1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * MMU support 8 * 9 * Copyright (C) 2006 Qumranet, Inc. 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 11 * 12 * Authors: 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Avi Kivity <avi@qumranet.com> 15 * 16 * This work is licensed under the terms of the GNU GPL, version 2. See 17 * the COPYING file in the top-level directory. 18 * 19 */ 20 21 /* 22 * We need the mmu code to access both 32-bit and 64-bit guest ptes, 23 * so the code in this file is compiled twice, once per pte size. 24 */ 25 26 /* 27 * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro 28 * uses for EPT without A/D paging type. 29 */ 30 extern u64 __pure __using_nonexistent_pte_bit(void) 31 __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT"); 32 33 #if PTTYPE == 64 34 #define pt_element_t u64 35 #define guest_walker guest_walker64 36 #define FNAME(name) paging##64_##name 37 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK 38 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 39 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 40 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 41 #define PT_LEVEL_BITS PT64_LEVEL_BITS 42 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK 43 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK 44 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 45 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 46 #ifdef CONFIG_X86_64 47 #define PT_MAX_FULL_LEVELS 4 48 #define CMPXCHG cmpxchg 49 #else 50 #define CMPXCHG cmpxchg64 51 #define PT_MAX_FULL_LEVELS 2 52 #endif 53 #elif PTTYPE == 32 54 #define pt_element_t u32 55 #define guest_walker guest_walker32 56 #define FNAME(name) paging##32_##name 57 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK 58 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) 59 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) 60 #define PT_INDEX(addr, level) PT32_INDEX(addr, level) 61 #define PT_LEVEL_BITS PT32_LEVEL_BITS 62 #define PT_MAX_FULL_LEVELS 2 63 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK 64 #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK 65 #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT 66 #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT 67 #define CMPXCHG cmpxchg 68 #elif PTTYPE == PTTYPE_EPT 69 #define pt_element_t u64 70 #define guest_walker guest_walkerEPT 71 #define FNAME(name) ept_##name 72 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK 73 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) 74 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) 75 #define PT_INDEX(addr, level) PT64_INDEX(addr, level) 76 #define PT_LEVEL_BITS PT64_LEVEL_BITS 77 #define PT_GUEST_ACCESSED_MASK 0 78 #define PT_GUEST_DIRTY_MASK 0 79 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit() 80 #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit() 81 #define CMPXCHG cmpxchg64 82 #define PT_MAX_FULL_LEVELS 4 83 #else 84 #error Invalid PTTYPE value 85 #endif 86 87 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) 88 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) 89 90 /* 91 * The guest_walker structure emulates the behavior of the hardware page 92 * table walker. 93 */ 94 struct guest_walker { 95 int level; 96 unsigned max_level; 97 gfn_t table_gfn[PT_MAX_FULL_LEVELS]; 98 pt_element_t ptes[PT_MAX_FULL_LEVELS]; 99 pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; 100 gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; 101 pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; 102 bool pte_writable[PT_MAX_FULL_LEVELS]; 103 unsigned pt_access; 104 unsigned pte_access; 105 gfn_t gfn; 106 struct x86_exception fault; 107 }; 108 109 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) 110 { 111 return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; 112 } 113 114 static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte) 115 { 116 unsigned mask; 117 118 /* dirty bit is not supported, so no need to track it */ 119 if (!PT_GUEST_DIRTY_MASK) 120 return; 121 122 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); 123 124 mask = (unsigned)~ACC_WRITE_MASK; 125 /* Allow write access to dirty gptes */ 126 mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & 127 PT_WRITABLE_MASK; 128 *access &= mask; 129 } 130 131 static inline int FNAME(is_present_gpte)(unsigned long pte) 132 { 133 #if PTTYPE != PTTYPE_EPT 134 return pte & PT_PRESENT_MASK; 135 #else 136 return pte & 7; 137 #endif 138 } 139 140 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 141 pt_element_t __user *ptep_user, unsigned index, 142 pt_element_t orig_pte, pt_element_t new_pte) 143 { 144 int npages; 145 pt_element_t ret; 146 pt_element_t *table; 147 struct page *page; 148 149 npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page); 150 /* Check if the user is doing something meaningless. */ 151 if (unlikely(npages != 1)) 152 return -EFAULT; 153 154 table = kmap_atomic(page); 155 ret = CMPXCHG(&table[index], orig_pte, new_pte); 156 kunmap_atomic(table); 157 158 kvm_release_page_dirty(page); 159 160 return (ret != orig_pte); 161 } 162 163 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, 164 struct kvm_mmu_page *sp, u64 *spte, 165 u64 gpte) 166 { 167 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) 168 goto no_present; 169 170 if (!FNAME(is_present_gpte)(gpte)) 171 goto no_present; 172 173 /* if accessed bit is not supported prefetch non accessed gpte */ 174 if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK)) 175 goto no_present; 176 177 return false; 178 179 no_present: 180 drop_spte(vcpu->kvm, spte); 181 return true; 182 } 183 184 /* 185 * For PTTYPE_EPT, a page table can be executable but not readable 186 * on supported processors. Therefore, set_spte does not automatically 187 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK 188 * to signify readability since it isn't used in the EPT case 189 */ 190 static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte) 191 { 192 unsigned access; 193 #if PTTYPE == PTTYPE_EPT 194 access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | 195 ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | 196 ((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0); 197 #else 198 BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK); 199 BUILD_BUG_ON(ACC_EXEC_MASK != 1); 200 access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK); 201 /* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */ 202 access ^= (gpte >> PT64_NX_SHIFT); 203 #endif 204 205 return access; 206 } 207 208 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, 209 struct kvm_mmu *mmu, 210 struct guest_walker *walker, 211 int write_fault) 212 { 213 unsigned level, index; 214 pt_element_t pte, orig_pte; 215 pt_element_t __user *ptep_user; 216 gfn_t table_gfn; 217 int ret; 218 219 /* dirty/accessed bits are not supported, so no need to update them */ 220 if (!PT_GUEST_DIRTY_MASK) 221 return 0; 222 223 for (level = walker->max_level; level >= walker->level; --level) { 224 pte = orig_pte = walker->ptes[level - 1]; 225 table_gfn = walker->table_gfn[level - 1]; 226 ptep_user = walker->ptep_user[level - 1]; 227 index = offset_in_page(ptep_user) / sizeof(pt_element_t); 228 if (!(pte & PT_GUEST_ACCESSED_MASK)) { 229 trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); 230 pte |= PT_GUEST_ACCESSED_MASK; 231 } 232 if (level == walker->level && write_fault && 233 !(pte & PT_GUEST_DIRTY_MASK)) { 234 trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); 235 pte |= PT_GUEST_DIRTY_MASK; 236 } 237 if (pte == orig_pte) 238 continue; 239 240 /* 241 * If the slot is read-only, simply do not process the accessed 242 * and dirty bits. This is the correct thing to do if the slot 243 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots 244 * are only supported if the accessed and dirty bits are already 245 * set in the ROM (so that MMIO writes are never needed). 246 * 247 * Note that NPT does not allow this at all and faults, since 248 * it always wants nested page table entries for the guest 249 * page tables to be writable. And EPT works but will simply 250 * overwrite the read-only memory to set the accessed and dirty 251 * bits. 252 */ 253 if (unlikely(!walker->pte_writable[level - 1])) 254 continue; 255 256 ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); 257 if (ret) 258 return ret; 259 260 kvm_vcpu_mark_page_dirty(vcpu, table_gfn); 261 walker->ptes[level - 1] = pte; 262 } 263 return 0; 264 } 265 266 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte) 267 { 268 unsigned pkeys = 0; 269 #if PTTYPE == 64 270 pte_t pte = {.pte = gpte}; 271 272 pkeys = pte_flags_pkey(pte_flags(pte)); 273 #endif 274 return pkeys; 275 } 276 277 /* 278 * Fetch a guest pte for a guest virtual address 279 */ 280 static int FNAME(walk_addr_generic)(struct guest_walker *walker, 281 struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 282 gva_t addr, u32 access) 283 { 284 int ret; 285 pt_element_t pte; 286 pt_element_t __user *uninitialized_var(ptep_user); 287 gfn_t table_gfn; 288 unsigned index, pt_access, pte_access, accessed_dirty, pte_pkey; 289 gpa_t pte_gpa; 290 int offset; 291 const int write_fault = access & PFERR_WRITE_MASK; 292 const int user_fault = access & PFERR_USER_MASK; 293 const int fetch_fault = access & PFERR_FETCH_MASK; 294 u16 errcode = 0; 295 gpa_t real_gpa; 296 gfn_t gfn; 297 298 trace_kvm_mmu_pagetable_walk(addr, access); 299 retry_walk: 300 walker->level = mmu->root_level; 301 pte = mmu->get_cr3(vcpu); 302 303 #if PTTYPE == 64 304 if (walker->level == PT32E_ROOT_LEVEL) { 305 pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); 306 trace_kvm_mmu_paging_element(pte, walker->level); 307 if (!FNAME(is_present_gpte)(pte)) 308 goto error; 309 --walker->level; 310 } 311 #endif 312 walker->max_level = walker->level; 313 ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); 314 315 accessed_dirty = PT_GUEST_ACCESSED_MASK; 316 pt_access = pte_access = ACC_ALL; 317 ++walker->level; 318 319 do { 320 gfn_t real_gfn; 321 unsigned long host_addr; 322 323 pt_access &= pte_access; 324 --walker->level; 325 326 index = PT_INDEX(addr, walker->level); 327 328 table_gfn = gpte_to_gfn(pte); 329 offset = index * sizeof(pt_element_t); 330 pte_gpa = gfn_to_gpa(table_gfn) + offset; 331 walker->table_gfn[walker->level - 1] = table_gfn; 332 walker->pte_gpa[walker->level - 1] = pte_gpa; 333 334 real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), 335 PFERR_USER_MASK|PFERR_WRITE_MASK, 336 &walker->fault); 337 338 /* 339 * FIXME: This can happen if emulation (for of an INS/OUTS 340 * instruction) triggers a nested page fault. The exit 341 * qualification / exit info field will incorrectly have 342 * "guest page access" as the nested page fault's cause, 343 * instead of "guest page structure access". To fix this, 344 * the x86_exception struct should be augmented with enough 345 * information to fix the exit_qualification or exit_info_1 346 * fields. 347 */ 348 if (unlikely(real_gfn == UNMAPPED_GVA)) 349 return 0; 350 351 real_gfn = gpa_to_gfn(real_gfn); 352 353 host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn, 354 &walker->pte_writable[walker->level - 1]); 355 if (unlikely(kvm_is_error_hva(host_addr))) 356 goto error; 357 358 ptep_user = (pt_element_t __user *)((void *)host_addr + offset); 359 if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) 360 goto error; 361 walker->ptep_user[walker->level - 1] = ptep_user; 362 363 trace_kvm_mmu_paging_element(pte, walker->level); 364 365 if (unlikely(!FNAME(is_present_gpte)(pte))) 366 goto error; 367 368 if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) { 369 errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK; 370 goto error; 371 } 372 373 accessed_dirty &= pte; 374 pte_access = pt_access & FNAME(gpte_access)(vcpu, pte); 375 376 walker->ptes[walker->level - 1] = pte; 377 } while (!is_last_gpte(mmu, walker->level, pte)); 378 379 pte_pkey = FNAME(gpte_pkeys)(vcpu, pte); 380 errcode = permission_fault(vcpu, mmu, pte_access, pte_pkey, access); 381 if (unlikely(errcode)) 382 goto error; 383 384 gfn = gpte_to_gfn_lvl(pte, walker->level); 385 gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; 386 387 if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) 388 gfn += pse36_gfn_delta(pte); 389 390 real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); 391 if (real_gpa == UNMAPPED_GVA) 392 return 0; 393 394 walker->gfn = real_gpa >> PAGE_SHIFT; 395 396 if (!write_fault) 397 FNAME(protect_clean_gpte)(&pte_access, pte); 398 else 399 /* 400 * On a write fault, fold the dirty bit into accessed_dirty. 401 * For modes without A/D bits support accessed_dirty will be 402 * always clear. 403 */ 404 accessed_dirty &= pte >> 405 (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); 406 407 if (unlikely(!accessed_dirty)) { 408 ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); 409 if (unlikely(ret < 0)) 410 goto error; 411 else if (ret) 412 goto retry_walk; 413 } 414 415 walker->pt_access = pt_access; 416 walker->pte_access = pte_access; 417 pgprintk("%s: pte %llx pte_access %x pt_access %x\n", 418 __func__, (u64)pte, pte_access, pt_access); 419 return 1; 420 421 error: 422 errcode |= write_fault | user_fault; 423 if (fetch_fault && (mmu->nx || 424 kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) 425 errcode |= PFERR_FETCH_MASK; 426 427 walker->fault.vector = PF_VECTOR; 428 walker->fault.error_code_valid = true; 429 walker->fault.error_code = errcode; 430 431 #if PTTYPE == PTTYPE_EPT 432 /* 433 * Use PFERR_RSVD_MASK in error_code to to tell if EPT 434 * misconfiguration requires to be injected. The detection is 435 * done by is_rsvd_bits_set() above. 436 * 437 * We set up the value of exit_qualification to inject: 438 * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation 439 * [5:3] - Calculated by the page walk of the guest EPT page tables 440 * [7:8] - Derived from [7:8] of real exit_qualification 441 * 442 * The other bits are set to 0. 443 */ 444 if (!(errcode & PFERR_RSVD_MASK)) { 445 vcpu->arch.exit_qualification &= 0x187; 446 vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3; 447 } 448 #endif 449 walker->fault.address = addr; 450 walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; 451 452 trace_kvm_mmu_walker_error(walker->fault.error_code); 453 return 0; 454 } 455 456 static int FNAME(walk_addr)(struct guest_walker *walker, 457 struct kvm_vcpu *vcpu, gva_t addr, u32 access) 458 { 459 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, 460 access); 461 } 462 463 #if PTTYPE != PTTYPE_EPT 464 static int FNAME(walk_addr_nested)(struct guest_walker *walker, 465 struct kvm_vcpu *vcpu, gva_t addr, 466 u32 access) 467 { 468 return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, 469 addr, access); 470 } 471 #endif 472 473 static bool 474 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 475 u64 *spte, pt_element_t gpte, bool no_dirty_log) 476 { 477 unsigned pte_access; 478 gfn_t gfn; 479 kvm_pfn_t pfn; 480 481 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) 482 return false; 483 484 pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); 485 486 gfn = gpte_to_gfn(gpte); 487 pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); 488 FNAME(protect_clean_gpte)(&pte_access, gpte); 489 pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, 490 no_dirty_log && (pte_access & ACC_WRITE_MASK)); 491 if (is_error_pfn(pfn)) 492 return false; 493 494 /* 495 * we call mmu_set_spte() with host_writable = true because 496 * pte_prefetch_gfn_to_pfn always gets a writable pfn. 497 */ 498 mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn, 499 true, true); 500 501 return true; 502 } 503 504 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, 505 u64 *spte, const void *pte) 506 { 507 pt_element_t gpte = *(const pt_element_t *)pte; 508 509 FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); 510 } 511 512 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, 513 struct guest_walker *gw, int level) 514 { 515 pt_element_t curr_pte; 516 gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; 517 u64 mask; 518 int r, index; 519 520 if (level == PT_PAGE_TABLE_LEVEL) { 521 mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; 522 base_gpa = pte_gpa & ~mask; 523 index = (pte_gpa - base_gpa) / sizeof(pt_element_t); 524 525 r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, 526 gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); 527 curr_pte = gw->prefetch_ptes[index]; 528 } else 529 r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, 530 &curr_pte, sizeof(curr_pte)); 531 532 return r || curr_pte != gw->ptes[level - 1]; 533 } 534 535 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, 536 u64 *sptep) 537 { 538 struct kvm_mmu_page *sp; 539 pt_element_t *gptep = gw->prefetch_ptes; 540 u64 *spte; 541 int i; 542 543 sp = page_header(__pa(sptep)); 544 545 if (sp->role.level > PT_PAGE_TABLE_LEVEL) 546 return; 547 548 if (sp->role.direct) 549 return __direct_pte_prefetch(vcpu, sp, sptep); 550 551 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); 552 spte = sp->spt + i; 553 554 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { 555 if (spte == sptep) 556 continue; 557 558 if (is_shadow_present_pte(*spte)) 559 continue; 560 561 if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) 562 break; 563 } 564 } 565 566 /* 567 * Fetch a shadow pte for a specific level in the paging hierarchy. 568 * If the guest tries to write a write-protected page, we need to 569 * emulate this operation, return 1 to indicate this case. 570 */ 571 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, 572 struct guest_walker *gw, 573 int write_fault, int hlevel, 574 kvm_pfn_t pfn, bool map_writable, bool prefault) 575 { 576 struct kvm_mmu_page *sp = NULL; 577 struct kvm_shadow_walk_iterator it; 578 unsigned direct_access, access = gw->pt_access; 579 int top_level, emulate; 580 581 direct_access = gw->pte_access; 582 583 top_level = vcpu->arch.mmu.root_level; 584 if (top_level == PT32E_ROOT_LEVEL) 585 top_level = PT32_ROOT_LEVEL; 586 /* 587 * Verify that the top-level gpte is still there. Since the page 588 * is a root page, it is either write protected (and cannot be 589 * changed from now on) or it is invalid (in which case, we don't 590 * really care if it changes underneath us after this point). 591 */ 592 if (FNAME(gpte_changed)(vcpu, gw, top_level)) 593 goto out_gpte_changed; 594 595 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) 596 goto out_gpte_changed; 597 598 for (shadow_walk_init(&it, vcpu, addr); 599 shadow_walk_okay(&it) && it.level > gw->level; 600 shadow_walk_next(&it)) { 601 gfn_t table_gfn; 602 603 clear_sp_write_flooding_count(it.sptep); 604 drop_large_spte(vcpu, it.sptep); 605 606 sp = NULL; 607 if (!is_shadow_present_pte(*it.sptep)) { 608 table_gfn = gw->table_gfn[it.level - 2]; 609 sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, 610 false, access); 611 } 612 613 /* 614 * Verify that the gpte in the page we've just write 615 * protected is still there. 616 */ 617 if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) 618 goto out_gpte_changed; 619 620 if (sp) 621 link_shadow_page(vcpu, it.sptep, sp); 622 } 623 624 for (; 625 shadow_walk_okay(&it) && it.level > hlevel; 626 shadow_walk_next(&it)) { 627 gfn_t direct_gfn; 628 629 clear_sp_write_flooding_count(it.sptep); 630 validate_direct_spte(vcpu, it.sptep, direct_access); 631 632 drop_large_spte(vcpu, it.sptep); 633 634 if (is_shadow_present_pte(*it.sptep)) 635 continue; 636 637 direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); 638 639 sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1, 640 true, direct_access); 641 link_shadow_page(vcpu, it.sptep, sp); 642 } 643 644 clear_sp_write_flooding_count(it.sptep); 645 emulate = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, 646 it.level, gw->gfn, pfn, prefault, map_writable); 647 FNAME(pte_prefetch)(vcpu, gw, it.sptep); 648 649 return emulate; 650 651 out_gpte_changed: 652 kvm_release_pfn_clean(pfn); 653 return 0; 654 } 655 656 /* 657 * To see whether the mapped gfn can write its page table in the current 658 * mapping. 659 * 660 * It is the helper function of FNAME(page_fault). When guest uses large page 661 * size to map the writable gfn which is used as current page table, we should 662 * force kvm to use small page size to map it because new shadow page will be 663 * created when kvm establishes shadow page table that stop kvm using large 664 * page size. Do it early can avoid unnecessary #PF and emulation. 665 * 666 * @write_fault_to_shadow_pgtable will return true if the fault gfn is 667 * currently used as its page table. 668 * 669 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok 670 * since the PDPT is always shadowed, that means, we can not use large page 671 * size to map the gfn which is used as PDPT. 672 */ 673 static bool 674 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, 675 struct guest_walker *walker, int user_fault, 676 bool *write_fault_to_shadow_pgtable) 677 { 678 int level; 679 gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); 680 bool self_changed = false; 681 682 if (!(walker->pte_access & ACC_WRITE_MASK || 683 (!is_write_protection(vcpu) && !user_fault))) 684 return false; 685 686 for (level = walker->level; level <= walker->max_level; level++) { 687 gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; 688 689 self_changed |= !(gfn & mask); 690 *write_fault_to_shadow_pgtable |= !gfn; 691 } 692 693 return self_changed; 694 } 695 696 /* 697 * Page fault handler. There are several causes for a page fault: 698 * - there is no shadow pte for the guest pte 699 * - write access through a shadow pte marked read only so that we can set 700 * the dirty bit 701 * - write access to a shadow pte marked read only so we can update the page 702 * dirty bitmap, when userspace requests it 703 * - mmio access; in this case we will never install a present shadow pte 704 * - normal guest page fault due to the guest pte marked not present, not 705 * writable, or not executable 706 * 707 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or 708 * a negative value on error. 709 */ 710 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, 711 bool prefault) 712 { 713 int write_fault = error_code & PFERR_WRITE_MASK; 714 int user_fault = error_code & PFERR_USER_MASK; 715 struct guest_walker walker; 716 int r; 717 kvm_pfn_t pfn; 718 int level = PT_PAGE_TABLE_LEVEL; 719 bool force_pt_level = false; 720 unsigned long mmu_seq; 721 bool map_writable, is_self_change_mapping; 722 723 pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); 724 725 r = mmu_topup_memory_caches(vcpu); 726 if (r) 727 return r; 728 729 /* 730 * If PFEC.RSVD is set, this is a shadow page fault. 731 * The bit needs to be cleared before walking guest page tables. 732 */ 733 error_code &= ~PFERR_RSVD_MASK; 734 735 /* 736 * Look up the guest pte for the faulting address. 737 */ 738 r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); 739 740 /* 741 * The page is not mapped by the guest. Let the guest handle it. 742 */ 743 if (!r) { 744 pgprintk("%s: guest page fault\n", __func__); 745 if (!prefault) 746 inject_page_fault(vcpu, &walker.fault); 747 748 return 0; 749 } 750 751 if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) { 752 shadow_page_table_clear_flood(vcpu, addr); 753 return 1; 754 } 755 756 vcpu->arch.write_fault_to_shadow_pgtable = false; 757 758 is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, 759 &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); 760 761 if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) { 762 level = mapping_level(vcpu, walker.gfn, &force_pt_level); 763 if (likely(!force_pt_level)) { 764 level = min(walker.level, level); 765 walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); 766 } 767 } else 768 force_pt_level = true; 769 770 mmu_seq = vcpu->kvm->mmu_notifier_seq; 771 smp_rmb(); 772 773 if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, 774 &map_writable)) 775 return 0; 776 777 if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr, 778 walker.gfn, pfn, walker.pte_access, &r)) 779 return r; 780 781 /* 782 * Do not change pte_access if the pfn is a mmio page, otherwise 783 * we will cache the incorrect access into mmio spte. 784 */ 785 if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && 786 !is_write_protection(vcpu) && !user_fault && 787 !is_noslot_pfn(pfn)) { 788 walker.pte_access |= ACC_WRITE_MASK; 789 walker.pte_access &= ~ACC_USER_MASK; 790 791 /* 792 * If we converted a user page to a kernel page, 793 * so that the kernel can write to it when cr0.wp=0, 794 * then we should prevent the kernel from executing it 795 * if SMEP is enabled. 796 */ 797 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) 798 walker.pte_access &= ~ACC_EXEC_MASK; 799 } 800 801 spin_lock(&vcpu->kvm->mmu_lock); 802 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) 803 goto out_unlock; 804 805 kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); 806 make_mmu_pages_available(vcpu); 807 if (!force_pt_level) 808 transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level); 809 r = FNAME(fetch)(vcpu, addr, &walker, write_fault, 810 level, pfn, map_writable, prefault); 811 ++vcpu->stat.pf_fixed; 812 kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); 813 spin_unlock(&vcpu->kvm->mmu_lock); 814 815 return r; 816 817 out_unlock: 818 spin_unlock(&vcpu->kvm->mmu_lock); 819 kvm_release_pfn_clean(pfn); 820 return 0; 821 } 822 823 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) 824 { 825 int offset = 0; 826 827 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); 828 829 if (PTTYPE == 32) 830 offset = sp->role.quadrant << PT64_LEVEL_BITS; 831 832 return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); 833 } 834 835 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva) 836 { 837 struct kvm_shadow_walk_iterator iterator; 838 struct kvm_mmu_page *sp; 839 int level; 840 u64 *sptep; 841 842 vcpu_clear_mmio_info(vcpu, gva); 843 844 /* 845 * No need to check return value here, rmap_can_add() can 846 * help us to skip pte prefetch later. 847 */ 848 mmu_topup_memory_caches(vcpu); 849 850 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) { 851 WARN_ON(1); 852 return; 853 } 854 855 spin_lock(&vcpu->kvm->mmu_lock); 856 for_each_shadow_entry(vcpu, gva, iterator) { 857 level = iterator.level; 858 sptep = iterator.sptep; 859 860 sp = page_header(__pa(sptep)); 861 if (is_last_spte(*sptep, level)) { 862 pt_element_t gpte; 863 gpa_t pte_gpa; 864 865 if (!sp->unsync) 866 break; 867 868 pte_gpa = FNAME(get_level1_sp_gpa)(sp); 869 pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); 870 871 if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) 872 kvm_flush_remote_tlbs(vcpu->kvm); 873 874 if (!rmap_can_add(vcpu)) 875 break; 876 877 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 878 sizeof(pt_element_t))) 879 break; 880 881 FNAME(update_pte)(vcpu, sp, sptep, &gpte); 882 } 883 884 if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) 885 break; 886 } 887 spin_unlock(&vcpu->kvm->mmu_lock); 888 } 889 890 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, 891 struct x86_exception *exception) 892 { 893 struct guest_walker walker; 894 gpa_t gpa = UNMAPPED_GVA; 895 int r; 896 897 r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); 898 899 if (r) { 900 gpa = gfn_to_gpa(walker.gfn); 901 gpa |= vaddr & ~PAGE_MASK; 902 } else if (exception) 903 *exception = walker.fault; 904 905 return gpa; 906 } 907 908 #if PTTYPE != PTTYPE_EPT 909 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, 910 u32 access, 911 struct x86_exception *exception) 912 { 913 struct guest_walker walker; 914 gpa_t gpa = UNMAPPED_GVA; 915 int r; 916 917 r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); 918 919 if (r) { 920 gpa = gfn_to_gpa(walker.gfn); 921 gpa |= vaddr & ~PAGE_MASK; 922 } else if (exception) 923 *exception = walker.fault; 924 925 return gpa; 926 } 927 #endif 928 929 /* 930 * Using the cached information from sp->gfns is safe because: 931 * - The spte has a reference to the struct page, so the pfn for a given gfn 932 * can't change unless all sptes pointing to it are nuked first. 933 * 934 * Note: 935 * We should flush all tlbs if spte is dropped even though guest is 936 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page 937 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't 938 * used by guest then tlbs are not flushed, so guest is allowed to access the 939 * freed pages. 940 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. 941 */ 942 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) 943 { 944 int i, nr_present = 0; 945 bool host_writable; 946 gpa_t first_pte_gpa; 947 948 /* direct kvm_mmu_page can not be unsync. */ 949 BUG_ON(sp->role.direct); 950 951 first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); 952 953 for (i = 0; i < PT64_ENT_PER_PAGE; i++) { 954 unsigned pte_access; 955 pt_element_t gpte; 956 gpa_t pte_gpa; 957 gfn_t gfn; 958 959 if (!sp->spt[i]) 960 continue; 961 962 pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); 963 964 if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, 965 sizeof(pt_element_t))) 966 return 0; 967 968 if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { 969 /* 970 * Update spte before increasing tlbs_dirty to make 971 * sure no tlb flush is lost after spte is zapped; see 972 * the comments in kvm_flush_remote_tlbs(). 973 */ 974 smp_wmb(); 975 vcpu->kvm->tlbs_dirty++; 976 continue; 977 } 978 979 gfn = gpte_to_gfn(gpte); 980 pte_access = sp->role.access; 981 pte_access &= FNAME(gpte_access)(vcpu, gpte); 982 FNAME(protect_clean_gpte)(&pte_access, gpte); 983 984 if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, 985 &nr_present)) 986 continue; 987 988 if (gfn != sp->gfns[i]) { 989 drop_spte(vcpu->kvm, &sp->spt[i]); 990 /* 991 * The same as above where we are doing 992 * prefetch_invalid_gpte(). 993 */ 994 smp_wmb(); 995 vcpu->kvm->tlbs_dirty++; 996 continue; 997 } 998 999 nr_present++; 1000 1001 host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; 1002 1003 set_spte(vcpu, &sp->spt[i], pte_access, 1004 PT_PAGE_TABLE_LEVEL, gfn, 1005 spte_to_pfn(sp->spt[i]), true, false, 1006 host_writable); 1007 } 1008 1009 return nr_present; 1010 } 1011 1012 #undef pt_element_t 1013 #undef guest_walker 1014 #undef FNAME 1015 #undef PT_BASE_ADDR_MASK 1016 #undef PT_INDEX 1017 #undef PT_LVL_ADDR_MASK 1018 #undef PT_LVL_OFFSET_MASK 1019 #undef PT_LEVEL_BITS 1020 #undef PT_MAX_FULL_LEVELS 1021 #undef gpte_to_gfn 1022 #undef gpte_to_gfn_lvl 1023 #undef CMPXCHG 1024 #undef PT_GUEST_ACCESSED_MASK 1025 #undef PT_GUEST_DIRTY_MASK 1026 #undef PT_GUEST_DIRTY_SHIFT 1027 #undef PT_GUEST_ACCESSED_SHIFT 1028
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.