow_root_level = level; 4737 4738 context->nx = true; 4739 context->ept_ad = accessed_dirty; 4740 context->page_fault = ept_page_fault; 4741 context->gva_to_gpa = ept_gva_to_gpa; 4742 context->sync_page = ept_sync_page; 4743 context->invlpg = ept_invlpg; 4744 context->root_level = level; 4745 context->direct_map = false; 4746 context->mmu_role.as_u64 = new_role.as_u64; 4747 4748 update_permission_bitmask(vcpu, context, true); 4749 update_pkru_bitmask(vcpu, context, true); 4750 update_last_nonleaf_level(vcpu, context); 4751 reset_rsvds_bits_mask_ept(vcpu, context, execonly); 4752 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly); 4753 } 4754 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu); 4755 4756 static void init_kvm_softmmu(struct kvm_vcpu *vcpu) 4757 { 4758 struct kvm_mmu *context = &vcpu->arch.root_mmu; 4759 4760 kvm_init_shadow_mmu(vcpu, 4761 kvm_read_cr0_bits(vcpu, X86_CR0_PG), 4762 kvm_read_cr4_bits(vcpu, X86_CR4_PAE), 4763 vcpu->arch.efer); 4764 4765 context->get_guest_pgd = get_cr3; 4766 context->get_pdptr = kvm_pdptr_read; 4767 context->inject_page_fault = kvm_inject_page_fault; 4768 } 4769 4770 static union kvm_mmu_role kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu) 4771 { 4772 union kvm_mmu_role role = kvm_calc_shadow_root_page_role_common(vcpu, false); 4773 4774 /* 4775 * Nested MMUs are used only for walking L2's gva->gpa, they never have 4776 * shadow pages of their own and so "direct" has no meaning. Set it 4777 * to "true" to try to detect bogus usage of the nested MMU. 4778 */ 4779 role.base.direct = true; 4780 4781 if (!is_paging(vcpu)) 4782 role.base.level = 0; 4783 else if (is_long_mode(vcpu)) 4784 role.base.level = is_la57_mode(vcpu) ? PT64_ROOT_5LEVEL : 4785 PT64_ROOT_4LEVEL; 4786 else if (is_pae(vcpu)) 4787 role.base.level = PT32E_ROOT_LEVEL; 4788 else 4789 role.base.level = PT32_ROOT_LEVEL; 4790 4791 return role; 4792 } 4793 4794 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu) 4795 { 4796 union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu); 4797 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu; 4798 4799 if (new_role.as_u64 == g_context->mmu_role.as_u64) 4800 return; 4801 4802 g_context->mmu_role.as_u64 = new_role.as_u64; 4803 g_context->get_guest_pgd = get_cr3; 4804 g_context->get_pdptr = kvm_pdptr_read; 4805 g_context->inject_page_fault = kvm_inject_page_fault; 4806 4807 /* 4808 * L2 page tables are never shadowed, so there is no need to sync 4809 * SPTEs. 4810 */ 4811 g_context->invlpg = NULL; 4812 4813 /* 4814 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using 4815 * L1's nested page tables (e.g. EPT12). The nested translation 4816 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using 4817 * L2's page tables as the first level of translation and L1's 4818 * nested page tables as the second level of translation. Basically 4819 * the gva_to_gpa functions between mmu and nested_mmu are swapped. 4820 */ 4821 if (!is_paging(vcpu)) { 4822 g_context->nx = false; 4823 g_context->root_level = 0; 4824 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested; 4825 } else if (is_long_mode(vcpu)) { 4826 g_context->nx = is_nx(vcpu); 4827 g_context->root_level = is_la57_mode(vcpu) ? 4828 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL; 4829 reset_rsvds_bits_mask(vcpu, g_context); 4830 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4831 } else if (is_pae(vcpu)) { 4832 g_context->nx = is_nx(vcpu); 4833 g_context->root_level = PT32E_ROOT_LEVEL; 4834 reset_rsvds_bits_mask(vcpu, g_context); 4835 g_context->gva_to_gpa = paging64_gva_to_gpa_nested; 4836 } else { 4837 g_context->nx = false; 4838 g_context->root_level = PT32_ROOT_LEVEL; 4839 reset_rsvds_bits_mask(vcpu, g_context); 4840 g_context->gva_to_gpa = paging32_gva_to_gpa_nested; 4841 } 4842 4843 update_permission_bitmask(vcpu, g_context, false); 4844 update_pkru_bitmask(vcpu, g_context, false); 4845 update_last_nonleaf_level(vcpu, g_context); 4846 } 4847 4848 void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots) 4849 { 4850 if (reset_roots) { 4851 uint i; 4852 4853 vcpu->arch.mmu->root_hpa = INVALID_PAGE; 4854 4855 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 4856 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 4857 } 4858 4859 if (mmu_is_nested(vcpu)) 4860 init_kvm_nested_mmu(vcpu); 4861 else if (tdp_enabled) 4862 init_kvm_tdp_mmu(vcpu); 4863 else 4864 init_kvm_softmmu(vcpu); 4865 } 4866 EXPORT_SYMBOL_GPL(kvm_init_mmu); 4867 4868 static union kvm_mmu_page_role 4869 kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu) 4870 { 4871 union kvm_mmu_role role; 4872 4873 if (tdp_enabled) 4874 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true); 4875 else 4876 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true); 4877 4878 return role.base; 4879 } 4880 4881 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu) 4882 { 4883 /* 4884 * Invalidate all MMU roles to force them to reinitialize as CPUID 4885 * information is factored into reserved bit calculations. 4886 */ 4887 vcpu->arch.root_mmu.mmu_role.ext.valid = 0; 4888 vcpu->arch.guest_mmu.mmu_role.ext.valid = 0; 4889 vcpu->arch.nested_mmu.mmu_role.ext.valid = 0; 4890 kvm_mmu_reset_context(vcpu); 4891 } 4892 4893 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu) 4894 { 4895 kvm_mmu_unload(vcpu); 4896 kvm_init_mmu(vcpu, true); 4897 } 4898 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context); 4899 4900 int kvm_mmu_load(struct kvm_vcpu *vcpu) 4901 { 4902 int r; 4903 4904 r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map); 4905 if (r) 4906 goto out; 4907 r = mmu_alloc_special_roots(vcpu); 4908 if (r) 4909 goto out; 4910 if (vcpu->arch.mmu->direct_map) 4911 r = mmu_alloc_direct_roots(vcpu); 4912 else 4913 r = mmu_alloc_shadow_roots(vcpu); 4914 if (r) 4915 goto out; 4916 4917 kvm_mmu_sync_roots(vcpu); 4918 4919 kvm_mmu_load_pgd(vcpu); 4920 static_call(kvm_x86_tlb_flush_current)(vcpu); 4921 out: 4922 return r; 4923 } 4924 4925 void kvm_mmu_unload(struct kvm_vcpu *vcpu) 4926 { 4927 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL); 4928 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa)); 4929 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL); 4930 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa)); 4931 } 4932 4933 static bool need_remote_flush(u64 old, u64 new) 4934 { 4935 if (!is_shadow_present_pte(old)) 4936 return false; 4937 if (!is_shadow_present_pte(new)) 4938 return true; 4939 if ((old ^ new) & PT64_BASE_ADDR_MASK) 4940 return true; 4941 old ^= shadow_nx_mask; 4942 new ^= shadow_nx_mask; 4943 return (old & ~new & PT64_PERM_MASK) != 0; 4944 } 4945 4946 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa, 4947 int *bytes) 4948 { 4949 u64 gentry = 0; 4950 int r; 4951 4952 /* 4953 * Assume that the pte write on a page table of the same type 4954 * as the current vcpu paging mode since we update the sptes only 4955 * when they have the same mode. 4956 */ 4957 if (is_pae(vcpu) && *bytes == 4) { 4958 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */ 4959 *gpa &= ~(gpa_t)7; 4960 *bytes = 8; 4961 } 4962 4963 if (*bytes == 4 || *bytes == 8) { 4964 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes); 4965 if (r) 4966 gentry = 0; 4967 } 4968 4969 return gentry; 4970 } 4971 4972 /* 4973 * If we're seeing too many writes to a page, it may no longer be a page table, 4974 * or we may be forking, in which case it is better to unmap the page. 4975 */ 4976 static bool detect_write_flooding(struct kvm_mmu_page *sp) 4977 { 4978 /* 4979 * Skip write-flooding detected for the sp whose level is 1, because 4980 * it can become unsync, then the guest page is not write-protected. 4981 */ 4982 if (sp->role.level == PG_LEVEL_4K) 4983 return false; 4984 4985 atomic_inc(&sp->write_flooding_count); 4986 return atomic_read(&sp->write_flooding_count) >= 3; 4987 } 4988 4989 /* 4990 * Misaligned accesses are too much trouble to fix up; also, they usually 4991 * indicate a page is not used as a page table. 4992 */ 4993 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa, 4994 int bytes) 4995 { 4996 unsigned offset, pte_size, misaligned; 4997 4998 pgprintk("misaligned: gpa %llx bytes %d role %x\n", 4999 gpa, bytes, sp->role.word); 5000 5001 offset = offset_in_page(gpa); 5002 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4; 5003 5004 /* 5005 * Sometimes, the OS only writes the last one bytes to update status 5006 * bits, for example, in linux, andb instruction is used in clear_bit(). 5007 */ 5008 if (!(offset & (pte_size - 1)) && bytes == 1) 5009 return false; 5010 5011 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); 5012 misaligned |= bytes < 4; 5013 5014 return misaligned; 5015 } 5016 5017 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte) 5018 { 5019 unsigned page_offset, quadrant; 5020 u64 *spte; 5021 int level; 5022 5023 page_offset = offset_in_page(gpa); 5024 level = sp->role.level; 5025 *nspte = 1; 5026 if (!sp->role.gpte_is_8_bytes) { 5027 page_offset <<= 1; /* 32->64 */ 5028 /* 5029 * A 32-bit pde maps 4MB while the shadow pdes map 5030 * only 2MB. So we need to double the offset again 5031 * and zap two pdes instead of one. 5032 */ 5033 if (level == PT32_ROOT_LEVEL) { 5034 page_offset &= ~7; /* kill rounding error */ 5035 page_offset <<= 1; 5036 *nspte = 2; 5037 } 5038 quadrant = page_offset >> PAGE_SHIFT; 5039 page_offset &= ~PAGE_MASK; 5040 if (quadrant != sp->role.quadrant) 5041 return NULL; 5042 } 5043 5044 spte = &sp->spt[page_offset / sizeof(*spte)]; 5045 return spte; 5046 } 5047 5048 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa, 5049 const u8 *new, int bytes, 5050 struct kvm_page_track_notifier_node *node) 5051 { 5052 gfn_t gfn = gpa >> PAGE_SHIFT; 5053 struct kvm_mmu_page *sp; 5054 LIST_HEAD(invalid_list); 5055 u64 entry, gentry, *spte; 5056 int npte; 5057 bool remote_flush, local_flush; 5058 5059 /* 5060 * If we don't have indirect shadow pages, it means no page is 5061 * write-protected, so we can exit simply. 5062 */ 5063 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages)) 5064 return; 5065 5066 remote_flush = local_flush = false; 5067 5068 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes); 5069 5070 /* 5071 * No need to care whether allocation memory is successful 5072 * or not since pte prefetch is skipped if it does not have 5073 * enough objects in the cache. 5074 */ 5075 mmu_topup_memory_caches(vcpu, true); 5076 5077 write_lock(&vcpu->kvm->mmu_lock); 5078 5079 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes); 5080 5081 ++vcpu->kvm->stat.mmu_pte_write; 5082 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE); 5083 5084 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) { 5085 if (detect_write_misaligned(sp, gpa, bytes) || 5086 detect_write_flooding(sp)) { 5087 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list); 5088 ++vcpu->kvm->stat.mmu_flooded; 5089 continue; 5090 } 5091 5092 spte = get_written_sptes(sp, gpa, &npte); 5093 if (!spte) 5094 continue; 5095 5096 local_flush = true; 5097 while (npte--) { 5098 entry = *spte; 5099 mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL); 5100 if (gentry && sp->role.level != PG_LEVEL_4K) 5101 ++vcpu->kvm->stat.mmu_pde_zapped; 5102 if (need_remote_flush(entry, *spte)) 5103 remote_flush = true; 5104 ++spte; 5105 } 5106 } 5107 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush); 5108 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE); 5109 write_unlock(&vcpu->kvm->mmu_lock); 5110 } 5111 5112 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code, 5113 void *insn, int insn_len) 5114 { 5115 int r, emulation_type = EMULTYPE_PF; 5116 bool direct = vcpu->arch.mmu->direct_map; 5117 5118 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa))) 5119 return RET_PF_RETRY; 5120 5121 r = RET_PF_INVALID; 5122 if (unlikely(error_code & PFERR_RSVD_MASK)) { 5123 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct); 5124 if (r == RET_PF_EMULATE) 5125 goto emulate; 5126 } 5127 5128 if (r == RET_PF_INVALID) { 5129 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa, 5130 lower_32_bits(error_code), false); 5131 if (WARN_ON_ONCE(r == RET_PF_INVALID)) 5132 return -EIO; 5133 } 5134 5135 if (r < 0) 5136 return r; 5137 if (r != RET_PF_EMULATE) 5138 return 1; 5139 5140 /* 5141 * Before emulating the instruction, check if the error code 5142 * was due to a RO violation while translating the guest page. 5143 * This can occur when using nested virtualization with nested 5144 * paging in both guests. If true, we simply unprotect the page 5145 * and resume the guest. 5146 */ 5147 if (vcpu->arch.mmu->direct_map && 5148 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) { 5149 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa)); 5150 return 1; 5151 } 5152 5153 /* 5154 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still 5155 * optimistically try to just unprotect the page and let the processor 5156 * re-execute the instruction that caused the page fault. Do not allow 5157 * retrying MMIO emulation, as it's not only pointless but could also 5158 * cause us to enter an infinite loop because the processor will keep 5159 * faulting on the non-existent MMIO address. Retrying an instruction 5160 * from a nested guest is also pointless and dangerous as we are only 5161 * explicitly shadowing L1's page tables, i.e. unprotecting something 5162 * for L1 isn't going to magically fix whatever issue cause L2 to fail. 5163 */ 5164 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu)) 5165 emulation_type |= EMULTYPE_ALLOW_RETRY_PF; 5166 emulate: 5167 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn, 5168 insn_len); 5169 } 5170 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault); 5171 5172 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 5173 gva_t gva, hpa_t root_hpa) 5174 { 5175 int i; 5176 5177 /* It's actually a GPA for vcpu->arch.guest_mmu. */ 5178 if (mmu != &vcpu->arch.guest_mmu) { 5179 /* INVLPG on a non-canonical address is a NOP according to the SDM. */ 5180 if (is_noncanonical_address(gva, vcpu)) 5181 return; 5182 5183 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5184 } 5185 5186 if (!mmu->invlpg) 5187 return; 5188 5189 if (root_hpa == INVALID_PAGE) { 5190 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5191 5192 /* 5193 * INVLPG is required to invalidate any global mappings for the VA, 5194 * irrespective of PCID. Since it would take us roughly similar amount 5195 * of work to determine whether any of the prev_root mappings of the VA 5196 * is marked global, or to just sync it blindly, so we might as well 5197 * just always sync it. 5198 * 5199 * Mappings not reachable via the current cr3 or the prev_roots will be 5200 * synced when switching to that cr3, so nothing needs to be done here 5201 * for them. 5202 */ 5203 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5204 if (VALID_PAGE(mmu->prev_roots[i].hpa)) 5205 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5206 } else { 5207 mmu->invlpg(vcpu, gva, root_hpa); 5208 } 5209 } 5210 5211 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva) 5212 { 5213 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE); 5214 ++vcpu->stat.invlpg; 5215 } 5216 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg); 5217 5218 5219 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid) 5220 { 5221 struct kvm_mmu *mmu = vcpu->arch.mmu; 5222 bool tlb_flush = false; 5223 uint i; 5224 5225 if (pcid == kvm_get_active_pcid(vcpu)) { 5226 mmu->invlpg(vcpu, gva, mmu->root_hpa); 5227 tlb_flush = true; 5228 } 5229 5230 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) { 5231 if (VALID_PAGE(mmu->prev_roots[i].hpa) && 5232 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) { 5233 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa); 5234 tlb_flush = true; 5235 } 5236 } 5237 5238 if (tlb_flush) 5239 static_call(kvm_x86_tlb_flush_gva)(vcpu, gva); 5240 5241 ++vcpu->stat.invlpg; 5242 5243 /* 5244 * Mappings not reachable via the current cr3 or the prev_roots will be 5245 * synced when switching to that cr3, so nothing needs to be done here 5246 * for them. 5247 */ 5248 } 5249 5250 void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level, 5251 int tdp_huge_page_level) 5252 { 5253 tdp_enabled = enable_tdp; 5254 max_tdp_level = tdp_max_root_level; 5255 5256 /* 5257 * max_huge_page_level reflects KVM's MMU capabilities irrespective 5258 * of kernel support, e.g. KVM may be capable of using 1GB pages when 5259 * the kernel is not. But, KVM never creates a page size greater than 5260 * what is used by the kernel for any given HVA, i.e. the kernel's 5261 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust(). 5262 */ 5263 if (tdp_enabled) 5264 max_huge_page_level = tdp_huge_page_level; 5265 else if (boot_cpu_has(X86_FEATURE_GBPAGES)) 5266 max_huge_page_level = PG_LEVEL_1G; 5267 else 5268 max_huge_page_level = PG_LEVEL_2M; 5269 } 5270 EXPORT_SYMBOL_GPL(kvm_configure_mmu); 5271 5272 /* The return value indicates if tlb flush on all vcpus is needed. */ 5273 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head, 5274 struct kvm_memory_slot *slot); 5275 5276 /* The caller should hold mmu-lock before calling this function. */ 5277 static __always_inline bool 5278 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot, 5279 slot_level_handler fn, int start_level, int end_level, 5280 gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield, 5281 bool flush) 5282 { 5283 struct slot_rmap_walk_iterator iterator; 5284 5285 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn, 5286 end_gfn, &iterator) { 5287 if (iterator.rmap) 5288 flush |= fn(kvm, iterator.rmap, memslot); 5289 5290 if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) { 5291 if (flush && flush_on_yield) { 5292 kvm_flush_remote_tlbs_with_address(kvm, 5293 start_gfn, 5294 iterator.gfn - start_gfn + 1); 5295 flush = false; 5296 } 5297 cond_resched_rwlock_write(&kvm->mmu_lock); 5298 } 5299 } 5300 5301 return flush; 5302 } 5303 5304 static __always_inline bool 5305 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot, 5306 slot_level_handler fn, int start_level, int end_level, 5307 bool flush_on_yield) 5308 { 5309 return slot_handle_level_range(kvm, memslot, fn, start_level, 5310 end_level, memslot->base_gfn, 5311 memslot->base_gfn + memslot->npages - 1, 5312 flush_on_yield, false); 5313 } 5314 5315 static __always_inline bool 5316 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot, 5317 slot_level_handler fn, bool flush_on_yield) 5318 { 5319 return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K, 5320 PG_LEVEL_4K, flush_on_yield); 5321 } 5322 5323 static void free_mmu_pages(struct kvm_mmu *mmu) 5324 { 5325 if (!tdp_enabled && mmu->pae_root) 5326 set_memory_encrypted((unsigned long)mmu->pae_root, 1); 5327 free_page((unsigned long)mmu->pae_root); 5328 free_page((unsigned long)mmu->pml4_root); 5329 } 5330 5331 static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu) 5332 { 5333 struct page *page; 5334 int i; 5335 5336 mmu->root_hpa = INVALID_PAGE; 5337 mmu->root_pgd = 0; 5338 mmu->translate_gpa = translate_gpa; 5339 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5340 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID; 5341 5342 /* 5343 * When using PAE paging, the four PDPTEs are treated as 'root' pages, 5344 * while the PDP table is a per-vCPU construct that's allocated at MMU 5345 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on 5346 * x86_64. Therefore we need to allocate the PDP table in the first 5347 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging 5348 * generally doesn't use PAE paging and can skip allocating the PDP 5349 * table. The main exception, handled here, is SVM's 32-bit NPT. The 5350 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit 5351 * KVM; that horror is handled on-demand by mmu_alloc_shadow_roots(). 5352 */ 5353 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL) 5354 return 0; 5355 5356 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32); 5357 if (!page) 5358 return -ENOMEM; 5359 5360 mmu->pae_root = page_address(page); 5361 5362 /* 5363 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to 5364 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so 5365 * that KVM's writes and the CPU's reads get along. Note, this is 5366 * only necessary when using shadow paging, as 64-bit NPT can get at 5367 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported 5368 * by 32-bit kernels (when KVM itself uses 32-bit NPT). 5369 */ 5370 if (!tdp_enabled) 5371 set_memory_decrypted((unsigned long)mmu->pae_root, 1); 5372 else 5373 WARN_ON_ONCE(shadow_me_mask); 5374 5375 for (i = 0; i < 4; ++i) 5376 mmu->pae_root[i] = INVALID_PAE_ROOT; 5377 5378 return 0; 5379 } 5380 5381 int kvm_mmu_create(struct kvm_vcpu *vcpu) 5382 { 5383 int ret; 5384 5385 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache; 5386 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO; 5387 5388 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache; 5389 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO; 5390 5391 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO; 5392 5393 vcpu->arch.mmu = &vcpu->arch.root_mmu; 5394 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu; 5395 5396 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa; 5397 5398 ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu); 5399 if (ret) 5400 return ret; 5401 5402 ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu); 5403 if (ret) 5404 goto fail_allocate_root; 5405 5406 return ret; 5407 fail_allocate_root: 5408 free_mmu_pages(&vcpu->arch.guest_mmu); 5409 return ret; 5410 } 5411 5412 #define BATCH_ZAP_PAGES 10 5413 static void kvm_zap_obsolete_pages(struct kvm *kvm) 5414 { 5415 struct kvm_mmu_page *sp, *node; 5416 int nr_zapped, batch = 0; 5417 5418 restart: 5419 list_for_each_entry_safe_reverse(sp, node, 5420 &kvm->arch.active_mmu_pages, link) { 5421 /* 5422 * No obsolete valid page exists before a newly created page 5423 * since active_mmu_pages is a FIFO list. 5424 */ 5425 if (!is_obsolete_sp(kvm, sp)) 5426 break; 5427 5428 /* 5429 * Invalid pages should never land back on the list of active 5430 * pages. Skip the bogus page, otherwise we'll get stuck in an 5431 * infinite loop if the page gets put back on the list (again). 5432 */ 5433 if (WARN_ON(sp->role.invalid)) 5434 continue; 5435 5436 /* 5437 * No need to flush the TLB since we're only zapping shadow 5438 * pages with an obsolete generation number and all vCPUS have 5439 * loaded a new root, i.e. the shadow pages being zapped cannot 5440 * be in active use by the guest. 5441 */ 5442 if (batch >= BATCH_ZAP_PAGES && 5443 cond_resched_rwlock_write(&kvm->mmu_lock)) { 5444 batch = 0; 5445 goto restart; 5446 } 5447 5448 if (__kvm_mmu_prepare_zap_page(kvm, sp, 5449 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) { 5450 batch += nr_zapped; 5451 goto restart; 5452 } 5453 } 5454 5455 /* 5456 * Trigger a remote TLB flush before freeing the page tables to ensure 5457 * KVM is not in the middle of a lockless shadow page table walk, which 5458 * may reference the pages. 5459 */ 5460 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages); 5461 } 5462 5463 /* 5464 * Fast invalidate all shadow pages and use lock-break technique 5465 * to zap obsolete pages. 5466 * 5467 * It's required when memslot is being deleted or VM is being 5468 * destroyed, in these cases, we should ensure that KVM MMU does 5469 * not use any resource of the being-deleted slot or all slots 5470 * after calling the function. 5471 */ 5472 static void kvm_mmu_zap_all_fast(struct kvm *kvm) 5473 { 5474 lockdep_assert_held(&kvm->slots_lock); 5475 5476 write_lock(&kvm->mmu_lock); 5477 trace_kvm_mmu_zap_all_fast(kvm); 5478 5479 /* 5480 * Toggle mmu_valid_gen between '' and '1'. Because slots_lock is 5481 * held for the entire duration of zapping obsolete pages, it's 5482 * impossible for there to be multiple invalid generations associated 5483 * with *valid* shadow pages at any given time, i.e. there is exactly 5484 * one valid generation and (at most) one invalid generation. 5485 */ 5486 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1; 5487 5488 /* In order to ensure all threads see this change when 5489 * handling the MMU reload signal, this must happen in the 5490 * same critical section as kvm_reload_remote_mmus, and 5491 * before kvm_zap_obsolete_pages as kvm_zap_obsolete_pages 5492 * could drop the MMU lock and yield. 5493 */ 5494 if (is_tdp_mmu_enabled(kvm)) 5495 kvm_tdp_mmu_invalidate_all_roots(kvm); 5496 5497 /* 5498 * Notify all vcpus to reload its shadow page table and flush TLB. 5499 * Then all vcpus will switch to new shadow page table with the new 5500 * mmu_valid_gen. 5501 * 5502 * Note: we need to do this under the protection of mmu_lock, 5503 * otherwise, vcpu would purge shadow page but miss tlb flush. 5504 */ 5505 kvm_reload_remote_mmus(kvm); 5506 5507 kvm_zap_obsolete_pages(kvm); 5508 5509 write_unlock(&kvm->mmu_lock); 5510 5511 if (is_tdp_mmu_enabled(kvm)) { 5512 read_lock(&kvm->mmu_lock); 5513 kvm_tdp_mmu_zap_invalidated_roots(kvm); 5514 read_unlock(&kvm->mmu_lock); 5515 } 5516 } 5517 5518 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm) 5519 { 5520 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages)); 5521 } 5522 5523 static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm, 5524 struct kvm_memory_slot *slot, 5525 struct kvm_page_track_notifier_node *node) 5526 { 5527 kvm_mmu_zap_all_fast(kvm); 5528 } 5529 5530 void kvm_mmu_init_vm(struct kvm *kvm) 5531 { 5532 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5533 5534 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock); 5535 5536 kvm_mmu_init_tdp_mmu(kvm); 5537 5538 node->track_write = kvm_mmu_pte_write; 5539 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot; 5540 kvm_page_track_register_notifier(kvm, node); 5541 } 5542 5543 void kvm_mmu_uninit_vm(struct kvm *kvm) 5544 { 5545 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker; 5546 5547 kvm_page_track_unregister_notifier(kvm, node); 5548 5549 kvm_mmu_uninit_tdp_mmu(kvm); 5550 } 5551 5552 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end) 5553 { 5554 struct kvm_memslots *slots; 5555 struct kvm_memory_slot *memslot; 5556 int i; 5557 bool flush = false; 5558 5559 write_lock(&kvm->mmu_lock); 5560 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) { 5561 slots = __kvm_memslots(kvm, i); 5562 kvm_for_each_memslot(memslot, slots) { 5563 gfn_t start, end; 5564 5565 start = max(gfn_start, memslot->base_gfn); 5566 end = min(gfn_end, memslot->base_gfn + memslot->npages); 5567 if (start >= end) 5568 continue; 5569 5570 flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp, 5571 PG_LEVEL_4K, 5572 KVM_MAX_HUGEPAGE_LEVEL, 5573 start, end - 1, true, flush); 5574 } 5575 } 5576 5577 if (flush) 5578 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, gfn_end); 5579 5580 write_unlock(&kvm->mmu_lock); 5581 5582 if (is_tdp_mmu_enabled(kvm)) { 5583 flush = false; 5584 5585 read_lock(&kvm->mmu_lock); 5586 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) 5587 flush = kvm_tdp_mmu_zap_gfn_range(kvm, i, gfn_start, 5588 gfn_end, flush, true); 5589 if (flush) 5590 kvm_flush_remote_tlbs_with_address(kvm, gfn_start, 5591 gfn_end); 5592 5593 read_unlock(&kvm->mmu_lock); 5594 } 5595 } 5596 5597 static bool slot_rmap_write_protect(struct kvm *kvm, 5598 struct kvm_rmap_head *rmap_head, 5599 struct kvm_memory_slot *slot) 5600 { 5601 return __rmap_write_protect(kvm, rmap_head, false); 5602 } 5603 5604 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, 5605 struct kvm_memory_slot *memslot, 5606 int start_level) 5607 { 5608 bool flush; 5609 5610 write_lock(&kvm->mmu_lock); 5611 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect, 5612 start_level, KVM_MAX_HUGEPAGE_LEVEL, false); 5613 write_unlock(&kvm->mmu_lock); 5614 5615 if (is_tdp_mmu_enabled(kvm)) { 5616 read_lock(&kvm->mmu_lock); 5617 flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level); 5618 read_unlock(&kvm->mmu_lock); 5619 } 5620 5621 /* 5622 * We can flush all the TLBs out of the mmu lock without TLB 5623 * corruption since we just change the spte from writable to 5624 * readonly so that we only need to care the case of changing 5625 * spte from present to present (changing the spte from present 5626 * to nonpresent will flush all the TLBs immediately), in other 5627 * words, the only case we care is mmu_spte_update() where we 5628 * have checked Host-writable | MMU-writable instead of 5629 * PT_WRITABLE_MASK, that means it does not depend on PT_WRITABLE_MASK 5630 * anymore. 5631 */ 5632 if (flush) 5633 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot); 5634 } 5635 5636 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, 5637 struct kvm_rmap_head *rmap_head, 5638 struct kvm_memory_slot *slot) 5639 { 5640 u64 *sptep; 5641 struct rmap_iterator iter; 5642 int need_tlb_flush = 0; 5643 kvm_pfn_t pfn; 5644 struct kvm_mmu_page *sp; 5645 5646 restart: 5647 for_each_rmap_spte(rmap_head, &iter, sptep) { 5648 sp = sptep_to_sp(sptep); 5649 pfn = spte_to_pfn(*sptep); 5650 5651 /* 5652 * We cannot do huge page mapping for indirect shadow pages, 5653 * which are found on the last rmap (level = 1) when not using 5654 * tdp; such shadow pages are synced with the page table in 5655 * the guest, and the guest page table is using 4K page size 5656 * mapping if the indirect sp has level = 1. 5657 */ 5658 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) && 5659 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn, 5660 pfn, PG_LEVEL_NUM)) { 5661 pte_list_remove(rmap_head, sptep); 5662 5663 if (kvm_available_flush_tlb_with_range()) 5664 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn, 5665 KVM_PAGES_PER_HPAGE(sp->role.level)); 5666 else 5667 need_tlb_flush = 1; 5668 5669 goto restart; 5670 } 5671 } 5672 5673 return need_tlb_flush; 5674 } 5675 5676 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, 5677 const struct kvm_memory_slot *memslot) 5678 { 5679 /* FIXME: const-ify all uses of struct kvm_memory_slot. */ 5680 struct kvm_memory_slot *slot = (struct kvm_memory_slot *)memslot; 5681 bool flush; 5682 5683 write_lock(&