~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/kvm/vmx/vmx.c

Version: ~ [ linux-5.6 ] ~ [ linux-5.5.13 ] ~ [ linux-5.4.28 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.113 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.174 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.217 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.217 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.82 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * Kernel-based Virtual Machine driver for Linux
  4  *
  5  * This module enables machines with Intel VT-x extensions to run virtual
  6  * machines without emulation or binary translation.
  7  *
  8  * Copyright (C) 2006 Qumranet, Inc.
  9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 10  *
 11  * Authors:
 12  *   Avi Kivity   <avi@qumranet.com>
 13  *   Yaniv Kamay  <yaniv@qumranet.com>
 14  */
 15 
 16 #include <linux/frame.h>
 17 #include <linux/highmem.h>
 18 #include <linux/hrtimer.h>
 19 #include <linux/kernel.h>
 20 #include <linux/kvm_host.h>
 21 #include <linux/module.h>
 22 #include <linux/moduleparam.h>
 23 #include <linux/mod_devicetable.h>
 24 #include <linux/mm.h>
 25 #include <linux/sched.h>
 26 #include <linux/sched/smt.h>
 27 #include <linux/slab.h>
 28 #include <linux/tboot.h>
 29 #include <linux/trace_events.h>
 30 
 31 #include <asm/apic.h>
 32 #include <asm/asm.h>
 33 #include <asm/cpu.h>
 34 #include <asm/debugreg.h>
 35 #include <asm/desc.h>
 36 #include <asm/fpu/internal.h>
 37 #include <asm/io.h>
 38 #include <asm/irq_remapping.h>
 39 #include <asm/kexec.h>
 40 #include <asm/perf_event.h>
 41 #include <asm/mce.h>
 42 #include <asm/mmu_context.h>
 43 #include <asm/mshyperv.h>
 44 #include <asm/spec-ctrl.h>
 45 #include <asm/virtext.h>
 46 #include <asm/vmx.h>
 47 
 48 #include "capabilities.h"
 49 #include "cpuid.h"
 50 #include "evmcs.h"
 51 #include "irq.h"
 52 #include "kvm_cache_regs.h"
 53 #include "lapic.h"
 54 #include "mmu.h"
 55 #include "nested.h"
 56 #include "ops.h"
 57 #include "pmu.h"
 58 #include "trace.h"
 59 #include "vmcs.h"
 60 #include "vmcs12.h"
 61 #include "vmx.h"
 62 #include "x86.h"
 63 
 64 MODULE_AUTHOR("Qumranet");
 65 MODULE_LICENSE("GPL");
 66 
 67 #ifdef MODULE
 68 static const struct x86_cpu_id vmx_cpu_id[] = {
 69         X86_FEATURE_MATCH(X86_FEATURE_VMX),
 70         {}
 71 };
 72 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
 73 #endif
 74 
 75 bool __read_mostly enable_vpid = 1;
 76 module_param_named(vpid, enable_vpid, bool, 0444);
 77 
 78 static bool __read_mostly enable_vnmi = 1;
 79 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
 80 
 81 bool __read_mostly flexpriority_enabled = 1;
 82 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
 83 
 84 bool __read_mostly enable_ept = 1;
 85 module_param_named(ept, enable_ept, bool, S_IRUGO);
 86 
 87 bool __read_mostly enable_unrestricted_guest = 1;
 88 module_param_named(unrestricted_guest,
 89                         enable_unrestricted_guest, bool, S_IRUGO);
 90 
 91 bool __read_mostly enable_ept_ad_bits = 1;
 92 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
 93 
 94 static bool __read_mostly emulate_invalid_guest_state = true;
 95 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
 96 
 97 static bool __read_mostly fasteoi = 1;
 98 module_param(fasteoi, bool, S_IRUGO);
 99 
100 bool __read_mostly enable_apicv = 1;
101 module_param(enable_apicv, bool, S_IRUGO);
102 
103 /*
104  * If nested=1, nested virtualization is supported, i.e., guests may use
105  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
106  * use VMX instructions.
107  */
108 static bool __read_mostly nested = 1;
109 module_param(nested, bool, S_IRUGO);
110 
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113 
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116 
117 #define MSR_BITMAP_MODE_X2APIC          1
118 #define MSR_BITMAP_MODE_X2APIC_APICV    2
119 
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121 
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128 
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON                            \
132         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST |      \
133          X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS                                      \
135         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136          | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137 
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141 
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143 
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147         RTIT_STATUS_BYTECNT))
148 
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150         (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151 
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165 
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168 
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172 
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176 
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180 
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184 
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188 
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191 
192 static const struct {
193         const char *option;
194         bool for_parse;
195 } vmentry_l1d_param[] = {
196         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
197         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
198         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
199         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
200         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203 
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206 
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209         struct page *page;
210         unsigned int i;
211 
212         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214                 return 0;
215         }
216 
217         if (!enable_ept) {
218                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219                 return 0;
220         }
221 
222         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223                 u64 msr;
224 
225                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228                         return 0;
229                 }
230         }
231 
232         /* If set to auto use the default l1tf mitigation method */
233         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234                 switch (l1tf_mitigation) {
235                 case L1TF_MITIGATION_OFF:
236                         l1tf = VMENTER_L1D_FLUSH_NEVER;
237                         break;
238                 case L1TF_MITIGATION_FLUSH_NOWARN:
239                 case L1TF_MITIGATION_FLUSH:
240                 case L1TF_MITIGATION_FLUSH_NOSMT:
241                         l1tf = VMENTER_L1D_FLUSH_COND;
242                         break;
243                 case L1TF_MITIGATION_FULL:
244                 case L1TF_MITIGATION_FULL_FORCE:
245                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246                         break;
247                 }
248         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250         }
251 
252         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254                 /*
255                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
256                  * lifetime and so should not be charged to a memcg.
257                  */
258                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259                 if (!page)
260                         return -ENOMEM;
261                 vmx_l1d_flush_pages = page_address(page);
262 
263                 /*
264                  * Initialize each page with a different pattern in
265                  * order to protect against KSM in the nested
266                  * virtualization case.
267                  */
268                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270                                PAGE_SIZE);
271                 }
272         }
273 
274         l1tf_vmx_mitigation = l1tf;
275 
276         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277                 static_branch_enable(&vmx_l1d_should_flush);
278         else
279                 static_branch_disable(&vmx_l1d_should_flush);
280 
281         if (l1tf == VMENTER_L1D_FLUSH_COND)
282                 static_branch_enable(&vmx_l1d_flush_cond);
283         else
284                 static_branch_disable(&vmx_l1d_flush_cond);
285         return 0;
286 }
287 
288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290         unsigned int i;
291 
292         if (s) {
293                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294                         if (vmentry_l1d_param[i].for_parse &&
295                             sysfs_streq(s, vmentry_l1d_param[i].option))
296                                 return i;
297                 }
298         }
299         return -EINVAL;
300 }
301 
302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304         int l1tf, ret;
305 
306         l1tf = vmentry_l1d_flush_parse(s);
307         if (l1tf < 0)
308                 return l1tf;
309 
310         if (!boot_cpu_has(X86_BUG_L1TF))
311                 return 0;
312 
313         /*
314          * Has vmx_init() run already? If not then this is the pre init
315          * parameter parsing. In that case just store the value and let
316          * vmx_init() do the proper setup after enable_ept has been
317          * established.
318          */
319         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320                 vmentry_l1d_flush_param = l1tf;
321                 return 0;
322         }
323 
324         mutex_lock(&vmx_l1d_flush_mutex);
325         ret = vmx_setup_l1d_flush(l1tf);
326         mutex_unlock(&vmx_l1d_flush_mutex);
327         return ret;
328 }
329 
330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333                 return sprintf(s, "???\n");
334 
335         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337 
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339         .set = vmentry_l1d_flush_set,
340         .get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343 
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347                                                           u32 msr, int type);
348 
349 void vmx_vmexit(void);
350 
351 #define vmx_insn_failed(fmt...)         \
352 do {                                    \
353         WARN_ONCE(1, fmt);              \
354         pr_warn_ratelimited(fmt);       \
355 } while (0)
356 
357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359         if (fault)
360                 kvm_spurious_fault();
361         else
362                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364 
365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370 
371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375 
376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380 
381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384                         ext, vpid, gva);
385 }
386 
387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390                         ext, eptp, gpa);
391 }
392 
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398  */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400 
401 /*
402  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403  * can find which vCPU should be waken up.
404  */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407 
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410 
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413 
414 #define VMX_SEGMENT_FIELD(seg)                                  \
415         [VCPU_SREG_##seg] = {                                   \
416                 .selector = GUEST_##seg##_SELECTOR,             \
417                 .base = GUEST_##seg##_BASE,                     \
418                 .limit = GUEST_##seg##_LIMIT,                   \
419                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
420         }
421 
422 static const struct kvm_vmx_segment_field {
423         unsigned selector;
424         unsigned base;
425         unsigned limit;
426         unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428         VMX_SEGMENT_FIELD(CS),
429         VMX_SEGMENT_FIELD(DS),
430         VMX_SEGMENT_FIELD(ES),
431         VMX_SEGMENT_FIELD(FS),
432         VMX_SEGMENT_FIELD(GS),
433         VMX_SEGMENT_FIELD(SS),
434         VMX_SEGMENT_FIELD(TR),
435         VMX_SEGMENT_FIELD(LDTR),
436 };
437 
438 u64 host_efer;
439 static unsigned long host_idt_base;
440 
441 /*
442  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443  * will emulate SYSCALL in legacy mode if the vendor string in guest
444  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445  * support this emulation, IA32_STAR must always be included in
446  * vmx_msr_index[], even in i386 builds.
447  */
448 const u32 vmx_msr_index[] = {
449 #ifdef CONFIG_X86_64
450         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
451 #endif
452         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
453         MSR_IA32_TSX_CTRL,
454 };
455 
456 #if IS_ENABLED(CONFIG_HYPERV)
457 static bool __read_mostly enlightened_vmcs = true;
458 module_param(enlightened_vmcs, bool, 0444);
459 
460 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
461 static void check_ept_pointer_match(struct kvm *kvm)
462 {
463         struct kvm_vcpu *vcpu;
464         u64 tmp_eptp = INVALID_PAGE;
465         int i;
466 
467         kvm_for_each_vcpu(i, vcpu, kvm) {
468                 if (!VALID_PAGE(tmp_eptp)) {
469                         tmp_eptp = to_vmx(vcpu)->ept_pointer;
470                 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
471                         to_kvm_vmx(kvm)->ept_pointers_match
472                                 = EPT_POINTERS_MISMATCH;
473                         return;
474                 }
475         }
476 
477         to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
478 }
479 
480 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
481                 void *data)
482 {
483         struct kvm_tlb_range *range = data;
484 
485         return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
486                         range->pages);
487 }
488 
489 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
490                 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
491 {
492         u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
493 
494         /*
495          * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
496          * of the base of EPT PML4 table, strip off EPT configuration
497          * information.
498          */
499         if (range)
500                 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
501                                 kvm_fill_hv_flush_list_func, (void *)range);
502         else
503                 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
504 }
505 
506 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
507                 struct kvm_tlb_range *range)
508 {
509         struct kvm_vcpu *vcpu;
510         int ret = 0, i;
511 
512         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
513 
514         if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
515                 check_ept_pointer_match(kvm);
516 
517         if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
518                 kvm_for_each_vcpu(i, vcpu, kvm) {
519                         /* If ept_pointer is invalid pointer, bypass flush request. */
520                         if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
521                                 ret |= __hv_remote_flush_tlb_with_range(
522                                         kvm, vcpu, range);
523                 }
524         } else {
525                 ret = __hv_remote_flush_tlb_with_range(kvm,
526                                 kvm_get_vcpu(kvm, 0), range);
527         }
528 
529         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
530         return ret;
531 }
532 static int hv_remote_flush_tlb(struct kvm *kvm)
533 {
534         return hv_remote_flush_tlb_with_range(kvm, NULL);
535 }
536 
537 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
538 {
539         struct hv_enlightened_vmcs *evmcs;
540         struct hv_partition_assist_pg **p_hv_pa_pg =
541                         &vcpu->kvm->arch.hyperv.hv_pa_pg;
542         /*
543          * Synthetic VM-Exit is not enabled in current code and so All
544          * evmcs in singe VM shares same assist page.
545          */
546         if (!*p_hv_pa_pg)
547                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
548 
549         if (!*p_hv_pa_pg)
550                 return -ENOMEM;
551 
552         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
553 
554         evmcs->partition_assist_page =
555                 __pa(*p_hv_pa_pg);
556         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
557         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
558 
559         return 0;
560 }
561 
562 #endif /* IS_ENABLED(CONFIG_HYPERV) */
563 
564 /*
565  * Comment's format: document - errata name - stepping - processor name.
566  * Refer from
567  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
568  */
569 static u32 vmx_preemption_cpu_tfms[] = {
570 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
571 0x000206E6,
572 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
573 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
574 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
575 0x00020652,
576 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
577 0x00020655,
578 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
579 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
580 /*
581  * 320767.pdf - AAP86  - B1 -
582  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
583  */
584 0x000106E5,
585 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
586 0x000106A0,
587 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
588 0x000106A1,
589 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
590 0x000106A4,
591  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
592  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
593  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
594 0x000106A5,
595  /* Xeon E3-1220 V2 */
596 0x000306A8,
597 };
598 
599 static inline bool cpu_has_broken_vmx_preemption_timer(void)
600 {
601         u32 eax = cpuid_eax(0x00000001), i;
602 
603         /* Clear the reserved bits */
604         eax &= ~(0x3U << 14 | 0xfU << 28);
605         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
606                 if (eax == vmx_preemption_cpu_tfms[i])
607                         return true;
608 
609         return false;
610 }
611 
612 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
613 {
614         return flexpriority_enabled && lapic_in_kernel(vcpu);
615 }
616 
617 static inline bool report_flexpriority(void)
618 {
619         return flexpriority_enabled;
620 }
621 
622 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
623 {
624         int i;
625 
626         for (i = 0; i < vmx->nmsrs; ++i)
627                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
628                         return i;
629         return -1;
630 }
631 
632 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
633 {
634         int i;
635 
636         i = __find_msr_index(vmx, msr);
637         if (i >= 0)
638                 return &vmx->guest_msrs[i];
639         return NULL;
640 }
641 
642 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
643 {
644         int ret = 0;
645 
646         u64 old_msr_data = msr->data;
647         msr->data = data;
648         if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
649                 preempt_disable();
650                 ret = kvm_set_shared_msr(msr->index, msr->data,
651                                          msr->mask);
652                 preempt_enable();
653                 if (ret)
654                         msr->data = old_msr_data;
655         }
656         return ret;
657 }
658 
659 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
660 {
661         vmcs_clear(loaded_vmcs->vmcs);
662         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
663                 vmcs_clear(loaded_vmcs->shadow_vmcs);
664         loaded_vmcs->cpu = -1;
665         loaded_vmcs->launched = 0;
666 }
667 
668 #ifdef CONFIG_KEXEC_CORE
669 /*
670  * This bitmap is used to indicate whether the vmclear
671  * operation is enabled on all cpus. All disabled by
672  * default.
673  */
674 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
675 
676 static inline void crash_enable_local_vmclear(int cpu)
677 {
678         cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
679 }
680 
681 static inline void crash_disable_local_vmclear(int cpu)
682 {
683         cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
684 }
685 
686 static inline int crash_local_vmclear_enabled(int cpu)
687 {
688         return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
689 }
690 
691 static void crash_vmclear_local_loaded_vmcss(void)
692 {
693         int cpu = raw_smp_processor_id();
694         struct loaded_vmcs *v;
695 
696         if (!crash_local_vmclear_enabled(cpu))
697                 return;
698 
699         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
700                             loaded_vmcss_on_cpu_link)
701                 vmcs_clear(v->vmcs);
702 }
703 #else
704 static inline void crash_enable_local_vmclear(int cpu) { }
705 static inline void crash_disable_local_vmclear(int cpu) { }
706 #endif /* CONFIG_KEXEC_CORE */
707 
708 static void __loaded_vmcs_clear(void *arg)
709 {
710         struct loaded_vmcs *loaded_vmcs = arg;
711         int cpu = raw_smp_processor_id();
712 
713         if (loaded_vmcs->cpu != cpu)
714                 return; /* vcpu migration can race with cpu offline */
715         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
716                 per_cpu(current_vmcs, cpu) = NULL;
717         crash_disable_local_vmclear(cpu);
718         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
719 
720         /*
721          * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
722          * is before setting loaded_vmcs->vcpu to -1 which is done in
723          * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
724          * then adds the vmcs into percpu list before it is deleted.
725          */
726         smp_wmb();
727 
728         loaded_vmcs_init(loaded_vmcs);
729         crash_enable_local_vmclear(cpu);
730 }
731 
732 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
733 {
734         int cpu = loaded_vmcs->cpu;
735 
736         if (cpu != -1)
737                 smp_call_function_single(cpu,
738                          __loaded_vmcs_clear, loaded_vmcs, 1);
739 }
740 
741 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
742                                        unsigned field)
743 {
744         bool ret;
745         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
746 
747         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
748                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
749                 vmx->segment_cache.bitmask = 0;
750         }
751         ret = vmx->segment_cache.bitmask & mask;
752         vmx->segment_cache.bitmask |= mask;
753         return ret;
754 }
755 
756 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
757 {
758         u16 *p = &vmx->segment_cache.seg[seg].selector;
759 
760         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
761                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
762         return *p;
763 }
764 
765 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
766 {
767         ulong *p = &vmx->segment_cache.seg[seg].base;
768 
769         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
770                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
771         return *p;
772 }
773 
774 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
775 {
776         u32 *p = &vmx->segment_cache.seg[seg].limit;
777 
778         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
779                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
780         return *p;
781 }
782 
783 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
784 {
785         u32 *p = &vmx->segment_cache.seg[seg].ar;
786 
787         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
788                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
789         return *p;
790 }
791 
792 void update_exception_bitmap(struct kvm_vcpu *vcpu)
793 {
794         u32 eb;
795 
796         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
797              (1u << DB_VECTOR) | (1u << AC_VECTOR);
798         /*
799          * Guest access to VMware backdoor ports could legitimately
800          * trigger #GP because of TSS I/O permission bitmap.
801          * We intercept those #GP and allow access to them anyway
802          * as VMware does.
803          */
804         if (enable_vmware_backdoor)
805                 eb |= (1u << GP_VECTOR);
806         if ((vcpu->guest_debug &
807              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
808             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
809                 eb |= 1u << BP_VECTOR;
810         if (to_vmx(vcpu)->rmode.vm86_active)
811                 eb = ~0;
812         if (enable_ept)
813                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
814 
815         /* When we are running a nested L2 guest and L1 specified for it a
816          * certain exception bitmap, we must trap the same exceptions and pass
817          * them to L1. When running L2, we will only handle the exceptions
818          * specified above if L1 did not want them.
819          */
820         if (is_guest_mode(vcpu))
821                 eb |= get_vmcs12(vcpu)->exception_bitmap;
822 
823         vmcs_write32(EXCEPTION_BITMAP, eb);
824 }
825 
826 /*
827  * Check if MSR is intercepted for currently loaded MSR bitmap.
828  */
829 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
830 {
831         unsigned long *msr_bitmap;
832         int f = sizeof(unsigned long);
833 
834         if (!cpu_has_vmx_msr_bitmap())
835                 return true;
836 
837         msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
838 
839         if (msr <= 0x1fff) {
840                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
841         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
842                 msr &= 0x1fff;
843                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
844         }
845 
846         return true;
847 }
848 
849 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
850                 unsigned long entry, unsigned long exit)
851 {
852         vm_entry_controls_clearbit(vmx, entry);
853         vm_exit_controls_clearbit(vmx, exit);
854 }
855 
856 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
857 {
858         unsigned int i;
859 
860         for (i = 0; i < m->nr; ++i) {
861                 if (m->val[i].index == msr)
862                         return i;
863         }
864         return -ENOENT;
865 }
866 
867 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
868 {
869         int i;
870         struct msr_autoload *m = &vmx->msr_autoload;
871 
872         switch (msr) {
873         case MSR_EFER:
874                 if (cpu_has_load_ia32_efer()) {
875                         clear_atomic_switch_msr_special(vmx,
876                                         VM_ENTRY_LOAD_IA32_EFER,
877                                         VM_EXIT_LOAD_IA32_EFER);
878                         return;
879                 }
880                 break;
881         case MSR_CORE_PERF_GLOBAL_CTRL:
882                 if (cpu_has_load_perf_global_ctrl()) {
883                         clear_atomic_switch_msr_special(vmx,
884                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
885                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
886                         return;
887                 }
888                 break;
889         }
890         i = vmx_find_msr_index(&m->guest, msr);
891         if (i < 0)
892                 goto skip_guest;
893         --m->guest.nr;
894         m->guest.val[i] = m->guest.val[m->guest.nr];
895         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
896 
897 skip_guest:
898         i = vmx_find_msr_index(&m->host, msr);
899         if (i < 0)
900                 return;
901 
902         --m->host.nr;
903         m->host.val[i] = m->host.val[m->host.nr];
904         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
905 }
906 
907 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
908                 unsigned long entry, unsigned long exit,
909                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
910                 u64 guest_val, u64 host_val)
911 {
912         vmcs_write64(guest_val_vmcs, guest_val);
913         if (host_val_vmcs != HOST_IA32_EFER)
914                 vmcs_write64(host_val_vmcs, host_val);
915         vm_entry_controls_setbit(vmx, entry);
916         vm_exit_controls_setbit(vmx, exit);
917 }
918 
919 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
920                                   u64 guest_val, u64 host_val, bool entry_only)
921 {
922         int i, j = 0;
923         struct msr_autoload *m = &vmx->msr_autoload;
924 
925         switch (msr) {
926         case MSR_EFER:
927                 if (cpu_has_load_ia32_efer()) {
928                         add_atomic_switch_msr_special(vmx,
929                                         VM_ENTRY_LOAD_IA32_EFER,
930                                         VM_EXIT_LOAD_IA32_EFER,
931                                         GUEST_IA32_EFER,
932                                         HOST_IA32_EFER,
933                                         guest_val, host_val);
934                         return;
935                 }
936                 break;
937         case MSR_CORE_PERF_GLOBAL_CTRL:
938                 if (cpu_has_load_perf_global_ctrl()) {
939                         add_atomic_switch_msr_special(vmx,
940                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
941                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
942                                         GUEST_IA32_PERF_GLOBAL_CTRL,
943                                         HOST_IA32_PERF_GLOBAL_CTRL,
944                                         guest_val, host_val);
945                         return;
946                 }
947                 break;
948         case MSR_IA32_PEBS_ENABLE:
949                 /* PEBS needs a quiescent period after being disabled (to write
950                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
951                  * provide that period, so a CPU could write host's record into
952                  * guest's memory.
953                  */
954                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
955         }
956 
957         i = vmx_find_msr_index(&m->guest, msr);
958         if (!entry_only)
959                 j = vmx_find_msr_index(&m->host, msr);
960 
961         if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
962                 (j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
963                 printk_once(KERN_WARNING "Not enough msr switch entries. "
964                                 "Can't add msr %x\n", msr);
965                 return;
966         }
967         if (i < 0) {
968                 i = m->guest.nr++;
969                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
970         }
971         m->guest.val[i].index = msr;
972         m->guest.val[i].value = guest_val;
973 
974         if (entry_only)
975                 return;
976 
977         if (j < 0) {
978                 j = m->host.nr++;
979                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
980         }
981         m->host.val[j].index = msr;
982         m->host.val[j].value = host_val;
983 }
984 
985 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
986 {
987         u64 guest_efer = vmx->vcpu.arch.efer;
988         u64 ignore_bits = 0;
989 
990         /* Shadow paging assumes NX to be available.  */
991         if (!enable_ept)
992                 guest_efer |= EFER_NX;
993 
994         /*
995          * LMA and LME handled by hardware; SCE meaningless outside long mode.
996          */
997         ignore_bits |= EFER_SCE;
998 #ifdef CONFIG_X86_64
999         ignore_bits |= EFER_LMA | EFER_LME;
1000         /* SCE is meaningful only in long mode on Intel */
1001         if (guest_efer & EFER_LMA)
1002                 ignore_bits &= ~(u64)EFER_SCE;
1003 #endif
1004 
1005         /*
1006          * On EPT, we can't emulate NX, so we must switch EFER atomically.
1007          * On CPUs that support "load IA32_EFER", always switch EFER
1008          * atomically, since it's faster than switching it manually.
1009          */
1010         if (cpu_has_load_ia32_efer() ||
1011             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1012                 if (!(guest_efer & EFER_LMA))
1013                         guest_efer &= ~EFER_LME;
1014                 if (guest_efer != host_efer)
1015                         add_atomic_switch_msr(vmx, MSR_EFER,
1016                                               guest_efer, host_efer, false);
1017                 else
1018                         clear_atomic_switch_msr(vmx, MSR_EFER);
1019                 return false;
1020         } else {
1021                 clear_atomic_switch_msr(vmx, MSR_EFER);
1022 
1023                 guest_efer &= ~ignore_bits;
1024                 guest_efer |= host_efer & ignore_bits;
1025 
1026                 vmx->guest_msrs[efer_offset].data = guest_efer;
1027                 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1028 
1029                 return true;
1030         }
1031 }
1032 
1033 #ifdef CONFIG_X86_32
1034 /*
1035  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1036  * VMCS rather than the segment table.  KVM uses this helper to figure
1037  * out the current bases to poke them into the VMCS before entry.
1038  */
1039 static unsigned long segment_base(u16 selector)
1040 {
1041         struct desc_struct *table;
1042         unsigned long v;
1043 
1044         if (!(selector & ~SEGMENT_RPL_MASK))
1045                 return 0;
1046 
1047         table = get_current_gdt_ro();
1048 
1049         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1050                 u16 ldt_selector = kvm_read_ldt();
1051 
1052                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1053                         return 0;
1054 
1055                 table = (struct desc_struct *)segment_base(ldt_selector);
1056         }
1057         v = get_desc_base(&table[selector >> 3]);
1058         return v;
1059 }
1060 #endif
1061 
1062 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1063 {
1064         return (pt_mode == PT_MODE_HOST_GUEST) &&
1065                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1066 }
1067 
1068 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1069 {
1070         u32 i;
1071 
1072         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1073         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1074         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1075         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1076         for (i = 0; i < addr_range; i++) {
1077                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1078                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1079         }
1080 }
1081 
1082 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1083 {
1084         u32 i;
1085 
1086         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1087         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1088         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1089         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1090         for (i = 0; i < addr_range; i++) {
1091                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1092                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1093         }
1094 }
1095 
1096 static void pt_guest_enter(struct vcpu_vmx *vmx)
1097 {
1098         if (pt_mode == PT_MODE_SYSTEM)
1099                 return;
1100 
1101         /*
1102          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1103          * Save host state before VM entry.
1104          */
1105         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1106         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1107                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1108                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1109                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1110         }
1111 }
1112 
1113 static void pt_guest_exit(struct vcpu_vmx *vmx)
1114 {
1115         if (pt_mode == PT_MODE_SYSTEM)
1116                 return;
1117 
1118         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1119                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1120                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1121         }
1122 
1123         /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1124         wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1125 }
1126 
1127 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1128                         unsigned long fs_base, unsigned long gs_base)
1129 {
1130         if (unlikely(fs_sel != host->fs_sel)) {
1131                 if (!(fs_sel & 7))
1132                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1133                 else
1134                         vmcs_write16(HOST_FS_SELECTOR, 0);
1135                 host->fs_sel = fs_sel;
1136         }
1137         if (unlikely(gs_sel != host->gs_sel)) {
1138                 if (!(gs_sel & 7))
1139                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1140                 else
1141                         vmcs_write16(HOST_GS_SELECTOR, 0);
1142                 host->gs_sel = gs_sel;
1143         }
1144         if (unlikely(fs_base != host->fs_base)) {
1145                 vmcs_writel(HOST_FS_BASE, fs_base);
1146                 host->fs_base = fs_base;
1147         }
1148         if (unlikely(gs_base != host->gs_base)) {
1149                 vmcs_writel(HOST_GS_BASE, gs_base);
1150                 host->gs_base = gs_base;
1151         }
1152 }
1153 
1154 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1155 {
1156         struct vcpu_vmx *vmx = to_vmx(vcpu);
1157         struct vmcs_host_state *host_state;
1158 #ifdef CONFIG_X86_64
1159         int cpu = raw_smp_processor_id();
1160 #endif
1161         unsigned long fs_base, gs_base;
1162         u16 fs_sel, gs_sel;
1163         int i;
1164 
1165         vmx->req_immediate_exit = false;
1166 
1167         /*
1168          * Note that guest MSRs to be saved/restored can also be changed
1169          * when guest state is loaded. This happens when guest transitions
1170          * to/from long-mode by setting MSR_EFER.LMA.
1171          */
1172         if (!vmx->guest_msrs_ready) {
1173                 vmx->guest_msrs_ready = true;
1174                 for (i = 0; i < vmx->save_nmsrs; ++i)
1175                         kvm_set_shared_msr(vmx->guest_msrs[i].index,
1176                                            vmx->guest_msrs[i].data,
1177                                            vmx->guest_msrs[i].mask);
1178 
1179         }
1180 
1181         if (vmx->nested.need_vmcs12_to_shadow_sync)
1182                 nested_sync_vmcs12_to_shadow(vcpu);
1183 
1184         if (vmx->guest_state_loaded)
1185                 return;
1186 
1187         host_state = &vmx->loaded_vmcs->host_state;
1188 
1189         /*
1190          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1191          * allow segment selectors with cpl > 0 or ti == 1.
1192          */
1193         host_state->ldt_sel = kvm_read_ldt();
1194 
1195 #ifdef CONFIG_X86_64
1196         savesegment(ds, host_state->ds_sel);
1197         savesegment(es, host_state->es_sel);
1198 
1199         gs_base = cpu_kernelmode_gs_base(cpu);
1200         if (likely(is_64bit_mm(current->mm))) {
1201                 save_fsgs_for_kvm();
1202                 fs_sel = current->thread.fsindex;
1203                 gs_sel = current->thread.gsindex;
1204                 fs_base = current->thread.fsbase;
1205                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1206         } else {
1207                 savesegment(fs, fs_sel);
1208                 savesegment(gs, gs_sel);
1209                 fs_base = read_msr(MSR_FS_BASE);
1210                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1211         }
1212 
1213         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1214 #else
1215         savesegment(fs, fs_sel);
1216         savesegment(gs, gs_sel);
1217         fs_base = segment_base(fs_sel);
1218         gs_base = segment_base(gs_sel);
1219 #endif
1220 
1221         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1222         vmx->guest_state_loaded = true;
1223 }
1224 
1225 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1226 {
1227         struct vmcs_host_state *host_state;
1228 
1229         if (!vmx->guest_state_loaded)
1230                 return;
1231 
1232         host_state = &vmx->loaded_vmcs->host_state;
1233 
1234         ++vmx->vcpu.stat.host_state_reload;
1235 
1236 #ifdef CONFIG_X86_64
1237         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1238 #endif
1239         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1240                 kvm_load_ldt(host_state->ldt_sel);
1241 #ifdef CONFIG_X86_64
1242                 load_gs_index(host_state->gs_sel);
1243 #else
1244                 loadsegment(gs, host_state->gs_sel);
1245 #endif
1246         }
1247         if (host_state->fs_sel & 7)
1248                 loadsegment(fs, host_state->fs_sel);
1249 #ifdef CONFIG_X86_64
1250         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1251                 loadsegment(ds, host_state->ds_sel);
1252                 loadsegment(es, host_state->es_sel);
1253         }
1254 #endif
1255         invalidate_tss_limit();
1256 #ifdef CONFIG_X86_64
1257         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1258 #endif
1259         load_fixmap_gdt(raw_smp_processor_id());
1260         vmx->guest_state_loaded = false;
1261         vmx->guest_msrs_ready = false;
1262 }
1263 
1264 #ifdef CONFIG_X86_64
1265 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1266 {
1267         preempt_disable();
1268         if (vmx->guest_state_loaded)
1269                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1270         preempt_enable();
1271         return vmx->msr_guest_kernel_gs_base;
1272 }
1273 
1274 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1275 {
1276         preempt_disable();
1277         if (vmx->guest_state_loaded)
1278                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1279         preempt_enable();
1280         vmx->msr_guest_kernel_gs_base = data;
1281 }
1282 #endif
1283 
1284 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1285 {
1286         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1287         struct pi_desc old, new;
1288         unsigned int dest;
1289 
1290         /*
1291          * In case of hot-plug or hot-unplug, we may have to undo
1292          * vmx_vcpu_pi_put even if there is no assigned device.  And we
1293          * always keep PI.NDST up to date for simplicity: it makes the
1294          * code easier, and CPU migration is not a fast path.
1295          */
1296         if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1297                 return;
1298 
1299         /*
1300          * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1301          * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1302          * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1303          * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1304          * correctly.
1305          */
1306         if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1307                 pi_clear_sn(pi_desc);
1308                 goto after_clear_sn;
1309         }
1310 
1311         /* The full case.  */
1312         do {
1313                 old.control = new.control = pi_desc->control;
1314 
1315                 dest = cpu_physical_id(cpu);
1316 
1317                 if (x2apic_enabled())
1318                         new.ndst = dest;
1319                 else
1320                         new.ndst = (dest << 8) & 0xFF00;
1321 
1322                 new.sn = 0;
1323         } while (cmpxchg64(&pi_desc->control, old.control,
1324                            new.control) != old.control);
1325 
1326 after_clear_sn:
1327 
1328         /*
1329          * Clear SN before reading the bitmap.  The VT-d firmware
1330          * writes the bitmap and reads SN atomically (5.2.3 in the
1331          * spec), so it doesn't really have a memory barrier that
1332          * pairs with this, but we cannot do that and we need one.
1333          */
1334         smp_mb__after_atomic();
1335 
1336         if (!pi_is_pir_empty(pi_desc))
1337                 pi_set_on(pi_desc);
1338 }
1339 
1340 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1341 {
1342         struct vcpu_vmx *vmx = to_vmx(vcpu);
1343         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1344 
1345         if (!already_loaded) {
1346                 loaded_vmcs_clear(vmx->loaded_vmcs);
1347                 local_irq_disable();
1348                 crash_disable_local_vmclear(cpu);
1349 
1350                 /*
1351                  * Read loaded_vmcs->cpu should be before fetching
1352                  * loaded_vmcs->loaded_vmcss_on_cpu_link.
1353                  * See the comments in __loaded_vmcs_clear().
1354                  */
1355                 smp_rmb();
1356 
1357                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1358                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1359                 crash_enable_local_vmclear(cpu);
1360                 local_irq_enable();
1361         }
1362 
1363         if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1364                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1365                 vmcs_load(vmx->loaded_vmcs->vmcs);
1366                 indirect_branch_prediction_barrier();
1367         }
1368 
1369         if (!already_loaded) {
1370                 void *gdt = get_current_gdt_ro();
1371                 unsigned long sysenter_esp;
1372 
1373                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1374 
1375                 /*
1376                  * Linux uses per-cpu TSS and GDT, so set these when switching
1377                  * processors.  See 22.2.4.
1378                  */
1379                 vmcs_writel(HOST_TR_BASE,
1380                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1381                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1382 
1383                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1384                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1385 
1386                 vmx->loaded_vmcs->cpu = cpu;
1387         }
1388 
1389         /* Setup TSC multiplier */
1390         if (kvm_has_tsc_control &&
1391             vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1392                 decache_tsc_multiplier(vmx);
1393 }
1394 
1395 /*
1396  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1397  * vcpu mutex is already taken.
1398  */
1399 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1400 {
1401         struct vcpu_vmx *vmx = to_vmx(vcpu);
1402 
1403         vmx_vcpu_load_vmcs(vcpu, cpu);
1404 
1405         vmx_vcpu_pi_load(vcpu, cpu);
1406 
1407         vmx->host_pkru = read_pkru();
1408         vmx->host_debugctlmsr = get_debugctlmsr();
1409 }
1410 
1411 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1412 {
1413         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1414 
1415         if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1416                 !irq_remapping_cap(IRQ_POSTING_CAP)  ||
1417                 !kvm_vcpu_apicv_active(vcpu))
1418                 return;
1419 
1420         /* Set SN when the vCPU is preempted */
1421         if (vcpu->preempted)
1422                 pi_set_sn(pi_desc);
1423 }
1424 
1425 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1426 {
1427         vmx_vcpu_pi_put(vcpu);
1428 
1429         vmx_prepare_switch_to_host(to_vmx(vcpu));
1430 }
1431 
1432 static bool emulation_required(struct kvm_vcpu *vcpu)
1433 {
1434         return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1435 }
1436 
1437 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1438 {
1439         struct vcpu_vmx *vmx = to_vmx(vcpu);
1440         unsigned long rflags, save_rflags;
1441 
1442         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1443                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1444                 rflags = vmcs_readl(GUEST_RFLAGS);
1445                 if (vmx->rmode.vm86_active) {
1446                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1447                         save_rflags = vmx->rmode.save_rflags;
1448                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1449                 }
1450                 vmx->rflags = rflags;
1451         }
1452         return vmx->rflags;
1453 }
1454 
1455 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1456 {
1457         struct vcpu_vmx *vmx = to_vmx(vcpu);
1458         unsigned long old_rflags;
1459 
1460         if (enable_unrestricted_guest) {
1461                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1462                 vmx->rflags = rflags;
1463                 vmcs_writel(GUEST_RFLAGS, rflags);
1464                 return;
1465         }
1466 
1467         old_rflags = vmx_get_rflags(vcpu);
1468         vmx->rflags = rflags;
1469         if (vmx->rmode.vm86_active) {
1470                 vmx->rmode.save_rflags = rflags;
1471                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1472         }
1473         vmcs_writel(GUEST_RFLAGS, rflags);
1474 
1475         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1476                 vmx->emulation_required = emulation_required(vcpu);
1477 }
1478 
1479 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1480 {
1481         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1482         int ret = 0;
1483 
1484         if (interruptibility & GUEST_INTR_STATE_STI)
1485                 ret |= KVM_X86_SHADOW_INT_STI;
1486         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1487                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1488 
1489         return ret;
1490 }
1491 
1492 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1493 {
1494         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1495         u32 interruptibility = interruptibility_old;
1496 
1497         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1498 
1499         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1500                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1501         else if (mask & KVM_X86_SHADOW_INT_STI)
1502                 interruptibility |= GUEST_INTR_STATE_STI;
1503 
1504         if ((interruptibility != interruptibility_old))
1505                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1506 }
1507 
1508 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1509 {
1510         struct vcpu_vmx *vmx = to_vmx(vcpu);
1511         unsigned long value;
1512 
1513         /*
1514          * Any MSR write that attempts to change bits marked reserved will
1515          * case a #GP fault.
1516          */
1517         if (data & vmx->pt_desc.ctl_bitmask)
1518                 return 1;
1519 
1520         /*
1521          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1522          * result in a #GP unless the same write also clears TraceEn.
1523          */
1524         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1525                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1526                 return 1;
1527 
1528         /*
1529          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1530          * and FabricEn would cause #GP, if
1531          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1532          */
1533         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1534                 !(data & RTIT_CTL_FABRIC_EN) &&
1535                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1536                                         PT_CAP_single_range_output))
1537                 return 1;
1538 
1539         /*
1540          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1541          * utilize encodings marked reserved will casue a #GP fault.
1542          */
1543         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1544         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1545                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1546                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1547                 return 1;
1548         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1549                                                 PT_CAP_cycle_thresholds);
1550         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1551                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1552                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1553                 return 1;
1554         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1555         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1556                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1557                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1558                 return 1;
1559 
1560         /*
1561          * If ADDRx_CFG is reserved or the encodings is >2 will
1562          * cause a #GP fault.
1563          */
1564         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1565         if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1566                 return 1;
1567         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1568         if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1569                 return 1;
1570         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1571         if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1572                 return 1;
1573         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1574         if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1575                 return 1;
1576 
1577         return 0;
1578 }
1579 
1580 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1581 {
1582         unsigned long rip;
1583 
1584         /*
1585          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1586          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1587          * set when EPT misconfig occurs.  In practice, real hardware updates
1588          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1589          * (namely Hyper-V) don't set it due to it being undefined behavior,
1590          * i.e. we end up advancing IP with some random value.
1591          */
1592         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1593             to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1594                 rip = kvm_rip_read(vcpu);
1595                 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1596                 kvm_rip_write(vcpu, rip);
1597         } else {
1598                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1599                         return 0;
1600         }
1601 
1602         /* skipping an emulated instruction also counts */
1603         vmx_set_interrupt_shadow(vcpu, 0);
1604 
1605         return 1;
1606 }
1607 
1608 
1609 /*
1610  * Recognizes a pending MTF VM-exit and records the nested state for later
1611  * delivery.
1612  */
1613 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1614 {
1615         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1616         struct vcpu_vmx *vmx = to_vmx(vcpu);
1617 
1618         if (!is_guest_mode(vcpu))
1619                 return;
1620 
1621         /*
1622          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1623          * T-bit traps. As instruction emulation is completed (i.e. at the
1624          * instruction boundary), any #DB exception pending delivery must be a
1625          * debug-trap. Record the pending MTF state to be delivered in
1626          * vmx_check_nested_events().
1627          */
1628         if (nested_cpu_has_mtf(vmcs12) &&
1629             (!vcpu->arch.exception.pending ||
1630              vcpu->arch.exception.nr == DB_VECTOR))
1631                 vmx->nested.mtf_pending = true;
1632         else
1633                 vmx->nested.mtf_pending = false;
1634 }
1635 
1636 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1637 {
1638         vmx_update_emulated_instruction(vcpu);
1639         return skip_emulated_instruction(vcpu);
1640 }
1641 
1642 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1643 {
1644         /*
1645          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1646          * explicitly skip the instruction because if the HLT state is set,
1647          * then the instruction is already executing and RIP has already been
1648          * advanced.
1649          */
1650         if (kvm_hlt_in_guest(vcpu->kvm) &&
1651                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1652                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1653 }
1654 
1655 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1656 {
1657         struct vcpu_vmx *vmx = to_vmx(vcpu);
1658         unsigned nr = vcpu->arch.exception.nr;
1659         bool has_error_code = vcpu->arch.exception.has_error_code;
1660         u32 error_code = vcpu->arch.exception.error_code;
1661         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1662 
1663         kvm_deliver_exception_payload(vcpu);
1664 
1665         if (has_error_code) {
1666                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1667                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1668         }
1669 
1670         if (vmx->rmode.vm86_active) {
1671                 int inc_eip = 0;
1672                 if (kvm_exception_is_soft(nr))
1673                         inc_eip = vcpu->arch.event_exit_inst_len;
1674                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1675                 return;
1676         }
1677 
1678         WARN_ON_ONCE(vmx->emulation_required);
1679 
1680         if (kvm_exception_is_soft(nr)) {
1681                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1682                              vmx->vcpu.arch.event_exit_inst_len);
1683                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1684         } else
1685                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1686 
1687         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1688 
1689         vmx_clear_hlt(vcpu);
1690 }
1691 
1692 static bool vmx_rdtscp_supported(void)
1693 {
1694         return cpu_has_vmx_rdtscp();
1695 }
1696 
1697 static bool vmx_invpcid_supported(void)
1698 {
1699         return cpu_has_vmx_invpcid();
1700 }
1701 
1702 /*
1703  * Swap MSR entry in host/guest MSR entry array.
1704  */
1705 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1706 {
1707         struct shared_msr_entry tmp;
1708 
1709         tmp = vmx->guest_msrs[to];
1710         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1711         vmx->guest_msrs[from] = tmp;
1712 }
1713 
1714 /*
1715  * Set up the vmcs to automatically save and restore system
1716  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1717  * mode, as fiddling with msrs is very expensive.
1718  */
1719 static void setup_msrs(struct vcpu_vmx *vmx)
1720 {
1721         int save_nmsrs, index;
1722 
1723         save_nmsrs = 0;
1724 #ifdef CONFIG_X86_64
1725         /*
1726          * The SYSCALL MSRs are only needed on long mode guests, and only
1727          * when EFER.SCE is set.
1728          */
1729         if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1730                 index = __find_msr_index(vmx, MSR_STAR);
1731                 if (index >= 0)
1732                         move_msr_up(vmx, index, save_nmsrs++);
1733                 index = __find_msr_index(vmx, MSR_LSTAR);
1734                 if (index >= 0)
1735                         move_msr_up(vmx, index, save_nmsrs++);
1736                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1737                 if (index >= 0)
1738                         move_msr_up(vmx, index, save_nmsrs++);
1739         }
1740 #endif
1741         index = __find_msr_index(vmx, MSR_EFER);
1742         if (index >= 0 && update_transition_efer(vmx, index))
1743                 move_msr_up(vmx, index, save_nmsrs++);
1744         index = __find_msr_index(vmx, MSR_TSC_AUX);
1745         if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1746                 move_msr_up(vmx, index, save_nmsrs++);
1747         index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1748         if (index >= 0)
1749                 move_msr_up(vmx, index, save_nmsrs++);
1750 
1751         vmx->save_nmsrs = save_nmsrs;
1752         vmx->guest_msrs_ready = false;
1753 
1754         if (cpu_has_vmx_msr_bitmap())
1755                 vmx_update_msr_bitmap(&vmx->vcpu);
1756 }
1757 
1758 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1759 {
1760         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1761 
1762         if (is_guest_mode(vcpu) &&
1763             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1764                 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1765 
1766         return vcpu->arch.tsc_offset;
1767 }
1768 
1769 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1770 {
1771         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1772         u64 g_tsc_offset = 0;
1773 
1774         /*
1775          * We're here if L1 chose not to trap WRMSR to TSC. According
1776          * to the spec, this should set L1's TSC; The offset that L1
1777          * set for L2 remains unchanged, and still needs to be added
1778          * to the newly set TSC to get L2's TSC.
1779          */
1780         if (is_guest_mode(vcpu) &&
1781             (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1782                 g_tsc_offset = vmcs12->tsc_offset;
1783 
1784         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1785                                    vcpu->arch.tsc_offset - g_tsc_offset,
1786                                    offset);
1787         vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1788         return offset + g_tsc_offset;
1789 }
1790 
1791 /*
1792  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1793  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1794  * all guests if the "nested" module option is off, and can also be disabled
1795  * for a single guest by disabling its VMX cpuid bit.
1796  */
1797 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1798 {
1799         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1800 }
1801 
1802 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1803                                                  uint64_t val)
1804 {
1805         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1806 
1807         return !(val & ~valid_bits);
1808 }
1809 
1810 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1811 {
1812         switch (msr->index) {
1813         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1814                 if (!nested)
1815                         return 1;
1816                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1817         default:
1818                 return 1;
1819         }
1820 }
1821 
1822 /*
1823  * Reads an msr value (of 'msr_index') into 'pdata'.
1824  * Returns 0 on success, non-0 otherwise.
1825  * Assumes vcpu_load() was already called.
1826  */
1827 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1828 {
1829         struct vcpu_vmx *vmx = to_vmx(vcpu);
1830         struct shared_msr_entry *msr;
1831         u32 index;
1832 
1833         switch (msr_info->index) {
1834 #ifdef CONFIG_X86_64
1835         case MSR_FS_BASE:
1836                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1837                 break;
1838         case MSR_GS_BASE:
1839                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1840                 break;
1841         case MSR_KERNEL_GS_BASE:
1842                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1843                 break;
1844 #endif
1845         case MSR_EFER:
1846                 return kvm_get_msr_common(vcpu, msr_info);
1847         case MSR_IA32_TSX_CTRL:
1848                 if (!msr_info->host_initiated &&
1849                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1850                         return 1;
1851                 goto find_shared_msr;
1852         case MSR_IA32_UMWAIT_CONTROL:
1853                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1854                         return 1;
1855 
1856                 msr_info->data = vmx->msr_ia32_umwait_control;
1857                 break;
1858         case MSR_IA32_SPEC_CTRL:
1859                 if (!msr_info->host_initiated &&
1860                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1861                         return 1;
1862 
1863                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1864                 break;
1865         case MSR_IA32_SYSENTER_CS:
1866                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1867                 break;
1868         case MSR_IA32_SYSENTER_EIP:
1869                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1870                 break;
1871         case MSR_IA32_SYSENTER_ESP:
1872                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1873                 break;
1874         case MSR_IA32_BNDCFGS:
1875                 if (!kvm_mpx_supported() ||
1876                     (!msr_info->host_initiated &&
1877                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1878                         return 1;
1879                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1880                 break;
1881         case MSR_IA32_MCG_EXT_CTL:
1882                 if (!msr_info->host_initiated &&
1883                     !(vmx->msr_ia32_feature_control &
1884                       FEAT_CTL_LMCE_ENABLED))
1885                         return 1;
1886                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1887                 break;
1888         case MSR_IA32_FEAT_CTL:
1889                 msr_info->data = vmx->msr_ia32_feature_control;
1890                 break;
1891         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1892                 if (!nested_vmx_allowed(vcpu))
1893                         return 1;
1894                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1895                                     &msr_info->data))
1896                         return 1;
1897                 /*
1898                  * Enlightened VMCS v1 doesn't have certain fields, but buggy
1899                  * Hyper-V versions are still trying to use corresponding
1900                  * features when they are exposed. Filter out the essential
1901                  * minimum.
1902                  */
1903                 if (!msr_info->host_initiated &&
1904                     vmx->nested.enlightened_vmcs_enabled)
1905                         nested_evmcs_filter_control_msr(msr_info->index,
1906                                                         &msr_info->data);
1907                 break;
1908         case MSR_IA32_RTIT_CTL:
1909                 if (pt_mode != PT_MODE_HOST_GUEST)
1910                         return 1;
1911                 msr_info->data = vmx->pt_desc.guest.ctl;
1912                 break;
1913         case MSR_IA32_RTIT_STATUS:
1914                 if (pt_mode != PT_MODE_HOST_GUEST)
1915                         return 1;
1916                 msr_info->data = vmx->pt_desc.guest.status;
1917                 break;
1918         case MSR_IA32_RTIT_CR3_MATCH:
1919                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1920                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1921                                                 PT_CAP_cr3_filtering))
1922                         return 1;
1923                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1924                 break;
1925         case MSR_IA32_RTIT_OUTPUT_BASE:
1926                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1927                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1928                                         PT_CAP_topa_output) &&
1929                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1930                                         PT_CAP_single_range_output)))
1931                         return 1;
1932                 msr_info->data = vmx->pt_desc.guest.output_base;
1933                 break;
1934         case MSR_IA32_RTIT_OUTPUT_MASK:
1935                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1936                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1937                                         PT_CAP_topa_output) &&
1938                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1939                                         PT_CAP_single_range_output)))
1940                         return 1;
1941                 msr_info->data = vmx->pt_desc.guest.output_mask;
1942                 break;
1943         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1944                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1945                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1946                         (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1947                                         PT_CAP_num_address_ranges)))
1948                         return 1;
1949                 if (index % 2)
1950                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1951                 else
1952                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1953                 break;
1954         case MSR_TSC_AUX:
1955                 if (!msr_info->host_initiated &&
1956                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1957                         return 1;
1958                 goto find_shared_msr;
1959         default:
1960         find_shared_msr:
1961                 msr = find_msr_entry(vmx, msr_info->index);
1962                 if (msr) {
1963                         msr_info->data = msr->data;
1964                         break;
1965                 }
1966                 return kvm_get_msr_common(vcpu, msr_info);
1967         }
1968 
1969         return 0;
1970 }
1971 
1972 /*
1973  * Writes msr value into the appropriate "register".
1974  * Returns 0 on success, non-0 otherwise.
1975  * Assumes vcpu_load() was already called.
1976  */
1977 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1978 {
1979         struct vcpu_vmx *vmx = to_vmx(vcpu);
1980         struct shared_msr_entry *msr;
1981         int ret = 0;
1982         u32 msr_index = msr_info->index;
1983         u64 data = msr_info->data;
1984         u32 index;
1985 
1986         switch (msr_index) {
1987         case MSR_EFER:
1988                 ret = kvm_set_msr_common(vcpu, msr_info);
1989                 break;
1990 #ifdef CONFIG_X86_64
1991         case MSR_FS_BASE:
1992                 vmx_segment_cache_clear(vmx);
1993                 vmcs_writel(GUEST_FS_BASE, data);
1994                 break;
1995         case MSR_GS_BASE:
1996                 vmx_segment_cache_clear(vmx);
1997                 vmcs_writel(GUEST_GS_BASE, data);
1998                 break;
1999         case MSR_KERNEL_GS_BASE:
2000                 vmx_write_guest_kernel_gs_base(vmx, data);
2001                 break;
2002 #endif
2003         case MSR_IA32_SYSENTER_CS:
2004                 if (is_guest_mode(vcpu))
2005                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
2006                 vmcs_write32(GUEST_SYSENTER_CS, data);
2007                 break;
2008         case MSR_IA32_SYSENTER_EIP:
2009                 if (is_guest_mode(vcpu))
2010                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
2011                 vmcs_writel(GUEST_SYSENTER_EIP, data);
2012                 break;
2013         case MSR_IA32_SYSENTER_ESP:
2014                 if (is_guest_mode(vcpu))
2015                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
2016                 vmcs_writel(GUEST_SYSENTER_ESP, data);
2017                 break;
2018         case MSR_IA32_DEBUGCTLMSR:
2019                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2020                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
2021                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2022 
2023                 ret = kvm_set_msr_common(vcpu, msr_info);
2024                 break;
2025 
2026         case MSR_IA32_BNDCFGS:
2027                 if (!kvm_mpx_supported() ||
2028                     (!msr_info->host_initiated &&
2029                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2030                         return 1;
2031                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2032                     (data & MSR_IA32_BNDCFGS_RSVD))
2033                         return 1;
2034                 vmcs_write64(GUEST_BNDCFGS, data);
2035                 break;
2036         case MSR_IA32_UMWAIT_CONTROL:
2037                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2038                         return 1;
2039 
2040                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2041                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2042                         return 1;
2043 
2044                 vmx->msr_ia32_umwait_control = data;
2045                 break;
2046         case MSR_IA32_SPEC_CTRL:
2047                 if (!msr_info->host_initiated &&
2048                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2049                         return 1;
2050 
2051                 if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2052                         return 1;
2053 
2054                 vmx->spec_ctrl = data;
2055                 if (!data)
2056                         break;
2057 
2058                 /*
2059                  * For non-nested:
2060                  * When it's written (to non-zero) for the first time, pass
2061                  * it through.
2062                  *
2063                  * For nested:
2064                  * The handling of the MSR bitmap for L2 guests is done in
2065                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2066                  * vmcs02.msr_bitmap here since it gets completely overwritten
2067                  * in the merging. We update the vmcs01 here for L1 as well
2068                  * since it will end up touching the MSR anyway now.
2069                  */
2070                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2071                                               MSR_IA32_SPEC_CTRL,
2072                                               MSR_TYPE_RW);
2073                 break;
2074         case MSR_IA32_TSX_CTRL:
2075                 if (!msr_info->host_initiated &&
2076                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2077                         return 1;
2078                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2079                         return 1;
2080                 goto find_shared_msr;
2081         case MSR_IA32_PRED_CMD:
2082                 if (!msr_info->host_initiated &&
2083                     !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2084                         return 1;
2085 
2086                 if (data & ~PRED_CMD_IBPB)
2087                         return 1;
2088                 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2089                         return 1;
2090                 if (!data)
2091                         break;
2092 
2093                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2094 
2095                 /*
2096                  * For non-nested:
2097                  * When it's written (to non-zero) for the first time, pass
2098                  * it through.
2099                  *
2100                  * For nested:
2101                  * The handling of the MSR bitmap for L2 guests is done in
2102                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2103                  * vmcs02.msr_bitmap here since it gets completely overwritten
2104                  * in the merging.
2105                  */
2106                 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2107                                               MSR_TYPE_W);
2108                 break;
2109         case MSR_IA32_CR_PAT:
2110                 if (!kvm_pat_valid(data))
2111                         return 1;
2112 
2113                 if (is_guest_mode(vcpu) &&
2114                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2115                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2116 
2117                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2118                         vmcs_write64(GUEST_IA32_PAT, data);
2119                         vcpu->arch.pat = data;
2120                         break;
2121                 }
2122                 ret = kvm_set_msr_common(vcpu, msr_info);
2123                 break;
2124         case MSR_IA32_TSC_ADJUST:
2125                 ret = kvm_set_msr_common(vcpu, msr_info);
2126                 break;
2127         case MSR_IA32_MCG_EXT_CTL:
2128                 if ((!msr_info->host_initiated &&
2129                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2130                        FEAT_CTL_LMCE_ENABLED)) ||
2131                     (data & ~MCG_EXT_CTL_LMCE_EN))
2132                         return 1;
2133                 vcpu->arch.mcg_ext_ctl = data;
2134                 break;
2135         case MSR_IA32_FEAT_CTL:
2136                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2137                     (to_vmx(vcpu)->msr_ia32_feature_control &
2138                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2139                         return 1;
2140                 vmx->msr_ia32_feature_control = data;
2141                 if (msr_info->host_initiated && data == 0)
2142                         vmx_leave_nested(vcpu);
2143                 break;
2144         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2145                 if (!msr_info->host_initiated)
2146                         return 1; /* they are read-only */
2147                 if (!nested_vmx_allowed(vcpu))
2148                         return 1;
2149                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2150         case MSR_IA32_RTIT_CTL:
2151                 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2152                         vmx_rtit_ctl_check(vcpu, data) ||
2153                         vmx->nested.vmxon)
2154                         return 1;
2155                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2156                 vmx->pt_desc.guest.ctl = data;
2157                 pt_update_intercept_for_msr(vmx);
2158                 break;
2159         case MSR_IA32_RTIT_STATUS:
2160                 if (!pt_can_write_msr(vmx))
2161                         return 1;
2162                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2163                         return 1;
2164                 vmx->pt_desc.guest.status = data;
2165                 break;
2166         case MSR_IA32_RTIT_CR3_MATCH:
2167                 if (!pt_can_write_msr(vmx))
2168                         return 1;
2169                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2170                                            PT_CAP_cr3_filtering))
2171                         return 1;
2172                 vmx->pt_desc.guest.cr3_match = data;
2173                 break;
2174         case MSR_IA32_RTIT_OUTPUT_BASE:
2175                 if (!pt_can_write_msr(vmx))
2176                         return 1;
2177                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2178                                            PT_CAP_topa_output) &&
2179                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2180                                            PT_CAP_single_range_output))
2181                         return 1;
2182                 if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2183                         return 1;
2184                 vmx->pt_desc.guest.output_base = data;
2185                 break;
2186         case MSR_IA32_RTIT_OUTPUT_MASK:
2187                 if (!pt_can_write_msr(vmx))
2188                         return 1;
2189                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2190                                            PT_CAP_topa_output) &&
2191                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2192                                            PT_CAP_single_range_output))
2193                         return 1;
2194                 vmx->pt_desc.guest.output_mask = data;
2195                 break;
2196         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2197                 if (!pt_can_write_msr(vmx))
2198                         return 1;
2199                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2200                 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2201                                                        PT_CAP_num_address_ranges))
2202                         return 1;
2203                 if (is_noncanonical_address(data, vcpu))
2204                         return 1;
2205                 if (index % 2)
2206                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2207                 else
2208                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2209                 break;
2210         case MSR_TSC_AUX:
2211                 if (!msr_info->host_initiated &&
2212                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2213                         return 1;
2214                 /* Check reserved bit, higher 32 bits should be zero */
2215                 if ((data >> 32) != 0)
2216                         return 1;
2217                 goto find_shared_msr;
2218 
2219         default:
2220         find_shared_msr:
2221                 msr = find_msr_entry(vmx, msr_index);
2222                 if (msr)
2223                         ret = vmx_set_guest_msr(vmx, msr, data);
2224                 else
2225                         ret = kvm_set_msr_common(vcpu, msr_info);
2226         }
2227 
2228         return ret;
2229 }
2230 
2231 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2232 {
2233         kvm_register_mark_available(vcpu, reg);
2234 
2235         switch (reg) {
2236         case VCPU_REGS_RSP:
2237                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2238                 break;
2239         case VCPU_REGS_RIP:
2240                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2241                 break;
2242         case VCPU_EXREG_PDPTR:
2243                 if (enable_ept)
2244                         ept_save_pdptrs(vcpu);
2245                 break;
2246         case VCPU_EXREG_CR3:
2247                 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2248                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2249                 break;
2250         default:
2251                 WARN_ON_ONCE(1);
2252                 break;
2253         }
2254 }
2255 
2256 static __init int cpu_has_kvm_support(void)
2257 {
2258         return cpu_has_vmx();
2259 }
2260 
2261 static __init int vmx_disabled_by_bios(void)
2262 {
2263         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2264                !boot_cpu_has(X86_FEATURE_VMX);
2265 }
2266 
2267 static void kvm_cpu_vmxon(u64 addr)
2268 {
2269         cr4_set_bits(X86_CR4_VMXE);
2270         intel_pt_handle_vmx(1);
2271 
2272         asm volatile ("vmxon %0" : : "m"(addr));
2273 }
2274 
2275 static int hardware_enable(void)
2276 {
2277         int cpu = raw_smp_processor_id();
2278         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2279 
2280         if (cr4_read_shadow() & X86_CR4_VMXE)
2281                 return -EBUSY;
2282 
2283         /*
2284          * This can happen if we hot-added a CPU but failed to allocate
2285          * VP assist page for it.
2286          */
2287         if (static_branch_unlikely(&enable_evmcs) &&
2288             !hv_get_vp_assist_page(cpu))
2289                 return -EFAULT;
2290 
2291         INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2292         INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2293         spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2294 
2295         /*
2296          * Now we can enable the vmclear operation in kdump
2297          * since the loaded_vmcss_on_cpu list on this cpu
2298          * has been initialized.
2299          *
2300          * Though the cpu is not in VMX operation now, there
2301          * is no problem to enable the vmclear operation
2302          * for the loaded_vmcss_on_cpu list is empty!
2303          */
2304         crash_enable_local_vmclear(cpu);
2305 
2306         kvm_cpu_vmxon(phys_addr);
2307         if (enable_ept)
2308                 ept_sync_global();
2309 
2310         return 0;
2311 }
2312 
2313 static void vmclear_local_loaded_vmcss(void)
2314 {
2315         int cpu = raw_smp_processor_id();
2316         struct loaded_vmcs *v, *n;
2317 
2318         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2319                                  loaded_vmcss_on_cpu_link)
2320                 __loaded_vmcs_clear(v);
2321 }
2322 
2323 
2324 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2325  * tricks.
2326  */
2327 static void kvm_cpu_vmxoff(void)
2328 {
2329         asm volatile (__ex("vmxoff"));
2330 
2331         intel_pt_handle_vmx(0);
2332         cr4_clear_bits(X86_CR4_VMXE);
2333 }
2334 
2335 static void hardware_disable(void)
2336 {
2337         vmclear_local_loaded_vmcss();
2338         kvm_cpu_vmxoff();
2339 }
2340 
2341 /*
2342  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2343  * directly instead of going through cpu_has(), to ensure KVM is trapping
2344  * ENCLS whenever it's supported in hardware.  It does not matter whether
2345  * the host OS supports or has enabled SGX.
2346  */
2347 static bool cpu_has_sgx(void)
2348 {
2349         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2350 }
2351 
2352 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2353                                       u32 msr, u32 *result)
2354 {
2355         u32 vmx_msr_low, vmx_msr_high;
2356         u32 ctl = ctl_min | ctl_opt;
2357 
2358         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2359 
2360         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2361         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2362 
2363         /* Ensure minimum (required) set of control bits are supported. */
2364         if (ctl_min & ~ctl)
2365                 return -EIO;
2366 
2367         *result = ctl;
2368         return 0;
2369 }
2370 
2371 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2372                                     struct vmx_capability *vmx_cap)
2373 {
2374         u32 vmx_msr_low, vmx_msr_high;
2375         u32 min, opt, min2, opt2;
2376         u32 _pin_based_exec_control = 0;
2377         u32 _cpu_based_exec_control = 0;
2378         u32 _cpu_based_2nd_exec_control = 0;
2379         u32 _vmexit_control = 0;
2380         u32 _vmentry_control = 0;
2381 
2382         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2383         min = CPU_BASED_HLT_EXITING |
2384 #ifdef CONFIG_X86_64
2385               CPU_BASED_CR8_LOAD_EXITING |
2386               CPU_BASED_CR8_STORE_EXITING |
2387 #endif
2388               CPU_BASED_CR3_LOAD_EXITING |
2389               CPU_BASED_CR3_STORE_EXITING |
2390               CPU_BASED_UNCOND_IO_EXITING |
2391               CPU_BASED_MOV_DR_EXITING |
2392               CPU_BASED_USE_TSC_OFFSETTING |
2393               CPU_BASED_MWAIT_EXITING |
2394               CPU_BASED_MONITOR_EXITING |
2395               CPU_BASED_INVLPG_EXITING |
2396               CPU_BASED_RDPMC_EXITING;
2397 
2398         opt = CPU_BASED_TPR_SHADOW |
2399               CPU_BASED_USE_MSR_BITMAPS |
2400               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2401         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2402                                 &_cpu_based_exec_control) < 0)
2403                 return -EIO;
2404 #ifdef CONFIG_X86_64
2405         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2406                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2407                                            ~CPU_BASED_CR8_STORE_EXITING;
2408 #endif
2409         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2410                 min2 = 0;
2411                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2412                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2413                         SECONDARY_EXEC_WBINVD_EXITING |
2414                         SECONDARY_EXEC_ENABLE_VPID |
2415                         SECONDARY_EXEC_ENABLE_EPT |
2416                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2417                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2418                         SECONDARY_EXEC_DESC |
2419                         SECONDARY_EXEC_RDTSCP |
2420                         SECONDARY_EXEC_ENABLE_INVPCID |
2421                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2422                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2423                         SECONDARY_EXEC_SHADOW_VMCS |
2424                         SECONDARY_EXEC_XSAVES |
2425                         SECONDARY_EXEC_RDSEED_EXITING |
2426                         SECONDARY_EXEC_RDRAND_EXITING |
2427                         SECONDARY_EXEC_ENABLE_PML |
2428                         SECONDARY_EXEC_TSC_SCALING |
2429                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2430                         SECONDARY_EXEC_PT_USE_GPA |
2431                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2432                         SECONDARY_EXEC_ENABLE_VMFUNC;
2433                 if (cpu_has_sgx())
2434                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2435                 if (adjust_vmx_controls(min2, opt2,
2436                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2437                                         &_cpu_based_2nd_exec_control) < 0)
2438                         return -EIO;
2439         }
2440 #ifndef CONFIG_X86_64
2441         if (!(_cpu_based_2nd_exec_control &
2442                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2443                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2444 #endif
2445 
2446         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2447                 _cpu_based_2nd_exec_control &= ~(
2448                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2449                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2450                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2451 
2452         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2453                 &vmx_cap->ept, &vmx_cap->vpid);
2454 
2455         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2456                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2457                    enabled */
2458                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2459                                              CPU_BASED_CR3_STORE_EXITING |
2460                                              CPU_BASED_INVLPG_EXITING);
2461         } else if (vmx_cap->ept) {
2462                 vmx_cap->ept = 0;
2463                 pr_warn_once("EPT CAP should not exist if not support "
2464                                 "1-setting enable EPT VM-execution control\n");
2465         }
2466         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2467                 vmx_cap->vpid) {
2468                 vmx_cap->vpid = 0;
2469                 pr_warn_once("VPID CAP should not exist if not support "
2470                                 "1-setting enable VPID VM-execution control\n");
2471         }
2472 
2473         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2474 #ifdef CONFIG_X86_64
2475         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2476 #endif
2477         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2478               VM_EXIT_LOAD_IA32_PAT |
2479               VM_EXIT_LOAD_IA32_EFER |
2480               VM_EXIT_CLEAR_BNDCFGS |
2481               VM_EXIT_PT_CONCEAL_PIP |
2482               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2483         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2484                                 &_vmexit_control) < 0)
2485                 return -EIO;
2486 
2487         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2488         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2489                  PIN_BASED_VMX_PREEMPTION_TIMER;
2490         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2491                                 &_pin_based_exec_control) < 0)
2492                 return -EIO;
2493 
2494         if (cpu_has_broken_vmx_preemption_timer())
2495                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2496         if (!(_cpu_based_2nd_exec_control &
2497                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2498                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2499 
2500         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2501         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2502               VM_ENTRY_LOAD_IA32_PAT |
2503               VM_ENTRY_LOAD_IA32_EFER |
2504               VM_ENTRY_LOAD_BNDCFGS |
2505               VM_ENTRY_PT_CONCEAL_PIP |
2506               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2507         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2508                                 &_vmentry_control) < 0)
2509                 return -EIO;
2510 
2511         /*
2512          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2513          * can't be used due to an errata where VM Exit may incorrectly clear
2514          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2515          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2516          */
2517         if (boot_cpu_data.x86 == 0x6) {
2518                 switch (boot_cpu_data.x86_model) {
2519                 case 26: /* AAK155 */
2520                 case 30: /* AAP115 */
2521                 case 37: /* AAT100 */
2522                 case 44: /* BC86,AAY89,BD102 */
2523                 case 46: /* BA97 */
2524                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2525                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2526                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2527                                         "does not work properly. Using workaround\n");
2528                         break;
2529                 default:
2530                         break;
2531                 }
2532         }
2533 
2534 
2535         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2536 
2537         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2538         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2539                 return -EIO;
2540 
2541 #ifdef CONFIG_X86_64
2542         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2543         if (vmx_msr_high & (1u<<16))
2544                 return -EIO;
2545 #endif
2546 
2547         /* Require Write-Back (WB) memory type for VMCS accesses. */
2548         if (((vmx_msr_high >> 18) & 15) != 6)
2549                 return -EIO;
2550 
2551         vmcs_conf->size = vmx_msr_high & 0x1fff;
2552         vmcs_conf->order = get_order(vmcs_conf->size);
2553         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2554 
2555         vmcs_conf->revision_id = vmx_msr_low;
2556 
2557         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2558         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2559         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2560         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2561         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2562 
2563         if (static_branch_unlikely(&enable_evmcs))
2564                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2565 
2566         return 0;
2567 }
2568 
2569 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2570 {
2571         int node = cpu_to_node(cpu);
2572         struct page *pages;
2573         struct vmcs *vmcs;
2574 
2575         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2576         if (!pages)
2577                 return NULL;
2578         vmcs = page_address(pages);
2579         memset(vmcs, 0, vmcs_config.size);
2580 
2581         /* KVM supports Enlightened VMCS v1 only */
2582         if (static_branch_unlikely(&enable_evmcs))
2583                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2584         else
2585                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2586 
2587         if (shadow)
2588                 vmcs->hdr.shadow_vmcs = 1;
2589         return vmcs;
2590 }
2591 
2592 void free_vmcs(struct vmcs *vmcs)
2593 {
2594         free_pages((unsigned long)vmcs, vmcs_config.order);
2595 }
2596 
2597 /*
2598  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2599  */
2600 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2601 {
2602         if (!loaded_vmcs->vmcs)
2603                 return;
2604         loaded_vmcs_clear(loaded_vmcs);
2605         free_vmcs(loaded_vmcs->vmcs);
2606         loaded_vmcs->vmcs = NULL;
2607         if (loaded_vmcs->msr_bitmap)
2608                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2609         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2610 }
2611 
2612 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2613 {
2614         loaded_vmcs->vmcs = alloc_vmcs(false);
2615         if (!loaded_vmcs->vmcs)
2616                 return -ENOMEM;
2617 
2618         loaded_vmcs->shadow_vmcs = NULL;
2619         loaded_vmcs->hv_timer_soft_disabled = false;
2620         loaded_vmcs_init(loaded_vmcs);
2621 
2622         if (cpu_has_vmx_msr_bitmap()) {
2623                 loaded_vmcs->msr_bitmap = (unsigned long *)
2624                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2625                 if (!loaded_vmcs->msr_bitmap)
2626                         goto out_vmcs;
2627                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2628 
2629                 if (IS_ENABLED(CONFIG_HYPERV) &&
2630                     static_branch_unlikely(&enable_evmcs) &&
2631                     (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2632                         struct hv_enlightened_vmcs *evmcs =
2633                                 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2634 
2635                         evmcs->hv_enlightenments_control.msr_bitmap = 1;
2636                 }
2637         }
2638 
2639         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2640         memset(&loaded_vmcs->controls_shadow, 0,
2641                 sizeof(struct vmcs_controls_shadow));
2642 
2643         return 0;
2644 
2645 out_vmcs:
2646         free_loaded_vmcs(loaded_vmcs);
2647         return -ENOMEM;
2648 }
2649 
2650 static void free_kvm_area(void)
2651 {
2652         int cpu;
2653 
2654         for_each_possible_cpu(cpu) {
2655                 free_vmcs(per_cpu(vmxarea, cpu));
2656                 per_cpu(vmxarea, cpu) = NULL;
2657         }
2658 }
2659 
2660 static __init int alloc_kvm_area(void)
2661 {
2662         int cpu;
2663 
2664         for_each_possible_cpu(cpu) {
2665                 struct vmcs *vmcs;
2666 
2667                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2668                 if (!vmcs) {
2669                         free_kvm_area();
2670                         return -ENOMEM;
2671                 }
2672 
2673                 /*
2674                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2675                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2676                  * revision_id reported by MSR_IA32_VMX_BASIC.
2677                  *
2678                  * However, even though not explicitly documented by
2679                  * TLFS, VMXArea passed as VMXON argument should
2680                  * still be marked with revision_id reported by
2681                  * physical CPU.
2682                  */
2683                 if (static_branch_unlikely(&enable_evmcs))
2684                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2685 
2686                 per_cpu(vmxarea, cpu) = vmcs;
2687         }
2688         return 0;
2689 }
2690 
2691 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2692                 struct kvm_segment *save)
2693 {
2694         if (!emulate_invalid_guest_state) {
2695                 /*
2696                  * CS and SS RPL should be equal during guest entry according
2697                  * to VMX spec, but in reality it is not always so. Since vcpu
2698                  * is in the middle of the transition from real mode to
2699                  * protected mode it is safe to assume that RPL 0 is a good
2700                  * default value.
2701                  */
2702                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2703                         save->selector &= ~SEGMENT_RPL_MASK;
2704                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2705                 save->s = 1;
2706         }
2707         vmx_set_segment(vcpu, save, seg);
2708 }
2709 
2710 static void enter_pmode(struct kvm_vcpu *vcpu)
2711 {
2712         unsigned long flags;
2713         struct vcpu_vmx *vmx = to_vmx(vcpu);
2714 
2715         /*
2716          * Update real mode segment cache. It may be not up-to-date if sement
2717          * register was written while vcpu was in a guest mode.
2718          */
2719         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2720         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2721         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2722         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2723         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2724         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2725 
2726         vmx->rmode.vm86_active = 0;
2727 
2728         vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2729 
2730         flags = vmcs_readl(GUEST_RFLAGS);
2731         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2732         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2733         vmcs_writel(GUEST_RFLAGS, flags);
2734 
2735         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2736                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2737 
2738         update_exception_bitmap(vcpu);
2739 
2740         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2741         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2742         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2743         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2744         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2745         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2746 }
2747 
2748 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2749 {
2750         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2751         struct kvm_segment var = *save;
2752 
2753         var.dpl = 0x3;
2754         if (seg == VCPU_SREG_CS)
2755                 var.type = 0x3;
2756 
2757         if (!emulate_invalid_guest_state) {
2758                 var.selector = var.base >> 4;
2759                 var.base = var.base & 0xffff0;
2760                 var.limit = 0xffff;
2761                 var.g = 0;
2762                 var.db = 0;
2763                 var.present = 1;
2764                 var.s = 1;
2765                 var.l = 0;
2766                 var.unusable = 0;
2767                 var.type = 0x3;
2768                 var.avl = 0;
2769                 if (save->base & 0xf)
2770                         printk_once(KERN_WARNING "kvm: segment base is not "
2771                                         "paragraph aligned when entering "
2772                                         "protected mode (seg=%d)", seg);
2773         }
2774 
2775         vmcs_write16(sf->selector, var.selector);
2776         vmcs_writel(sf->base, var.base);
2777         vmcs_write32(sf->limit, var.limit);
2778         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2779 }
2780 
2781 static void enter_rmode(struct kvm_vcpu *vcpu)
2782 {
2783         unsigned long flags;
2784         struct vcpu_vmx *vmx = to_vmx(vcpu);
2785         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2786 
2787         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2788         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2789         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2790         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2791         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2792         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2793         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2794 
2795         vmx->rmode.vm86_active = 1;
2796 
2797         /*
2798          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2799          * vcpu. Warn the user that an update is overdue.
2800          */
2801         if (!kvm_vmx->tss_addr)
2802                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2803                              "called before entering vcpu\n");
2804 
2805         vmx_segment_cache_clear(vmx);
2806 
2807         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2808         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2809         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2810 
2811         flags = vmcs_readl(GUEST_RFLAGS);
2812         vmx->rmode.save_rflags = flags;
2813 
2814         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2815 
2816         vmcs_writel(GUEST_RFLAGS, flags);
2817         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2818         update_exception_bitmap(vcpu);
2819 
2820         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2821         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2822         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2823         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2824         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2825         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2826 
2827         kvm_mmu_reset_context(vcpu);
2828 }
2829 
2830 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2831 {
2832         struct vcpu_vmx *vmx = to_vmx(vcpu);
2833         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2834 
2835         if (!msr)
2836                 return;
2837 
2838         vcpu->arch.efer = efer;
2839         if (efer & EFER_LMA) {
2840                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2841                 msr->data = efer;
2842         } else {
2843                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2844 
2845                 msr->data = efer & ~EFER_LME;
2846         }
2847         setup_msrs(vmx);
2848 }
2849 
2850 #ifdef CONFIG_X86_64
2851 
2852 static void enter_lmode(struct kvm_vcpu *vcpu)
2853 {
2854         u32 guest_tr_ar;
2855 
2856         vmx_segment_cache_clear(to_vmx(vcpu));
2857 
2858         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2859         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2860                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2861                                      __func__);
2862                 vmcs_write32(GUEST_TR_AR_BYTES,
2863                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2864                              | VMX_AR_TYPE_BUSY_64_TSS);
2865         }
2866         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2867 }
2868 
2869 static void exit_lmode(struct kvm_vcpu *vcpu)
2870 {
2871         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2872         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2873 }
2874 
2875 #endif
2876 
2877 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2878 {
2879         int vpid = to_vmx(vcpu)->vpid;
2880 
2881         if (!vpid_sync_vcpu_addr(vpid, addr))
2882                 vpid_sync_context(vpid);
2883 
2884         /*
2885          * If VPIDs are not supported or enabled, then the above is a no-op.
2886          * But we don't really need a TLB flush in that case anyway, because
2887          * each VM entry/exit includes an implicit flush when VPID is 0.
2888          */
2889 }
2890 
2891 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2892 {
2893         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2894 
2895         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2896         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2897 }
2898 
2899 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2900 {
2901         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2902 
2903         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2904         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2905 }
2906 
2907 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2908 {
2909         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2910 
2911         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2912                 return;
2913 
2914         if (is_pae_paging(vcpu)) {
2915                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2916                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2917                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2918                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2919         }
2920 }
2921 
2922 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2923 {
2924         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2925 
2926         if (is_pae_paging(vcpu)) {
2927                 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2928                 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2929                 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2930                 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2931         }
2932 
2933         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2934 }
2935 
2936 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2937                                         unsigned long cr0,
2938                                         struct kvm_vcpu *vcpu)
2939 {
2940         struct vcpu_vmx *vmx = to_vmx(vcpu);
2941 
2942         if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2943                 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2944         if (!(cr0 & X86_CR0_PG)) {
2945                 /* From paging/starting to nonpaging */
2946                 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2947                                           CPU_BASED_CR3_STORE_EXITING);
2948                 vcpu->arch.cr0 = cr0;
2949                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2950         } else if (!is_paging(vcpu)) {
2951                 /* From nonpaging to paging */
2952                 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2953                                             CPU_BASED_CR3_STORE_EXITING);
2954                 vcpu->arch.cr0 = cr0;
2955                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2956         }
2957 
2958         if (!(cr0 & X86_CR0_WP))
2959                 *hw_cr0 &= ~X86_CR0_WP;
2960 }
2961 
2962 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2963 {
2964         struct vcpu_vmx *vmx = to_vmx(vcpu);
2965         unsigned long hw_cr0;
2966 
2967         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2968         if (enable_unrestricted_guest)
2969                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2970         else {
2971                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2972 
2973                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2974                         enter_pmode(vcpu);
2975 
2976                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2977                         enter_rmode(vcpu);
2978         }
2979 
2980 #ifdef CONFIG_X86_64
2981         if (vcpu->arch.efer & EFER_LME) {
2982                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2983                         enter_lmode(vcpu);
2984                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2985                         exit_lmode(vcpu);
2986         }
2987 #endif
2988 
2989         if (enable_ept && !enable_unrestricted_guest)
2990                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2991 
2992         vmcs_writel(CR0_READ_SHADOW, cr0);
2993         vmcs_writel(GUEST_CR0, hw_cr0);
2994         vcpu->arch.cr0 = cr0;
2995 
2996         /* depends on vcpu->arch.cr0 to be set to a new value */
2997         vmx->emulation_required = emulation_required(vcpu);
2998 }
2999 
3000 static int get_ept_level(struct kvm_vcpu *vcpu)
3001 {
3002         /* Nested EPT currently only supports 4-level walks. */
3003         if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
3004                 return 4;
3005         if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
3006                 return 5;
3007         return 4;
3008 }
3009 
3010 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
3011 {
3012         u64 eptp = VMX_EPTP_MT_WB;
3013 
3014         eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3015 
3016         if (enable_ept_ad_bits &&
3017             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3018                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3019         eptp |= (root_hpa & PAGE_MASK);
3020 
3021         return eptp;
3022 }
3023 
3024 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3025 {
3026         struct kvm *kvm = vcpu->kvm;
3027         bool update_guest_cr3 = true;
3028         unsigned long guest_cr3;
3029         u64 eptp;
3030 
3031         guest_cr3 = cr3;
3032         if (enable_ept) {
3033                 eptp = construct_eptp(vcpu, cr3);
3034                 vmcs_write64(EPT_POINTER, eptp);
3035 
3036                 if (kvm_x86_ops->tlb_remote_flush) {
3037                         spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3038                         to_vmx(vcpu)->ept_pointer = eptp;
3039                         to_kvm_vmx(kvm)->ept_pointers_match
3040                                 = EPT_POINTERS_CHECK;
3041                         spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3042                 }
3043 
3044                 /* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3045                 if (is_guest_mode(vcpu))
3046                         update_guest_cr3 = false;
3047                 else if (!enable_unrestricted_guest && !is_paging(vcpu))
3048                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3049                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3050                         guest_cr3 = vcpu->arch.cr3;
3051                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3052                         update_guest_cr3 = false;
3053                 ept_load_pdptrs(vcpu);
3054         }
3055 
3056         if (update_guest_cr3)
3057                 vmcs_writel(GUEST_CR3, guest_cr3);
3058 }
3059 
3060 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3061 {
3062         struct vcpu_vmx *vmx = to_vmx(vcpu);
3063         /*
3064          * Pass through host's Machine Check Enable value to hw_cr4, which
3065          * is in force while we are in guest mode.  Do not let guests control
3066          * this bit, even if host CR4.MCE == 0.
3067          */
3068         unsigned long hw_cr4;
3069 
3070         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3071         if (enable_unrestricted_guest)
3072                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3073         else if (vmx->rmode.vm86_active)
3074                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3075         else
3076                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3077 
3078         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3079                 if (cr4 & X86_CR4_UMIP) {
3080                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3081                         hw_cr4 &= ~X86_CR4_UMIP;
3082                 } else if (!is_guest_mode(vcpu) ||
3083                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3084                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3085                 }
3086         }
3087 
3088         if (cr4 & X86_CR4_VMXE) {
3089                 /*
3090                  * To use VMXON (and later other VMX instructions), a guest
3091                  * must first be able to turn on cr4.VMXE (see handle_vmon()).
3092                  * So basically the check on whether to allow nested VMX
3093                  * is here.  We operate under the default treatment of SMM,
3094                  * so VMX cannot be enabled under SMM.
3095                  */
3096                 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3097                         return 1;
3098         }
3099 
3100         if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3101                 return 1;
3102 
3103         vcpu->arch.cr4 = cr4;
3104 
3105         if (!enable_unrestricted_guest) {
3106                 if (enable_ept) {
3107                         if (!is_paging(vcpu)) {
3108                                 hw_cr4 &= ~X86_CR4_PAE;
3109                                 hw_cr4 |= X86_CR4_PSE;
3110                         } else if (!(cr4 & X86_CR4_PAE)) {
3111                                 hw_cr4 &= ~X86_CR4_PAE;
3112                         }
3113                 }
3114 
3115                 /*
3116                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3117                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3118                  * to be manually disabled when guest switches to non-paging
3119                  * mode.
3120                  *
3121                  * If !enable_unrestricted_guest, the CPU is always running
3122                  * with CR0.PG=1 and CR4 needs to be modified.
3123                  * If enable_unrestricted_guest, the CPU automatically
3124                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3125                  */
3126                 if (!is_paging(vcpu))
3127                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3128         }
3129 
3130         vmcs_writel(CR4_READ_SHADOW, cr4);
3131         vmcs_writel(GUEST_CR4, hw_cr4);
3132         return 0;
3133 }
3134 
3135 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3136 {
3137         struct vcpu_vmx *vmx = to_vmx(vcpu);
3138         u32 ar;
3139 
3140         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3141                 *var = vmx->rmode.segs[seg];
3142                 if (seg == VCPU_SREG_TR
3143                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3144                         return;
3145                 var->base = vmx_read_guest_seg_base(vmx, seg);
3146                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3147                 return;
3148         }
3149         var->base = vmx_read_guest_seg_base(vmx, seg);
3150         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3151         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3152         ar = vmx_read_guest_seg_ar(vmx, seg);
3153         var->unusable = (ar >> 16) & 1;
3154         var->type = ar & 15;
3155         var->s = (ar >> 4) & 1;
3156         var->dpl = (ar >> 5) & 3;
3157         /*
3158          * Some userspaces do not preserve unusable property. Since usable
3159          * segment has to be present according to VMX spec we can use present
3160          * property to amend userspace bug by making unusable segment always
3161          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3162          * segment as unusable.
3163          */
3164         var->present = !var->unusable;
3165         var->avl = (ar >> 12) & 1;
3166         var->l = (ar >> 13) & 1;
3167         var->db = (ar >> 14) & 1;
3168         var->g = (ar >> 15) & 1;
3169 }
3170 
3171 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3172 {
3173         struct kvm_segment s;
3174 
3175         if (to_vmx(vcpu)->rmode.vm86_active) {
3176                 vmx_get_segment(vcpu, &s, seg);
3177                 return s.base;
3178         }
3179         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3180 }
3181 
3182 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3183 {
3184         struct vcpu_vmx *vmx = to_vmx(vcpu);
3185 
3186         if (unlikely(vmx->rmode.vm86_active))
3187                 return 0;
3188         else {
3189                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3190                 return VMX_AR_DPL(ar);
3191         }
3192 }
3193 
3194 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3195 {
3196         u32 ar;
3197 
3198         if (var->unusable || !var->present)
3199                 ar = 1 << 16;
3200         else {
3201                 ar = var->type & 15;
3202                 ar |= (var->s & 1) << 4;
3203                 ar |= (var->dpl & 3) << 5;
3204                 ar |= (var->present & 1) << 7;
3205                 ar |= (var->avl & 1) << 12;
3206                 ar |= (var->l & 1) << 13;
3207                 ar |= (var->db & 1) << 14;
3208                 ar |= (var->g & 1) << 15;
3209         }
3210 
3211         return ar;
3212 }
3213 
3214 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3215 {
3216         struct vcpu_vmx *vmx = to_vmx(vcpu);
3217         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3218 
3219         vmx_segment_cache_clear(vmx);
3220 
3221         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3222                 vmx->rmode.segs[seg] = *var;
3223                 if (seg == VCPU_SREG_TR)
3224                         vmcs_write16(sf->selector, var->selector);
3225                 else if (var->s)
3226                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3227                 goto out;
3228         }
3229 
3230         vmcs_writel(sf->base, var->base);
3231         vmcs_write32(sf->limit, var->limit);
3232         vmcs_write16(sf->selector, var->selector);
3233 
3234         /*
3235          *   Fix the "Accessed" bit in AR field of segment registers for older
3236          * qemu binaries.
3237          *   IA32 arch specifies that at the time of processor reset the
3238          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3239          * is setting it to 0 in the userland code. This causes invalid guest
3240          * state vmexit when "unrestricted guest" mode is turned on.
3241          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3242          * tree. Newer qemu binaries with that qemu fix would not need this
3243          * kvm hack.
3244          */
3245         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3246                 var->type |= 0x1; /* Accessed */
3247 
3248         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3249 
3250 out:
3251         vmx->emulation_required = emulation_required(vcpu);
3252 }
3253 
3254 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3255 {
3256         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3257 
3258         *db = (ar >> 14) & 1;
3259         *l = (ar >> 13) & 1;
3260 }
3261 
3262 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3263 {
3264         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3265         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3266 }
3267 
3268 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3269 {
3270         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3271         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3272 }
3273 
3274 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3275 {
3276         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3277         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3278 }
3279 
3280 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3281 {
3282         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3283         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3284 }
3285 
3286 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3287 {
3288         struct kvm_segment var;
3289         u32 ar;
3290 
3291         vmx_get_segment(vcpu, &var, seg);
3292         var.dpl = 0x3;
3293         if (seg == VCPU_SREG_CS)
3294                 var.type = 0x3;
3295         ar = vmx_segment_access_rights(&var);
3296 
3297         if (var.base != (var.selector << 4))
3298                 return false;
3299         if (var.limit != 0xffff)
3300                 return false;
3301         if (ar != 0xf3)
3302                 return false;
3303 
3304         return true;
3305 }
3306 
3307 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3308 {
3309         struct kvm_segment cs;
3310         unsigned int cs_rpl;
3311 
3312         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3313         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3314 
3315         if (cs.unusable)
3316                 return false;
3317         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3318                 return false;
3319         if (!cs.s)
3320                 return false;
3321         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3322                 if (cs.dpl > cs_rpl)
3323                         return false;
3324         } else {
3325                 if (cs.dpl != cs_rpl)
3326                         return false;
3327         }
3328         if (!cs.present)
3329                 return false;
3330 
3331         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3332         return true;
3333 }
3334 
3335 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3336 {
3337         struct kvm_segment ss;
3338         unsigned int ss_rpl;
3339 
3340         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3341         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3342 
3343         if (ss.unusable)
3344                 return true;
3345         if (ss.type != 3 && ss.type != 7)
3346                 return false;
3347         if (!ss.s)
3348                 return false;
3349         if (ss.dpl != ss_rpl) /* DPL != RPL */
3350                 return false;
3351         if (!ss.present)
3352                 return false;
3353 
3354         return true;
3355 }
3356 
3357 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3358 {
3359         struct kvm_segment var;
3360         unsigned int rpl;
3361 
3362         vmx_get_segment(vcpu, &var, seg);
3363         rpl = var.selector & SEGMENT_RPL_MASK;
3364 
3365         if (var.unusable)
3366                 return true;
3367         if (!var.s)
3368                 return false;
3369         if (!var.present)
3370                 return false;
3371         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3372                 if (var.dpl < rpl) /* DPL < RPL */
3373                         return false;
3374         }
3375 
3376         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3377          * rights flags
3378          */
3379         return true;
3380 }
3381 
3382 static bool tr_valid(struct kvm_vcpu *vcpu)
3383 {
3384         struct kvm_segment tr;
3385 
3386         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3387 
3388         if (tr.unusable)
3389                 return false;
3390         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3391                 return false;
3392         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3393                 return false;
3394         if (!tr.present)
3395                 return false;
3396 
3397         return true;
3398 }
3399 
3400 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3401 {
3402         struct kvm_segment ldtr;
3403 
3404         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3405 
3406         if (ldtr.unusable)
3407                 return true;
3408         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3409                 return false;
3410         if (ldtr.type != 2)
3411                 return false;
3412         if (!ldtr.present)
3413                 return false;
3414 
3415         return true;
3416 }
3417 
3418 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3419 {
3420         struct kvm_segment cs, ss;
3421 
3422         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3423         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3424 
3425         return ((cs.selector & SEGMENT_RPL_MASK) ==
3426                  (ss.selector & SEGMENT_RPL_MASK));
3427 }
3428 
3429 /*
3430  * Check if guest state is valid. Returns true if valid, false if
3431  * not.
3432  * We assume that registers are always usable
3433  */
3434 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3435 {
3436         if (enable_unrestricted_guest)
3437                 return true;
3438 
3439         /* real mode guest state checks */
3440         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3441                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3442                         return false;
3443                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3444                         return false;
3445                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3446                         return false;
3447                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3448                         return false;
3449                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3450                         return false;
3451                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3452                         return false;
3453         } else {
3454         /* protected mode guest state checks */
3455                 if (!cs_ss_rpl_check(vcpu))
3456                         return false;
3457                 if (!code_segment_valid(vcpu))
3458                         return false;
3459                 if (!stack_segment_valid(vcpu))
3460                         return false;
3461                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3462                         return false;
3463                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3464                         return false;
3465                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3466                         return false;
3467                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3468                         return false;
3469                 if (!tr_valid(vcpu))
3470                         return false;
3471                 if (!ldtr_valid(vcpu))
3472                         return false;
3473         }
3474         /* TODO:
3475          * - Add checks on RIP
3476          * - Add checks on RFLAGS
3477          */
3478 
3479         return true;
3480 }
3481 
3482 static int init_rmode_tss(struct kvm *kvm)
3483 {
3484         gfn_t fn;
3485         u16 data = 0;
3486         int idx, r;
3487 
3488         idx = srcu_read_lock(&kvm->srcu);
3489         fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3490         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3491         if (r < 0)
3492                 goto out;
3493         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3494         r = kvm_write_guest_page(kvm, fn++, &data,
3495                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
3496         if (r < 0)
3497                 goto out;
3498         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3499         if (r < 0)
3500                 goto out;
3501         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3502         if (r < 0)
3503                 goto out;
3504         data = ~0;
3505         r = kvm_write_guest_page(kvm, fn, &data,
3506                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3507                                  sizeof(u8));
3508 out:
3509         srcu_read_unlock(&kvm->srcu, idx);
3510         return r;
3511 }
3512 
3513 static int init_rmode_identity_map(struct kvm *kvm)
3514 {
3515         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3516         int i, r = 0;
3517         kvm_pfn_t identity_map_pfn;
3518         u32 tmp;
3519 
3520         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3521         mutex_lock(&kvm->slots_lock);
3522 
3523         if (likely(kvm_vmx->ept_identity_pagetable_done))
3524                 goto out;
3525 
3526         if (!kvm_vmx->ept_identity_map_addr)
3527                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3528         identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3529 
3530         r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3531                                     kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3532         if (r < 0)
3533                 goto out;
3534 
3535         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3536         if (r < 0)
3537                 goto out;
3538         /* Set up identity-mapping pagetable for EPT in real mode */
3539         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3540                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3541                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3542                 r = kvm_write_guest_page(kvm, identity_map_pfn,
3543                                 &tmp, i * sizeof(tmp), sizeof(tmp));
3544                 if (r < 0)
3545                         goto out;
3546         }
3547         kvm_vmx->ept_identity_pagetable_done = true;
3548 
3549 out:
3550         mutex_unlock(&kvm->slots_lock);
3551         return r;
3552 }
3553 
3554 static void seg_setup(int seg)
3555 {
3556         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3557         unsigned int ar;
3558 
3559         vmcs_write16(sf->selector, 0);
3560         vmcs_writel(sf->base, 0);
3561         vmcs_write32(sf->limit, 0xffff);
3562         ar = 0x93;
3563         if (seg == VCPU_SREG_CS)
3564                 ar |= 0x08; /* code segment */
3565 
3566         vmcs_write32(sf->ar_bytes, ar);
3567 }
3568 
3569 static int alloc_apic_access_page(struct kvm *kvm)
3570 {
3571         struct page *page;
3572         int r = 0;
3573 
3574         mutex_lock(&kvm->slots_lock);
3575         if (kvm->arch.apic_access_page_done)
3576                 goto out;
3577         r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3578                                     APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3579         if (r)
3580                 goto out;
3581 
3582         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3583         if (is_error_page(page)) {
3584                 r = -EFAULT;
3585                 goto out;
3586         }
3587 
3588         /*
3589          * Do not pin the page in memory, so that memory hot-unplug
3590          * is able to migrate it.
3591          */
3592         put_page(page);
3593         kvm->arch.apic_access_page_done = true;
3594 out:
3595         mutex_unlock(&kvm->slots_lock);
3596         return r;
3597 }
3598 
3599 int allocate_vpid(void)
3600 {
3601         int vpid;
3602 
3603         if (!enable_vpid)
3604                 return 0;
3605         spin_lock(&vmx_vpid_lock);
3606         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3607         if (vpid < VMX_NR_VPIDS)
3608                 __set_bit(vpid, vmx_vpid_bitmap);
3609         else
3610                 vpid = 0;
3611         spin_unlock(&vmx_vpid_lock);
3612         return vpid;
3613 }
3614 
3615 void free_vpid(int vpid)
3616 {
3617         if (!enable_vpid || vpid == 0)
3618                 return;
3619         spin_lock(&vmx_vpid_lock);
3620         __clear_bit(vpid, vmx_vpid_bitmap);
3621         spin_unlock(&vmx_vpid_lock);
3622 }
3623 
3624 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3625                                                           u32 msr, int type)
3626 {
3627         int f = sizeof(unsigned long);
3628 
3629         if (!cpu_has_vmx_msr_bitmap())
3630                 return;
3631 
3632         if (static_branch_unlikely(&enable_evmcs))
3633                 evmcs_touch_msr_bitmap();
3634 
3635         /*
3636          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3637          * have the write-low and read-high bitmap offsets the wrong way round.
3638          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3639          */
3640         if (msr <= 0x1fff) {
3641                 if (type & MSR_TYPE_R)
3642                         /* read-low */
3643                         __clear_bit(msr, msr_bitmap + 0x000 / f);
3644 
3645                 if (type & MSR_TYPE_W)
3646                         /* write-low */
3647                         __clear_bit(msr, msr_bitmap + 0x800 / f);
3648 
3649         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3650                 msr &= 0x1fff;
3651                 if (type & MSR_TYPE_R)
3652                         /* read-high */
3653                         __clear_bit(msr, msr_bitmap + 0x400 / f);
3654 
3655                 if (type & MSR_TYPE_W)
3656                         /* write-high */
3657                         __clear_bit(msr, msr_bitmap + 0xc00 / f);
3658 
3659         }
3660 }
3661 
3662 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3663                                                          u32 msr, int type)
3664 {
3665         int f = sizeof(unsigned long);
3666 
3667         if (!cpu_has_vmx_msr_bitmap())
3668                 return;
3669 
3670         if (static_branch_unlikely(&enable_evmcs))
3671                 evmcs_touch_msr_bitmap();
3672 
3673         /*
3674          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3675          * have the write-low and read-high bitmap offsets the wrong way round.
3676          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3677          */
3678         if (msr <= 0x1fff) {
3679                 if (type & MSR_TYPE_R)
3680                         /* read-low */
3681                         __set_bit(msr, msr_bitmap + 0x000 / f);
3682 
3683                 if (type & MSR_TYPE_W)
3684                         /* write-low */
3685                         __set_bit(msr, msr_bitmap + 0x800 / f);
3686 
3687         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3688                 msr &= 0x1fff;
3689                 if (type & MSR_TYPE_R)
3690                         /* read-high */
3691                         __set_bit(msr, msr_bitmap + 0x400 / f);
3692 
3693                 if (type & MSR_TYPE_W)
3694                         /* write-high */
3695                         __set_bit(msr, msr_bitmap + 0xc00 / f);
3696 
3697         }
3698 }
3699 
3700 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3701                                                       u32 msr, int type, bool value)
3702 {
3703         if (value)
3704                 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3705         else
3706                 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3707 }
3708 
3709 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3710 {
3711         u8 mode = 0;
3712 
3713         if (cpu_has_secondary_exec_ctrls() &&
3714             (secondary_exec_controls_get(to_vmx(vcpu)) &
3715              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3716                 mode |= MSR_BITMAP_MODE_X2APIC;
3717                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3718                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3719         }
3720 
3721         return mode;
3722 }
3723 
3724 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3725                                          u8 mode)
3726 {
3727         int msr;
3728 
3729         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3730                 unsigned word = msr / BITS_PER_LONG;
3731                 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3732                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3733         }
3734 
3735         if (mode & MSR_BITMAP_MODE_X2APIC) {
3736                 /*
3737                  * TPR reads and writes can be virtualized even if virtual interrupt
3738                  * delivery is not in use.
3739                  */
3740                 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3741                 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3742                         vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3743                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3744                         vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3745                 }
3746         }
3747 }
3748 
3749 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3750 {
3751         struct vcpu_vmx *vmx = to_vmx(vcpu);
3752         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3753         u8 mode = vmx_msr_bitmap_mode(vcpu);
3754         u8 changed = mode ^ vmx->msr_bitmap_mode;
3755 
3756         if (!changed)
3757                 return;
3758 
3759         if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3760                 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3761 
3762         vmx->msr_bitmap_mode = mode;
3763 }
3764 
3765 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3766 {
3767         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3768         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3769         u32 i;
3770 
3771         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3772                                                         MSR_TYPE_RW, flag);
3773         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3774                                                         MSR_TYPE_RW, flag);
3775         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3776                                                         MSR_TYPE_RW, flag);
3777         vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3778                                                         MSR_TYPE_RW, flag);
3779         for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3780                 vmx_set_intercept_for_msr(msr_bitmap,
3781                         MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3782                 vmx_set_intercept_for_msr(msr_bitmap,
3783                         MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3784         }
3785 }
3786 
3787 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3788 {
3789         struct vcpu_vmx *vmx = to_vmx(vcpu);
3790         void *vapic_page;
3791         u32 vppr;
3792         int rvi;
3793 
3794         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3795                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3796                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3797                 return false;
3798 
3799         rvi = vmx_get_rvi();
3800 
3801         vapic_page = vmx->nested.virtual_apic_map.hva;
3802         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3803 
3804         return ((rvi & 0xf0) > (vppr & 0xf0));
3805 }
3806 
3807 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3808                                                      bool nested)
3809 {
3810 #ifdef CONFIG_SMP
3811         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3812 
3813         if (vcpu->mode == IN_GUEST_MODE) {
3814                 /*
3815                  * The vector of interrupt to be delivered to vcpu had
3816                  * been set in PIR before this function.
3817                  *
3818                  * Following cases will be reached in this block, and
3819                  * we always send a notification event in all cases as
3820                  * explained below.
3821                  *
3822                  * Case 1: vcpu keeps in non-root mode. Sending a
3823                  * notification event posts the interrupt to vcpu.
3824                  *
3825                  * Case 2: vcpu exits to root mode and is still
3826                  * runnable. PIR will be synced to vIRR before the
3827                  * next vcpu entry. Sending a notification event in
3828                  * this case has no effect, as vcpu is not in root
3829                  * mode.
3830                  *
3831                  * Case 3: vcpu exits to root mode and is blocked.
3832                  * vcpu_block() has already synced PIR to vIRR and
3833                  * never blocks vcpu if vIRR is not cleared. Therefore,
3834                  * a blocked vcpu here does not wait for any requested
3835                  * interrupts in PIR, and sending a notification event
3836                  * which has no effect is safe here.
3837                  */
3838 
3839                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3840                 return true;
3841         }
3842 #endif
3843         return false;
3844 }
3845 
3846 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3847                                                 int vector)
3848 {
3849         struct vcpu_vmx *vmx = to_vmx(vcpu);
3850 
3851         if (is_guest_mode(vcpu) &&
3852             vector == vmx->nested.posted_intr_nv) {
3853                 /*
3854                  * If a posted intr is not recognized by hardware,
3855                  * we will accomplish it in the next vmentry.
3856                  */
3857                 vmx->nested.pi_pending = true;
3858                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3859                 /* the PIR and ON have been set by L1. */
3860                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3861                         kvm_vcpu_kick(vcpu);
3862                 return 0;
3863         }
3864         return -1;
3865 }
3866 /*
3867  * Send interrupt to vcpu via posted interrupt way.
3868  * 1. If target vcpu is running(non-root mode), send posted interrupt
3869  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3870  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3871  * interrupt from PIR in next vmentry.
3872  */
3873 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3874 {
3875         struct vcpu_vmx *vmx = to_vmx(vcpu);
3876         int r;
3877 
3878         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3879         if (!r)
3880                 return 0;
3881 
3882         if (!vcpu->arch.apicv_active)
3883                 return -1;
3884 
3885         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3886                 return 0;
3887 
3888         /* If a previous notification has sent the IPI, nothing to do.  */
3889         if (pi_test_and_set_on(&vmx->pi_desc))
3890                 return 0;
3891 
3892         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3893                 kvm_vcpu_kick(vcpu);
3894 
3895         return 0;
3896 }
3897 
3898 /*
3899  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3900  * will not change in the lifetime of the guest.
3901  * Note that host-state that does change is set elsewhere. E.g., host-state
3902  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3903  */
3904 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3905 {
3906         u32 low32, high32;
3907         unsigned long tmpl;
3908         unsigned long cr0, cr3, cr4;
3909 
3910         cr0 = read_cr0();
3911         WARN_ON(cr0 & X86_CR0_TS);
3912         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3913 
3914         /*
3915          * Save the most likely value for this task's CR3 in the VMCS.
3916          * We can't use __get_current_cr3_fast() because we're not atomic.
3917          */
3918         cr3 = __read_cr3();
3919         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3920         vmx->loaded_vmcs->host_state.cr3 = cr3;
3921 
3922         /* Save the most likely value for this task's CR4 in the VMCS. */
3923         cr4 = cr4_read_shadow();
3924         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
3925         vmx->loaded_vmcs->host_state.cr4 = cr4;
3926 
3927         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3928 #ifdef CONFIG_X86_64
3929         /*
3930          * Load null selectors, so we can avoid reloading them in
3931          * vmx_prepare_switch_to_host(), in case userspace uses
3932          * the null selectors too (the expected case).
3933          */
3934         vmcs_write16(HOST_DS_SELECTOR, 0);
3935         vmcs_write16(HOST_ES_SELECTOR, 0);
3936 #else
3937         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3938         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3939 #endif
3940         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3941         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3942 
3943         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3944 
3945         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3946 
3947         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3948         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3949         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3950         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3951 
3952         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3953                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3954                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3955         }
3956 
3957         if (cpu_has_load_ia32_efer())
3958                 vmcs_write64(HOST_IA32_EFER, host_efer);
3959 }
3960 
3961 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3962 {
3963         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3964         if (enable_ept)
3965                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3966         if (is_guest_mode(&vmx->vcpu))
3967                 vmx->vcpu.arch.cr4_guest_owned_bits &=
3968                         ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3969         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3970 }
3971 
3972 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3973 {
3974         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3975 
3976         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3977                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3978 
3979         if (!enable_vnmi)
3980                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3981 
3982         if (!enable_preemption_timer)
3983                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3984 
3985         return pin_based_exec_ctrl;
3986 }
3987 
3988 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3989 {
3990         struct vcpu_vmx *vmx = to_vmx(vcpu);
3991 
3992         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3993         if (cpu_has_secondary_exec_ctrls()) {
3994                 if (kvm_vcpu_apicv_active(vcpu))
3995                         secondary_exec_controls_setbit(vmx,
3996                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
3997                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3998                 else
3999                         secondary_exec_controls_clearbit(vmx,
4000                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4001                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4002         }
4003 
4004         if (cpu_has_vmx_msr_bitmap())
4005                 vmx_update_msr_bitmap(vcpu);
4006 }
4007 
4008 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4009 {
4010         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4011 
4012         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4013                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4014 
4015         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4016                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4017 #ifdef CONFIG_X86_64
4018                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4019                                 CPU_BASED_CR8_LOAD_EXITING;
4020 #endif
4021         }
4022         if (!enable_ept)
4023                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4024                                 CPU_BASED_CR3_LOAD_EXITING  |
4025                                 CPU_BASED_INVLPG_EXITING;
4026         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4027                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4028                                 CPU_BASED_MONITOR_EXITING);
4029         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4030                 exec_control &= ~CPU_BASED_HLT_EXITING;
4031         return exec_control;
4032 }
4033 
4034 
4035 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4036 {
4037         struct kvm_vcpu *vcpu = &vmx->vcpu;
4038 
4039         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4040 
4041         if (pt_mode == PT_MODE_SYSTEM)
4042                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4043         if (!cpu_need_virtualize_apic_accesses(vcpu))
4044                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4045         if (vmx->vpid == 0)
4046                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4047         if (!enable_ept) {
4048                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4049                 enable_unrestricted_guest = 0;
4050         }
4051         if (!enable_unrestricted_guest)
4052                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4053         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4054                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4055         if (!kvm_vcpu_apicv_active(vcpu))
4056                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4057                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4058         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4059 
4060         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4061          * in vmx_set_cr4.  */
4062         exec_control &= ~SECONDARY_EXEC_DESC;
4063 
4064         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4065            (handle_vmptrld).
4066            We can NOT enable shadow_vmcs here because we don't have yet
4067            a current VMCS12
4068         */
4069         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4070 
4071         if (!enable_pml)
4072                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4073 
4074         if (vmx_xsaves_supported()) {
4075                 /* Exposing XSAVES only when XSAVE is exposed */
4076                 bool xsaves_enabled =
4077                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4078                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4079                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4080 
4081                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4082 
4083                 if (!xsaves_enabled)
4084                         exec_control &= ~SECONDARY_EXEC_XSAVES;
4085 
4086                 if (nested) {
4087                         if (xsaves_enabled)
4088                                 vmx->nested.msrs.secondary_ctls_high |=
4089                                         SECONDARY_EXEC_XSAVES;
4090                         else
4091                                 vmx->nested.msrs.secondary_ctls_high &=
4092                                         ~SECONDARY_EXEC_XSAVES;
4093                 }
4094         }
4095 
4096         if (vmx_rdtscp_supported()) {
4097                 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4098                 if (!rdtscp_enabled)
4099                         exec_control &= ~SECONDARY_EXEC_RDTSCP;
4100 
4101                 if (nested) {
4102                         if (rdtscp_enabled)
4103                                 vmx->nested.msrs.secondary_ctls_high |=
4104                                         SECONDARY_EXEC_RDTSCP;
4105                         else
4106                                 vmx->nested.msrs.secondary_ctls_high &=
4107                                         ~SECONDARY_EXEC_RDTSCP;
4108                 }
4109         }
4110 
4111         if (vmx_invpcid_supported()) {
4112                 /* Exposing INVPCID only when PCID is exposed */
4113                 bool invpcid_enabled =
4114                         guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4115                         guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4116 
4117                 if (!invpcid_enabled) {
4118                         exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4119                         guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4120                 }
4121 
4122                 if (nested) {
4123                         if (invpcid_enabled)
4124                                 vmx->nested.msrs.secondary_ctls_high |=
4125                                         SECONDARY_EXEC_ENABLE_INVPCID;
4126                         else
4127                                 vmx->nested.msrs.secondary_ctls_high &=
4128                                         ~SECONDARY_EXEC_ENABLE_INVPCID;
4129                 }
4130         }
4131 
4132         if (vmx_rdrand_supported()) {
4133                 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4134                 if (rdrand_enabled)
4135                         exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4136 
4137                 if (nested) {
4138                         if (rdrand_enabled)
4139                                 vmx->nested.msrs.secondary_ctls_high |=
4140                                         SECONDARY_EXEC_RDRAND_EXITING;
4141                         else
4142                                 vmx->nested.msrs.secondary_ctls_high &=
4143                                         ~SECONDARY_EXEC_RDRAND_EXITING;
4144                 }
4145         }
4146 
4147         if (vmx_rdseed_supported()) {
4148                 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4149                 if (rdseed_enabled)
4150                         exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4151 
4152                 if (nested) {
4153                         if (rdseed_enabled)
4154                                 vmx->nested.msrs.secondary_ctls_high |=
4155                                         SECONDARY_EXEC_RDSEED_EXITING;
4156                         else
4157                                 vmx->nested.msrs.secondary_ctls_high &=
4158                                         ~SECONDARY_EXEC_RDSEED_EXITING;
4159                 }
4160         }
4161 
4162         if (vmx_waitpkg_supported()) {
4163                 bool waitpkg_enabled =
4164                         guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4165 
4166                 if (!waitpkg_enabled)
4167                         exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4168 
4169                 if (nested) {
4170                         if (waitpkg_enabled)
4171                                 vmx->nested.msrs.secondary_ctls_high |=
4172                                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4173                         else
4174                                 vmx->nested.msrs.secondary_ctls_high &=
4175                                         ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4176                 }
4177         }
4178 
4179         vmx->secondary_exec_control = exec_control;
4180 }
4181 
4182 static void ept_set_mmio_spte_mask(void)
4183 {
4184         /*
4185          * EPT Misconfigurations can be generated if the value of bits 2:0
4186          * of an EPT paging-structure entry is 110b (write/execute).
4187          */
4188         kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4189                                    VMX_EPT_MISCONFIG_WX_VALUE, 0);
4190 }
4191 
4192 #define VMX_XSS_EXIT_BITMAP 0
4193 
4194 /*
4195  * Noting that the initialization of Guest-state Area of VMCS is in
4196  * vmx_vcpu_reset().
4197  */
4198 static void init_vmcs(struct vcpu_vmx *vmx)
4199 {
4200         if (nested)
4201                 nested_vmx_set_vmcs_shadowing_bitmap();
4202 
4203         if (cpu_has_vmx_msr_bitmap())
4204                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4205 
4206         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4207 
4208         /* Control */
4209         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4210 
4211         exec_controls_set(vmx, vmx_exec_control(vmx));
4212 
4213         if (cpu_has_secondary_exec_ctrls()) {
4214                 vmx_compute_secondary_exec_control(vmx);
4215                 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4216         }
4217 
4218         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4219                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4220                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4221                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4222                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4223 
4224                 vmcs_write16(GUEST_INTR_STATUS, 0);
4225 
4226                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4227                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4228         }
4229 
4230         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4231                 vmcs_write32(PLE_GAP, ple_gap);
4232                 vmx->ple_window = ple_window;
4233                 vmx->ple_window_dirty = true;
4234         }
4235 
4236         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4237         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4238         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4239 
4240         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4241         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4242         vmx_set_constant_host_state(vmx);
4243         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4244         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4245 
4246         if (cpu_has_vmx_vmfunc())
4247                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4248 
4249         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4250         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4251         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4252         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4253         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4254 
4255         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4256                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4257 
4258         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4259 
4260         /* 22.2.1, 20.8.1 */
4261         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4262 
4263         vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4264         vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4265 
4266         set_cr4_guest_host_mask(vmx);
4267 
4268         if (vmx->vpid != 0)
4269                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4270 
4271         if (vmx_xsaves_supported())
4272                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4273 
4274         if (enable_pml) {
4275                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4276                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4277         }
4278 
4279         if (cpu_has_vmx_encls_vmexit())
4280                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4281 
4282         if (pt_mode == PT_MODE_HOST_GUEST) {
4283                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4284                 /* Bit[6~0] are forced to 1, writes are ignored. */
4285                 vmx->pt_desc.guest.output_mask = 0x7F;
4286                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4287         }
4288 }
4289 
4290 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4291 {
4292         struct vcpu_vmx *vmx = to_vmx(vcpu);
4293         struct msr_data apic_base_msr;
4294         u64 cr0;
4295 
4296         vmx->rmode.vm86_active = 0;
4297         vmx->spec_ctrl = 0;
4298 
4299         vmx->msr_ia32_umwait_control = 0;
4300 
4301         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4302         vmx->hv_deadline_tsc = -1;
4303         kvm_set_cr8(vcpu, 0);
4304 
4305         if (!init_event) {
4306                 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4307                                      MSR_IA32_APICBASE_ENABLE;
4308                 if (kvm_vcpu_is_reset_bsp(vcpu))
4309                         apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4310                 apic_base_msr.host_initiated = true;
4311                 kvm_set_apic_base(vcpu, &apic_base_msr);
4312         }
4313 
4314         vmx_segment_cache_clear(vmx);
4315 
4316         seg_setup(VCPU_SREG_CS);
4317         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4318         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4319 
4320         seg_setup(VCPU_SREG_DS);
4321         seg_setup(VCPU_SREG_ES);
4322         seg_setup(VCPU_SREG_FS);
4323         seg_setup(VCPU_SREG_GS);
4324         seg_setup(VCPU_SREG_SS);
4325 
4326         vmcs_write16(GUEST_TR_SELECTOR, 0);
4327         vmcs_writel(GUEST_TR_BASE, 0);
4328         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4329         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4330 
4331         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4332         vmcs_writel(GUEST_LDTR_BASE, 0);
4333         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4334         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4335 
4336         if (!init_event) {
4337                 vmcs_write32(GUEST_SYSENTER_CS, 0);
4338                 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4339                 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4340                 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4341         }
4342 
4343         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4344         kvm_rip_write(vcpu, 0xfff0);
4345 
4346         vmcs_writel(GUEST_GDTR_BASE, 0);
4347         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4348 
4349         vmcs_writel(GUEST_IDTR_BASE, 0);
4350         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4351 
4352         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4353         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4354         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4355         if (kvm_mpx_supported())
4356                 vmcs_write64(GUEST_BNDCFGS, 0);
4357 
4358         setup_msrs(vmx);
4359 
4360         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4361 
4362         if (cpu_has_vmx_tpr_shadow() && !init_event) {
4363                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4364                 if (cpu_need_tpr_shadow(vcpu))
4365                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4366                                      __pa(vcpu->arch.apic->regs));
4367                 vmcs_write32(TPR_THRESHOLD, 0);
4368         }
4369 
4370         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4371 
4372         cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4373         vmx->vcpu.arch.cr0 = cr0;
4374         vmx_set_cr0(vcpu, cr0); /* enter rmode */
4375         vmx_set_cr4(vcpu, 0);
4376         vmx_set_efer(vcpu, 0);
4377 
4378         update_exception_bitmap(vcpu);
4379 
4380         vpid_sync_context(vmx->vpid);
4381         if (init_event)
4382                 vmx_clear_hlt(vcpu);
4383 }
4384 
4385 static void enable_irq_window(struct kvm_vcpu *vcpu)
4386 {
4387         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4388 }
4389 
4390 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4391 {
4392         if (!enable_vnmi ||
4393             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4394                 enable_irq_window(vcpu);
4395                 return;
4396         }
4397 
4398         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4399 }
4400 
4401 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4402 {
4403         struct vcpu_vmx *vmx = to_vmx(vcpu);
4404         uint32_t intr;
4405         int irq = vcpu->arch.interrupt.nr;
4406 
4407         trace_kvm_inj_virq(irq);
4408 
4409         ++vcpu->stat.irq_injections;
4410         if (vmx->rmode.vm86_active) {
4411                 int inc_eip = 0;
4412                 if (vcpu->arch.interrupt.soft)
4413                         inc_eip = vcpu->arch.event_exit_inst_len;
4414                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4415                 return;
4416         }
4417         intr = irq | INTR_INFO_VALID_MASK;
4418         if (vcpu->arch.interrupt.soft) {
4419                 intr |= INTR_TYPE_SOFT_INTR;
4420                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4421                              vmx->vcpu.arch.event_exit_inst_len);
4422         } else
4423                 intr |= INTR_TYPE_EXT_INTR;
4424         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4425 
4426         vmx_clear_hlt(vcpu);
4427 }
4428 
4429 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4430 {
4431         struct vcpu_vmx *vmx = to_vmx(vcpu);
4432 
4433         if (!enable_vnmi) {
4434                 /*
4435                  * Tracking the NMI-blocked state in software is built upon
4436                  * finding the next open IRQ window. This, in turn, depends on
4437                  * well-behaving guests: They have to keep IRQs disabled at
4438                  * least as long as the NMI handler runs. Otherwise we may
4439                  * cause NMI nesting, maybe breaking the guest. But as this is
4440                  * highly unlikely, we can live with the residual risk.
4441                  */
4442                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4443                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4444         }
4445 
4446         ++vcpu->stat.nmi_injections;
4447         vmx->loaded_vmcs->nmi_known_unmasked = false;
4448 
4449         if (vmx->rmode.vm86_active) {
4450                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4451                 return;
4452         }
4453 
4454         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4455                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4456 
4457         vmx_clear_hlt(vcpu);
4458 }
4459 
4460 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4461 {
4462         struct vcpu_vmx *vmx = to_vmx(vcpu);
4463         bool masked;
4464 
4465         if (!enable_vnmi)
4466                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4467         if (vmx->loaded_vmcs->nmi_known_unmasked)
4468                 return false;
4469         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4470         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4471         return masked;
4472 }
4473 
4474 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4475 {
4476         struct vcpu_vmx *vmx = to_vmx(vcpu);
4477 
4478         if (!enable_vnmi) {
4479                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4480                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4481                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4482                 }
4483         } else {
4484                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4485                 if (masked)
4486                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4487                                       GUEST_INTR_STATE_NMI);
4488                 else
4489                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4490                                         GUEST_INTR_STATE_NMI);
4491         }
4492 }
4493 
4494 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4495 {
4496         if (to_vmx(vcpu)->nested.nested_run_pending)
4497                 return 0;
4498 
4499         if (!enable_vnmi &&
4500             to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4501                 return 0;
4502 
4503         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4504                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4505                    | GUEST_INTR_STATE_NMI));
4506 }
4507 
4508 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4509 {
4510         return (!to_vmx(vcpu)->nested.nested_run_pending &&
4511                 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4512                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4513                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4514 }
4515 
4516 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4517 {
4518         int ret;
4519 
4520         if (enable_unrestricted_guest)
4521                 return 0;
4522 
4523         mutex_lock(&kvm->slots_lock);
4524         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4525                                       PAGE_SIZE * 3);
4526         mutex_unlock(&kvm->slots_lock);
4527 
4528         if (ret)
4529                 return ret;
4530         to_kvm_vmx(kvm)->tss_addr = addr;
4531         return init_rmode_tss(kvm);
4532 }
4533 
4534 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4535 {
4536         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4537         return 0;
4538 }
4539 
4540 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4541 {
4542         switch (vec) {
4543         case BP_VECTOR:
4544                 /*
4545                  * Update instruction length as we may reinject the exception
4546                  * from user space while in guest debugging mode.
4547                  */
4548                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4549                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4550                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4551                         return false;
4552                 /* fall through */
4553         case DB_VECTOR:
4554                 if (vcpu->guest_debug &
4555                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4556                         return false;
4557                 /* fall through */
4558         case DE_VECTOR:
4559         case OF_VECTOR:
4560         case BR_VECTOR:
4561         case UD_VECTOR:
4562         case DF_VECTOR:
4563         case SS_VECTOR:
4564         case GP_VECTOR:
4565         case MF_VECTOR:
4566                 return true;
4567         break;
4568         }
4569         return false;
4570 }
4571 
4572 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4573                                   int vec, u32 err_code)
4574 {
4575         /*
4576          * Instruction with address size override prefix opcode 0x67
4577          * Cause the #SS fault with 0 error code in VM86 mode.
4578          */
4579         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4580                 if (kvm_emulate_instruction(vcpu, 0)) {
4581                         if (vcpu->arch.halt_request) {
4582                                 vcpu->arch.halt_request = 0;
4583                                 return kvm_vcpu_halt(vcpu);
4584                         }
4585                         return 1;
4586                 }
4587                 return 0;
4588         }
4589 
4590         /*
4591          * Forward all other exceptions that are valid in real mode.
4592          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4593          *        the required debugging infrastructure rework.
4594          */
4595         kvm_queue_exception(vcpu, vec);
4596         return 1;
4597 }
4598 
4599 /*
4600  * Trigger machine check on the host. We assume all the MSRs are already set up
4601  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4602  * We pass a fake environment to the machine check handler because we want
4603  * the guest to be always treated like user space, no matter what context
4604  * it used internally.
4605  */
4606 static void kvm_machine_check(void)
4607 {
4608 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4609         struct pt_regs regs = {
4610                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4611                 .flags = X86_EFLAGS_IF,
4612         };
4613 
4614         do_machine_check(&regs, 0);
4615 #endif
4616 }
4617 
4618 static int handle_machine_check(struct kvm_vcpu *vcpu)
4619 {
4620         /* handled by vmx_vcpu_run() */
4621         return 1;
4622 }
4623 
4624 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4625 {
4626         struct vcpu_vmx *vmx = to_vmx(vcpu);
4627         struct kvm_run *kvm_run = vcpu->run;
4628         u32 intr_info, ex_no, error_code;
4629         unsigned long cr2, rip, dr6;
4630         u32 vect_info;
4631 
4632         vect_info = vmx->idt_vectoring_info;
4633         intr_info = vmx->exit_intr_info;
4634 
4635         if (is_machine_check(intr_info) || is_nmi(intr_info))
4636                 return 1; /* handled by handle_exception_nmi_irqoff() */
4637 
4638         if (is_invalid_opcode(intr_info))
4639                 return handle_ud(vcpu);
4640 
4641         error_code = 0;
4642         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4643                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4644 
4645         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4646                 WARN_ON_ONCE(!enable_vmware_backdoor);
4647 
4648                 /*
4649                  * VMware backdoor emulation on #GP interception only handles
4650                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4651                  * error code on #GP.
4652                  */
4653                 if (error_code) {
4654                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4655                         return 1;
4656                 }
4657                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4658         }
4659 
4660         /*
4661          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4662          * MMIO, it is better to report an internal error.
4663          * See the comments in vmx_handle_exit.
4664          */
4665         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4666             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4667                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4668                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4669                 vcpu->run->internal.ndata = 3;
4670                 vcpu->run->internal.data[0] = vect_info;
4671                 vcpu->run->internal.data[1] = intr_info;
4672                 vcpu->run->internal.data[2] = error_code;
4673                 return 0;
4674         }
4675 
4676         if (is_page_fault(intr_info)) {
4677                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4678                 /* EPT won't cause page fault directly */
4679                 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4680                 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4681         }
4682 
4683         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4684 
4685         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4686                 return handle_rmode_exception(vcpu, ex_no, error_code);
4687 
4688         switch (ex_no) {
4689         case AC_VECTOR:
4690                 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4691                 return 1;
4692         case DB_VECTOR:
4693                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4694                 if (!(vcpu->guest_debug &
4695                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4696                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4697                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
4698                         if (is_icebp(intr_info))
4699                                 WARN_ON(!skip_emulated_instruction(vcpu));
4700 
4701                         kvm_queue_exception(vcpu, DB_VECTOR);
4702                         return 1;
4703                 }
4704                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4705                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4706                 /* fall through */
4707         case BP_VECTOR:
4708                 /*
4709                  * Update instruction length as we may reinject #BP from
4710                  * user space while in guest debugging mode. Reading it for
4711                  * #DB as well causes no harm, it is not used in that case.
4712                  */
4713                 vmx->vcpu.arch.event_exit_inst_len =
4714                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4715                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4716                 rip = kvm_rip_read(vcpu);
4717                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4718                 kvm_run->debug.arch.exception = ex_no;
4719                 break;
4720         default:
4721                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4722                 kvm_run->ex.exception = ex_no;
4723                 kvm_run->ex.error_code = error_code;
4724                 break;
4725         }
4726         return 0;
4727 }
4728 
4729 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4730 {
4731         ++vcpu->stat.irq_exits;
4732         return 1;
4733 }
4734 
4735 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4736 {
4737         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4738         vcpu->mmio_needed = 0;
4739         return 0;
4740 }
4741 
4742 static int handle_io(struct kvm_vcpu *vcpu)
4743 {
4744         unsigned long exit_qualification;
4745         int size, in, string;
4746         unsigned port;
4747 
4748         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4749         string = (exit_qualification & 16) != 0;
4750 
4751         ++vcpu->stat.io_exits;
4752 
4753         if (string)
4754                 return kvm_emulate_instruction(vcpu, 0);
4755 
4756         port = exit_qualification >> 16;
4757         size = (exit_qualification & 7) + 1;
4758         in = (exit_qualification & 8) != 0;
4759 
4760         return kvm_fast_pio(vcpu, size, port, in);
4761 }
4762 
4763 static void
4764 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4765 {
4766         /*
4767          * Patch in the VMCALL instruction:
4768          */
4769         hypercall[0] = 0x0f;
4770         hypercall[1] = 0x01;
4771         hypercall[2] = 0xc1;
4772 }
4773 
4774 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4775 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4776 {
4777         if (is_guest_mode(vcpu)) {
4778                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4779                 unsigned long orig_val = val;
4780 
4781                 /*
4782                  * We get here when L2 changed cr0 in a way that did not change
4783                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4784                  * but did change L0 shadowed bits. So we first calculate the
4785                  * effective cr0 value that L1 would like to write into the
4786                  * hardware. It consists of the L2-owned bits from the new
4787                  * value combined with the L1-owned bits from L1's guest_cr0.
4788                  */
4789                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4790                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4791 
4792                 if (!nested_guest_cr0_valid(vcpu, val))
4793                         return 1;
4794 
4795                 if (kvm_set_cr0(vcpu, val))
4796                         return 1;
4797                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4798                 return 0;
4799         } else {
4800                 if (to_vmx(vcpu)->nested.vmxon &&
4801                     !nested_host_cr0_valid(vcpu, val))
4802                         return 1;
4803 
4804                 return kvm_set_cr0(vcpu, val);
4805         }
4806 }
4807 
4808 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4809 {
4810         if (is_guest_mode(vcpu)) {
4811                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4812                 unsigned long orig_val = val;
4813 
4814                 /* analogously to handle_set_cr0 */
4815                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4816                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4817                 if (kvm_set_cr4(vcpu, val))
4818                         return 1;
4819                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4820                 return 0;
4821         } else
4822                 return kvm_set_cr4(vcpu, val);
4823 }
4824 
4825 static int handle_desc(struct kvm_vcpu *vcpu)
4826 {
4827         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4828         return kvm_emulate_instruction(vcpu, 0);
4829 }
4830 
4831 static int handle_cr(struct kvm_vcpu *vcpu)
4832 {
4833         unsigned long exit_qualification, val;
4834         int cr;
4835         int reg;
4836         int err;
4837         int ret;
4838 
4839         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4840         cr = exit_qualification & 15;
4841         reg = (exit_qualification >> 8) & 15;
4842         switch ((exit_qualification >> 4) & 3) {
4843         case 0: /* mov to cr */
4844                 val = kvm_register_readl(vcpu, reg);
4845                 trace_kvm_cr_write(cr, val);
4846                 switch (cr) {
4847                 case 0:
4848                         err = handle_set_cr0(vcpu, val);
4849                         return kvm_complete_insn_gp(vcpu, err);
4850                 case 3:
4851                         WARN_ON_ONCE(enable_unrestricted_guest);
4852                         err = kvm_set_cr3(vcpu, val);
4853                         return kvm_complete_insn_gp(vcpu, err);
4854                 case 4:
4855                         err = handle_set_cr4(vcpu, val);
4856                         return kvm_complete_insn_gp(vcpu, err);
4857                 case 8: {
4858                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4859                                 u8 cr8 = (u8)val;
4860                                 err = kvm_set_cr8(vcpu, cr8);
4861                                 ret = kvm_complete_insn_gp(vcpu, err);
4862                                 if (lapic_in_kernel(vcpu))
4863                                         return ret;
4864                                 if (cr8_prev <= cr8)
4865                                         return ret;
4866                                 /*
4867                                  * TODO: we might be squashing a
4868                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4869                                  * KVM_EXIT_DEBUG here.
4870                                  */
4871                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4872                                 return 0;
4873                         }
4874                 }
4875                 break;
4876         case 2: /* clts */
4877                 WARN_ONCE(1, "Guest should always own CR0.TS");
4878                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4879                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4880                 return kvm_skip_emulated_instruction(vcpu);
4881         case 1: /*mov from cr*/
4882                 switch (cr) {
4883                 case 3:
4884                         WARN_ON_ONCE(enable_unrestricted_guest);
4885                         val = kvm_read_cr3(vcpu);
4886                         kvm_register_write(vcpu, reg, val);
4887                         trace_kvm_cr_read(cr, val);
4888                         return kvm_skip_emulated_instruction(vcpu);
4889                 case 8:
4890                         val = kvm_get_cr8(vcpu);
4891                         kvm_register_write(vcpu, reg, val);
4892                         trace_kvm_cr_read(cr, val);
4893                         return kvm_skip_emulated_instruction(vcpu);
4894                 }
4895                 break;
4896         case 3: /* lmsw */
4897                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4898                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4899                 kvm_lmsw(vcpu, val);
4900 
4901                 return kvm_skip_emulated_instruction(vcpu);
4902         default:
4903                 break;
4904         }
4905         vcpu->run->exit_reason = 0;
4906         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4907                (int)(exit_qualification >> 4) & 3, cr);
4908         return 0;
4909 }
4910 
4911 static int handle_dr(struct kvm_vcpu *vcpu)
4912 {
4913         unsigned long exit_qualification;
4914         int dr, dr7, reg;
4915 
4916         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4917         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4918 
4919         /* First, if DR does not exist, trigger UD */
4920         if (!kvm_require_dr(vcpu, dr))
4921                 return 1;
4922 
4923         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4924         if (!kvm_require_cpl(vcpu, 0))
4925                 return 1;
4926         dr7 = vmcs_readl(GUEST_DR7);
4927         if (dr7 & DR7_GD) {
4928                 /*
4929                  * As the vm-exit takes precedence over the debug trap, we
4930                  * need to emulate the latter, either for the host or the
4931                  * guest debugging itself.
4932                  */
4933                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4934                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4935                         vcpu->run->debug.arch.dr7 = dr7;
4936                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4937                         vcpu->run->debug.arch.exception = DB_VECTOR;
4938                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4939                         return 0;
4940                 } else {
4941                         vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4942                         vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4943                         kvm_queue_exception(vcpu, DB_VECTOR);
4944                         return 1;
4945                 }
4946         }
4947 
4948         if (vcpu->guest_debug == 0) {
4949                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4950 
4951                 /*
4952                  * No more DR vmexits; force a reload of the debug registers
4953                  * and reenter on this instruction.  The next vmexit will
4954                  * retrieve the full state of the debug registers.
4955                  */
4956                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4957                 return 1;
4958         }
4959 
4960         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4961         if (exit_qualification & TYPE_MOV_FROM_DR) {
4962                 unsigned long val;
4963 
4964                 if (kvm_get_dr(vcpu, dr, &val))
4965                         return 1;
4966                 kvm_register_write(vcpu, reg, val);
4967         } else
4968                 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4969                         return 1;
4970 
4971         return kvm_skip_emulated_instruction(vcpu);
4972 }
4973 
4974 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4975 {
4976         return vcpu->arch.dr6;
4977 }
4978 
4979 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4980 {
4981 }
4982 
4983 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4984 {
4985         get_debugreg(vcpu->arch.db[0], 0);
4986         get_debugreg(vcpu->arch.db[1], 1);
4987         get_debugreg(vcpu->arch.db[2], 2);
4988         get_debugreg(vcpu->arch.db[3], 3);
4989         get_debugreg(vcpu->arch.dr6, 6);
4990         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4991 
4992         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4993         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4994 }
4995 
4996 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4997 {
4998         vmcs_writel(GUEST_DR7, val);
4999 }
5000 
5001 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5002 {
5003         kvm_apic_update_ppr(vcpu);
5004         return 1;
5005 }
5006 
5007 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5008 {
5009         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5010 
5011         kvm_make_request(KVM_REQ_EVENT, vcpu);
5012 
5013         ++vcpu->stat.irq_window_exits;
5014         return 1;
5015 }
5016 
5017 static int handle_vmcall(struct kvm_vcpu *vcpu)
5018 {
5019         return kvm_emulate_hypercall(vcpu);
5020 }
5021 
5022 static int handle_invd(struct kvm_vcpu *vcpu)
5023 {
5024         return kvm_emulate_instruction(vcpu, 0);
5025 }
5026 
5027 static int handle_invlpg(struct kvm_vcpu *vcpu)
5028 {
5029         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5030 
5031         kvm_mmu_invlpg(vcpu, exit_qualification);
5032         return kvm_skip_emulated_instruction(vcpu);
5033 }
5034 
5035 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5036 {
5037         int err;
5038 
5039         err = kvm_rdpmc(vcpu);
5040         return kvm_complete_insn_gp(vcpu, err);
5041 }
5042 
5043 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5044 {
5045         return kvm_emulate_wbinvd(vcpu);
5046 }
5047 
5048 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5049 {
5050         u64 new_bv = kvm_read_edx_eax(vcpu);
5051         u32 index = kvm_rcx_read(vcpu);
5052 
5053         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5054                 return kvm_skip_emulated_instruction(vcpu);
5055         return 1;
5056 }
5057 
5058 static int handle_apic_access(struct kvm_vcpu *vcpu)
5059 {
5060         if (likely(fasteoi)) {
5061                 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5062                 int access_type, offset;
5063 
5064                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5065                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5066                 /*
5067                  * Sane guest uses MOV to write EOI, with written value
5068                  * not cared. So make a short-circuit here by avoiding
5069                  * heavy instruction emulation.
5070                  */
5071                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5072                     (offset == APIC_EOI)) {
5073                         kvm_lapic_set_eoi(vcpu);
5074                         return kvm_skip_emulated_instruction(vcpu);
5075                 }
5076         }
5077         return kvm_emulate_instruction(vcpu, 0);
5078 }
5079 
5080 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5081 {
5082         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5083         int vector = exit_qualification & 0xff;
5084 
5085         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5086         kvm_apic_set_eoi_accelerated(vcpu, vector);
5087         return 1;
5088 }
5089 
5090 static int handle_apic_write(struct kvm_vcpu *vcpu)
5091 {
5092         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5093         u32 offset = exit_qualification & 0xfff;
5094 
5095         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5096         kvm_apic_write_nodecode(vcpu, offset);
5097         return 1;
5098 }
5099 
5100 static int handle_task_switch(struct kvm_vcpu *vcpu)
5101 {
5102         struct vcpu_vmx *vmx = to_vmx(vcpu);
5103         unsigned long exit_qualification;
5104         bool has_error_code = false;
5105         u32 error_code = 0;
5106         u16 tss_selector;
5107         int reason, type, idt_v, idt_index;
5108 
5109         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5110         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5111         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5112 
5113         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5114 
5115         reason = (u32)exit_qualification >> 30;
5116         if (reason == TASK_SWITCH_GATE && idt_v) {
5117                 switch (type) {
5118                 case INTR_TYPE_NMI_INTR:
5119                         vcpu->arch.nmi_injected = false;
5120                         vmx_set_nmi_mask(vcpu, true);
5121                         break;
5122                 case INTR_TYPE_EXT_INTR:
5123                 case INTR_TYPE_SOFT_INTR:
5124                         kvm_clear_interrupt_queue(vcpu);
5125                         break;
5126                 case INTR_TYPE_HARD_EXCEPTION:
5127                         if (vmx->idt_vectoring_info &
5128                             VECTORING_INFO_DELIVER_CODE_MASK) {
5129                                 has_error_code = true;
5130                                 error_code =
5131                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5132                         }
5133                         /* fall through */
5134                 case INTR_TYPE_SOFT_EXCEPTION:
5135                         kvm_clear_exception_queue(vcpu);
5136                         break;
5137                 default:
5138                         break;
5139                 }
5140         }
5141         tss_selector = exit_qualification;
5142 
5143         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5144                        type != INTR_TYPE_EXT_INTR &&
5145                        type != INTR_TYPE_NMI_INTR))
5146                 WARN_ON(!skip_emulated_instruction(vcpu));
5147 
5148         /*
5149          * TODO: What about debug traps on tss switch?
5150          *       Are we supposed to inject them and update dr6?
5151          */
5152         return kvm_task_switch(vcpu, tss_selector,
5153                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5154                                reason, has_error_code, error_code);
5155 }
5156 
5157 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5158 {
5159         unsigned long exit_qualification;
5160         gpa_t gpa;
5161         u64 error_code;
5162 
5163         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5164 
5165         /*
5166          * EPT violation happened while executing iret from NMI,
5167          * "blocked by NMI" bit has to be set before next VM entry.
5168          * There are errata that may cause this bit to not be set:
5169          * AAK134, BY25.
5170          */
5171         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5172                         enable_vnmi &&
5173                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5174                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5175 
5176         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5177         trace_kvm_page_fault(gpa, exit_qualification);
5178 
5179         /* Is it a read fault? */
5180         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5181                      ? PFERR_USER_MASK : 0;
5182         /* Is it a write fault? */
5183         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5184                       ? PFERR_WRITE_MASK : 0;
5185         /* Is it a fetch fault? */
5186         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5187                       ? PFERR_FETCH_MASK : 0;
5188         /* ept page table entry is present? */
5189         error_code |= (exit_qualification &
5190                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5191                         EPT_VIOLATION_EXECUTABLE))
5192                       ? PFERR_PRESENT_MASK : 0;
5193 
5194         error_code |= (exit_qualification & 0x100) != 0 ?
5195                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5196 
5197         vcpu->arch.exit_qualification = exit_qualification;
5198         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5199 }
5200 
5201 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5202 {
5203         gpa_t gpa;
5204 
5205         /*
5206          * A nested guest cannot optimize MMIO vmexits, because we have an
5207          * nGPA here instead of the required GPA.
5208          */
5209         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5210         if (!is_guest_mode(vcpu) &&
5211             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5212                 trace_kvm_fast_mmio(gpa);
5213                 return kvm_skip_emulated_instruction(vcpu);
5214         }
5215 
5216         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5217 }
5218 
5219 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5220 {
5221         WARN_ON_ONCE(!enable_vnmi);
5222         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5223         ++vcpu->stat.nmi_window_exits;
5224         kvm_make_request(KVM_REQ_EVENT, vcpu);
5225 
5226         return 1;
5227 }
5228 
5229 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5230 {
5231         struct vcpu_vmx *vmx = to_vmx(vcpu);
5232         bool intr_window_requested;
5233         unsigned count = 130;
5234 
5235         /*
5236          * We should never reach the point where we are emulating L2
5237          * due to invalid guest state as that means we incorrectly
5238          * allowed a nested VMEntry with an invalid vmcs12.
5239          */
5240         WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5241 
5242         intr_window_requested = exec_controls_get(vmx) &
5243                                 CPU_BASED_INTR_WINDOW_EXITING;
5244 
5245         while (vmx->emulation_required && count-- != 0) {
5246                 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5247                         return handle_interrupt_window(&vmx->vcpu);
5248 
5249                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5250                         return 1;
5251 
5252                 if (!kvm_emulate_instruction(vcpu, 0))
5253                         return 0;
5254 
5255                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5256                     vcpu->arch.exception.pending) {
5257                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5258                         vcpu->run->internal.suberror =
5259                                                 KVM_INTERNAL_ERROR_EMULATION;
5260                         vcpu->run->internal.ndata = 0;
5261                         return 0;
5262                 }
5263 
5264                 if (vcpu->arch.halt_request) {
5265                         vcpu->arch.halt_request = 0;
5266                         return kvm_vcpu_halt(vcpu);
5267                 }
5268 
5269                 /*
5270                  * Note, return 1 and not 0, vcpu_run() is responsible for
5271                  * morphing the pending signal into the proper return code.
5272                  */
5273                 if (signal_pending(current))
5274                         return 1;
5275 
5276                 if (need_resched())
5277                         schedule();
5278         }
5279 
5280         return 1;
5281 }
5282 
5283 static void grow_ple_window(struct kvm_vcpu *vcpu)
5284 {
5285         struct vcpu_vmx *vmx = to_vmx(vcpu);
5286         unsigned int old = vmx->ple_window;
5287 
5288         vmx->ple_window = __grow_ple_window(old, ple_window,
5289                                             ple_window_grow,
5290                                             ple_window_max);
5291 
5292         if (vmx->ple_window != old) {
5293                 vmx->ple_window_dirty = true;
5294                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5295                                             vmx->ple_window, old);
5296         }
5297 }
5298 
5299 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5300 {
5301         struct vcpu_vmx *vmx = to_vmx(vcpu);
5302         unsigned int old = vmx->ple_window;
5303 
5304         vmx->ple_window = __shrink_ple_window(old, ple_window,
5305                                               ple_window_shrink,
5306                                               ple_window);
5307 
5308         if (vmx->ple_window != old) {
5309                 vmx->ple_window_dirty = true;
5310                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5311                                             vmx->ple_window, old);
5312         }
5313 }
5314 
5315 /*
5316  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5317  */
5318 static void wakeup_handler(void)
5319 {
5320         struct kvm_vcpu *vcpu;
5321         int cpu = smp_processor_id();
5322 
5323         spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5324         list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5325                         blocked_vcpu_list) {
5326                 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5327 
5328                 if (pi_test_on(pi_desc) == 1)
5329                         kvm_vcpu_kick(vcpu);
5330         }
5331         spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5332 }
5333 
5334 static void vmx_enable_tdp(void)
5335 {
5336         kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5337                 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5338                 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5339                 0ull, VMX_EPT_EXECUTABLE_MASK,
5340                 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5341                 VMX_EPT_RWX_MASK, 0ull);
5342 
5343         ept_set_mmio_spte_mask();
5344         kvm_enable_tdp();
5345 }
5346 
5347 /*
5348  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5349  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5350  */
5351 static int handle_pause(struct kvm_vcpu *vcpu)
5352 {
5353         if (!kvm_pause_in_guest(vcpu->kvm))
5354                 grow_ple_window(vcpu);
5355 
5356         /*
5357          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5358          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5359          * never set PAUSE_EXITING and just set PLE if supported,
5360          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5361          */
5362         kvm_vcpu_on_spin(vcpu, true);
5363         return kvm_skip_emulated_instruction(vcpu);
5364 }
5365 
5366 static int handle_nop(struct kvm_vcpu *vcpu)
5367 {
5368         return kvm_skip_emulated_instruction(vcpu);
5369 }
5370 
5371 static int handle_mwait(struct kvm_vcpu *vcpu)
5372 {
5373         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5374         return handle_nop(vcpu);
5375 }
5376 
5377 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5378 {
5379         kvm_queue_exception(vcpu, UD_VECTOR);
5380         return 1;
5381 }
5382 
5383 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5384 {
5385         return 1;
5386 }
5387 
5388 static int handle_monitor(struct kvm_vcpu *vcpu)
5389 {
5390         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5391         return handle_nop(vcpu);
5392 }
5393 
5394 static int handle_invpcid(struct kvm_vcpu *vcpu)
5395 {
5396         u32 vmx_instruction_info;
5397         unsigned long type;
5398         bool pcid_enabled;
5399         gva_t gva;
5400         struct x86_exception e;
5401         unsigned i;
5402         unsigned long roots_to_free = 0;
5403         struct {
5404                 u64 pcid;
5405                 u64 gla;
5406         } operand;
5407 
5408         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5409                 kvm_queue_exception(vcpu, UD_VECTOR);
5410                 return 1;
5411         }
5412 
5413         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5414         type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5415 
5416         if (type > 3) {
5417                 kvm_inject_gp(vcpu, 0);
5418                 return 1;
5419         }
5420 
5421         /* According to the Intel instruction reference, the memory operand
5422          * is read even if it isn't needed (e.g., for type==all)
5423          */
5424         if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5425                                 vmx_instruction_info, false,
5426                                 sizeof(operand), &gva))
5427                 return 1;
5428 
5429         if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5430                 kvm_inject_page_fault(vcpu, &e);
5431                 return 1;
5432         }
5433 
5434         if (operand.pcid >> 12 != 0) {
5435                 kvm_inject_gp(vcpu, 0);
5436                 return 1;
5437         }
5438 
5439         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5440 
5441         switch (type) {
5442         case INVPCID_TYPE_INDIV_ADDR:
5443                 if ((!pcid_enabled && (operand.pcid != 0)) ||
5444                     is_noncanonical_address(operand.gla, vcpu)) {
5445                         kvm_inject_gp(vcpu, 0);
5446                         return 1;
5447                 }
5448                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5449                 return kvm_skip_emulated_instruction(vcpu);
5450 
5451         case INVPCID_TYPE_SINGLE_CTXT:
5452                 if (!pcid_enabled && (operand.pcid != 0)) {
5453                         kvm_inject_gp(vcpu, 0);
5454                         return 1;
5455                 }
5456 
5457                 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5458                         kvm_mmu_sync_roots(vcpu);
5459                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5460                 }
5461 
5462                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5463                         if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5464                             == operand.pcid)
5465                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5466 
5467                 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5468                 /*
5469                  * If neither the current cr3 nor any of the prev_roots use the
5470                  * given PCID, then nothing needs to be done here because a
5471                  * resync will happen anyway before switching to any other CR3.
5472                  */
5473 
5474                 return kvm_skip_emulated_instruction(vcpu);
5475 
5476         case INVPCID_TYPE_ALL_NON_GLOBAL:
5477                 /*
5478                  * Currently, KVM doesn't mark global entries in the shadow
5479                  * page tables, so a non-global flush just degenerates to a
5480                  * global flush. If needed, we could optimize this later by
5481                  * keeping track of global entries in shadow page tables.
5482                  */
5483 
5484                 /* fall-through */
5485         case INVPCID_TYPE_ALL_INCL_GLOBAL:
5486                 kvm_mmu_unload(vcpu);
5487                 return kvm_skip_emulated_instruction(vcpu);
5488 
5489         default:
5490                 BUG(); /* We have already checked above that type <= 3 */
5491         }
5492 }
5493 
5494 static int handle_pml_full(struct kvm_vcpu *vcpu)
5495 {
5496         unsigned long exit_qualification;
5497 
5498         trace_kvm_pml_full(vcpu->vcpu_id);
5499 
5500         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5501 
5502         /*
5503          * PML buffer FULL happened while executing iret from NMI,
5504          * "blocked by NMI" bit has to be set before next VM entry.
5505          */
5506         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5507                         enable_vnmi &&
5508                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5509                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5510                                 GUEST_INTR_STATE_NMI);
5511 
5512         /*
5513          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5514          * here.., and there's no userspace involvement needed for PML.
5515          */
5516         return 1;
5517 }
5518 
5519 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5520 {
5521         struct vcpu_vmx *vmx = to_vmx(vcpu);
5522 
5523         if (!vmx->req_immediate_exit &&
5524             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5525                 kvm_lapic_expired_hv_timer(vcpu);
5526 
5527         return 1;
5528 }
5529 
5530 /*
5531  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5532  * are overwritten by nested_vmx_setup() when nested=1.
5533  */
5534 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5535 {
5536         kvm_queue_exception(vcpu, UD_VECTOR);
5537         return 1;
5538 }
5539 
5540 static int handle_encls(struct kvm_vcpu *vcpu)
5541 {
5542         /*
5543          * SGX virtualization is not yet supported.  There is no software
5544          * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5545          * to prevent the guest from executing ENCLS.
5546          */
5547         kvm_queue_exception(vcpu, UD_VECTOR);
5548         return 1;
5549 }
5550 
5551 /*
5552  * The exit handlers return 1 if the exit was handled fully and guest execution
5553  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5554  * to be done to userspace and return 0.
5555  */
5556 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5557         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5558         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5559         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5560         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5561         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5562         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5563         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5564         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5565         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5566         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5567         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5568         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5569         [EXIT_REASON_INVD]                    = handle_invd,
5570         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5571         [EXIT_REASON_RDPMC]                   = handle_rdpmc,
5572         [EXIT_REASON_VMCALL]                  = handle_vmcall,
5573         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5574         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5575         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5576         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5577         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5578         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5579         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5580         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5581         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5582         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5583         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5584         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5585         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5586         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
5587         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
5588         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5589         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5590         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5591         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5592         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5593         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5594         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5595         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
5596         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5597         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5598         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5599         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5600         [EXIT_REASON_RDRAND]                  = handle_invalid_op,
5601         [EXIT_REASON_RDSEED]                  = handle_invalid_op,
5602         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5603         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5604         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5605         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5606         [EXIT_REASON_ENCLS]                   = handle_encls,
5607 };
5608 
5609 static const int kvm_vmx_max_exit_handlers =
5610         ARRAY_SIZE(kvm_vmx_exit_handlers);
5611 
5612 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5613 {
5614         *info1 = vmcs_readl(EXIT_QUALIFICATION);
5615         *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5616 }
5617 
5618 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5619 {
5620         if (vmx->pml_pg) {
5621                 __free_page(vmx->pml_pg);
5622                 vmx->pml_pg = NULL;
5623         }
5624 }
5625 
5626 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5627 {
5628         struct vcpu_vmx *vmx = to_vmx(vcpu);
5629         u64 *pml_buf;
5630         u16 pml_idx;
5631 
5632         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5633 
5634         /* Do nothing if PML buffer is empty */
5635         if (pml_idx == (PML_ENTITY_NUM - 1))
5636                 return;
5637 
5638         /* PML index always points to next available PML buffer entity */
5639         if (pml_idx >= PML_ENTITY_NUM)
5640                 pml_idx = 0;
5641         else
5642                 pml_idx++;
5643 
5644         pml_buf = page_address(vmx->pml_pg);
5645         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5646                 u64 gpa;
5647 
5648                 gpa = pml_buf[pml_idx];
5649                 WARN_ON(gpa & (PAGE_SIZE - 1));
5650                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5651         }
5652 
5653         /* reset PML index */
5654         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5655 }
5656 
5657 /*
5658  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5659  * Called before reporting dirty_bitmap to userspace.
5660  */
5661 static void kvm_flush_pml_buffers(struct kvm *kvm)
5662 {
5663         int i;
5664         struct kvm_vcpu *vcpu;
5665         /*
5666          * We only need to kick vcpu out of guest mode here, as PML buffer
5667          * is flushed at beginning of all VMEXITs, and it's obvious that only
5668          * vcpus running in guest are possible to have unflushed GPAs in PML
5669          * buffer.
5670          */
5671         kvm_for_each_vcpu(i, vcpu, kvm)
5672                 kvm_vcpu_kick(vcpu);
5673 }
5674 
5675 static void vmx_dump_sel(char *name, uint32_t sel)
5676 {
5677         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5678                name, vmcs_read16(sel),
5679                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5680                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5681                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5682 }
5683 
5684 static void vmx_dump_dtsel(char *name, uint32_t limit)
5685 {
5686         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5687                name, vmcs_read32(limit),
5688                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5689 }
5690 
5691 void dump_vmcs(void)
5692 {
5693         u32 vmentry_ctl, vmexit_ctl;
5694         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5695         unsigned long cr4;
5696         u64 efer;
5697         int i, n;
5698 
5699         if (!dump_invalid_vmcs) {
5700                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5701                 return;
5702         }
5703 
5704         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5705         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5706         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5707         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5708         cr4 = vmcs_readl(GUEST_CR4);
5709         efer = vmcs_read64(GUEST_IA32_EFER);
5710         secondary_exec_control = 0;
5711         if (cpu_has_secondary_exec_ctrls())
5712                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5713 
5714         pr_err("*** Guest State ***\n");
5715         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5716                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5717                vmcs_readl(CR0_GUEST_HOST_MASK));
5718         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5719                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5720         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5721         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5722             (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5723         {
5724                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5725                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5726                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5727                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5728         }
5729         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5730                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5731         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5732                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5733         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5734                vmcs_readl(GUEST_SYSENTER_ESP),
5735                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5736         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5737         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5738         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5739         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5740         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5741         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5742         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5743         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5744         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5745         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5746         if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5747             (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5748                 pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5749                        efer, vmcs_read64(GUEST_IA32_PAT));
5750         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5751                vmcs_read64(GUEST_IA32_DEBUGCTL),
5752                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5753         if (cpu_has_load_perf_global_ctrl() &&
5754             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5755                 pr_err("PerfGlobCtl = 0x%016llx\n",
5756                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5757         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5758                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5759         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5760                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5761                vmcs_read32(GUEST_ACTIVITY_STATE));
5762         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5763                 pr_err("InterruptStatus = %04x\n",
5764                        vmcs_read16(GUEST_INTR_STATUS));
5765 
5766         pr_err("*** Host State ***\n");
5767         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5768                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5769         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5770                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5771                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5772                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5773                vmcs_read16(HOST_TR_SELECTOR));
5774         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5775                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5776                vmcs_readl(HOST_TR_BASE));
5777         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5778                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5779         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5780                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5781                vmcs_readl(HOST_CR4));
5782         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5783                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5784                vmcs_read32(HOST_IA32_SYSENTER_CS),
5785                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5786         if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5787                 pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5788                        vmcs_read64(HOST_IA32_EFER),
5789                        vmcs_read64(HOST_IA32_PAT));
5790         if (cpu_has_load_perf_global_ctrl() &&
5791             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5792                 pr_err("PerfGlobCtl = 0x%016llx\n",
5793                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5794 
5795         pr_err("*** Control State ***\n");
5796         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5797                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5798         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5799         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5800                vmcs_read32(EXCEPTION_BITMAP),
5801                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5802                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5803         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5804                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5805                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5806                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5807         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5808                vmcs_read32(VM_EXIT_INTR_INFO),
5809                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5810                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5811         pr_err("        reason=%08x qualification=%016lx\n",
5812                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5813         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5814                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5815                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5816         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5817         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5818                 pr_err("TSC Multiplier = 0x%016llx\n",
5819                        vmcs_read64(TSC_MULTIPLIER));
5820         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5821                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5822                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5823                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5824                 }
5825                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5826                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5827                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5828                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5829         }
5830         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5831                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5832         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5833                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5834         n = vmcs_read32(CR3_TARGET_COUNT);
5835         for (i = 0; i + 1 < n; i += 4)
5836                 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5837                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5838                        i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5839         if (i < n)
5840                 pr_err("CR3 target%u=%016lx\n",
5841                        i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5842         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5843                 pr_err("PLE Gap=%08x Window=%08x\n",
5844                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5845         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5846                 pr_err("Virtual processor ID = 0x%04x\n",
5847                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5848 }
5849 
5850 /*
5851  * The guest has exited.  See if we can fix it or if we need userspace
5852  * assistance.
5853  */
5854 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5855         enum exit_fastpath_completion exit_fastpath)
5856 {
5857         struct vcpu_vmx *vmx = to_vmx(vcpu);
5858         u32 exit_reason = vmx->exit_reason;
5859         u32 vectoring_info = vmx->idt_vectoring_info;
5860 
5861         trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5862 
5863         /*
5864          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5865          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5866          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5867          * mode as if vcpus is in root mode, the PML buffer must has been
5868          * flushed already.
5869          */
5870         if (enable_pml)
5871                 vmx_flush_pml_buffer(vcpu);
5872 
5873         /* If guest state is invalid, start emulating */
5874         if (vmx->emulation_required)
5875                 return handle_invalid_guest_state(vcpu);
5876 
5877         if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5878                 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5879 
5880         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5881                 dump_vmcs();
5882                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5883                 vcpu->run->fail_entry.hardware_entry_failure_reason
5884                         = exit_reason;
5885                 return 0;
5886         }
5887 
5888         if (unlikely(vmx->fail)) {
5889                 dump_vmcs();
5890                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5891                 vcpu->run->fail_entry.hardware_entry_failure_reason
5892                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5893                 return 0;
5894         }
5895 
5896         /*
5897          * Note:
5898          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5899          * delivery event since it indicates guest is accessing MMIO.
5900          * The vm-exit can be triggered again after return to guest that
5901          * will cause infinite loop.
5902          */
5903         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5904                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5905                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
5906                         exit_reason != EXIT_REASON_PML_FULL &&
5907                         exit_reason != EXIT_REASON_TASK_SWITCH)) {
5908                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5909                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5910                 vcpu->run->internal.ndata = 3;
5911                 vcpu->run->internal.data[0] = vectoring_info;
5912                 vcpu->run->internal.data[1] = exit_reason;
5913                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5914                 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5915                         vcpu->run->internal.ndata++;
5916                         vcpu->run->internal.data[3] =
5917                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5918                 }
5919                 return 0;
5920         }
5921 
5922         if (unlikely(!enable_vnmi &&
5923                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5924                 if (vmx_interrupt_allowed(vcpu)) {
5925                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5926                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5927                            vcpu->arch.nmi_pending) {
5928                         /*
5929                          * This CPU don't support us in finding the end of an
5930                          * NMI-blocked window if the guest runs with IRQs
5931                          * disabled. So we pull the trigger after 1 s of
5932                          * futile waiting, but inform the user about this.
5933                          */
5934                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5935                                "state on VCPU %d after 1 s timeout\n",
5936                                __func__, vcpu->vcpu_id);
5937                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5938                 }
5939         }
5940 
5941         if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5942                 kvm_skip_emulated_instruction(vcpu);
5943                 return 1;
5944         }
5945 
5946         if (exit_reason >= kvm_vmx_max_exit_handlers)
5947                 goto unexpected_vmexit;
5948 #ifdef CONFIG_RETPOLINE
5949         if (exit_reason == EXIT_REASON_MSR_WRITE)
5950                 return kvm_emulate_wrmsr(vcpu);
5951         else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5952                 return handle_preemption_timer(vcpu);
5953         else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
5954                 return handle_interrupt_window(vcpu);
5955         else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5956                 return handle_external_interrupt(vcpu);
5957         else if (exit_reason == EXIT_REASON_HLT)
5958                 return kvm_emulate_halt(vcpu);
5959         else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5960                 return handle_ept_misconfig(vcpu);
5961 #endif
5962 
5963         exit_reason = array_index_nospec(exit_reason,
5964                                          kvm_vmx_max_exit_handlers);
5965         if (!kvm_vmx_exit_handlers[exit_reason])
5966                 goto unexpected_vmexit;
5967 
5968         return kvm_vmx_exit_handlers[exit_reason](vcpu);
5969 
5970 unexpected_vmexit:
5971         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
5972         dump_vmcs();
5973         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5974         vcpu->run->internal.suberror =
5975                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5976         vcpu->run->internal.ndata = 1;
5977         vcpu->run->internal.data[0] = exit_reason;
5978         return 0;
5979 }
5980 
5981 /*
5982  * Software based L1D cache flush which is used when microcode providing
5983  * the cache control MSR is not loaded.
5984  *
5985  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5986  * flush it is required to read in 64 KiB because the replacement algorithm
5987  * is not exactly LRU. This could be sized at runtime via topology
5988  * information but as all relevant affected CPUs have 32KiB L1D cache size
5989  * there is no point in doing so.
5990  */
5991 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5992 {
5993         int size = PAGE_SIZE << L1D_CACHE_ORDER;
5994 
5995         /*
5996          * This code is only executed when the the flush mode is 'cond' or
5997          * 'always'
5998          */
5999         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6000                 bool flush_l1d;
6001 
6002                 /*
6003                  * Clear the per-vcpu flush bit, it gets set again
6004                  * either from vcpu_run() or from one of the unsafe
6005                  * VMEXIT handlers.
6006                  */
6007                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6008                 vcpu->arch.l1tf_flush_l1d = false;
6009 
6010                 /*
6011                  * Clear the per-cpu flush bit, it gets set again from
6012                  * the interrupt handlers.
6013                  */
6014                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6015                 kvm_clear_cpu_l1tf_flush_l1d();
6016 
6017                 if (!flush_l1d)
6018                         return;
6019         }
6020 
6021         vcpu->stat.l1d_flush++;
6022 
6023         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6024                 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6025                 return;
6026         }
6027 
6028         asm volatile(
6029                 /* First ensure the pages are in the TLB */
6030                 "xorl   %%eax, %%eax\n"
6031                 ".Lpopulate_tlb:\n\t"
6032                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6033                 "addl   $4096, %%eax\n\t"
6034                 "cmpl   %%eax, %[size]\n\t"
6035                 "jne    .Lpopulate_tlb\n\t"
6036                 "xorl   %%eax, %%eax\n\t"
6037                 "cpuid\n\t"
6038                 /* Now fill the cache */
6039                 "xorl   %%eax, %%eax\n"
6040                 ".Lfill_cache:\n"
6041                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6042                 "addl   $64, %%eax\n\t"
6043                 "cmpl   %%eax, %[size]\n\t"
6044                 "jne    .Lfill_cache\n\t"
6045                 "lfence\n"
6046                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6047                     [size] "r" (size)
6048                 : "eax", "ebx", "ecx", "edx");
6049 }
6050 
6051 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6052 {
6053         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6054         int tpr_threshold;
6055 
6056         if (is_guest_mode(vcpu) &&
6057                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6058                 return;
6059 
6060         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6061         if (is_guest_mode(vcpu))
6062                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6063         else
6064                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6065 }
6066 
6067 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6068 {
6069         struct vcpu_vmx *vmx = to_vmx(vcpu);
6070         u32 sec_exec_control;
6071 
6072         if (!lapic_in_kernel(vcpu))
6073                 return;
6074 
6075         if (!flexpriority_enabled &&
6076             !cpu_has_vmx_virtualize_x2apic_mode())
6077                 return;
6078 
6079         /* Postpone execution until vmcs01 is the current VMCS. */
6080         if (is_guest_mode(vcpu)) {
6081                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6082                 return;
6083         }
6084 
6085         sec_exec_control = secondary_exec_controls_get(vmx);
6086         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6087                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6088 
6089         switch (kvm_get_apic_mode(vcpu)) {
6090         case LAPIC_MODE_INVALID:
6091                 WARN_ONCE(true, "Invalid local APIC state");
6092         case LAPIC_MODE_DISABLED:
6093                 break;
6094         case LAPIC_MODE_XAPIC:
6095                 if (flexpriority_enabled) {
6096                         sec_exec_control |=
6097                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6098                         vmx_flush_tlb(vcpu, true);
6099                 }
6100                 break;
6101         case LAPIC_MODE_X2APIC:
6102                 if (cpu_has_vmx_virtualize_x2apic_mode())
6103                         sec_exec_control |=
6104                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6105                 break;
6106         }
6107         secondary_exec_controls_set(vmx, sec_exec_control);
6108 
6109         vmx_update_msr_bitmap(vcpu);
6110 }
6111 
6112 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6113 {
6114         if (!is_guest_mode(vcpu)) {
6115                 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6116                 vmx_flush_tlb(vcpu, true);
6117         }
6118 }
6119 
6120 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6121 {
6122         u16 status;
6123         u8 old;
6124 
6125         if (max_isr == -1)
6126                 max_isr = 0;
6127 
6128         status = vmcs_read16(GUEST_INTR_STATUS);
6129         old = status >> 8;
6130         if (max_isr != old) {
6131                 status &= 0xff;
6132                 status |= max_isr << 8;
6133                 vmcs_write16(GUEST_INTR_STATUS, status);
6134         }
6135 }
6136 
6137 static void vmx_set_rvi(int vector)
6138 {
6139         u16 status;
6140         u8 old;
6141 
6142         if (vector == -1)
6143                 vector = 0;
6144 
6145         status = vmcs_read16(GUEST_INTR_STATUS);
6146         old = (u8)status & 0xff;
6147         if ((u8)vector != old) {
6148                 status &= ~0xff;
6149                 status |= (u8)vector;
6150                 vmcs_write16(GUEST_INTR_STATUS, status);
6151         }
6152 }
6153 
6154 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6155 {
6156         /*
6157          * When running L2, updating RVI is only relevant when
6158          * vmcs12 virtual-interrupt-delivery enabled.
6159          * However, it can be enabled only when L1 also
6160          * intercepts external-interrupts and in that case
6161          * we should not update vmcs02 RVI but instead intercept
6162          * interrupt. Therefore, do nothing when running L2.
6163          */
6164         if (!is_guest_mode(vcpu))
6165                 vmx_set_rvi(max_irr);
6166 }
6167 
6168 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6169 {
6170         struct vcpu_vmx *vmx = to_vmx(vcpu);
6171         int max_irr;
6172         bool max_irr_updated;
6173 
6174         WARN_ON(!vcpu->arch.apicv_active);
6175         if (pi_test_on(&vmx->pi_desc)) {
6176                 pi_clear_on(&vmx->pi_desc);
6177                 /*
6178                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6179                  * But on x86 this is just a compiler barrier anyway.
6180                  */
6181                 smp_mb__after_atomic();
6182                 max_irr_updated =
6183                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6184 
6185                 /*
6186                  * If we are running L2 and L1 has a new pending interrupt
6187                  * which can be injected, we should re-evaluate
6188                  * what should be done with this new L1 interrupt.
6189                  * If L1 intercepts external-interrupts, we should
6190                  * exit from L2 to L1. Otherwise, interrupt should be
6191                  * delivered directly to L2.
6192                  */
6193                 if (is_guest_mode(vcpu) && max_irr_updated) {
6194                         if (nested_exit_on_intr(vcpu))
6195                                 kvm_vcpu_exiting_guest_mode(vcpu);
6196                         else
6197                                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6198                 }
6199         } else {
6200                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6201         }
6202         vmx_hwapic_irr_update(vcpu, max_irr);
6203         return max_irr;
6204 }
6205 
6206 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6207 {
6208         struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6209 
6210         return pi_test_on(pi_desc) ||
6211                 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6212 }
6213 
6214 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6215 {
6216         if (!kvm_vcpu_apicv_active(vcpu))
6217                 return;
6218 
6219         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6220         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6221         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6222         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6223 }
6224 
6225 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6226 {
6227         struct vcpu_vmx *vmx = to_vmx(vcpu);
6228 
6229         pi_clear_on(&vmx->pi_desc);
6230         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6231 }
6232 
6233 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6234 {
6235         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6236 
6237         /* if exit due to PF check for async PF */
6238         if (is_page_fault(vmx->exit_intr_info))
6239                 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6240 
6241         /* Handle machine checks before interrupts are enabled */
6242         if (is_machine_check(vmx->exit_intr_info))
6243                 kvm_machine_check();
6244 
6245         /* We need to handle NMIs before interrupts are enabled */
6246         if (is_nmi(vmx->exit_intr_info)) {
6247                 kvm_before_interrupt(&vmx->vcpu);
6248                 asm("int $2");
6249                 kvm_after_interrupt(&vmx->vcpu);
6250         }
6251 }
6252 
6253 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6254 {
6255         unsigned int vector;
6256         unsigned long entry;
6257 #ifdef CONFIG_X86_64
6258         unsigned long tmp;
6259 #endif
6260         gate_desc *desc;
6261         u32 intr_info;
6262 
6263         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6264         if (WARN_ONCE(!is_external_intr(intr_info),
6265             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6266                 return;
6267 
6268         vector = intr_info & INTR_INFO_VECTOR_MASK;
6269         desc = (gate_desc *)host_idt_base + vector;
6270         entry = gate_offset(desc);
6271 
6272         kvm_before_interrupt(vcpu);
6273 
6274         asm volatile(
6275 #ifdef CONFIG_X86_64
6276                 "mov %%" _ASM_SP ", %[sp]\n\t"
6277                 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6278                 "push $%c[ss]\n\t"
6279                 "push %[sp]\n\t"
6280 #endif
6281                 "pushf\n\t"
6282                 __ASM_SIZE(push) " $%c[cs]\n\t"
6283                 CALL_NOSPEC
6284                 :
6285 #ifdef CONFIG_X86_64
6286                 [sp]"=&r"(tmp),
6287 #endif
6288                 ASM_CALL_CONSTRAINT
6289                 :
6290                 [thunk_target]"r"(entry),
6291                 [ss]"i"(__KERNEL_DS),
6292                 [cs]"i"(__KERNEL_CS)
6293         );
6294 
6295         kvm_after_interrupt(vcpu);
6296 }
6297 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6298 
6299 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6300         enum exit_fastpath_completion *exit_fastpath)
6301 {
6302         struct vcpu_vmx *vmx = to_vmx(vcpu);
6303 
6304         if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6305                 handle_external_interrupt_irqoff(vcpu);
6306         else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6307                 handle_exception_nmi_irqoff(vmx);
6308         else if (!is_guest_mode(vcpu) &&
6309                 vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6310                 *exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6311 }
6312 
6313 static bool vmx_has_emulated_msr(int index)
6314 {
6315         switch (index) {
6316         case MSR_IA32_SMBASE:
6317                 /*
6318                  * We cannot do SMM unless we can run the guest in big
6319                  * real mode.
6320                  */
6321                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6322         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6323                 return nested;
6324         case MSR_AMD64_VIRT_SPEC_CTRL:
6325                 /* This is AMD only.  */
6326                 return false;
6327         default:
6328                 return true;
6329         }
6330 }
6331 
6332 static bool vmx_pt_supported(void)
6333 {
6334         return pt_mode == PT_MODE_HOST_GUEST;
6335 }
6336 
6337 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6338 {
6339         u32 exit_intr_info;
6340         bool unblock_nmi;
6341         u8 vector;
6342         bool idtv_info_valid;
6343 
6344         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6345 
6346         if (enable_vnmi) {
6347                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6348                         return;
6349                 /*
6350                  * Can't use vmx->exit_intr_info since we're not sure what
6351                  * the exit reason is.
6352                  */
6353                 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6354                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6355                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6356                 /*
6357                  * SDM 3: 27.7.1.2 (September 2008)
6358                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6359                  * a guest IRET fault.
6360                  * SDM 3: 23.2.2 (September 2008)
6361                  * Bit 12 is undefined in any of the following cases:
6362                  *  If the VM exit sets the valid bit in the IDT-vectoring
6363                  *   information field.
6364                  *  If the VM exit is due to a double fault.
6365                  */
6366                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6367                     vector != DF_VECTOR && !idtv_info_valid)
6368                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6369                                       GUEST_INTR_STATE_NMI);
6370                 else
6371                         vmx->loaded_vmcs->nmi_known_unmasked =
6372                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6373                                   & GUEST_INTR_STATE_NMI);
6374         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6375                 vmx->loaded_vmcs->vnmi_blocked_time +=
6376                         ktime_to_ns(ktime_sub(ktime_get(),
6377                                               vmx->loaded_vmcs->entry_time));
6378 }
6379 
6380 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6381                                       u32 idt_vectoring_info,
6382                                       int instr_len_field,
6383                                       int error_code_field)
6384 {
6385         u8 vector;
6386         int type;
6387         bool idtv_info_valid;
6388 
6389         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6390 
6391         vcpu->arch.nmi_injected = false;
6392         kvm_clear_exception_queue(vcpu);
6393         kvm_clear_interrupt_queue(vcpu);
6394 
6395         if (!idtv_info_valid)
6396                 return;
6397 
6398         kvm_make_request(KVM_REQ_EVENT, vcpu);
6399 
6400         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6401         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6402 
6403         switch (type) {
6404         case INTR_TYPE_NMI_INTR:
6405                 vcpu->arch.nmi_injected = true;
6406                 /*
6407                  * SDM 3: 27.7.1.2 (September 2008)
6408                  * Clear bit "block by NMI" before VM entry if a NMI
6409                  * delivery faulted.
6410                  */
6411                 vmx_set_nmi_mask(vcpu, false);
6412                 break;
6413         case INTR_TYPE_SOFT_EXCEPTION:
6414                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6415                 /* fall through */
6416         case INTR_TYPE_HARD_EXCEPTION:
6417                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6418                         u32 err = vmcs_read32(error_code_field);
6419                         kvm_requeue_exception_e(vcpu, vector, err);
6420                 } else
6421                         kvm_requeue_exception(vcpu, vector);
6422                 break;
6423         case INTR_TYPE_SOFT_INTR:
6424                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6425                 /* fall through */
6426         case INTR_TYPE_EXT_INTR:
6427                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6428                 break;
6429         default:
6430                 break;
6431         }
6432 }
6433 
6434 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6435 {
6436         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6437                                   VM_EXIT_INSTRUCTION_LEN,
6438                                   IDT_VECTORING_ERROR_CODE);
6439 }
6440 
6441 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6442 {
6443         __vmx_complete_interrupts(vcpu,
6444                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6445                                   VM_ENTRY_INSTRUCTION_LEN,
6446                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6447 
6448         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6449 }
6450 
6451 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6452 {
6453         int i, nr_msrs;
6454         struct perf_guest_switch_msr *msrs;
6455 
6456         msrs = perf_guest_get_msrs(&nr_msrs);
6457 
6458         if (!msrs)
6459                 return;
6460 
6461         for (i = 0; i < nr_msrs; i++)
6462                 if (msrs[i].host == msrs[i].guest)
6463                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6464                 else
6465                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6466                                         msrs[i].host, false);
6467 }
6468 
6469 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6470 {
6471         u32 host_umwait_control;
6472 
6473         if (!vmx_has_waitpkg(vmx))
6474                 return;
6475 
6476         host_umwait_control = get_umwait_control_msr();
6477 
6478         if (vmx->msr_ia32_umwait_control != host_umwait_control)
6479                 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6480                         vmx->msr_ia32_umwait_control,
6481                         host_umwait_control, false);
6482         else
6483                 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6484 }
6485 
6486 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6487 {
6488         struct vcpu_vmx *vmx = to_vmx(vcpu);
6489         u64 tscl;
6490         u32 delta_tsc;
6491 
6492         if (vmx->req_immediate_exit) {
6493                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6494                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6495         } else if (vmx->hv_deadline_tsc != -1) {
6496                 tscl = rdtsc();
6497                 if (vmx->hv_deadline_tsc > tscl)
6498                         /* set_hv_timer ensures the delta fits in 32-bits */
6499                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6500                                 cpu_preemption_timer_multi);
6501                 else
6502                         delta_tsc = 0;
6503 
6504                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6505                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6506         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6507                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6508                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6509         }
6510 }
6511 
6512 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6513 {
6514         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6515                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6516                 vmcs_writel(HOST_RSP, host_rsp);
6517         }
6518 }
6519 
6520 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6521 
6522 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6523 {
6524         struct vcpu_vmx *vmx = to_vmx(vcpu);
6525         unsigned long cr3, cr4;
6526 
6527         /* Record the guest's net vcpu time for enforced NMI injections. */
6528         if (unlikely(!enable_vnmi &&
6529                      vmx->loaded_vmcs->soft_vnmi_blocked))
6530                 vmx->loaded_vmcs->entry_time = ktime_get();
6531 
6532         /* Don't enter VMX if guest state is invalid, let the exit handler
6533            start emulation until we arrive back to a valid state */
6534         if (vmx->emulation_required)
6535                 return;
6536 
6537         if (vmx->ple_window_dirty) {
6538                 vmx->ple_window_dirty = false;
6539                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6540         }
6541 
6542         /*
6543          * We did this in prepare_switch_to_guest, because it needs to
6544          * be within srcu_read_lock.
6545          */
6546         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6547 
6548         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6549                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6550         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6551                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6552 
6553         cr3 = __get_current_cr3_fast();
6554         if (unlikely(