1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * derived from drivers/kvm/kvm_main.c 5 * 6 * Copyright (C) 2006 Qumranet, Inc. 7 * Copyright (C) 2008 Qumranet, Inc. 8 * Copyright IBM Corporation, 2008 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 * Amit Shah <amit.shah@qumranet.com> 15 * Ben-Ami Yassour <benami@il.ibm.com> 16 * 17 * This work is licensed under the terms of the GNU GPL, version 2. See 18 * the COPYING file in the top-level directory. 19 * 20 */ 21 22 #include <linux/kvm_host.h> 23 #include "irq.h" 24 #include "mmu.h" 25 #include "i8254.h" 26 #include "tss.h" 27 #include "kvm_cache_regs.h" 28 #include "x86.h" 29 #include "cpuid.h" 30 #include "pmu.h" 31 #include "hyperv.h" 32 33 #include <linux/clocksource.h> 34 #include <linux/interrupt.h> 35 #include <linux/kvm.h> 36 #include <linux/fs.h> 37 #include <linux/vmalloc.h> 38 #include <linux/export.h> 39 #include <linux/moduleparam.h> 40 #include <linux/mman.h> 41 #include <linux/highmem.h> 42 #include <linux/iommu.h> 43 #include <linux/intel-iommu.h> 44 #include <linux/cpufreq.h> 45 #include <linux/user-return-notifier.h> 46 #include <linux/srcu.h> 47 #include <linux/slab.h> 48 #include <linux/perf_event.h> 49 #include <linux/uaccess.h> 50 #include <linux/hash.h> 51 #include <linux/pci.h> 52 #include <linux/timekeeper_internal.h> 53 #include <linux/pvclock_gtod.h> 54 #include <linux/kvm_irqfd.h> 55 #include <linux/irqbypass.h> 56 #include <linux/sched/stat.h> 57 #include <linux/mem_encrypt.h> 58 59 #include <trace/events/kvm.h> 60 61 #include <asm/debugreg.h> 62 #include <asm/msr.h> 63 #include <asm/desc.h> 64 #include <asm/mce.h> 65 #include <linux/kernel_stat.h> 66 #include <asm/fpu/internal.h> /* Ugh! */ 67 #include <asm/pvclock.h> 68 #include <asm/div64.h> 69 #include <asm/irq_remapping.h> 70 71 #define CREATE_TRACE_POINTS 72 #include "trace.h" 73 74 #define MAX_IO_MSRS 256 75 #define KVM_MAX_MCE_BANKS 32 76 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P; 77 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported); 78 79 #define emul_to_vcpu(ctxt) \ 80 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) 81 82 /* EFER defaults: 83 * - enable syscall per default because its emulated by KVM 84 * - enable LME and LMA per default on 64 bit KVM 85 */ 86 #ifdef CONFIG_X86_64 87 static 88 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); 89 #else 90 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); 91 #endif 92 93 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM 94 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU 95 96 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ 97 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 98 99 static void update_cr8_intercept(struct kvm_vcpu *vcpu); 100 static void process_nmi(struct kvm_vcpu *vcpu); 101 static void enter_smm(struct kvm_vcpu *vcpu); 102 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); 103 104 struct kvm_x86_ops *kvm_x86_ops __read_mostly; 105 EXPORT_SYMBOL_GPL(kvm_x86_ops); 106 107 static bool __read_mostly ignore_msrs = 0; 108 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); 109 110 static bool __read_mostly report_ignored_msrs = true; 111 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); 112 113 unsigned int min_timer_period_us = 500; 114 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); 115 116 static bool __read_mostly kvmclock_periodic_sync = true; 117 module_param(kvmclock_periodic_sync, bool, S_IRUGO); 118 119 bool __read_mostly kvm_has_tsc_control; 120 EXPORT_SYMBOL_GPL(kvm_has_tsc_control); 121 u32 __read_mostly kvm_max_guest_tsc_khz; 122 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); 123 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits; 124 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits); 125 u64 __read_mostly kvm_max_tsc_scaling_ratio; 126 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio); 127 u64 __read_mostly kvm_default_tsc_scaling_ratio; 128 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio); 129 130 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ 131 static u32 __read_mostly tsc_tolerance_ppm = 250; 132 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); 133 134 /* lapic timer advance (tscdeadline mode only) in nanoseconds */ 135 unsigned int __read_mostly lapic_timer_advance_ns = 0; 136 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR); 137 138 static bool __read_mostly vector_hashing = true; 139 module_param(vector_hashing, bool, S_IRUGO); 140 141 #define KVM_NR_SHARED_MSRS 16 142 143 struct kvm_shared_msrs_global { 144 int nr; 145 u32 msrs[KVM_NR_SHARED_MSRS]; 146 }; 147 148 struct kvm_shared_msrs { 149 struct user_return_notifier urn; 150 bool registered; 151 struct kvm_shared_msr_values { 152 u64 host; 153 u64 curr; 154 } values[KVM_NR_SHARED_MSRS]; 155 }; 156 157 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; 158 static struct kvm_shared_msrs __percpu *shared_msrs; 159 160 struct kvm_stats_debugfs_item debugfs_entries[] = { 161 { "pf_fixed", VCPU_STAT(pf_fixed) }, 162 { "pf_guest", VCPU_STAT(pf_guest) }, 163 { "tlb_flush", VCPU_STAT(tlb_flush) }, 164 { "invlpg", VCPU_STAT(invlpg) }, 165 { "exits", VCPU_STAT(exits) }, 166 { "io_exits", VCPU_STAT(io_exits) }, 167 { "mmio_exits", VCPU_STAT(mmio_exits) }, 168 { "signal_exits", VCPU_STAT(signal_exits) }, 169 { "irq_window", VCPU_STAT(irq_window_exits) }, 170 { "nmi_window", VCPU_STAT(nmi_window_exits) }, 171 { "halt_exits", VCPU_STAT(halt_exits) }, 172 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) }, 173 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) }, 174 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) }, 175 { "halt_wakeup", VCPU_STAT(halt_wakeup) }, 176 { "hypercalls", VCPU_STAT(hypercalls) }, 177 { "request_irq", VCPU_STAT(request_irq_exits) }, 178 { "irq_exits", VCPU_STAT(irq_exits) }, 179 { "host_state_reload", VCPU_STAT(host_state_reload) }, 180 { "efer_reload", VCPU_STAT(efer_reload) }, 181 { "fpu_reload", VCPU_STAT(fpu_reload) }, 182 { "insn_emulation", VCPU_STAT(insn_emulation) }, 183 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, 184 { "irq_injections", VCPU_STAT(irq_injections) }, 185 { "nmi_injections", VCPU_STAT(nmi_injections) }, 186 { "req_event", VCPU_STAT(req_event) }, 187 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, 188 { "mmu_pte_write", VM_STAT(mmu_pte_write) }, 189 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, 190 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, 191 { "mmu_flooded", VM_STAT(mmu_flooded) }, 192 { "mmu_recycled", VM_STAT(mmu_recycled) }, 193 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, 194 { "mmu_unsync", VM_STAT(mmu_unsync) }, 195 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, 196 { "largepages", VM_STAT(lpages) }, 197 { "max_mmu_page_hash_collisions", 198 VM_STAT(max_mmu_page_hash_collisions) }, 199 { NULL } 200 }; 201 202 u64 __read_mostly host_xcr0; 203 204 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); 205 206 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) 207 { 208 int i; 209 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) 210 vcpu->arch.apf.gfns[i] = ~0; 211 } 212 213 static void kvm_on_user_return(struct user_return_notifier *urn) 214 { 215 unsigned slot; 216 struct kvm_shared_msrs *locals 217 = container_of(urn, struct kvm_shared_msrs, urn); 218 struct kvm_shared_msr_values *values; 219 unsigned long flags; 220 221 /* 222 * Disabling irqs at this point since the following code could be 223 * interrupted and executed through kvm_arch_hardware_disable() 224 */ 225 local_irq_save(flags); 226 if (locals->registered) { 227 locals->registered = false; 228 user_return_notifier_unregister(urn); 229 } 230 local_irq_restore(flags); 231 for (slot = 0; slot < shared_msrs_global.nr; ++slot) { 232 values = &locals->values[slot]; 233 if (values->host != values->curr) { 234 wrmsrl(shared_msrs_global.msrs[slot], values->host); 235 values->curr = values->host; 236 } 237 } 238 } 239 240 static void shared_msr_update(unsigned slot, u32 msr) 241 { 242 u64 value; 243 unsigned int cpu = smp_processor_id(); 244 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 245 246 /* only read, and nobody should modify it at this time, 247 * so don't need lock */ 248 if (slot >= shared_msrs_global.nr) { 249 printk(KERN_ERR "kvm: invalid MSR slot!"); 250 return; 251 } 252 rdmsrl_safe(msr, &value); 253 smsr->values[slot].host = value; 254 smsr->values[slot].curr = value; 255 } 256 257 void kvm_define_shared_msr(unsigned slot, u32 msr) 258 { 259 BUG_ON(slot >= KVM_NR_SHARED_MSRS); 260 shared_msrs_global.msrs[slot] = msr; 261 if (slot >= shared_msrs_global.nr) 262 shared_msrs_global.nr = slot + 1; 263 } 264 EXPORT_SYMBOL_GPL(kvm_define_shared_msr); 265 266 static void kvm_shared_msr_cpu_online(void) 267 { 268 unsigned i; 269 270 for (i = 0; i < shared_msrs_global.nr; ++i) 271 shared_msr_update(i, shared_msrs_global.msrs[i]); 272 } 273 274 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) 275 { 276 unsigned int cpu = smp_processor_id(); 277 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 278 int err; 279 280 if (((value ^ smsr->values[slot].curr) & mask) == 0) 281 return 0; 282 smsr->values[slot].curr = value; 283 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value); 284 if (err) 285 return 1; 286 287 if (!smsr->registered) { 288 smsr->urn.on_user_return = kvm_on_user_return; 289 user_return_notifier_register(&smsr->urn); 290 smsr->registered = true; 291 } 292 return 0; 293 } 294 EXPORT_SYMBOL_GPL(kvm_set_shared_msr); 295 296 static void drop_user_return_notifiers(void) 297 { 298 unsigned int cpu = smp_processor_id(); 299 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); 300 301 if (smsr->registered) 302 kvm_on_user_return(&smsr->urn); 303 } 304 305 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) 306 { 307 return vcpu->arch.apic_base; 308 } 309 EXPORT_SYMBOL_GPL(kvm_get_apic_base); 310 311 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 312 { 313 u64 old_state = vcpu->arch.apic_base & 314 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 315 u64 new_state = msr_info->data & 316 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE); 317 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff | 318 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE); 319 320 if ((msr_info->data & reserved_bits) || new_state == X2APIC_ENABLE) 321 return 1; 322 if (!msr_info->host_initiated && 323 ((new_state == MSR_IA32_APICBASE_ENABLE && 324 old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) || 325 (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) && 326 old_state == 0))) 327 return 1; 328 329 kvm_lapic_set_base(vcpu, msr_info->data); 330 return 0; 331 } 332 EXPORT_SYMBOL_GPL(kvm_set_apic_base); 333 334 asmlinkage __visible void kvm_spurious_fault(void) 335 { 336 /* Fault while not rebooting. We want the trace. */ 337 BUG(); 338 } 339 EXPORT_SYMBOL_GPL(kvm_spurious_fault); 340 341 #define EXCPT_BENIGN 0 342 #define EXCPT_CONTRIBUTORY 1 343 #define EXCPT_PF 2 344 345 static int exception_class(int vector) 346 { 347 switch (vector) { 348 case PF_VECTOR: 349 return EXCPT_PF; 350 case DE_VECTOR: 351 case TS_VECTOR: 352 case NP_VECTOR: 353 case SS_VECTOR: 354 case GP_VECTOR: 355 return EXCPT_CONTRIBUTORY; 356 default: 357 break; 358 } 359 return EXCPT_BENIGN; 360 } 361 362 #define EXCPT_FAULT 0 363 #define EXCPT_TRAP 1 364 #define EXCPT_ABORT 2 365 #define EXCPT_INTERRUPT 3 366 367 static int exception_type(int vector) 368 { 369 unsigned int mask; 370 371 if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) 372 return EXCPT_INTERRUPT; 373 374 mask = 1 << vector; 375 376 /* #DB is trap, as instruction watchpoints are handled elsewhere */ 377 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR))) 378 return EXCPT_TRAP; 379 380 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) 381 return EXCPT_ABORT; 382 383 /* Reserved exceptions will result in fault */ 384 return EXCPT_FAULT; 385 } 386 387 static void kvm_multiple_exception(struct kvm_vcpu *vcpu, 388 unsigned nr, bool has_error, u32 error_code, 389 bool reinject) 390 { 391 u32 prev_nr; 392 int class1, class2; 393 394 kvm_make_request(KVM_REQ_EVENT, vcpu); 395 396 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { 397 queue: 398 if (has_error && !is_protmode(vcpu)) 399 has_error = false; 400 if (reinject) { 401 /* 402 * On vmentry, vcpu->arch.exception.pending is only 403 * true if an event injection was blocked by 404 * nested_run_pending. In that case, however, 405 * vcpu_enter_guest requests an immediate exit, 406 * and the guest shouldn't proceed far enough to 407 * need reinjection. 408 */ 409 WARN_ON_ONCE(vcpu->arch.exception.pending); 410 vcpu->arch.exception.injected = true; 411 } else { 412 vcpu->arch.exception.pending = true; 413 vcpu->arch.exception.injected = false; 414 } 415 vcpu->arch.exception.has_error_code = has_error; 416 vcpu->arch.exception.nr = nr; 417 vcpu->arch.exception.error_code = error_code; 418 return; 419 } 420 421 /* to check exception */ 422 prev_nr = vcpu->arch.exception.nr; 423 if (prev_nr == DF_VECTOR) { 424 /* triple fault -> shutdown */ 425 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 426 return; 427 } 428 class1 = exception_class(prev_nr); 429 class2 = exception_class(nr); 430 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) 431 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { 432 /* 433 * Generate double fault per SDM Table 5-5. Set 434 * exception.pending = true so that the double fault 435 * can trigger a nested vmexit. 436 */ 437 vcpu->arch.exception.pending = true; 438 vcpu->arch.exception.injected = false; 439 vcpu->arch.exception.has_error_code = true; 440 vcpu->arch.exception.nr = DF_VECTOR; 441 vcpu->arch.exception.error_code = 0; 442 } else 443 /* replace previous exception with a new one in a hope 444 that instruction re-execution will regenerate lost 445 exception */ 446 goto queue; 447 } 448 449 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) 450 { 451 kvm_multiple_exception(vcpu, nr, false, 0, false); 452 } 453 EXPORT_SYMBOL_GPL(kvm_queue_exception); 454 455 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) 456 { 457 kvm_multiple_exception(vcpu, nr, false, 0, true); 458 } 459 EXPORT_SYMBOL_GPL(kvm_requeue_exception); 460 461 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) 462 { 463 if (err) 464 kvm_inject_gp(vcpu, 0); 465 else 466 return kvm_skip_emulated_instruction(vcpu); 467 468 return 1; 469 } 470 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); 471 472 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 473 { 474 ++vcpu->stat.pf_guest; 475 vcpu->arch.exception.nested_apf = 476 is_guest_mode(vcpu) && fault->async_page_fault; 477 if (vcpu->arch.exception.nested_apf) 478 vcpu->arch.apf.nested_apf_token = fault->address; 479 else 480 vcpu->arch.cr2 = fault->address; 481 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); 482 } 483 EXPORT_SYMBOL_GPL(kvm_inject_page_fault); 484 485 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) 486 { 487 if (mmu_is_nested(vcpu) && !fault->nested_page_fault) 488 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); 489 else 490 vcpu->arch.mmu.inject_page_fault(vcpu, fault); 491 492 return fault->nested_page_fault; 493 } 494 495 void kvm_inject_nmi(struct kvm_vcpu *vcpu) 496 { 497 atomic_inc(&vcpu->arch.nmi_queued); 498 kvm_make_request(KVM_REQ_NMI, vcpu); 499 } 500 EXPORT_SYMBOL_GPL(kvm_inject_nmi); 501 502 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 503 { 504 kvm_multiple_exception(vcpu, nr, true, error_code, false); 505 } 506 EXPORT_SYMBOL_GPL(kvm_queue_exception_e); 507 508 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) 509 { 510 kvm_multiple_exception(vcpu, nr, true, error_code, true); 511 } 512 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); 513 514 /* 515 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue 516 * a #GP and return false. 517 */ 518 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) 519 { 520 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) 521 return true; 522 kvm_queue_exception_e(vcpu, GP_VECTOR, 0); 523 return false; 524 } 525 EXPORT_SYMBOL_GPL(kvm_require_cpl); 526 527 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) 528 { 529 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE)) 530 return true; 531 532 kvm_queue_exception(vcpu, UD_VECTOR); 533 return false; 534 } 535 EXPORT_SYMBOL_GPL(kvm_require_dr); 536 537 /* 538 * This function will be used to read from the physical memory of the currently 539 * running guest. The difference to kvm_vcpu_read_guest_page is that this function 540 * can read from guest physical or from the guest's guest physical memory. 541 */ 542 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, 543 gfn_t ngfn, void *data, int offset, int len, 544 u32 access) 545 { 546 struct x86_exception exception; 547 gfn_t real_gfn; 548 gpa_t ngpa; 549 550 ngpa = gfn_to_gpa(ngfn); 551 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception); 552 if (real_gfn == UNMAPPED_GVA) 553 return -EFAULT; 554 555 real_gfn = gpa_to_gfn(real_gfn); 556 557 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len); 558 } 559 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); 560 561 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, 562 void *data, int offset, int len, u32 access) 563 { 564 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, 565 data, offset, len, access); 566 } 567 568 /* 569 * Load the pae pdptrs. Return true is they are all valid. 570 */ 571 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) 572 { 573 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; 574 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; 575 int i; 576 int ret; 577 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; 578 579 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, 580 offset * sizeof(u64), sizeof(pdpte), 581 PFERR_USER_MASK|PFERR_WRITE_MASK); 582 if (ret < 0) { 583 ret = 0; 584 goto out; 585 } 586 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { 587 if ((pdpte[i] & PT_PRESENT_MASK) && 588 (pdpte[i] & 589 vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) { 590 ret = 0; 591 goto out; 592 } 593 } 594 ret = 1; 595 596 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); 597 __set_bit(VCPU_EXREG_PDPTR, 598 (unsigned long *)&vcpu->arch.regs_avail); 599 __set_bit(VCPU_EXREG_PDPTR, 600 (unsigned long *)&vcpu->arch.regs_dirty); 601 out: 602 603 return ret; 604 } 605 EXPORT_SYMBOL_GPL(load_pdptrs); 606 607 bool pdptrs_changed(struct kvm_vcpu *vcpu) 608 { 609 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; 610 bool changed = true; 611 int offset; 612 gfn_t gfn; 613 int r; 614 615 if (is_long_mode(vcpu) || !is_pae(vcpu)) 616 return false; 617 618 if (!test_bit(VCPU_EXREG_PDPTR, 619 (unsigned long *)&vcpu->arch.regs_avail)) 620 return true; 621 622 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT; 623 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1); 624 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), 625 PFERR_USER_MASK | PFERR_WRITE_MASK); 626 if (r < 0) 627 goto out; 628 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; 629 out: 630 631 return changed; 632 } 633 EXPORT_SYMBOL_GPL(pdptrs_changed); 634 635 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 636 { 637 unsigned long old_cr0 = kvm_read_cr0(vcpu); 638 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP; 639 640 cr0 |= X86_CR0_ET; 641 642 #ifdef CONFIG_X86_64 643 if (cr0 & 0xffffffff00000000UL) 644 return 1; 645 #endif 646 647 cr0 &= ~CR0_RESERVED_BITS; 648 649 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) 650 return 1; 651 652 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) 653 return 1; 654 655 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { 656 #ifdef CONFIG_X86_64 657 if ((vcpu->arch.efer & EFER_LME)) { 658 int cs_db, cs_l; 659 660 if (!is_pae(vcpu)) 661 return 1; 662 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 663 if (cs_l) 664 return 1; 665 } else 666 #endif 667 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 668 kvm_read_cr3(vcpu))) 669 return 1; 670 } 671 672 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) 673 return 1; 674 675 kvm_x86_ops->set_cr0(vcpu, cr0); 676 677 if ((cr0 ^ old_cr0) & X86_CR0_PG) { 678 kvm_clear_async_pf_completion_queue(vcpu); 679 kvm_async_pf_hash_reset(vcpu); 680 } 681 682 if ((cr0 ^ old_cr0) & update_bits) 683 kvm_mmu_reset_context(vcpu); 684 685 if (((cr0 ^ old_cr0) & X86_CR0_CD) && 686 kvm_arch_has_noncoherent_dma(vcpu->kvm) && 687 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 688 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); 689 690 return 0; 691 } 692 EXPORT_SYMBOL_GPL(kvm_set_cr0); 693 694 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) 695 { 696 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); 697 } 698 EXPORT_SYMBOL_GPL(kvm_lmsw); 699 700 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) 701 { 702 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && 703 !vcpu->guest_xcr0_loaded) { 704 /* kvm_set_xcr() also depends on this */ 705 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); 706 vcpu->guest_xcr0_loaded = 1; 707 } 708 } 709 710 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) 711 { 712 if (vcpu->guest_xcr0_loaded) { 713 if (vcpu->arch.xcr0 != host_xcr0) 714 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); 715 vcpu->guest_xcr0_loaded = 0; 716 } 717 } 718 719 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 720 { 721 u64 xcr0 = xcr; 722 u64 old_xcr0 = vcpu->arch.xcr0; 723 u64 valid_bits; 724 725 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ 726 if (index != XCR_XFEATURE_ENABLED_MASK) 727 return 1; 728 if (!(xcr0 & XFEATURE_MASK_FP)) 729 return 1; 730 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) 731 return 1; 732 733 /* 734 * Do not allow the guest to set bits that we do not support 735 * saving. However, xcr0 bit 0 is always set, even if the 736 * emulated CPU does not support XSAVE (see fx_init). 737 */ 738 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; 739 if (xcr0 & ~valid_bits) 740 return 1; 741 742 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != 743 (!(xcr0 & XFEATURE_MASK_BNDCSR))) 744 return 1; 745 746 if (xcr0 & XFEATURE_MASK_AVX512) { 747 if (!(xcr0 & XFEATURE_MASK_YMM)) 748 return 1; 749 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) 750 return 1; 751 } 752 vcpu->arch.xcr0 = xcr0; 753 754 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) 755 kvm_update_cpuid(vcpu); 756 return 0; 757 } 758 759 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) 760 { 761 if (kvm_x86_ops->get_cpl(vcpu) != 0 || 762 __kvm_set_xcr(vcpu, index, xcr)) { 763 kvm_inject_gp(vcpu, 0); 764 return 1; 765 } 766 return 0; 767 } 768 EXPORT_SYMBOL_GPL(kvm_set_xcr); 769 770 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 771 { 772 unsigned long old_cr4 = kvm_read_cr4(vcpu); 773 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE | 774 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE; 775 776 if (cr4 & CR4_RESERVED_BITS) 777 return 1; 778 779 if (!guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && (cr4 & X86_CR4_OSXSAVE)) 780 return 1; 781 782 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMEP) && (cr4 & X86_CR4_SMEP)) 783 return 1; 784 785 if (!guest_cpuid_has(vcpu, X86_FEATURE_SMAP) && (cr4 & X86_CR4_SMAP)) 786 return 1; 787 788 if (!guest_cpuid_has(vcpu, X86_FEATURE_FSGSBASE) && (cr4 & X86_CR4_FSGSBASE)) 789 return 1; 790 791 if (!guest_cpuid_has(vcpu, X86_FEATURE_PKU) && (cr4 & X86_CR4_PKE)) 792 return 1; 793 794 if (!guest_cpuid_has(vcpu, X86_FEATURE_LA57) && (cr4 & X86_CR4_LA57)) 795 return 1; 796 797 if (is_long_mode(vcpu)) { 798 if (!(cr4 & X86_CR4_PAE)) 799 return 1; 800 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) 801 && ((cr4 ^ old_cr4) & pdptr_bits) 802 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, 803 kvm_read_cr3(vcpu))) 804 return 1; 805 806 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { 807 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 808 return 1; 809 810 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ 811 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) 812 return 1; 813 } 814 815 if (kvm_x86_ops->set_cr4(vcpu, cr4)) 816 return 1; 817 818 if (((cr4 ^ old_cr4) & pdptr_bits) || 819 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) 820 kvm_mmu_reset_context(vcpu); 821 822 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 823 kvm_update_cpuid(vcpu); 824 825 return 0; 826 } 827 EXPORT_SYMBOL_GPL(kvm_set_cr4); 828 829 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 830 { 831 #ifdef CONFIG_X86_64 832 cr3 &= ~CR3_PCID_INVD; 833 #endif 834 835 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { 836 kvm_mmu_sync_roots(vcpu); 837 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 838 return 0; 839 } 840 841 if (is_long_mode(vcpu) && 842 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 62))) 843 return 1; 844 else if (is_pae(vcpu) && is_paging(vcpu) && 845 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) 846 return 1; 847 848 vcpu->arch.cr3 = cr3; 849 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 850 kvm_mmu_new_cr3(vcpu); 851 return 0; 852 } 853 EXPORT_SYMBOL_GPL(kvm_set_cr3); 854 855 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) 856 { 857 if (cr8 & CR8_RESERVED_BITS) 858 return 1; 859 if (lapic_in_kernel(vcpu)) 860 kvm_lapic_set_tpr(vcpu, cr8); 861 else 862 vcpu->arch.cr8 = cr8; 863 return 0; 864 } 865 EXPORT_SYMBOL_GPL(kvm_set_cr8); 866 867 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) 868 { 869 if (lapic_in_kernel(vcpu)) 870 return kvm_lapic_get_cr8(vcpu); 871 else 872 return vcpu->arch.cr8; 873 } 874 EXPORT_SYMBOL_GPL(kvm_get_cr8); 875 876 static void kvm_update_dr0123(struct kvm_vcpu *vcpu) 877 { 878 int i; 879 880 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { 881 for (i = 0; i < KVM_NR_DB_REGS; i++) 882 vcpu->arch.eff_db[i] = vcpu->arch.db[i]; 883 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD; 884 } 885 } 886 887 static void kvm_update_dr6(struct kvm_vcpu *vcpu) 888 { 889 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 890 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6); 891 } 892 893 static void kvm_update_dr7(struct kvm_vcpu *vcpu) 894 { 895 unsigned long dr7; 896 897 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 898 dr7 = vcpu->arch.guest_debug_dr7; 899 else 900 dr7 = vcpu->arch.dr7; 901 kvm_x86_ops->set_dr7(vcpu, dr7); 902 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; 903 if (dr7 & DR7_BP_EN_MASK) 904 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; 905 } 906 907 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) 908 { 909 u64 fixed = DR6_FIXED_1; 910 911 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM)) 912 fixed |= DR6_RTM; 913 return fixed; 914 } 915 916 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 917 { 918 switch (dr) { 919 case 0 ... 3: 920 vcpu->arch.db[dr] = val; 921 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) 922 vcpu->arch.eff_db[dr] = val; 923 break; 924 case 4: 925 /* fall through */ 926 case 6: 927 if (val & 0xffffffff00000000ULL) 928 return -1; /* #GP */ 929 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); 930 kvm_update_dr6(vcpu); 931 break; 932 case 5: 933 /* fall through */ 934 default: /* 7 */ 935 if (val & 0xffffffff00000000ULL) 936 return -1; /* #GP */ 937 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; 938 kvm_update_dr7(vcpu); 939 break; 940 } 941 942 return 0; 943 } 944 945 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) 946 { 947 if (__kvm_set_dr(vcpu, dr, val)) { 948 kvm_inject_gp(vcpu, 0); 949 return 1; 950 } 951 return 0; 952 } 953 EXPORT_SYMBOL_GPL(kvm_set_dr); 954 955 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) 956 { 957 switch (dr) { 958 case 0 ... 3: 959 *val = vcpu->arch.db[dr]; 960 break; 961 case 4: 962 /* fall through */ 963 case 6: 964 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) 965 *val = vcpu->arch.dr6; 966 else 967 *val = kvm_x86_ops->get_dr6(vcpu); 968 break; 969 case 5: 970 /* fall through */ 971 default: /* 7 */ 972 *val = vcpu->arch.dr7; 973 break; 974 } 975 return 0; 976 } 977 EXPORT_SYMBOL_GPL(kvm_get_dr); 978 979 bool kvm_rdpmc(struct kvm_vcpu *vcpu) 980 { 981 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 982 u64 data; 983 int err; 984 985 err = kvm_pmu_rdpmc(vcpu, ecx, &data); 986 if (err) 987 return err; 988 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); 989 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); 990 return err; 991 } 992 EXPORT_SYMBOL_GPL(kvm_rdpmc); 993 994 /* 995 * List of msr numbers which we expose to userspace through KVM_GET_MSRS 996 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. 997 * 998 * This list is modified at module load time to reflect the 999 * capabilities of the host cpu. This capabilities test skips MSRs that are 1000 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs 1001 * may depend on host virtualization features rather than host cpu features. 1002 */ 1003 1004 static u32 msrs_to_save[] = { 1005 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, 1006 MSR_STAR, 1007 #ifdef CONFIG_X86_64 1008 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, 1009 #endif 1010 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, 1011 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, 1012 MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES 1013 }; 1014 1015 static unsigned num_msrs_to_save; 1016 1017 static u32 emulated_msrs[] = { 1018 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, 1019 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, 1020 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, 1021 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, 1022 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, 1023 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, 1024 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, 1025 HV_X64_MSR_RESET, 1026 HV_X64_MSR_VP_INDEX, 1027 HV_X64_MSR_VP_RUNTIME, 1028 HV_X64_MSR_SCONTROL, 1029 HV_X64_MSR_STIMER0_CONFIG, 1030 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, 1031 MSR_KVM_PV_EOI_EN, 1032 1033 MSR_IA32_TSC_ADJUST, 1034 MSR_IA32_TSCDEADLINE, 1035 MSR_IA32_MISC_ENABLE, 1036 MSR_IA32_MCG_STATUS, 1037 MSR_IA32_MCG_CTL, 1038 MSR_IA32_MCG_EXT_CTL, 1039 MSR_IA32_SMBASE, 1040 MSR_PLATFORM_INFO, 1041 MSR_MISC_FEATURES_ENABLES, 1042 }; 1043 1044 static unsigned num_emulated_msrs; 1045 1046 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) 1047 { 1048 if (efer & efer_reserved_bits) 1049 return false; 1050 1051 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT)) 1052 return false; 1053 1054 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM)) 1055 return false; 1056 1057 return true; 1058 } 1059 EXPORT_SYMBOL_GPL(kvm_valid_efer); 1060 1061 static int set_efer(struct kvm_vcpu *vcpu, u64 efer) 1062 { 1063 u64 old_efer = vcpu->arch.efer; 1064 1065 if (!kvm_valid_efer(vcpu, efer)) 1066 return 1; 1067 1068 if (is_paging(vcpu) 1069 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) 1070 return 1; 1071 1072 efer &= ~EFER_LMA; 1073 efer |= vcpu->arch.efer & EFER_LMA; 1074 1075 kvm_x86_ops->set_efer(vcpu, efer); 1076 1077 /* Update reserved bits */ 1078 if ((efer ^ old_efer) & EFER_NX) 1079 kvm_mmu_reset_context(vcpu); 1080 1081 return 0; 1082 } 1083 1084 void kvm_enable_efer_bits(u64 mask) 1085 { 1086 efer_reserved_bits &= ~mask; 1087 } 1088 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); 1089 1090 /* 1091 * Writes msr value into into the appropriate "register". 1092 * Returns 0 on success, non-0 otherwise. 1093 * Assumes vcpu_load() was already called. 1094 */ 1095 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 1096 { 1097 switch (msr->index) { 1098 case MSR_FS_BASE: 1099 case MSR_GS_BASE: 1100 case MSR_KERNEL_GS_BASE: 1101 case MSR_CSTAR: 1102 case MSR_LSTAR: 1103 if (is_noncanonical_address(msr->data, vcpu)) 1104 return 1; 1105 break; 1106 case MSR_IA32_SYSENTER_EIP: 1107 case MSR_IA32_SYSENTER_ESP: 1108 /* 1109 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if 1110 * non-canonical address is written on Intel but not on 1111 * AMD (which ignores the top 32-bits, because it does 1112 * not implement 64-bit SYSENTER). 1113 * 1114 * 64-bit code should hence be able to write a non-canonical 1115 * value on AMD. Making the address canonical ensures that 1116 * vmentry does not fail on Intel after writing a non-canonical 1117 * value, and that something deterministic happens if the guest 1118 * invokes 64-bit SYSENTER. 1119 */ 1120 msr->data = get_canonical(msr->data, vcpu_virt_addr_bits(vcpu)); 1121 } 1122 return kvm_x86_ops->set_msr(vcpu, msr); 1123 } 1124 EXPORT_SYMBOL_GPL(kvm_set_msr); 1125 1126 /* 1127 * Adapt set_msr() to msr_io()'s calling convention 1128 */ 1129 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1130 { 1131 struct msr_data msr; 1132 int r; 1133 1134 msr.index = index; 1135 msr.host_initiated = true; 1136 r = kvm_get_msr(vcpu, &msr); 1137 if (r) 1138 return r; 1139 1140 *data = msr.data; 1141 return 0; 1142 } 1143 1144 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) 1145 { 1146 struct msr_data msr; 1147 1148 msr.data = *data; 1149 msr.index = index; 1150 msr.host_initiated = true; 1151 return kvm_set_msr(vcpu, &msr); 1152 } 1153 1154 #ifdef CONFIG_X86_64 1155 struct pvclock_gtod_data { 1156 seqcount_t seq; 1157 1158 struct { /* extract of a clocksource struct */ 1159 int vclock_mode; 1160 u64 cycle_last; 1161 u64 mask; 1162 u32 mult; 1163 u32 shift; 1164 } clock; 1165 1166 u64 boot_ns; 1167 u64 nsec_base; 1168 u64 wall_time_sec; 1169 }; 1170 1171 static struct pvclock_gtod_data pvclock_gtod_data; 1172 1173 static void update_pvclock_gtod(struct timekeeper *tk) 1174 { 1175 struct pvclock_gtod_data *vdata = &pvclock_gtod_data; 1176 u64 boot_ns; 1177 1178 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot)); 1179 1180 write_seqcount_begin(&vdata->seq); 1181 1182 /* copy pvclock gtod data */ 1183 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode; 1184 vdata->clock.cycle_last = tk->tkr_mono.cycle_last; 1185 vdata->clock.mask = tk->tkr_mono.mask; 1186 vdata->clock.mult = tk->tkr_mono.mult; 1187 vdata->clock.shift = tk->tkr_mono.shift; 1188 1189 vdata->boot_ns = boot_ns; 1190 vdata->nsec_base = tk->tkr_mono.xtime_nsec; 1191 1192 vdata->wall_time_sec = tk->xtime_sec; 1193 1194 write_seqcount_end(&vdata->seq); 1195 } 1196 #endif 1197 1198 void kvm_set_pending_timer(struct kvm_vcpu *vcpu) 1199 { 1200 /* 1201 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in 1202 * vcpu_enter_guest. This function is only called from 1203 * the physical CPU that is running vcpu. 1204 */ 1205 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu); 1206 } 1207 1208 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) 1209 { 1210 int version; 1211 int r; 1212 struct pvclock_wall_clock wc; 1213 struct timespec64 boot; 1214 1215 if (!wall_clock) 1216 return; 1217 1218 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); 1219 if (r) 1220 return; 1221 1222 if (version & 1) 1223 ++version; /* first time write, random junk */ 1224 1225 ++version; 1226 1227 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) 1228 return; 1229 1230 /* 1231 * The guest calculates current wall clock time by adding 1232 * system time (updated by kvm_guest_time_update below) to the 1233 * wall clock specified here. guest system time equals host 1234 * system time for us, thus we must fill in host boot time here. 1235 */ 1236 getboottime64(&boot); 1237 1238 if (kvm->arch.kvmclock_offset) { 1239 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset); 1240 boot = timespec64_sub(boot, ts); 1241 } 1242 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */ 1243 wc.nsec = boot.tv_nsec; 1244 wc.version = version; 1245 1246 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); 1247 1248 version++; 1249 kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); 1250 } 1251 1252 static uint32_t div_frac(uint32_t dividend, uint32_t divisor) 1253 { 1254 do_shl32_div32(dividend, divisor); 1255 return dividend; 1256 } 1257 1258 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, 1259 s8 *pshift, u32 *pmultiplier) 1260 { 1261 uint64_t scaled64; 1262 int32_t shift = 0; 1263 uint64_t tps64; 1264 uint32_t tps32; 1265 1266 tps64 = base_hz; 1267 scaled64 = scaled_hz; 1268 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { 1269 tps64 >>= 1; 1270 shift--; 1271 } 1272 1273 tps32 = (uint32_t)tps64; 1274 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { 1275 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) 1276 scaled64 >>= 1; 1277 else 1278 tps32 <<= 1; 1279 shift++; 1280 } 1281 1282 *pshift = shift; 1283 *pmultiplier = div_frac(scaled64, tps32); 1284 1285 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n", 1286 __func__, base_hz, scaled_hz, shift, *pmultiplier); 1287 } 1288 1289 #ifdef CONFIG_X86_64 1290 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); 1291 #endif 1292 1293 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); 1294 static unsigned long max_tsc_khz; 1295 1296 static u32 adjust_tsc_khz(u32 khz, s32 ppm) 1297 { 1298 u64 v = (u64)khz * (1000000 + ppm); 1299 do_div(v, 1000000); 1300 return v; 1301 } 1302 1303 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) 1304 { 1305 u64 ratio; 1306 1307 /* Guest TSC same frequency as host TSC? */ 1308 if (!scale) { 1309 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1310 return 0; 1311 } 1312 1313 /* TSC scaling supported? */ 1314 if (!kvm_has_tsc_control) { 1315 if (user_tsc_khz > tsc_khz) { 1316 vcpu->arch.tsc_catchup = 1; 1317 vcpu->arch.tsc_always_catchup = 1; 1318 return 0; 1319 } else { 1320 WARN(1, "user requested TSC rate below hardware speed\n"); 1321 return -1; 1322 } 1323 } 1324 1325 /* TSC scaling required - calculate ratio */ 1326 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits, 1327 user_tsc_khz, tsc_khz); 1328 1329 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) { 1330 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", 1331 user_tsc_khz); 1332 return -1; 1333 } 1334 1335 vcpu->arch.tsc_scaling_ratio = ratio; 1336 return 0; 1337 } 1338 1339 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) 1340 { 1341 u32 thresh_lo, thresh_hi; 1342 int use_scaling = 0; 1343 1344 /* tsc_khz can be zero if TSC calibration fails */ 1345 if (user_tsc_khz == 0) { 1346 /* set tsc_scaling_ratio to a safe value */ 1347 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio; 1348 return -1; 1349 } 1350 1351 /* Compute a scale to convert nanoseconds in TSC cycles */ 1352 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, 1353 &vcpu->arch.virtual_tsc_shift, 1354 &vcpu->arch.virtual_tsc_mult); 1355 vcpu->arch.virtual_tsc_khz = user_tsc_khz; 1356 1357 /* 1358 * Compute the variation in TSC rate which is acceptable 1359 * within the range of tolerance and decide if the 1360 * rate being applied is within that bounds of the hardware 1361 * rate. If so, no scaling or compensation need be done. 1362 */ 1363 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); 1364 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); 1365 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { 1366 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi); 1367 use_scaling = 1; 1368 } 1369 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); 1370 } 1371 1372 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) 1373 { 1374 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, 1375 vcpu->arch.virtual_tsc_mult, 1376 vcpu->arch.virtual_tsc_shift); 1377 tsc += vcpu->arch.this_tsc_write; 1378 return tsc; 1379 } 1380 1381 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) 1382 { 1383 #ifdef CONFIG_X86_64 1384 bool vcpus_matched; 1385 struct kvm_arch *ka = &vcpu->kvm->arch; 1386 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1387 1388 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1389 atomic_read(&vcpu->kvm->online_vcpus)); 1390 1391 /* 1392 * Once the masterclock is enabled, always perform request in 1393 * order to update it. 1394 * 1395 * In order to enable masterclock, the host clocksource must be TSC 1396 * and the vcpus need to have matched TSCs. When that happens, 1397 * perform request to enable masterclock. 1398 */ 1399 if (ka->use_master_clock || 1400 (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched)) 1401 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 1402 1403 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, 1404 atomic_read(&vcpu->kvm->online_vcpus), 1405 ka->use_master_clock, gtod->clock.vclock_mode); 1406 #endif 1407 } 1408 1409 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) 1410 { 1411 u64 curr_offset = vcpu->arch.tsc_offset; 1412 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; 1413 } 1414 1415 /* 1416 * Multiply tsc by a fixed point number represented by ratio. 1417 * 1418 * The most significant 64-N bits (mult) of ratio represent the 1419 * integral part of the fixed point number; the remaining N bits 1420 * (frac) represent the fractional part, ie. ratio represents a fixed 1421 * point number (mult + frac * 2^(-N)). 1422 * 1423 * N equals to kvm_tsc_scaling_ratio_frac_bits. 1424 */ 1425 static inline u64 __scale_tsc(u64 ratio, u64 tsc) 1426 { 1427 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits); 1428 } 1429 1430 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc) 1431 { 1432 u64 _tsc = tsc; 1433 u64 ratio = vcpu->arch.tsc_scaling_ratio; 1434 1435 if (ratio != kvm_default_tsc_scaling_ratio) 1436 _tsc = __scale_tsc(ratio, tsc); 1437 1438 return _tsc; 1439 } 1440 EXPORT_SYMBOL_GPL(kvm_scale_tsc); 1441 1442 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) 1443 { 1444 u64 tsc; 1445 1446 tsc = kvm_scale_tsc(vcpu, rdtsc()); 1447 1448 return target_tsc - tsc; 1449 } 1450 1451 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) 1452 { 1453 return vcpu->arch.tsc_offset + kvm_scale_tsc(vcpu, host_tsc); 1454 } 1455 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); 1456 1457 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1458 { 1459 kvm_x86_ops->write_tsc_offset(vcpu, offset); 1460 vcpu->arch.tsc_offset = offset; 1461 } 1462 1463 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) 1464 { 1465 struct kvm *kvm = vcpu->kvm; 1466 u64 offset, ns, elapsed; 1467 unsigned long flags; 1468 bool matched; 1469 bool already_matched; 1470 u64 data = msr->data; 1471 bool synchronizing = false; 1472 1473 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); 1474 offset = kvm_compute_tsc_offset(vcpu, data); 1475 ns = ktime_get_boot_ns(); 1476 elapsed = ns - kvm->arch.last_tsc_nsec; 1477 1478 if (vcpu->arch.virtual_tsc_khz) { 1479 if (data == 0 && msr->host_initiated) { 1480 /* 1481 * detection of vcpu initialization -- need to sync 1482 * with other vCPUs. This particularly helps to keep 1483 * kvm_clock stable after CPU hotplug 1484 */ 1485 synchronizing = true; 1486 } else { 1487 u64 tsc_exp = kvm->arch.last_tsc_write + 1488 nsec_to_cycles(vcpu, elapsed); 1489 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; 1490 /* 1491 * Special case: TSC write with a small delta (1 second) 1492 * of virtual cycle time against real time is 1493 * interpreted as an attempt to synchronize the CPU. 1494 */ 1495 synchronizing = data < tsc_exp + tsc_hz && 1496 data + tsc_hz > tsc_exp; 1497 } 1498 } 1499 1500 /* 1501 * For a reliable TSC, we can match TSC offsets, and for an unstable 1502 * TSC, we add elapsed time in this computation. We could let the 1503 * compensation code attempt to catch up if we fall behind, but 1504 * it's better to try to match offsets from the beginning. 1505 */ 1506 if (synchronizing && 1507 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { 1508 if (!check_tsc_unstable()) { 1509 offset = kvm->arch.cur_tsc_offset; 1510 pr_debug("kvm: matched tsc offset for %llu\n", data); 1511 } else { 1512 u64 delta = nsec_to_cycles(vcpu, elapsed); 1513 data += delta; 1514 offset = kvm_compute_tsc_offset(vcpu, data); 1515 pr_debug("kvm: adjusted tsc offset by %llu\n", delta); 1516 } 1517 matched = true; 1518 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation); 1519 } else { 1520 /* 1521 * We split periods of matched TSC writes into generations. 1522 * For each generation, we track the original measured 1523 * nanosecond time, offset, and write, so if TSCs are in 1524 * sync, we can match exact offset, and if not, we can match 1525 * exact software computation in compute_guest_tsc() 1526 * 1527 * These values are tracked in kvm->arch.cur_xxx variables. 1528 */ 1529 kvm->arch.cur_tsc_generation++; 1530 kvm->arch.cur_tsc_nsec = ns; 1531 kvm->arch.cur_tsc_write = data; 1532 kvm->arch.cur_tsc_offset = offset; 1533 matched = false; 1534 pr_debug("kvm: new tsc generation %llu, clock %llu\n", 1535 kvm->arch.cur_tsc_generation, data); 1536 } 1537 1538 /* 1539 * We also track th most recent recorded KHZ, write and time to 1540 * allow the matching interval to be extended at each write. 1541 */ 1542 kvm->arch.last_tsc_nsec = ns; 1543 kvm->arch.last_tsc_write = data; 1544 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; 1545 1546 vcpu->arch.last_guest_tsc = data; 1547 1548 /* Keep track of which generation this VCPU has synchronized to */ 1549 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; 1550 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; 1551 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; 1552 1553 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) 1554 update_ia32_tsc_adjust_msr(vcpu, offset); 1555 1556 kvm_vcpu_write_tsc_offset(vcpu, offset); 1557 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); 1558 1559 spin_lock(&kvm->arch.pvclock_gtod_sync_lock); 1560 if (!matched) { 1561 kvm->arch.nr_vcpus_matched_tsc = 0; 1562 } else if (!already_matched) { 1563 kvm->arch.nr_vcpus_matched_tsc++; 1564 } 1565 1566 kvm_track_tsc_matching(vcpu); 1567 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); 1568 } 1569 1570 EXPORT_SYMBOL_GPL(kvm_write_tsc); 1571 1572 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, 1573 s64 adjustment) 1574 { 1575 kvm_vcpu_write_tsc_offset(vcpu, vcpu->arch.tsc_offset + adjustment); 1576 } 1577 1578 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) 1579 { 1580 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio) 1581 WARN_ON(adjustment < 0); 1582 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment); 1583 adjust_tsc_offset_guest(vcpu, adjustment); 1584 } 1585 1586 #ifdef CONFIG_X86_64 1587 1588 static u64 read_tsc(void) 1589 { 1590 u64 ret = (u64)rdtsc_ordered(); 1591 u64 last = pvclock_gtod_data.clock.cycle_last; 1592 1593 if (likely(ret >= last)) 1594 return ret; 1595 1596 /* 1597 * GCC likes to generate cmov here, but this branch is extremely 1598 * predictable (it's just a function of time and the likely is 1599 * very likely) and there's a data dependence, so force GCC 1600 * to generate a branch instead. I don't barrier() because 1601 * we don't actually need a barrier, and if this function 1602 * ever gets inlined it will generate worse code. 1603 */ 1604 asm volatile (""); 1605 return last; 1606 } 1607 1608 static inline u64 vgettsc(u64 *cycle_now) 1609 { 1610 long v; 1611 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1612 1613 *cycle_now = read_tsc(); 1614 1615 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; 1616 return v * gtod->clock.mult; 1617 } 1618 1619 static int do_monotonic_boot(s64 *t, u64 *cycle_now) 1620 { 1621 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1622 unsigned long seq; 1623 int mode; 1624 u64 ns; 1625 1626 do { 1627 seq = read_seqcount_begin(>od->seq); 1628 mode = gtod->clock.vclock_mode; 1629 ns = gtod->nsec_base; 1630 ns += vgettsc(cycle_now); 1631 ns >>= gtod->clock.shift; 1632 ns += gtod->boot_ns; 1633 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1634 *t = ns; 1635 1636 return mode; 1637 } 1638 1639 static int do_realtime(struct timespec *ts, u64 *cycle_now) 1640 { 1641 struct pvclock_gtod_data *gtod = &pvclock_gtod_data; 1642 unsigned long seq; 1643 int mode; 1644 u64 ns; 1645 1646 do { 1647 seq = read_seqcount_begin(>od->seq); 1648 mode = gtod->clock.vclock_mode; 1649 ts->tv_sec = gtod->wall_time_sec; 1650 ns = gtod->nsec_base; 1651 ns += vgettsc(cycle_now); 1652 ns >>= gtod->clock.shift; 1653 } while (unlikely(read_seqcount_retry(>od->seq, seq))); 1654 1655 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); 1656 ts->tv_nsec = ns; 1657 1658 return mode; 1659 } 1660 1661 /* returns true if host is using tsc clocksource */ 1662 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *cycle_now) 1663 { 1664 /* checked again under seqlock below */ 1665 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1666 return false; 1667 1668 return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC; 1669 } 1670 1671 /* returns true if host is using tsc clocksource */ 1672 static bool kvm_get_walltime_and_clockread(struct timespec *ts, 1673 u64 *cycle_now) 1674 { 1675 /* checked again under seqlock below */ 1676 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) 1677 return false; 1678 1679 return do_realtime(ts, cycle_now) == VCLOCK_TSC; 1680 } 1681 #endif 1682 1683 /* 1684 * 1685 * Assuming a stable TSC across physical CPUS, and a stable TSC 1686 * across virtual CPUs, the following condition is possible. 1687 * Each numbered line represents an event visible to both 1688 * CPUs at the next numbered event. 1689 * 1690 * "timespecX" represents host monotonic time. "tscX" represents 1691 * RDTSC value. 1692 * 1693 * VCPU0 on CPU0 | VCPU1 on CPU1 1694 * 1695 * 1. read timespec0,tsc0 1696 * 2. | timespec1 = timespec0 + N 1697 * | tsc1 = tsc0 + M 1698 * 3. transition to guest | transition to guest 1699 * 4. ret0 = timespec0 + (rdtsc - tsc0) | 1700 * 5. | ret1 = timespec1 + (rdtsc - tsc1) 1701 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) 1702 * 1703 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: 1704 * 1705 * - ret0 < ret1 1706 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) 1707 * ... 1708 * - 0 < N - M => M < N 1709 * 1710 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not 1711 * always the case (the difference between two distinct xtime instances 1712 * might be smaller then the difference between corresponding TSC reads, 1713 * when updating guest vcpus pvclock areas). 1714 * 1715 * To avoid that problem, do not allow visibility of distinct 1716 * system_timestamp/tsc_timestamp values simultaneously: use a master 1717 * copy of host monotonic time values. Update that master copy 1718 * in lockstep. 1719 * 1720 * Rely on synchronization of host TSCs and guest TSCs for monotonicity. 1721 * 1722 */ 1723 1724 static void pvclock_update_vm_gtod_copy(struct kvm *kvm) 1725 { 1726 #ifdef CONFIG_X86_64 1727 struct kvm_arch *ka = &kvm->arch; 1728 int vclock_mode; 1729 bool host_tsc_clocksource, vcpus_matched; 1730 1731 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == 1732 atomic_read(&kvm->online_vcpus)); 1733 1734 /* 1735 * If the host uses TSC clock, then passthrough TSC as stable 1736 * to the guest. 1737 */ 1738 host_tsc_clocksource = kvm_get_time_and_clockread( 1739 &ka->master_kernel_ns, 1740 &ka->master_cycle_now); 1741 1742 ka->use_master_clock = host_tsc_clocksource && vcpus_matched 1743 && !ka->backwards_tsc_observed 1744 && !ka->boot_vcpu_runs_old_kvmclock; 1745 1746 if (ka->use_master_clock) 1747 atomic_set(&kvm_guest_has_master_clock, 1); 1748 1749 vclock_mode = pvclock_gtod_data.clock.vclock_mode; 1750 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, 1751 vcpus_matched); 1752 #endif 1753 } 1754 1755 void kvm_make_mclock_inprogress_request(struct kvm *kvm) 1756 { 1757 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); 1758 } 1759 1760 static void kvm_gen_update_masterclock(struct kvm *kvm) 1761 { 1762 #ifdef CONFIG_X86_64 1763 int i; 1764 struct kvm_vcpu *vcpu; 1765 struct kvm_arch *ka = &kvm->arch; 1766 1767 spin_lock(&ka->pvclock_gtod_sync_lock); 1768 kvm_make_mclock_inprogress_request(kvm); 1769 /* no guest entries from this point */ 1770 pvclock_update_vm_gtod_copy(kvm); 1771 1772 kvm_for_each_vcpu(i, vcpu, kvm) 1773 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1774 1775 /* guest entries allowed */ 1776 kvm_for_each_vcpu(i, vcpu, kvm) 1777 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); 1778 1779 spin_unlock(&ka->pvclock_gtod_sync_lock); 1780 #endif 1781 } 1782 1783 u64 get_kvmclock_ns(struct kvm *kvm) 1784 { 1785 struct kvm_arch *ka = &kvm->arch; 1786 struct pvclock_vcpu_time_info hv_clock; 1787 u64 ret; 1788 1789 spin_lock(&ka->pvclock_gtod_sync_lock); 1790 if (!ka->use_master_clock) { 1791 spin_unlock(&ka->pvclock_gtod_sync_lock); 1792 return ktime_get_boot_ns() + ka->kvmclock_offset; 1793 } 1794 1795 hv_clock.tsc_timestamp = ka->master_cycle_now; 1796 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; 1797 spin_unlock(&ka->pvclock_gtod_sync_lock); 1798 1799 /* both __this_cpu_read() and rdtsc() should be on the same cpu */ 1800 get_cpu(); 1801 1802 if (__this_cpu_read(cpu_tsc_khz)) { 1803 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL, 1804 &hv_clock.tsc_shift, 1805 &hv_clock.tsc_to_system_mul); 1806 ret = __pvclock_read_cycles(&hv_clock, rdtsc()); 1807 } else 1808 ret = ktime_get_boot_ns() + ka->kvmclock_offset; 1809 1810 put_cpu(); 1811 1812 return ret; 1813 } 1814 1815 static void kvm_setup_pvclock_page(struct kvm_vcpu *v) 1816 { 1817 struct kvm_vcpu_arch *vcpu = &v->arch; 1818 struct pvclock_vcpu_time_info guest_hv_clock; 1819 1820 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, 1821 &guest_hv_clock, sizeof(guest_hv_clock)))) 1822 return; 1823 1824 /* This VCPU is paused, but it's legal for a guest to read another 1825 * VCPU's kvmclock, so we really have to follow the specification where 1826 * it says that version is odd if data is being modified, and even after 1827 * it is consistent. 1828 * 1829 * Version field updates must be kept separate. This is because 1830 * kvm_write_guest_cached might use a "rep movs" instruction, and 1831 * writes within a string instruction are weakly ordered. So there 1832 * are three writes overall. 1833 * 1834 * As a small optimization, only write the version field in the first 1835 * and third write. The vcpu->pv_time cache is still valid, because the 1836 * version field is the first in the struct. 1837 */ 1838 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0); 1839 1840 if (guest_hv_clock.version & 1) 1841 ++guest_hv_clock.version; /* first time write, random junk */ 1842 1843 vcpu->hv_clock.version = guest_hv_clock.version + 1; 1844 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1845 &vcpu->hv_clock, 1846 sizeof(vcpu->hv_clock.version)); 1847 1848 smp_wmb(); 1849 1850 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ 1851 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); 1852 1853 if (vcpu->pvclock_set_guest_stopped_request) { 1854 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED; 1855 vcpu->pvclock_set_guest_stopped_request = false; 1856 } 1857 1858 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock); 1859 1860 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1861 &vcpu->hv_clock, 1862 sizeof(vcpu->hv_clock)); 1863 1864 smp_wmb(); 1865 1866 vcpu->hv_clock.version++; 1867 kvm_write_guest_cached(v->kvm, &vcpu->pv_time, 1868 &vcpu->hv_clock, 1869 sizeof(vcpu->hv_clock.version)); 1870 } 1871 1872 static int kvm_guest_time_update(struct kvm_vcpu *v) 1873 { 1874 unsigned long flags, tgt_tsc_khz; 1875 struct kvm_vcpu_arch *vcpu = &v->arch; 1876 struct kvm_arch *ka = &v->kvm->arch; 1877 s64 kernel_ns; 1878 u64 tsc_timestamp, host_tsc; 1879 u8 pvclock_flags; 1880 bool use_master_clock; 1881 1882 kernel_ns = 0; 1883 host_tsc = 0; 1884 1885 /* 1886 * If the host uses TSC clock, then passthrough TSC as stable 1887 * to the guest. 1888 */ 1889 spin_lock(&ka->pvclock_gtod_sync_lock); 1890 use_master_clock = ka->use_master_clock; 1891 if (use_master_clock) { 1892 host_tsc = ka->master_cycle_now; 1893 kernel_ns = ka->master_kernel_ns; 1894 } 1895 spin_unlock(&ka->pvclock_gtod_sync_lock); 1896 1897 /* Keep irq disabled to prevent changes to the clock */ 1898 local_irq_save(flags); 1899 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz); 1900 if (unlikely(tgt_tsc_khz == 0)) { 1901 local_irq_restore(flags); 1902 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1903 return 1; 1904 } 1905 if (!use_master_clock) { 1906 host_tsc = rdtsc(); 1907 kernel_ns = ktime_get_boot_ns(); 1908 } 1909 1910 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); 1911 1912 /* 1913 * We may have to catch up the TSC to match elapsed wall clock 1914 * time for two reasons, even if kvmclock is used. 1915 * 1) CPU could have been running below the maximum TSC rate 1916 * 2) Broken TSC compensation resets the base at each VCPU 1917 * entry to avoid unknown leaps of TSC even when running 1918 * again on the same CPU. This may cause apparent elapsed 1919 * time to disappear, and the guest to stand still or run 1920 * very slowly. 1921 */ 1922 if (vcpu->tsc_catchup) { 1923 u64 tsc = compute_guest_tsc(v, kernel_ns); 1924 if (tsc > tsc_timestamp) { 1925 adjust_tsc_offset_guest(v, tsc - tsc_timestamp); 1926 tsc_timestamp = tsc; 1927 } 1928 } 1929 1930 local_irq_restore(flags); 1931 1932 /* With all the info we got, fill in the values */ 1933 1934 if (kvm_has_tsc_control) 1935 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz); 1936 1937 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { 1938 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, 1939 &vcpu->hv_clock.tsc_shift, 1940 &vcpu->hv_clock.tsc_to_system_mul); 1941 vcpu->hw_tsc_khz = tgt_tsc_khz; 1942 } 1943 1944 vcpu->hv_clock.tsc_timestamp = tsc_timestamp; 1945 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; 1946 vcpu->last_guest_tsc = tsc_timestamp; 1947 1948 /* If the host uses TSC clocksource, then it is stable */ 1949 pvclock_flags = 0; 1950 if (use_master_clock) 1951 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; 1952 1953 vcpu->hv_clock.flags = pvclock_flags; 1954 1955 if (vcpu->pv_time_enabled) 1956 kvm_setup_pvclock_page(v); 1957 if (v == kvm_get_vcpu(v->kvm, 0)) 1958 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); 1959 return 0; 1960 } 1961 1962 /* 1963 * kvmclock updates which are isolated to a given vcpu, such as 1964 * vcpu->cpu migration, should not allow system_timestamp from 1965 * the rest of the vcpus to remain static. Otherwise ntp frequency 1966 * correction applies to one vcpu's system_timestamp but not 1967 * the others. 1968 * 1969 * So in those cases, request a kvmclock update for all vcpus. 1970 * We need to rate-limit these requests though, as they can 1971 * considerably slow guests that have a large number of vcpus. 1972 * The time for a remote vcpu to update its kvmclock is bound 1973 * by the delay we use to rate-limit the updates. 1974 */ 1975 1976 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) 1977 1978 static void kvmclock_update_fn(struct work_struct *work) 1979 { 1980 int i; 1981 struct delayed_work *dwork = to_delayed_work(work); 1982 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 1983 kvmclock_update_work); 1984 struct kvm *kvm = container_of(ka, struct kvm, arch); 1985 struct kvm_vcpu *vcpu; 1986 1987 kvm_for_each_vcpu(i, vcpu, kvm) { 1988 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 1989 kvm_vcpu_kick(vcpu); 1990 } 1991 } 1992 1993 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) 1994 { 1995 struct kvm *kvm = v->kvm; 1996 1997 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); 1998 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 1999 KVMCLOCK_UPDATE_DELAY); 2000 } 2001 2002 #define KVMCLOCK_SYNC_PERIOD (300 * HZ) 2003 2004 static void kvmclock_sync_fn(struct work_struct *work) 2005 { 2006 struct delayed_work *dwork = to_delayed_work(work); 2007 struct kvm_arch *ka = container_of(dwork, struct kvm_arch, 2008 kvmclock_sync_work); 2009 struct kvm *kvm = container_of(ka, struct kvm, arch); 2010 2011 if (!kvmclock_periodic_sync) 2012 return; 2013 2014 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); 2015 schedule_delayed_work(&kvm->arch.kvmclock_sync_work, 2016 KVMCLOCK_SYNC_PERIOD); 2017 } 2018 2019 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2020 { 2021 u64 mcg_cap = vcpu->arch.mcg_cap; 2022 unsigned bank_num = mcg_cap & 0xff; 2023 u32 msr = msr_info->index; 2024 u64 data = msr_info->data; 2025 2026 switch (msr) { 2027 case MSR_IA32_MCG_STATUS: 2028 vcpu->arch.mcg_status = data; 2029 break; 2030 case MSR_IA32_MCG_CTL: 2031 if (!(mcg_cap & MCG_CTL_P)) 2032 return 1; 2033 if (data != 0 && data != ~(u64)0) 2034 return -1; 2035 vcpu->arch.mcg_ctl = data; 2036 break; 2037 default: 2038 if (msr >= MSR_IA32_MC0_CTL && 2039 msr < MSR_IA32_MCx_CTL(bank_num)) { 2040 u32 offset = msr - MSR_IA32_MC0_CTL; 2041 /* only 0 or all 1s can be written to IA32_MCi_CTL 2042 * some Linux kernels though clear bit 10 in bank 4 to 2043 * workaround a BIOS/GART TBL issue on AMD K8s, ignore 2044 * this to avoid an uncatched #GP in the guest 2045 */ 2046 if ((offset & 0x3) == 0 && 2047 data != 0 && (data | (1 << 10)) != ~(u64)0) 2048 return -1; 2049 if (!msr_info->host_initiated && 2050 (offset & 0x3) == 1 && data != 0) 2051 return -1; 2052 vcpu->arch.mce_banks[offset] = data; 2053 break; 2054 } 2055 return 1; 2056 } 2057 return 0; 2058 } 2059 2060 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) 2061 { 2062 struct kvm *kvm = vcpu->kvm; 2063 int lm = is_long_mode(vcpu); 2064 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 2065 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; 2066 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 2067 : kvm->arch.xen_hvm_config.blob_size_32; 2068 u32 page_num = data & ~PAGE_MASK; 2069 u64 page_addr = data & PAGE_MASK; 2070 u8 *page; 2071 int r; 2072 2073 r = -E2BIG; 2074 if (page_num >= blob_size) 2075 goto out; 2076 r = -ENOMEM; 2077 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); 2078 if (IS_ERR(page)) { 2079 r = PTR_ERR(page); 2080 goto out; 2081 } 2082 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) 2083 goto out_free; 2084 r = 0; 2085 out_free: 2086 kfree(page); 2087 out: 2088 return r; 2089 } 2090 2091 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) 2092 { 2093 gpa_t gpa = data & ~0x3f; 2094 2095 /* Bits 3:5 are reserved, Should be zero */ 2096 if (data & 0x38) 2097 return 1; 2098 2099 vcpu->arch.apf.msr_val = data; 2100 2101 if (!(data & KVM_ASYNC_PF_ENABLED)) { 2102 kvm_clear_async_pf_completion_queue(vcpu); 2103 kvm_async_pf_hash_reset(vcpu); 2104 return 0; 2105 } 2106 2107 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, 2108 sizeof(u32))) 2109 return 1; 2110 2111 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); 2112 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; 2113 kvm_async_pf_wakeup_all(vcpu); 2114 return 0; 2115 } 2116 2117 static void kvmclock_reset(struct kvm_vcpu *vcpu) 2118 { 2119 vcpu->arch.pv_time_enabled = false; 2120 } 2121 2122 static void record_steal_time(struct kvm_vcpu *vcpu) 2123 { 2124 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2125 return; 2126 2127 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2128 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) 2129 return; 2130 2131 vcpu->arch.st.steal.preempted = 0; 2132 2133 if (vcpu->arch.st.steal.version & 1) 2134 vcpu->arch.st.steal.version += 1; /* first time write, random junk */ 2135 2136 vcpu->arch.st.steal.version += 1; 2137 2138 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2139 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2140 2141 smp_wmb(); 2142 2143 vcpu->arch.st.steal.steal += current->sched_info.run_delay - 2144 vcpu->arch.st.last_steal; 2145 vcpu->arch.st.last_steal = current->sched_info.run_delay; 2146 2147 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2148 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2149 2150 smp_wmb(); 2151 2152 vcpu->arch.st.steal.version += 1; 2153 2154 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, 2155 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); 2156 } 2157 2158 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2159 { 2160 bool pr = false; 2161 u32 msr = msr_info->index; 2162 u64 data = msr_info->data; 2163 2164 switch (msr) { 2165 case MSR_AMD64_NB_CFG: 2166 case MSR_IA32_UCODE_REV: 2167 case MSR_IA32_UCODE_WRITE: 2168 case MSR_VM_HSAVE_PA: 2169 case MSR_AMD64_PATCH_LOADER: 2170 case MSR_AMD64_BU_CFG2: 2171 case MSR_AMD64_DC_CFG: 2172 break; 2173 2174 case MSR_EFER: 2175 return set_efer(vcpu, data); 2176 case MSR_K7_HWCR: 2177 data &= ~(u64)0x40; /* ignore flush filter disable */ 2178 data &= ~(u64)0x100; /* ignore ignne emulation enable */ 2179 data &= ~(u64)0x8; /* ignore TLB cache disable */ 2180 data &= ~(u64)0x40000; /* ignore Mc status write enable */ 2181 if (data != 0) { 2182 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", 2183 data); 2184 return 1; 2185 } 2186 break; 2187 case MSR_FAM10H_MMIO_CONF_BASE: 2188 if (data != 0) { 2189 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " 2190 "0x%llx\n", data); 2191 return 1; 2192 } 2193 break; 2194 case MSR_IA32_DEBUGCTLMSR: 2195 if (!data) { 2196 /* We support the non-activated case already */ 2197 break; 2198 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { 2199 /* Values other than LBR and BTF are vendor-specific, 2200 thus reserved and should throw a #GP */ 2201 return 1; 2202 } 2203 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", 2204 __func__, data); 2205 break; 2206 case 0x200 ... 0x2ff: 2207 return kvm_mtrr_set_msr(vcpu, msr, data); 2208 case MSR_IA32_APICBASE: 2209 return kvm_set_apic_base(vcpu, msr_info); 2210 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2211 return kvm_x2apic_msr_write(vcpu, msr, data); 2212 case MSR_IA32_TSCDEADLINE: 2213 kvm_set_lapic_tscdeadline_msr(vcpu, data); 2214 break; 2215 case MSR_IA32_TSC_ADJUST: 2216 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) { 2217 if (!msr_info->host_initiated) { 2218 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; 2219 adjust_tsc_offset_guest(vcpu, adj); 2220 } 2221 vcpu->arch.ia32_tsc_adjust_msr = data; 2222 } 2223 break; 2224 case MSR_IA32_MISC_ENABLE: 2225 vcpu->arch.ia32_misc_enable_msr = data; 2226 break; 2227 case MSR_IA32_SMBASE: 2228 if (!msr_info->host_initiated) 2229 return 1; 2230 vcpu->arch.smbase = data; 2231 break; 2232 case MSR_KVM_WALL_CLOCK_NEW: 2233 case MSR_KVM_WALL_CLOCK: 2234 vcpu->kvm->arch.wall_clock = data; 2235 kvm_write_wall_clock(vcpu->kvm, data); 2236 break; 2237 case MSR_KVM_SYSTEM_TIME_NEW: 2238 case MSR_KVM_SYSTEM_TIME: { 2239 struct kvm_arch *ka = &vcpu->kvm->arch; 2240 2241 kvmclock_reset(vcpu); 2242 2243 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) { 2244 bool tmp = (msr == MSR_KVM_SYSTEM_TIME); 2245 2246 if (ka->boot_vcpu_runs_old_kvmclock != tmp) 2247 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); 2248 2249 ka->boot_vcpu_runs_old_kvmclock = tmp; 2250 } 2251 2252 vcpu->arch.time = data; 2253 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2254 2255 /* we verify if the enable bit is set... */ 2256 if (!(data & 1)) 2257 break; 2258 2259 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, 2260 &vcpu->arch.pv_time, data & ~1ULL, 2261 sizeof(struct pvclock_vcpu_time_info))) 2262 vcpu->arch.pv_time_enabled = false; 2263 else 2264 vcpu->arch.pv_time_enabled = true; 2265 2266 break; 2267 } 2268 case MSR_KVM_ASYNC_PF_EN: 2269 if (kvm_pv_enable_async_pf(vcpu, data)) 2270 return 1; 2271 break; 2272 case MSR_KVM_STEAL_TIME: 2273 2274 if (unlikely(!sched_info_on())) 2275 return 1; 2276 2277 if (data & KVM_STEAL_RESERVED_MASK) 2278 return 1; 2279 2280 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, 2281 data & KVM_STEAL_VALID_BITS, 2282 sizeof(struct kvm_steal_time))) 2283 return 1; 2284 2285 vcpu->arch.st.msr_val = data; 2286 2287 if (!(data & KVM_MSR_ENABLED)) 2288 break; 2289 2290 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2291 2292 break; 2293 case MSR_KVM_PV_EOI_EN: 2294 if (kvm_lapic_enable_pv_eoi(vcpu, data)) 2295 return 1; 2296 break; 2297 2298 case MSR_IA32_MCG_CTL: 2299 case MSR_IA32_MCG_STATUS: 2300 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2301 return set_msr_mce(vcpu, msr_info); 2302 2303 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2304 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2305 pr = true; /* fall through */ 2306 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2307 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2308 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2309 return kvm_pmu_set_msr(vcpu, msr_info); 2310 2311 if (pr || data != 0) 2312 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " 2313 "0x%x data 0x%llx\n", msr, data); 2314 break; 2315 case MSR_K7_CLK_CTL: 2316 /* 2317 * Ignore all writes to this no longer documented MSR. 2318 * Writes are only relevant for old K7 processors, 2319 * all pre-dating SVM, but a recommended workaround from 2320 * AMD for these chips. It is possible to specify the 2321 * affected processor models on the command line, hence 2322 * the need to ignore the workaround. 2323 */ 2324 break; 2325 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2326 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2327 case HV_X64_MSR_CRASH_CTL: 2328 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2329 return kvm_hv_set_msr_common(vcpu, msr, data, 2330 msr_info->host_initiated); 2331 case MSR_IA32_BBL_CR_CTL3: 2332 /* Drop writes to this legacy MSR -- see rdmsr 2333 * counterpart for further detail. 2334 */ 2335 if (report_ignored_msrs) 2336 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n", 2337 msr, data); 2338 break; 2339 case MSR_AMD64_OSVW_ID_LENGTH: 2340 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2341 return 1; 2342 vcpu->arch.osvw.length = data; 2343 break; 2344 case MSR_AMD64_OSVW_STATUS: 2345 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2346 return 1; 2347 vcpu->arch.osvw.status = data; 2348 break; 2349 case MSR_PLATFORM_INFO: 2350 if (!msr_info->host_initiated || 2351 data & ~MSR_PLATFORM_INFO_CPUID_FAULT || 2352 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) && 2353 cpuid_fault_enabled(vcpu))) 2354 return 1; 2355 vcpu->arch.msr_platform_info = data; 2356 break; 2357 case MSR_MISC_FEATURES_ENABLES: 2358 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || 2359 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && 2360 !supports_cpuid_fault(vcpu))) 2361 return 1; 2362 vcpu->arch.msr_misc_features_enables = data; 2363 break; 2364 default: 2365 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) 2366 return xen_hvm_config(vcpu, data); 2367 if (kvm_pmu_is_valid_msr(vcpu, msr)) 2368 return kvm_pmu_set_msr(vcpu, msr_info); 2369 if (!ignore_msrs) { 2370 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n", 2371 msr, data); 2372 return 1; 2373 } else { 2374 if (report_ignored_msrs) 2375 vcpu_unimpl(vcpu, 2376 "ignored wrmsr: 0x%x data 0x%llx\n", 2377 msr, data); 2378 break; 2379 } 2380 } 2381 return 0; 2382 } 2383 EXPORT_SYMBOL_GPL(kvm_set_msr_common); 2384 2385 2386 /* 2387 * Reads an msr value (of 'msr_index') into 'pdata'. 2388 * Returns 0 on success, non-0 otherwise. 2389 * Assumes vcpu_load() was already called. 2390 */ 2391 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) 2392 { 2393 return kvm_x86_ops->get_msr(vcpu, msr); 2394 } 2395 EXPORT_SYMBOL_GPL(kvm_get_msr); 2396 2397 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) 2398 { 2399 u64 data; 2400 u64 mcg_cap = vcpu->arch.mcg_cap; 2401 unsigned bank_num = mcg_cap & 0xff; 2402 2403 switch (msr) { 2404 case MSR_IA32_P5_MC_ADDR: 2405 case MSR_IA32_P5_MC_TYPE: 2406 data = 0; 2407 break; 2408 case MSR_IA32_MCG_CAP: 2409 data = vcpu->arch.mcg_cap; 2410 break; 2411 case MSR_IA32_MCG_CTL: 2412 if (!(mcg_cap & MCG_CTL_P)) 2413 return 1; 2414 data = vcpu->arch.mcg_ctl; 2415 break; 2416 case MSR_IA32_MCG_STATUS: 2417 data = vcpu->arch.mcg_status; 2418 break; 2419 default: 2420 if (msr >= MSR_IA32_MC0_CTL && 2421 msr < MSR_IA32_MCx_CTL(bank_num)) { 2422 u32 offset = msr - MSR_IA32_MC0_CTL; 2423 data = vcpu->arch.mce_banks[offset]; 2424 break; 2425 } 2426 return 1; 2427 } 2428 *pdata = data; 2429 return 0; 2430 } 2431 2432 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2433 { 2434 switch (msr_info->index) { 2435 case MSR_IA32_PLATFORM_ID: 2436 case MSR_IA32_EBL_CR_POWERON: 2437 case MSR_IA32_DEBUGCTLMSR: 2438 case MSR_IA32_LASTBRANCHFROMIP: 2439 case MSR_IA32_LASTBRANCHTOIP: 2440 case MSR_IA32_LASTINTFROMIP: 2441 case MSR_IA32_LASTINTTOIP: 2442 case MSR_K8_SYSCFG: 2443 case MSR_K8_TSEG_ADDR: 2444 case MSR_K8_TSEG_MASK: 2445 case MSR_K7_HWCR: 2446 case MSR_VM_HSAVE_PA: 2447 case MSR_K8_INT_PENDING_MSG: 2448 case MSR_AMD64_NB_CFG: 2449 case MSR_FAM10H_MMIO_CONF_BASE: 2450 case MSR_AMD64_BU_CFG2: 2451 case MSR_IA32_PERF_CTL: 2452 case MSR_AMD64_DC_CFG: 2453 msr_info->data = 0; 2454 break; 2455 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: 2456 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: 2457 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: 2458 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: 2459 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2460 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2461 msr_info->data = 0; 2462 break; 2463 case MSR_IA32_UCODE_REV: 2464 msr_info->data = 0x100000000ULL; 2465 break; 2466 case MSR_MTRRcap: 2467 case 0x200 ... 0x2ff: 2468 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); 2469 case 0xcd: /* fsb frequency */ 2470 msr_info->data = 3; 2471 break; 2472 /* 2473 * MSR_EBC_FREQUENCY_ID 2474 * Conservative value valid for even the basic CPU models. 2475 * Models 0,1: 000 in bits 23:21 indicating a bus speed of 2476 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, 2477 * and 266MHz for model 3, or 4. Set Core Clock 2478 * Frequency to System Bus Frequency Ratio to 1 (bits 2479 * 31:24) even though these are only valid for CPU 2480 * models > 2, however guests may end up dividing or 2481 * multiplying by zero otherwise. 2482 */ 2483 case MSR_EBC_FREQUENCY_ID: 2484 msr_info->data = 1 << 24; 2485 break; 2486 case MSR_IA32_APICBASE: 2487 msr_info->data = kvm_get_apic_base(vcpu); 2488 break; 2489 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: 2490 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); 2491 break; 2492 case MSR_IA32_TSCDEADLINE: 2493 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); 2494 break; 2495 case MSR_IA32_TSC_ADJUST: 2496 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; 2497 break; 2498 case MSR_IA32_MISC_ENABLE: 2499 msr_info->data = vcpu->arch.ia32_misc_enable_msr; 2500 break; 2501 case MSR_IA32_SMBASE: 2502 if (!msr_info->host_initiated) 2503 return 1; 2504 msr_info->data = vcpu->arch.smbase; 2505 break; 2506 case MSR_IA32_PERF_STATUS: 2507 /* TSC increment by tick */ 2508 msr_info->data = 1000ULL; 2509 /* CPU multiplier */ 2510 msr_info->data |= (((uint64_t)4ULL) << 40); 2511 break; 2512 case MSR_EFER: 2513 msr_info->data = vcpu->arch.efer; 2514 break; 2515 case MSR_KVM_WALL_CLOCK: 2516 case MSR_KVM_WALL_CLOCK_NEW: 2517 msr_info->data = vcpu->kvm->arch.wall_clock; 2518 break; 2519 case MSR_KVM_SYSTEM_TIME: 2520 case MSR_KVM_SYSTEM_TIME_NEW: 2521 msr_info->data = vcpu->arch.time; 2522 break; 2523 case MSR_KVM_ASYNC_PF_EN: 2524 msr_info->data = vcpu->arch.apf.msr_val; 2525 break; 2526 case MSR_KVM_STEAL_TIME: 2527 msr_info->data = vcpu->arch.st.msr_val; 2528 break; 2529 case MSR_KVM_PV_EOI_EN: 2530 msr_info->data = vcpu->arch.pv_eoi.msr_val; 2531 break; 2532 case MSR_IA32_P5_MC_ADDR: 2533 case MSR_IA32_P5_MC_TYPE: 2534 case MSR_IA32_MCG_CAP: 2535 case MSR_IA32_MCG_CTL: 2536 case MSR_IA32_MCG_STATUS: 2537 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: 2538 return get_msr_mce(vcpu, msr_info->index, &msr_info->data); 2539 case MSR_K7_CLK_CTL: 2540 /* 2541 * Provide expected ramp-up count for K7. All other 2542 * are set to zero, indicating minimum divisors for 2543 * every field. 2544 * 2545 * This prevents guest kernels on AMD host with CPU 2546 * type 6, model 8 and higher from exploding due to 2547 * the rdmsr failing. 2548 */ 2549 msr_info->data = 0x20000000; 2550 break; 2551 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: 2552 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: 2553 case HV_X64_MSR_CRASH_CTL: 2554 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: 2555 return kvm_hv_get_msr_common(vcpu, 2556 msr_info->index, &msr_info->data); 2557 break; 2558 case MSR_IA32_BBL_CR_CTL3: 2559 /* This legacy MSR exists but isn't fully documented in current 2560 * silicon. It is however accessed by winxp in very narrow 2561 * scenarios where it sets bit #19, itself documented as 2562 * a "reserved" bit. Best effort attempt to source coherent 2563 * read data here should the balance of the register be 2564 * interpreted by the guest: 2565 * 2566 * L2 cache control register 3: 64GB range, 256KB size, 2567 * enabled, latency 0x1, configured 2568 */ 2569 msr_info->data = 0xbe702111; 2570 break; 2571 case MSR_AMD64_OSVW_ID_LENGTH: 2572 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2573 return 1; 2574 msr_info->data = vcpu->arch.osvw.length; 2575 break; 2576 case MSR_AMD64_OSVW_STATUS: 2577 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW)) 2578 return 1; 2579 msr_info->data = vcpu->arch.osvw.status; 2580 break; 2581 case MSR_PLATFORM_INFO: 2582 msr_info->data = vcpu->arch.msr_platform_info; 2583 break; 2584 case MSR_MISC_FEATURES_ENABLES: 2585 msr_info->data = vcpu->arch.msr_misc_features_enables; 2586 break; 2587 default: 2588 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) 2589 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data); 2590 if (!ignore_msrs) { 2591 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n", 2592 msr_info->index); 2593 return 1; 2594 } else { 2595 if (report_ignored_msrs) 2596 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", 2597 msr_info->index); 2598 msr_info->data = 0; 2599 } 2600 break; 2601 } 2602 return 0; 2603 } 2604 EXPORT_SYMBOL_GPL(kvm_get_msr_common); 2605 2606 /* 2607 * Read or write a bunch of msrs. All parameters are kernel addresses. 2608 * 2609 * @return number of msrs set successfully. 2610 */ 2611 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, 2612 struct kvm_msr_entry *entries, 2613 int (*do_msr)(struct kvm_vcpu *vcpu, 2614 unsigned index, u64 *data)) 2615 { 2616 int i, idx; 2617 2618 idx = srcu_read_lock(&vcpu->kvm->srcu); 2619 for (i = 0; i < msrs->nmsrs; ++i) 2620 if (do_msr(vcpu, entries[i].index, &entries[i].data)) 2621 break; 2622 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2623 2624 return i; 2625 } 2626 2627 /* 2628 * Read or write a bunch of msrs. Parameters are user addresses. 2629 * 2630 * @return number of msrs set successfully. 2631 */ 2632 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, 2633 int (*do_msr)(struct kvm_vcpu *vcpu, 2634 unsigned index, u64 *data), 2635 int writeback) 2636 { 2637 struct kvm_msrs msrs; 2638 struct kvm_msr_entry *entries; 2639 int r, n; 2640 unsigned size; 2641 2642 r = -EFAULT; 2643 if (copy_from_user(&msrs, user_msrs, sizeof msrs)) 2644 goto out; 2645 2646 r = -E2BIG; 2647 if (msrs.nmsrs >= MAX_IO_MSRS) 2648 goto out; 2649 2650 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; 2651 entries = memdup_user(user_msrs->entries, size); 2652 if (IS_ERR(entries)) { 2653 r = PTR_ERR(entries); 2654 goto out; 2655 } 2656 2657 r = n = __msr_io(vcpu, &msrs, entries, do_msr); 2658 if (r < 0) 2659 goto out_free; 2660 2661 r = -EFAULT; 2662 if (writeback && copy_to_user(user_msrs->entries, entries, size)) 2663 goto out_free; 2664 2665 r = n; 2666 2667 out_free: 2668 kfree(entries); 2669 out: 2670 return r; 2671 } 2672 2673 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) 2674 { 2675 int r; 2676 2677 switch (ext) { 2678 case KVM_CAP_IRQCHIP: 2679 case KVM_CAP_HLT: 2680 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: 2681 case KVM_CAP_SET_TSS_ADDR: 2682 case KVM_CAP_EXT_CPUID: 2683 case KVM_CAP_EXT_EMUL_CPUID: 2684 case KVM_CAP_CLOCKSOURCE: 2685 case KVM_CAP_PIT: 2686 case KVM_CAP_NOP_IO_DELAY: 2687 case KVM_CAP_MP_STATE: 2688 case KVM_CAP_SYNC_MMU: 2689 case KVM_CAP_USER_NMI: 2690 case KVM_CAP_REINJECT_CONTROL: 2691 case KVM_CAP_IRQ_INJECT_STATUS: 2692 case KVM_CAP_IOEVENTFD: 2693 case KVM_CAP_IOEVENTFD_NO_LENGTH: 2694 case KVM_CAP_PIT2: 2695 case KVM_CAP_PIT_STATE2: 2696 case KVM_CAP_SET_IDENTITY_MAP_ADDR: 2697 case KVM_CAP_XEN_HVM: 2698 case KVM_CAP_VCPU_EVENTS: 2699 case KVM_CAP_HYPERV: 2700 case KVM_CAP_HYPERV_VAPIC: 2701 case KVM_CAP_HYPERV_SPIN: 2702 case KVM_CAP_HYPERV_SYNIC: 2703 case KVM_CAP_HYPERV_SYNIC2: 2704 case KVM_CAP_HYPERV_VP_INDEX: 2705 case KVM_CAP_PCI_SEGMENT: 2706 case KVM_CAP_DEBUGREGS: 2707 case KVM_CAP_X86_ROBUST_SINGLESTEP: 2708 case KVM_CAP_XSAVE: 2709 case KVM_CAP_ASYNC_PF: 2710 case KVM_CAP_GET_TSC_KHZ: 2711 case KVM_CAP_KVMCLOCK_CTRL: 2712 case KVM_CAP_READONLY_MEM: 2713 case KVM_CAP_HYPERV_TIME: 2714 case KVM_CAP_IOAPIC_POLARITY_IGNORED: 2715 case KVM_CAP_TSC_DEADLINE_TIMER: 2716 case KVM_CAP_ENABLE_CAP_VM: 2717 case KVM_CAP_DISABLE_QUIRKS: 2718 case KVM_CAP_SET_BOOT_CPU_ID: 2719 case KVM_CAP_SPLIT_IRQCHIP: 2720 case KVM_CAP_IMMEDIATE_EXIT: 2721 r = 1; 2722 break; 2723 case KVM_CAP_ADJUST_CLOCK: 2724 r = KVM_CLOCK_TSC_STABLE; 2725 break; 2726 case KVM_CAP_X86_GUEST_MWAIT: 2727 r = kvm_mwait_in_guest(); 2728 break; 2729 case KVM_CAP_X86_SMM: 2730 /* SMBASE is usually relocated above 1M on modern chipsets, 2731 * and SMM handlers might indeed rely on 4G segment limits, 2732 * so do not report SMM to be available if real mode is 2733 * emulated via vm86 mode. Still, do not go to great lengths 2734 * to avoid userspace's usage of the feature, because it is a 2735 * fringe case that is not enabled except via specific settings 2736 * of the module parameters. 2737 */ 2738 r = kvm_x86_ops->cpu_has_high_real_mode_segbase(); 2739 break; 2740 case KVM_CAP_VAPIC: 2741 r = !kvm_x86_ops->cpu_has_accelerated_tpr(); 2742 break; 2743 case KVM_CAP_NR_VCPUS: 2744 r = KVM_SOFT_MAX_VCPUS; 2745 break; 2746 case KVM_CAP_MAX_VCPUS: 2747 r = KVM_MAX_VCPUS; 2748 break; 2749 case KVM_CAP_NR_MEMSLOTS: 2750 r = KVM_USER_MEM_SLOTS; 2751 break; 2752 case KVM_CAP_PV_MMU: /* obsolete */ 2753 r = 0; 2754 break; 2755 case KVM_CAP_MCE: 2756 r = KVM_MAX_MCE_BANKS; 2757 break; 2758 case KVM_CAP_XCRS: 2759 r = boot_cpu_has(X86_FEATURE_XSAVE); 2760 break; 2761 case KVM_CAP_TSC_CONTROL: 2762 r = kvm_has_tsc_control; 2763 break; 2764 case KVM_CAP_X2APIC_API: 2765 r = KVM_X2APIC_API_VALID_FLAGS; 2766 break; 2767 default: 2768 r = 0; 2769 break; 2770 } 2771 return r; 2772 2773 } 2774 2775 long kvm_arch_dev_ioctl(struct file *filp, 2776 unsigned int ioctl, unsigned long arg) 2777 { 2778 void __user *argp = (void __user *)arg; 2779 long r; 2780 2781 switch (ioctl) { 2782 case KVM_GET_MSR_INDEX_LIST: { 2783 struct kvm_msr_list __user *user_msr_list = argp; 2784 struct kvm_msr_list msr_list; 2785 unsigned n; 2786 2787 r = -EFAULT; 2788 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) 2789 goto out; 2790 n = msr_list.nmsrs; 2791 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; 2792 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) 2793 goto out; 2794 r = -E2BIG; 2795 if (n < msr_list.nmsrs) 2796 goto out; 2797 r = -EFAULT; 2798 if (copy_to_user(user_msr_list->indices, &msrs_to_save, 2799 num_msrs_to_save * sizeof(u32))) 2800 goto out; 2801 if (copy_to_user(user_msr_list->indices + num_msrs_to_save, 2802 &emulated_msrs, 2803 num_emulated_msrs * sizeof(u32))) 2804 goto out; 2805 r = 0; 2806 break; 2807 } 2808 case KVM_GET_SUPPORTED_CPUID: 2809 case KVM_GET_EMULATED_CPUID: { 2810 struct kvm_cpuid2 __user *cpuid_arg = argp; 2811 struct kvm_cpuid2 cpuid; 2812 2813 r = -EFAULT; 2814 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 2815 goto out; 2816 2817 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, 2818 ioctl); 2819 if (r) 2820 goto out; 2821 2822 r = -EFAULT; 2823 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 2824 goto out; 2825 r = 0; 2826 break; 2827 } 2828 case KVM_X86_GET_MCE_CAP_SUPPORTED: { 2829 r = -EFAULT; 2830 if (copy_to_user(argp, &kvm_mce_cap_supported, 2831 sizeof(kvm_mce_cap_supported))) 2832 goto out; 2833 r = 0; 2834 break; 2835 } 2836 default: 2837 r = -EINVAL; 2838 } 2839 out: 2840 return r; 2841 } 2842 2843 static void wbinvd_ipi(void *garbage) 2844 { 2845 wbinvd(); 2846 } 2847 2848 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) 2849 { 2850 return kvm_arch_has_noncoherent_dma(vcpu->kvm); 2851 } 2852 2853 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 2854 { 2855 /* Address WBINVD may be executed by guest */ 2856 if (need_emulate_wbinvd(vcpu)) { 2857 if (kvm_x86_ops->has_wbinvd_exit()) 2858 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 2859 else if (vcpu->cpu != -1 && vcpu->cpu != cpu) 2860 smp_call_function_single(vcpu->cpu, 2861 wbinvd_ipi, NULL, 1); 2862 } 2863 2864 kvm_x86_ops->vcpu_load(vcpu, cpu); 2865 2866 /* Apply any externally detected TSC adjustments (due to suspend) */ 2867 if (unlikely(vcpu->arch.tsc_offset_adjustment)) { 2868 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); 2869 vcpu->arch.tsc_offset_adjustment = 0; 2870 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 2871 } 2872 2873 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { 2874 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : 2875 rdtsc() - vcpu->arch.last_host_tsc; 2876 if (tsc_delta < 0) 2877 mark_tsc_unstable("KVM discovered backwards TSC"); 2878 2879 if (check_tsc_unstable()) { 2880 u64 offset = kvm_compute_tsc_offset(vcpu, 2881 vcpu->arch.last_guest_tsc); 2882 kvm_vcpu_write_tsc_offset(vcpu, offset); 2883 vcpu->arch.tsc_catchup = 1; 2884 } 2885 2886 if (kvm_lapic_hv_timer_in_use(vcpu)) 2887 kvm_lapic_restart_hv_timer(vcpu); 2888 2889 /* 2890 * On a host with synchronized TSC, there is no need to update 2891 * kvmclock on vcpu->cpu migration 2892 */ 2893 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) 2894 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); 2895 if (vcpu->cpu != cpu) 2896 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); 2897 vcpu->cpu = cpu; 2898 } 2899 2900 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); 2901 } 2902 2903 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) 2904 { 2905 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) 2906 return; 2907 2908 vcpu->arch.st.steal.preempted = 1; 2909 2910 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime, 2911 &vcpu->arch.st.steal.preempted, 2912 offsetof(struct kvm_steal_time, preempted), 2913 sizeof(vcpu->arch.st.steal.preempted)); 2914 } 2915 2916 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) 2917 { 2918 int idx; 2919 2920 if (vcpu->preempted) 2921 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu); 2922 2923 /* 2924 * Disable page faults because we're in atomic context here. 2925 * kvm_write_guest_offset_cached() would call might_fault() 2926 * that relies on pagefault_disable() to tell if there's a 2927 * bug. NOTE: the write to guest memory may not go through if 2928 * during postcopy live migration or if there's heavy guest 2929 * paging. 2930 */ 2931 pagefault_disable(); 2932 /* 2933 * kvm_memslots() will be called by 2934 * kvm_write_guest_offset_cached() so take the srcu lock. 2935 */ 2936 idx = srcu_read_lock(&vcpu->kvm->srcu); 2937 kvm_steal_time_set_preempted(vcpu); 2938 srcu_read_unlock(&vcpu->kvm->srcu, idx); 2939 pagefault_enable(); 2940 kvm_x86_ops->vcpu_put(vcpu); 2941 vcpu->arch.last_host_tsc = rdtsc(); 2942 /* 2943 * If userspace has set any breakpoints or watchpoints, dr6 is restored 2944 * on every vmexit, but if not, we might have a stale dr6 from the 2945 * guest. do_debug expects dr6 to be cleared after it runs, do the same. 2946 */ 2947 set_debugreg(0, 6); 2948 } 2949 2950 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, 2951 struct kvm_lapic_state *s) 2952 { 2953 if (kvm_x86_ops->sync_pir_to_irr && vcpu->arch.apicv_active) 2954 kvm_x86_ops->sync_pir_to_irr(vcpu); 2955 2956 return kvm_apic_get_state(vcpu, s); 2957 } 2958 2959 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, 2960 struct kvm_lapic_state *s) 2961 { 2962 int r; 2963 2964 r = kvm_apic_set_state(vcpu, s); 2965 if (r) 2966 return r; 2967 update_cr8_intercept(vcpu); 2968 2969 return 0; 2970 } 2971 2972 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) 2973 { 2974 return (!lapic_in_kernel(vcpu) || 2975 kvm_apic_accept_pic_intr(vcpu)); 2976 } 2977 2978 /* 2979 * if userspace requested an interrupt window, check that the 2980 * interrupt window is open. 2981 * 2982 * No need to exit to userspace if we already have an interrupt queued. 2983 */ 2984 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) 2985 { 2986 return kvm_arch_interrupt_allowed(vcpu) && 2987 !kvm_cpu_has_interrupt(vcpu) && 2988 !kvm_event_needs_reinjection(vcpu) && 2989 kvm_cpu_accept_dm_intr(vcpu); 2990 } 2991 2992 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, 2993 struct kvm_interrupt *irq) 2994 { 2995 if (irq->irq >= KVM_NR_INTERRUPTS) 2996 return -EINVAL; 2997 2998 if (!irqchip_in_kernel(vcpu->kvm)) { 2999 kvm_queue_interrupt(vcpu, irq->irq, false); 3000 kvm_make_request(KVM_REQ_EVENT, vcpu); 3001 return 0; 3002 } 3003 3004 /* 3005 * With in-kernel LAPIC, we only use this to inject EXTINT, so 3006 * fail for in-kernel 8259. 3007 */ 3008 if (pic_in_kernel(vcpu->kvm)) 3009 return -ENXIO; 3010 3011 if (vcpu->arch.pending_external_vector != -1) 3012 return -EEXIST; 3013 3014 vcpu->arch.pending_external_vector = irq->irq; 3015 kvm_make_request(KVM_REQ_EVENT, vcpu); 3016 return 0; 3017 } 3018 3019 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) 3020 { 3021 kvm_inject_nmi(vcpu); 3022 3023 return 0; 3024 } 3025 3026 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu) 3027 { 3028 kvm_make_request(KVM_REQ_SMI, vcpu); 3029 3030 return 0; 3031 } 3032 3033 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, 3034 struct kvm_tpr_access_ctl *tac) 3035 { 3036 if (tac->flags) 3037 return -EINVAL; 3038 vcpu->arch.tpr_access_reporting = !!tac->enabled; 3039 return 0; 3040 } 3041 3042 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, 3043 u64 mcg_cap) 3044 { 3045 int r; 3046 unsigned bank_num = mcg_cap & 0xff, bank; 3047 3048 r = -EINVAL; 3049 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) 3050 goto out; 3051 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000)) 3052 goto out; 3053 r = 0; 3054 vcpu->arch.mcg_cap = mcg_cap; 3055 /* Init IA32_MCG_CTL to all 1s */ 3056 if (mcg_cap & MCG_CTL_P) 3057 vcpu->arch.mcg_ctl = ~(u64)0; 3058 /* Init IA32_MCi_CTL to all 1s */ 3059 for (bank = 0; bank < bank_num; bank++) 3060 vcpu->arch.mce_banks[bank*4] = ~(u64)0; 3061 3062 if (kvm_x86_ops->setup_mce) 3063 kvm_x86_ops->setup_mce(vcpu); 3064 out: 3065 return r; 3066 } 3067 3068 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, 3069 struct kvm_x86_mce *mce) 3070 { 3071 u64 mcg_cap = vcpu->arch.mcg_cap; 3072 unsigned bank_num = mcg_cap & 0xff; 3073 u64 *banks = vcpu->arch.mce_banks; 3074 3075 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) 3076 return -EINVAL; 3077 /* 3078 * if IA32_MCG_CTL is not all 1s, the uncorrected error 3079 * reporting is disabled 3080 */ 3081 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && 3082 vcpu->arch.mcg_ctl != ~(u64)0) 3083 return 0; 3084 banks += 4 * mce->bank; 3085 /* 3086 * if IA32_MCi_CTL is not all 1s, the uncorrected error 3087 * reporting is disabled for the bank 3088 */ 3089 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) 3090 return 0; 3091 if (mce->status & MCI_STATUS_UC) { 3092 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || 3093 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { 3094 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 3095 return 0; 3096 } 3097 if (banks[1] & MCI_STATUS_VAL) 3098 mce->status |= MCI_STATUS_OVER; 3099 banks[2] = mce->addr; 3100 banks[3] = mce->misc; 3101 vcpu->arch.mcg_status = mce->mcg_status; 3102 banks[1] = mce->status; 3103 kvm_queue_exception(vcpu, MC_VECTOR); 3104 } else if (!(banks[1] & MCI_STATUS_VAL) 3105 || !(banks[1] & MCI_STATUS_UC)) { 3106 if (banks[1] & MCI_STATUS_VAL) 3107 mce->status |= MCI_STATUS_OVER; 3108 banks[2] = mce->addr; 3109 banks[3] = mce->misc; 3110 banks[1] = mce->status; 3111 } else 3112 banks[1] |= MCI_STATUS_OVER; 3113 return 0; 3114 } 3115 3116 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, 3117 struct kvm_vcpu_events *events) 3118 { 3119 process_nmi(vcpu); 3120 /* 3121 * FIXME: pass injected and pending separately. This is only 3122 * needed for nested virtualization, whose state cannot be 3123 * migrated yet. For now we can combine them. 3124 */ 3125 events->exception.injected = 3126 (vcpu->arch.exception.pending || 3127 vcpu->arch.exception.injected) && 3128 !kvm_exception_is_soft(vcpu->arch.exception.nr); 3129 events->exception.nr = vcpu->arch.exception.nr; 3130 events->exception.has_error_code = vcpu->arch.exception.has_error_code; 3131 events->exception.pad = 0; 3132 events->exception.error_code = vcpu->arch.exception.error_code; 3133 3134 events->interrupt.injected = 3135 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; 3136 events->interrupt.nr = vcpu->arch.interrupt.nr; 3137 events->interrupt.soft = 0; 3138 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 3139 3140 events->nmi.injected = vcpu->arch.nmi_injected; 3141 events->nmi.pending = vcpu->arch.nmi_pending != 0; 3142 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); 3143 events->nmi.pad = 0; 3144 3145 events->sipi_vector = 0; /* never valid when reporting to user space */ 3146 3147 events->smi.smm = is_smm(vcpu); 3148 events->smi.pending = vcpu->arch.smi_pending; 3149 events->smi.smm_inside_nmi = 3150 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); 3151 events->smi.latched_init = kvm_lapic_latched_init(vcpu); 3152 3153 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING 3154 | KVM_VCPUEVENT_VALID_SHADOW 3155 | KVM_VCPUEVENT_VALID_SMM); 3156 memset(&events->reserved, 0, sizeof(events->reserved)); 3157 } 3158 3159 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags); 3160 3161 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, 3162 struct kvm_vcpu_events *events) 3163 { 3164 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING 3165 | KVM_VCPUEVENT_VALID_SIPI_VECTOR 3166 | KVM_VCPUEVENT_VALID_SHADOW 3167 | KVM_VCPUEVENT_VALID_SMM)) 3168 return -EINVAL; 3169 3170 if (events->exception.injected && 3171 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR || 3172 is_guest_mode(vcpu))) 3173 return -EINVAL; 3174 3175 /* INITs are latched while in SMM */ 3176 if (events->flags & KVM_VCPUEVENT_VALID_SMM && 3177 (events->smi.smm || events->smi.pending) && 3178 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) 3179 return -EINVAL; 3180 3181 process_nmi(vcpu); 3182 vcpu->arch.exception.injected = false; 3183 vcpu->arch.exception.pending = events->exception.injected; 3184 vcpu->arch.exception.nr = events->exception.nr; 3185 vcpu->arch.exception.has_error_code = events->exception.has_error_code; 3186 vcpu->arch.exception.error_code = events->exception.error_code; 3187 3188 vcpu->arch.interrupt.pending = events->interrupt.injected; 3189 vcpu->arch.interrupt.nr = events->interrupt.nr; 3190 vcpu->arch.interrupt.soft = events->interrupt.soft; 3191 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) 3192 kvm_x86_ops->set_interrupt_shadow(vcpu, 3193 events->interrupt.shadow); 3194 3195 vcpu->arch.nmi_injected = events->nmi.injected; 3196 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) 3197 vcpu->arch.nmi_pending = events->nmi.pending; 3198 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); 3199 3200 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && 3201 lapic_in_kernel(vcpu)) 3202 vcpu->arch.apic->sipi_vector = events->sipi_vector; 3203 3204 if (events->flags & KVM_VCPUEVENT_VALID_SMM) { 3205 u32 hflags = vcpu->arch.hflags; 3206 if (events->smi.smm) 3207 hflags |= HF_SMM_MASK; 3208 else 3209 hflags &= ~HF_SMM_MASK; 3210 kvm_set_hflags(vcpu, hflags); 3211 3212 vcpu->arch.smi_pending = events->smi.pending; 3213 3214 if (events->smi.smm) { 3215 if (events->smi.smm_inside_nmi) 3216 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; 3217 else 3218 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; 3219 if (lapic_in_kernel(vcpu)) { 3220 if (events->smi.latched_init) 3221 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3222 else 3223 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); 3224 } 3225 } 3226 } 3227 3228 kvm_make_request(KVM_REQ_EVENT, vcpu); 3229 3230 return 0; 3231 } 3232 3233 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, 3234 struct kvm_debugregs *dbgregs) 3235 { 3236 unsigned long val; 3237 3238 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); 3239 kvm_get_dr(vcpu, 6, &val); 3240 dbgregs->dr6 = val; 3241 dbgregs->dr7 = vcpu->arch.dr7; 3242 dbgregs->flags = 0; 3243 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); 3244 } 3245 3246 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, 3247 struct kvm_debugregs *dbgregs) 3248 { 3249 if (dbgregs->flags) 3250 return -EINVAL; 3251 3252 if (dbgregs->dr6 & ~0xffffffffull) 3253 return -EINVAL; 3254 if (dbgregs->dr7 & ~0xffffffffull) 3255 return -EINVAL; 3256 3257 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); 3258 kvm_update_dr0123(vcpu); 3259 vcpu->arch.dr6 = dbgregs->dr6; 3260 kvm_update_dr6(vcpu); 3261 vcpu->arch.dr7 = dbgregs->dr7; 3262 kvm_update_dr7(vcpu); 3263 3264 return 0; 3265 } 3266 3267 #define XSTATE_COMPACTION_ENABLED (1ULL << 63) 3268 3269 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu) 3270 { 3271 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3272 u64 xstate_bv = xsave->header.xfeatures; 3273 u64 valid; 3274 3275 /* 3276 * Copy legacy XSAVE area, to avoid complications with CPUID 3277 * leaves 0 and 1 in the loop below. 3278 */ 3279 memcpy(dest, xsave, XSAVE_HDR_OFFSET); 3280 3281 /* Set XSTATE_BV */ 3282 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE; 3283 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv; 3284 3285 /* 3286 * Copy each region from the possibly compacted offset to the 3287 * non-compacted offset. 3288 */ 3289 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3290 while (valid) { 3291 u64 feature = valid & -valid; 3292 int index = fls64(feature) - 1; 3293 void *src = get_xsave_addr(xsave, feature); 3294 3295 if (src) { 3296 u32 size, offset, ecx, edx; 3297 cpuid_count(XSTATE_CPUID, index, 3298 &size, &offset, &ecx, &edx); 3299 if (feature == XFEATURE_MASK_PKRU) 3300 memcpy(dest + offset, &vcpu->arch.pkru, 3301 sizeof(vcpu->arch.pkru)); 3302 else 3303 memcpy(dest + offset, src, size); 3304 3305 } 3306 3307 valid -= feature; 3308 } 3309 } 3310 3311 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src) 3312 { 3313 struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave; 3314 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET); 3315 u64 valid; 3316 3317 /* 3318 * Copy legacy XSAVE area, to avoid complications with CPUID 3319 * leaves 0 and 1 in the loop below. 3320 */ 3321 memcpy(xsave, src, XSAVE_HDR_OFFSET); 3322 3323 /* Set XSTATE_BV and possibly XCOMP_BV. */ 3324 xsave->header.xfeatures = xstate_bv; 3325 if (boot_cpu_has(X86_FEATURE_XSAVES)) 3326 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED; 3327 3328 /* 3329 * Copy each region from the non-compacted offset to the 3330 * possibly compacted offset. 3331 */ 3332 valid = xstate_bv & ~XFEATURE_MASK_FPSSE; 3333 while (valid) { 3334 u64 feature = valid & -valid; 3335 int index = fls64(feature) - 1; 3336 void *dest = get_xsave_addr(xsave, feature); 3337 3338 if (dest) { 3339 u32 size, offset, ecx, edx; 3340 cpuid_count(XSTATE_CPUID, index, 3341 &size, &offset, &ecx, &edx); 3342 if (feature == XFEATURE_MASK_PKRU) 3343 memcpy(&vcpu->arch.pkru, src + offset, 3344 sizeof(vcpu->arch.pkru)); 3345 else 3346 memcpy(dest, src + offset, size); 3347 } 3348 3349 valid -= feature; 3350 } 3351 } 3352 3353 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, 3354 struct kvm_xsave *guest_xsave) 3355 { 3356 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3357 memset(guest_xsave, 0, sizeof(struct kvm_xsave)); 3358 fill_xsave((u8 *) guest_xsave->region, vcpu); 3359 } else { 3360 memcpy(guest_xsave->region, 3361 &vcpu->arch.guest_fpu.state.fxsave, 3362 sizeof(struct fxregs_state)); 3363 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = 3364 XFEATURE_MASK_FPSSE; 3365 } 3366 } 3367 3368 #define XSAVE_MXCSR_OFFSET 24 3369 3370 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, 3371 struct kvm_xsave *guest_xsave) 3372 { 3373 u64 xstate_bv = 3374 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; 3375 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)]; 3376 3377 if (boot_cpu_has(X86_FEATURE_XSAVE)) { 3378 /* 3379 * Here we allow setting states that are not present in 3380 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility 3381 * with old userspace. 3382 */ 3383 if (xstate_bv & ~kvm_supported_xcr0() || 3384 mxcsr & ~mxcsr_feature_mask) 3385 return -EINVAL; 3386 load_xsave(vcpu, (u8 *)guest_xsave->region); 3387 } else { 3388 if (xstate_bv & ~XFEATURE_MASK_FPSSE || 3389 mxcsr & ~mxcsr_feature_mask) 3390 return -EINVAL; 3391 memcpy(&vcpu->arch.guest_fpu.state.fxsave, 3392 guest_xsave->region, sizeof(struct fxregs_state)); 3393 } 3394 return 0; 3395 } 3396 3397 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, 3398 struct kvm_xcrs *guest_xcrs) 3399 { 3400 if (!boot_cpu_has(X86_FEATURE_XSAVE)) { 3401 guest_xcrs->nr_xcrs = 0; 3402 return; 3403 } 3404 3405 guest_xcrs->nr_xcrs = 1; 3406 guest_xcrs->flags = 0; 3407 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; 3408 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; 3409 } 3410 3411 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, 3412 struct kvm_xcrs *guest_xcrs) 3413 { 3414 int i, r = 0; 3415 3416 if (!boot_cpu_has(X86_FEATURE_XSAVE)) 3417 return -EINVAL; 3418 3419 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) 3420 return -EINVAL; 3421 3422 for (i = 0; i < guest_xcrs->nr_xcrs; i++) 3423 /* Only support XCR0 currently */ 3424 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { 3425 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, 3426 guest_xcrs->xcrs[i].value); 3427 break; 3428 } 3429 if (r) 3430 r = -EINVAL; 3431 return r; 3432 } 3433 3434 /* 3435 * kvm_set_guest_paused() indicates to the guest kernel that it has been 3436 * stopped by the hypervisor. This function will be called from the host only. 3437 * EINVAL is returned when the host attempts to set the flag for a guest that 3438 * does not support pv clocks. 3439 */ 3440 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) 3441 { 3442 if (!vcpu->arch.pv_time_enabled) 3443 return -EINVAL; 3444 vcpu->arch.pvclock_set_guest_stopped_request = true; 3445 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 3446 return 0; 3447 } 3448 3449 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, 3450 struct kvm_enable_cap *cap) 3451 { 3452 if (cap->flags) 3453 return -EINVAL; 3454 3455 switch (cap->cap) { 3456 case KVM_CAP_HYPERV_SYNIC2: 3457 if (cap->args[0]) 3458 return -EINVAL; 3459 case KVM_CAP_HYPERV_SYNIC: 3460 if (!irqchip_in_kernel(vcpu->kvm)) 3461 return -EINVAL; 3462 return kvm_hv_activate_synic(vcpu, cap->cap == 3463 KVM_CAP_HYPERV_SYNIC2); 3464 default: 3465 return -EINVAL; 3466 } 3467 } 3468 3469 long kvm_arch_vcpu_ioctl(struct file *filp, 3470 unsigned int ioctl, unsigned long arg) 3471 { 3472 struct kvm_vcpu *vcpu = filp->private_data; 3473 void __user *argp = (void __user *)arg; 3474 int r; 3475 union { 3476 struct kvm_lapic_state *lapic; 3477 struct kvm_xsave *xsave; 3478 struct kvm_xcrs *xcrs; 3479 void *buffer; 3480 } u; 3481 3482 u.buffer = NULL; 3483 switch (ioctl) { 3484 case KVM_GET_LAPIC: { 3485 r = -EINVAL; 3486 if (!lapic_in_kernel(vcpu)) 3487 goto out; 3488 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); 3489 3490 r = -ENOMEM; 3491 if (!u.lapic) 3492 goto out; 3493 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); 3494 if (r) 3495 goto out; 3496 r = -EFAULT; 3497 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) 3498 goto out; 3499 r = 0; 3500 break; 3501 } 3502 case KVM_SET_LAPIC: { 3503 r = -EINVAL; 3504 if (!lapic_in_kernel(vcpu)) 3505 goto out; 3506 u.lapic = memdup_user(argp, sizeof(*u.lapic)); 3507 if (IS_ERR(u.lapic)) 3508 return PTR_ERR(u.lapic); 3509 3510 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); 3511 break; 3512 } 3513 case KVM_INTERRUPT: { 3514 struct kvm_interrupt irq; 3515 3516 r = -EFAULT; 3517 if (copy_from_user(&irq, argp, sizeof irq)) 3518 goto out; 3519 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); 3520 break; 3521 } 3522 case KVM_NMI: { 3523 r = kvm_vcpu_ioctl_nmi(vcpu); 3524 break; 3525 } 3526 case KVM_SMI: { 3527 r = kvm_vcpu_ioctl_smi(vcpu); 3528 break; 3529 } 3530 case KVM_SET_CPUID: { 3531 struct kvm_cpuid __user *cpuid_arg = argp; 3532 struct kvm_cpuid cpuid; 3533 3534 r = -EFAULT; 3535 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3536 goto out; 3537 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); 3538 break; 3539 } 3540 case KVM_SET_CPUID2: { 3541 struct kvm_cpuid2 __user *cpuid_arg = argp; 3542 struct kvm_cpuid2 cpuid; 3543 3544 r = -EFAULT; 3545 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3546 goto out; 3547 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, 3548 cpuid_arg->entries); 3549 break; 3550 } 3551 case KVM_GET_CPUID2: { 3552 struct kvm_cpuid2 __user *cpuid_arg = argp; 3553 struct kvm_cpuid2 cpuid; 3554 3555 r = -EFAULT; 3556 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) 3557 goto out; 3558 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, 3559 cpuid_arg->entries); 3560 if (r) 3561 goto out; 3562 r = -EFAULT; 3563 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) 3564 goto out; 3565 r = 0; 3566 break; 3567 } 3568 case KVM_GET_MSRS: 3569 r = msr_io(vcpu, argp, do_get_msr, 1); 3570 break; 3571 case KVM_SET_MSRS: 3572 r = msr_io(vcpu, argp, do_set_msr, 0); 3573 break; 3574 case KVM_TPR_ACCESS_REPORTING: { 3575 struct kvm_tpr_access_ctl tac; 3576 3577 r = -EFAULT; 3578 if (copy_from_user(&tac, argp, sizeof tac)) 3579 goto out; 3580 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); 3581 if (r) 3582 goto out; 3583 r = -EFAULT; 3584 if (copy_to_user(argp, &tac, sizeof tac)) 3585 goto out; 3586 r = 0; 3587 break; 3588 }; 3589 case KVM_SET_VAPIC_ADDR: { 3590 struct kvm_vapic_addr va; 3591 int idx; 3592 3593 r = -EINVAL; 3594 if (!lapic_in_kernel(vcpu)) 3595 goto out; 3596 r = -EFAULT; 3597 if (copy_from_user(&va, argp, sizeof va)) 3598 goto out; 3599 idx = srcu_read_lock(&vcpu->kvm->srcu); 3600 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); 3601 srcu_read_unlock(&vcpu->kvm->srcu, idx); 3602 break; 3603 } 3604 case KVM_X86_SETUP_MCE: { 3605 u64 mcg_cap; 3606 3607 r = -EFAULT; 3608 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) 3609 goto out; 3610 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); 3611 break; 3612 } 3613 case KVM_X86_SET_MCE: { 3614 struct kvm_x86_mce mce; 3615 3616 r = -EFAULT; 3617 if (copy_from_user(&mce, argp, sizeof mce)) 3618 goto out; 3619 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); 3620 break; 3621 } 3622 case KVM_GET_VCPU_EVENTS: { 3623 struct kvm_vcpu_events events; 3624 3625 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); 3626 3627 r = -EFAULT; 3628 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) 3629 break; 3630 r = 0; 3631 break; 3632 } 3633 case KVM_SET_VCPU_EVENTS: { 3634 struct kvm_vcpu_events events; 3635 3636 r = -EFAULT; 3637 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) 3638 break; 3639 3640 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); 3641 break; 3642 } 3643 case KVM_GET_DEBUGREGS: { 3644 struct kvm_debugregs dbgregs; 3645 3646 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); 3647 3648 r = -EFAULT; 3649 if (copy_to_user(argp, &dbgregs, 3650 sizeof(struct kvm_debugregs))) 3651 break; 3652 r = 0; 3653 break; 3654 } 3655 case KVM_SET_DEBUGREGS: { 3656 struct kvm_debugregs dbgregs; 3657 3658 r = -EFAULT; 3659 if (copy_from_user(&dbgregs, argp, 3660 sizeof(struct kvm_debugregs))) 3661 break; 3662 3663 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); 3664 break; 3665 } 3666 case KVM_GET_XSAVE: { 3667 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); 3668 r = -ENOMEM; 3669 if (!u.xsave) 3670 break; 3671 3672 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); 3673 3674 r = -EFAULT; 3675 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) 3676 break; 3677 r = 0; 3678 break; 3679 } 3680 case KVM_SET_XSAVE: { 3681 u.xsave = memdup_user(argp, sizeof(*u.xsave)); 3682 if (IS_ERR(u.xsave)) 3683 return PTR_ERR(u.xsave); 3684 3685 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); 3686 break; 3687 } 3688 case KVM_GET_XCRS: { 3689 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); 3690 r = -ENOMEM; 3691 if (!u.xcrs) 3692 break; 3693 3694 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); 3695 3696 r = -EFAULT; 3697 if (copy_to_user(argp, u.xcrs, 3698 sizeof(struct kvm_xcrs))) 3699 break; 3700 r = 0; 3701 break; 3702 } 3703 case KVM_SET_XCRS: { 3704 u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); 3705 if (IS_ERR(u.xcrs)) 3706 return PTR_ERR(u.xcrs); 3707 3708 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); 3709 break; 3710 } 3711 case KVM_SET_TSC_KHZ: { 3712 u32 user_tsc_khz; 3713 3714 r = -EINVAL; 3715 user_tsc_khz = (u32)arg; 3716 3717 if (user_tsc_khz >= kvm_max_guest_tsc_khz) 3718 goto out; 3719 3720 if (user_tsc_khz == 0) 3721 user_tsc_khz = tsc_khz; 3722 3723 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) 3724 r = 0; 3725 3726 goto out; 3727 } 3728 case KVM_GET_TSC_KHZ: { 3729 r = vcpu->arch.virtual_tsc_khz; 3730 goto out; 3731 } 3732 case KVM_KVMCLOCK_CTRL: { 3733 r = kvm_set_guest_paused(vcpu); 3734 goto out; 3735 } 3736 case KVM_ENABLE_CAP: { 3737 struct kvm_enable_cap cap; 3738 3739 r = -EFAULT; 3740 if (copy_from_user(&cap, argp, sizeof(cap))) 3741 goto out; 3742 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); 3743 break; 3744 } 3745 default: 3746 r = -EINVAL; 3747 } 3748 out: 3749 kfree(u.buffer); 3750 return r; 3751 } 3752 3753 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) 3754 { 3755 return VM_FAULT_SIGBUS; 3756 } 3757 3758 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) 3759 { 3760 int ret; 3761 3762 if (addr > (unsigned int)(-3 * PAGE_SIZE)) 3763 return -EINVAL; 3764 ret = kvm_x86_ops->set_tss_addr(kvm, addr); 3765 return ret; 3766 } 3767 3768 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, 3769 u64 ident_addr) 3770 { 3771 kvm->arch.ept_identity_map_addr = ident_addr; 3772 return 0; 3773 } 3774 3775 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, 3776 u32 kvm_nr_mmu_pages) 3777 { 3778 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) 3779 return -EINVAL; 3780 3781 mutex_lock(&kvm->slots_lock); 3782 3783 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); 3784 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; 3785 3786 mutex_unlock(&kvm->slots_lock); 3787 return 0; 3788 } 3789 3790 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) 3791 { 3792 return kvm->arch.n_max_mmu_pages; 3793 } 3794 3795 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3796 { 3797 struct kvm_pic *pic = kvm->arch.vpic; 3798 int r; 3799 3800 r = 0; 3801 switch (chip->chip_id) { 3802 case KVM_IRQCHIP_PIC_MASTER: 3803 memcpy(&chip->chip.pic, &pic->pics[0], 3804 sizeof(struct kvm_pic_state)); 3805 break; 3806 case KVM_IRQCHIP_PIC_SLAVE: 3807 memcpy(&chip->chip.pic, &pic->pics[1], 3808 sizeof(struct kvm_pic_state)); 3809 break; 3810 case KVM_IRQCHIP_IOAPIC: 3811 kvm_get_ioapic(kvm, &chip->chip.ioapic); 3812 break; 3813 default: 3814 r = -EINVAL; 3815 break; 3816 } 3817 return r; 3818 } 3819 3820 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) 3821 { 3822 struct kvm_pic *pic = kvm->arch.vpic; 3823 int r; 3824 3825 r = 0; 3826 switch (chip->chip_id) { 3827 case KVM_IRQCHIP_PIC_MASTER: 3828 spin_lock(&pic->lock); 3829 memcpy(&pic->pics[0], &chip->chip.pic, 3830 sizeof(struct kvm_pic_state)); 3831 spin_unlock(&pic->lock); 3832 break; 3833 case KVM_IRQCHIP_PIC_SLAVE: 3834 spin_lock(&pic->lock); 3835 memcpy(&pic->pics[1], &chip->chip.pic, 3836 sizeof(struct kvm_pic_state)); 3837 spin_unlock(&pic->lock); 3838 break; 3839 case KVM_IRQCHIP_IOAPIC: 3840 kvm_set_ioapic(kvm, &chip->chip.ioapic); 3841 break; 3842 default: 3843 r = -EINVAL; 3844 break; 3845 } 3846 kvm_pic_update_irq(pic); 3847 return r; 3848 } 3849 3850 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3851 { 3852 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; 3853 3854 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); 3855 3856 mutex_lock(&kps->lock); 3857 memcpy(ps, &kps->channels, sizeof(*ps)); 3858 mutex_unlock(&kps->lock); 3859 return 0; 3860 } 3861 3862 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) 3863 { 3864 int i; 3865 struct kvm_pit *pit = kvm->arch.vpit; 3866 3867 mutex_lock(&pit->pit_state.lock); 3868 memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); 3869 for (i = 0; i < 3; i++) 3870 kvm_pit_load_count(pit, i, ps->channels[i].count, 0); 3871 mutex_unlock(&pit->pit_state.lock); 3872 return 0; 3873 } 3874 3875 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3876 { 3877 mutex_lock(&kvm->arch.vpit->pit_state.lock); 3878 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, 3879 sizeof(ps->channels)); 3880 ps->flags = kvm->arch.vpit->pit_state.flags; 3881 mutex_unlock(&kvm->arch.vpit->pit_state.lock); 3882 memset(&ps->reserved, 0, sizeof(ps->reserved)); 3883 return 0; 3884 } 3885 3886 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) 3887 { 3888 int start = 0; 3889 int i; 3890 u32 prev_legacy, cur_legacy; 3891 struct kvm_pit *pit = kvm->arch.vpit; 3892 3893 mutex_lock(&pit->pit_state.lock); 3894 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; 3895 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; 3896 if (!prev_legacy && cur_legacy) 3897 start = 1; 3898 memcpy(&pit->pit_state.channels, &ps->channels, 3899 sizeof(pit->pit_state.channels)); 3900 pit->pit_state.flags = ps->flags; 3901 for (i = 0; i < 3; i++) 3902 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, 3903 start && i == 0); 3904 mutex_unlock(&pit->pit_state.lock); 3905 return 0; 3906 } 3907 3908 static int kvm_vm_ioctl_reinject(struct kvm *kvm, 3909 struct kvm_reinject_control *control) 3910 { 3911 struct kvm_pit *pit = kvm->arch.vpit; 3912 3913 if (!pit) 3914 return -ENXIO; 3915 3916 /* pit->pit_state.lock was overloaded to prevent userspace from getting 3917 * an inconsistent state after running multiple KVM_REINJECT_CONTROL 3918 * ioctls in parallel. Use a separate lock if that ioctl isn't rare. 3919 */ 3920 mutex_lock(&pit->pit_state.lock); 3921 kvm_pit_set_reinject(pit, control->pit_reinject); 3922 mutex_unlock(&pit->pit_state.lock); 3923 3924 return 0; 3925 } 3926 3927 /** 3928 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot 3929 * @kvm: kvm instance 3930 * @log: slot id and address to which we copy the log 3931 * 3932 * Steps 1-4 below provide general overview of dirty page logging. See 3933 * kvm_get_dirty_log_protect() function description for additional details. 3934 * 3935 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we 3936 * always flush the TLB (step 4) even if previous step failed and the dirty 3937 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API 3938 * does not preclude user space subsequent dirty log read. Flushing TLB ensures 3939 * writes will be marked dirty for next log read. 3940 * 3941 * 1. Take a snapshot of the bit and clear it if needed. 3942 * 2. Write protect the corresponding page. 3943 * 3. Copy the snapshot to the userspace. 3944 * 4. Flush TLB's if needed. 3945 */ 3946 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) 3947 { 3948 bool is_dirty = false; 3949 int r; 3950 3951 mutex_lock(&kvm->slots_lock); 3952 3953 /* 3954 * Flush potentially hardware-cached dirty pages to dirty_bitmap. 3955 */ 3956 if (kvm_x86_ops->flush_log_dirty) 3957 kvm_x86_ops->flush_log_dirty(kvm); 3958 3959 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty); 3960 3961 /* 3962 * All the TLBs can be flushed out of mmu lock, see the comments in 3963 * kvm_mmu_slot_remove_write_access(). 3964 */ 3965 lockdep_assert_held(&kvm->slots_lock); 3966 if (is_dirty) 3967 kvm_flush_remote_tlbs(kvm); 3968 3969 mutex_unlock(&kvm->slots_lock); 3970 return r; 3971 } 3972 3973 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, 3974 bool line_status) 3975 { 3976 if (!irqchip_in_kernel(kvm)) 3977 return -ENXIO; 3978 3979 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, 3980 irq_event->irq, irq_event->level, 3981 line_status); 3982 return 0; 3983 } 3984 3985 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 3986 struct kvm_enable_cap *cap) 3987 { 3988 int r; 3989 3990 if (cap->flags) 3991 return -EINVAL; 3992 3993 switch (cap->cap) { 3994 case KVM_CAP_DISABLE_QUIRKS: 3995 kvm->arch.disabled_quirks = cap->args[0]; 3996 r = 0; 3997 break; 3998 case KVM_CAP_SPLIT_IRQCHIP: { 3999 mutex_lock(&kvm->lock); 4000 r = -EINVAL; 4001 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) 4002 goto split_irqchip_unlock; 4003 r = -EEXIST; 4004 if (irqchip_in_kernel(kvm)) 4005 goto split_irqchip_unlock; 4006 if (kvm->created_vcpus) 4007 goto split_irqchip_unlock; 4008 r = kvm_setup_empty_irq_routing(kvm); 4009 if (r) 4010 goto split_irqchip_unlock; 4011 /* Pairs with irqchip_in_kernel. */ 4012 smp_wmb(); 4013 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; 4014 kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; 4015 r = 0; 4016 split_irqchip_unlock: 4017 mutex_unlock(&kvm->lock); 4018 break; 4019 } 4020 case KVM_CAP_X2APIC_API: 4021 r = -EINVAL; 4022 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) 4023 break; 4024 4025 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) 4026 kvm->arch.x2apic_format = true; 4027 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) 4028 kvm->arch.x2apic_broadcast_quirk_disabled = true; 4029 4030 r = 0; 4031 break; 4032 default: 4033 r = -EINVAL; 4034 break; 4035 } 4036 return r; 4037 } 4038 4039 long kvm_arch_vm_ioctl(struct file *filp, 4040 unsigned int ioctl, unsigned long arg) 4041 { 4042 struct kvm *kvm = filp->private_data; 4043 void __user *argp = (void __user *)arg; 4044 int r = -ENOTTY; 4045 /* 4046 * This union makes it completely explicit to gcc-3.x 4047 * that these two variables' stack usage should be 4048 * combined, not added together. 4049 */ 4050 union { 4051 struct kvm_pit_state ps; 4052 struct kvm_pit_state2 ps2; 4053 struct kvm_pit_config pit_config; 4054 } u; 4055 4056 switch (ioctl) { 4057 case KVM_SET_TSS_ADDR: 4058 r = kvm_vm_ioctl_set_tss_addr(kvm, arg); 4059 break; 4060 case KVM_SET_IDENTITY_MAP_ADDR: { 4061 u64 ident_addr; 4062 4063 mutex_lock(&kvm->lock); 4064 r = -EINVAL; 4065 if (kvm->created_vcpus) 4066 goto set_identity_unlock; 4067 r = -EFAULT; 4068 if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) 4069 goto set_identity_unlock; 4070 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); 4071 set_identity_unlock: 4072 mutex_unlock(&kvm->lock); 4073 break; 4074 } 4075 case KVM_SET_NR_MMU_PAGES: 4076 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); 4077 break; 4078 case KVM_GET_NR_MMU_PAGES: 4079 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); 4080 break; 4081 case KVM_CREATE_IRQCHIP: { 4082 mutex_lock(&kvm->lock); 4083 4084 r = -EEXIST; 4085 if (irqchip_in_kernel(kvm)) 4086 goto create_irqchip_unlock; 4087 4088 r = -EINVAL; 4089 if (kvm->created_vcpus) 4090 goto create_irqchip_unlock; 4091 4092 r = kvm_pic_init(kvm); 4093 if (r) 4094 goto create_irqchip_unlock; 4095 4096 r = kvm_ioapic_init(kvm); 4097 if (r) { 4098 kvm_pic_destroy(kvm); 4099 goto create_irqchip_unlock; 4100 } 4101 4102 r = kvm_setup_default_irq_routing(kvm); 4103 if (r) { 4104 kvm_ioapic_destroy(kvm); 4105 kvm_pic_destroy(kvm); 4106 goto create_irqchip_unlock; 4107 } 4108 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ 4109 smp_wmb(); 4110 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; 4111 create_irqchip_unlock: 4112 mutex_unlock(&kvm->lock); 4113 break; 4114 } 4115 case KVM_CREATE_PIT: 4116 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; 4117 goto create_pit; 4118 case KVM_CREATE_PIT2: 4119 r = -EFAULT; 4120 if (copy_from_user(&u.pit_config, argp, 4121 sizeof(struct kvm_pit_config))) 4122 goto out; 4123 create_pit: 4124 mutex_lock(&kvm->lock); 4125 r = -EEXIST; 4126 if (kvm->arch.vpit) 4127 goto create_pit_unlock; 4128 r = -ENOMEM; 4129 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); 4130 if (kvm->arch.vpit) 4131 r = 0; 4132 create_pit_unlock: 4133 mutex_unlock(&kvm->lock); 4134 break; 4135 case KVM_GET_IRQCHIP: { 4136 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4137 struct kvm_irqchip *chip; 4138 4139 chip = memdup_user(argp, sizeof(*chip)); 4140 if (IS_ERR(chip)) { 4141 r = PTR_ERR(chip); 4142 goto out; 4143 } 4144 4145 r = -ENXIO; 4146 if (!irqchip_kernel(kvm)) 4147 goto get_irqchip_out; 4148 r = kvm_vm_ioctl_get_irqchip(kvm, chip); 4149 if (r) 4150 goto get_irqchip_out; 4151 r = -EFAULT; 4152 if (copy_to_user(argp, chip, sizeof *chip)) 4153 goto get_irqchip_out; 4154 r = 0; 4155 get_irqchip_out: 4156 kfree(chip); 4157 break; 4158 } 4159 case KVM_SET_IRQCHIP: { 4160 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ 4161 struct kvm_irqchip *chip; 4162 4163 chip = memdup_user(argp, sizeof(*chip)); 4164 if (IS_ERR(chip)) { 4165 r = PTR_ERR(chip); 4166 goto out; 4167 } 4168 4169 r = -ENXIO; 4170 if (!irqchip_kernel(kvm)) 4171 goto set_irqchip_out; 4172 r = kvm_vm_ioctl_set_irqchip(kvm, chip); 4173 if (r) 4174 goto set_irqchip_out; 4175 r = 0; 4176 set_irqchip_out: 4177 kfree(chip); 4178 break; 4179 } 4180 case KVM_GET_PIT: { 4181 r = -EFAULT; 4182 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) 4183 goto out; 4184 r = -ENXIO; 4185 if (!kvm->arch.vpit) 4186 goto out; 4187 r = kvm_vm_ioctl_get_pit(kvm, &u.ps); 4188 if (r) 4189 goto out; 4190 r = -EFAULT; 4191 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) 4192 goto out; 4193 r = 0; 4194 break; 4195 } 4196 case KVM_SET_PIT: { 4197 r = -EFAULT; 4198 if (copy_from_user(&u.ps, argp, sizeof u.ps)) 4199 goto out; 4200 r = -ENXIO; 4201 if (!kvm->arch.vpit) 4202 goto out; 4203 r = kvm_vm_ioctl_set_pit(kvm, &u.ps); 4204 break; 4205 } 4206 case KVM_GET_PIT2: { 4207 r = -ENXIO; 4208 if (!kvm->arch.vpit) 4209 goto out; 4210 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); 4211 if (r) 4212 goto out; 4213 r = -EFAULT; 4214 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) 4215 goto out; 4216 r = 0; 4217 break; 4218 } 4219 case KVM_SET_PIT2: { 4220 r = -EFAULT; 4221 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) 4222 goto out; 4223 r = -ENXIO; 4224 if (!kvm->arch.vpit) 4225 goto out; 4226 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); 4227 break; 4228 } 4229 case KVM_REINJECT_CONTROL: { 4230 struct kvm_reinject_control control; 4231 r = -EFAULT; 4232 if (copy_from_user(&control, argp, sizeof(control))) 4233 goto out; 4234 r = kvm_vm_ioctl_reinject(kvm, &control); 4235 break; 4236 } 4237 case KVM_SET_BOOT_CPU_ID: 4238 r = 0; 4239 mutex_lock(&kvm->lock); 4240 if (kvm->created_vcpus) 4241 r = -EBUSY; 4242 else 4243 kvm->arch.bsp_vcpu_id = arg; 4244 mutex_unlock(&kvm->lock); 4245 break; 4246 case KVM_XEN_HVM_CONFIG: { 4247 r = -EFAULT; 4248 if (copy_from_user(&kvm->arch.xen_hvm_config, argp, 4249 sizeof(struct kvm_xen_hvm_config))) 4250 goto out; 4251 r = -EINVAL; 4252 if (kvm->arch.xen_hvm_config.flags) 4253 goto out; 4254 r = 0; 4255 break; 4256 } 4257 case KVM_SET_CLOCK: { 4258 struct kvm_clock_data user_ns; 4259 u64 now_ns; 4260 4261 r = -EFAULT; 4262 if (copy_from_user(&user_ns, argp, sizeof(user_ns))) 4263 goto out; 4264 4265 r = -EINVAL; 4266 if (user_ns.flags) 4267 goto out; 4268 4269 r = 0; 4270 /* 4271 * TODO: userspace has to take care of races with VCPU_RUN, so 4272 * kvm_gen_update_masterclock() can be cut down to locked 4273 * pvclock_update_vm_gtod_copy(). 4274 */ 4275 kvm_gen_update_masterclock(kvm); 4276 now_ns = get_kvmclock_ns(kvm); 4277 kvm->arch.kvmclock_offset += user_ns.clock - now_ns; 4278 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE); 4279 break; 4280 } 4281 case KVM_GET_CLOCK: { 4282 struct kvm_clock_data user_ns; 4283 u64 now_ns; 4284 4285 now_ns = get_kvmclock_ns(kvm); 4286 user_ns.clock = now_ns; 4287 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0; 4288 memset(&user_ns.pad, 0, sizeof(user_ns.pad)); 4289 4290 r = -EFAULT; 4291 if (copy_to_user(argp, &user_ns, sizeof(user_ns))) 4292 goto out; 4293 r = 0; 4294 break; 4295 } 4296 case KVM_ENABLE_CAP: { 4297 struct kvm_enable_cap cap; 4298 4299 r = -EFAULT; 4300 if (copy_from_user(&cap, argp, sizeof(cap))) 4301 goto out; 4302 r = kvm_vm_ioctl_enable_cap(kvm, &cap); 4303 break; 4304 } 4305 default: 4306 r = -ENOTTY; 4307 } 4308 out: 4309 return r; 4310 } 4311 4312 static void kvm_init_msr_list(void) 4313 { 4314 u32 dummy[2]; 4315 unsigned i, j; 4316 4317 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { 4318 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) 4319 continue; 4320 4321 /* 4322 * Even MSRs that are valid in the host may not be exposed 4323 * to the guests in some cases. 4324 */ 4325 switch (msrs_to_save[i]) { 4326 case MSR_IA32_BNDCFGS: 4327 if (!kvm_x86_ops->mpx_supported()) 4328 continue; 4329 break; 4330 case MSR_TSC_AUX: 4331 if (!kvm_x86_ops->rdtscp_supported()) 4332 continue; 4333 break; 4334 default: 4335 break; 4336 } 4337 4338 if (j < i) 4339 msrs_to_save[j] = msrs_to_save[i]; 4340 j++; 4341 } 4342 num_msrs_to_save = j; 4343 4344 for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) { 4345 switch (emulated_msrs[i]) { 4346 case MSR_IA32_SMBASE: 4347 if (!kvm_x86_ops->cpu_has_high_real_mode_segbase()) 4348 continue; 4349 break; 4350 default: 4351 break; 4352 } 4353 4354 if (j < i) 4355 emulated_msrs[j] = emulated_msrs[i]; 4356 j++; 4357 } 4358 num_emulated_msrs = j; 4359 } 4360 4361 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, 4362 const void *v) 4363 { 4364 int handled = 0; 4365 int n; 4366 4367 do { 4368 n = min(len, 8); 4369 if (!(lapic_in_kernel(vcpu) && 4370 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) 4371 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) 4372 break; 4373 handled += n; 4374 addr += n; 4375 len -= n; 4376 v += n; 4377 } while (len); 4378 4379 return handled; 4380 } 4381 4382 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) 4383 { 4384 int handled = 0; 4385 int n; 4386 4387 do { 4388 n = min(len, 8); 4389 if (!(lapic_in_kernel(vcpu) && 4390 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, 4391 addr, n, v)) 4392 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) 4393 break; 4394 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); 4395 handled += n; 4396 addr += n; 4397 len -= n; 4398 v += n; 4399 } while (len); 4400 4401 return handled; 4402 } 4403 4404 static void kvm_set_segment(struct kvm_vcpu *vcpu, 4405 struct kvm_segment *var, int seg) 4406 { 4407 kvm_x86_ops->set_segment(vcpu, var, seg); 4408 } 4409 4410 void kvm_get_segment(struct kvm_vcpu *vcpu, 4411 struct kvm_segment *var, int seg) 4412 { 4413 kvm_x86_ops->get_segment(vcpu, var, seg); 4414 } 4415 4416 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access, 4417 struct x86_exception *exception) 4418 { 4419 gpa_t t_gpa; 4420 4421 BUG_ON(!mmu_is_nested(vcpu)); 4422 4423 /* NPT walks are always user-walks */ 4424 access |= PFERR_USER_MASK; 4425 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception); 4426 4427 return t_gpa; 4428 } 4429 4430 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, 4431 struct x86_exception *exception) 4432 { 4433 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4434 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4435 } 4436 4437 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, 4438 struct x86_exception *exception) 4439 { 4440 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4441 access |= PFERR_FETCH_MASK; 4442 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4443 } 4444 4445 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, 4446 struct x86_exception *exception) 4447 { 4448 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4449 access |= PFERR_WRITE_MASK; 4450 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4451 } 4452 4453 /* uses this to access any guest's mapped memory without checking CPL */ 4454 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, 4455 struct x86_exception *exception) 4456 { 4457 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); 4458 } 4459 4460 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, 4461 struct kvm_vcpu *vcpu, u32 access, 4462 struct x86_exception *exception) 4463 { 4464 void *data = val; 4465 int r = X86EMUL_CONTINUE; 4466 4467 while (bytes) { 4468 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, 4469 exception); 4470 unsigned offset = addr & (PAGE_SIZE-1); 4471 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); 4472 int ret; 4473 4474 if (gpa == UNMAPPED_GVA) 4475 return X86EMUL_PROPAGATE_FAULT; 4476 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, 4477 offset, toread); 4478 if (ret < 0) { 4479 r = X86EMUL_IO_NEEDED; 4480 goto out; 4481 } 4482 4483 bytes -= toread; 4484 data += toread; 4485 addr += toread; 4486 } 4487 out: 4488 return r; 4489 } 4490 4491 /* used for instruction fetching */ 4492 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, 4493 gva_t addr, void *val, unsigned int bytes, 4494 struct x86_exception *exception) 4495 { 4496 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4497 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4498 unsigned offset; 4499 int ret; 4500 4501 /* Inline kvm_read_guest_virt_helper for speed. */ 4502 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK, 4503 exception); 4504 if (unlikely(gpa == UNMAPPED_GVA)) 4505 return X86EMUL_PROPAGATE_FAULT; 4506 4507 offset = addr & (PAGE_SIZE-1); 4508 if (WARN_ON(offset + bytes > PAGE_SIZE)) 4509 bytes = (unsigned)PAGE_SIZE - offset; 4510 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, 4511 offset, bytes); 4512 if (unlikely(ret < 0)) 4513 return X86EMUL_IO_NEEDED; 4514 4515 return X86EMUL_CONTINUE; 4516 } 4517 4518 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, 4519 gva_t addr, void *val, unsigned int bytes, 4520 struct x86_exception *exception) 4521 { 4522 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4523 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; 4524 4525 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, 4526 exception); 4527 } 4528 EXPORT_SYMBOL_GPL(kvm_read_guest_virt); 4529 4530 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4531 gva_t addr, void *val, unsigned int bytes, 4532 struct x86_exception *exception) 4533 { 4534 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4535 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); 4536 } 4537 4538 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt, 4539 unsigned long addr, void *val, unsigned int bytes) 4540 { 4541 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4542 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes); 4543 4544 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE; 4545 } 4546 4547 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, 4548 gva_t addr, void *val, 4549 unsigned int bytes, 4550 struct x86_exception *exception) 4551 { 4552 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4553 void *data = val; 4554 int r = X86EMUL_CONTINUE; 4555 4556 while (bytes) { 4557 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, 4558 PFERR_WRITE_MASK, 4559 exception); 4560 unsigned offset = addr & (PAGE_SIZE-1); 4561 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); 4562 int ret; 4563 4564 if (gpa == UNMAPPED_GVA) 4565 return X86EMUL_PROPAGATE_FAULT; 4566 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); 4567 if (ret < 0) { 4568 r = X86EMUL_IO_NEEDED; 4569 goto out; 4570 } 4571 4572 bytes -= towrite; 4573 data += towrite; 4574 addr += towrite; 4575 } 4576 out: 4577 return r; 4578 } 4579 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); 4580 4581 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4582 gpa_t gpa, bool write) 4583 { 4584 /* For APIC access vmexit */ 4585 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4586 return 1; 4587 4588 if (vcpu_match_mmio_gpa(vcpu, gpa)) { 4589 trace_vcpu_match_mmio(gva, gpa, write, true); 4590 return 1; 4591 } 4592 4593 return 0; 4594 } 4595 4596 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, 4597 gpa_t *gpa, struct x86_exception *exception, 4598 bool write) 4599 { 4600 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) 4601 | (write ? PFERR_WRITE_MASK : 0); 4602 4603 /* 4604 * currently PKRU is only applied to ept enabled guest so 4605 * there is no pkey in EPT page table for L1 guest or EPT 4606 * shadow page table for L2 guest. 4607 */ 4608 if (vcpu_match_mmio_gva(vcpu, gva) 4609 && !permission_fault(vcpu, vcpu->arch.walk_mmu, 4610 vcpu->arch.access, 0, access)) { 4611 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | 4612 (gva & (PAGE_SIZE - 1)); 4613 trace_vcpu_match_mmio(gva, *gpa, write, false); 4614 return 1; 4615 } 4616 4617 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); 4618 4619 if (*gpa == UNMAPPED_GVA) 4620 return -1; 4621 4622 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); 4623 } 4624 4625 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, 4626 const void *val, int bytes) 4627 { 4628 int ret; 4629 4630 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); 4631 if (ret < 0) 4632 return 0; 4633 kvm_page_track_write(vcpu, gpa, val, bytes); 4634 return 1; 4635 } 4636 4637 struct read_write_emulator_ops { 4638 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, 4639 int bytes); 4640 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, 4641 void *val, int bytes); 4642 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4643 int bytes, void *val); 4644 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, 4645 void *val, int bytes); 4646 bool write; 4647 }; 4648 4649 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) 4650 { 4651 if (vcpu->mmio_read_completed) { 4652 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, 4653 vcpu->mmio_fragments[0].gpa, val); 4654 vcpu->mmio_read_completed = 0; 4655 return 1; 4656 } 4657 4658 return 0; 4659 } 4660 4661 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4662 void *val, int bytes) 4663 { 4664 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); 4665 } 4666 4667 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, 4668 void *val, int bytes) 4669 { 4670 return emulator_write_phys(vcpu, gpa, val, bytes); 4671 } 4672 4673 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) 4674 { 4675 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); 4676 return vcpu_mmio_write(vcpu, gpa, bytes, val); 4677 } 4678 4679 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4680 void *val, int bytes) 4681 { 4682 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); 4683 return X86EMUL_IO_NEEDED; 4684 } 4685 4686 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, 4687 void *val, int bytes) 4688 { 4689 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; 4690 4691 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); 4692 return X86EMUL_CONTINUE; 4693 } 4694 4695 static const struct read_write_emulator_ops read_emultor = { 4696 .read_write_prepare = read_prepare, 4697 .read_write_emulate = read_emulate, 4698 .read_write_mmio = vcpu_mmio_read, 4699 .read_write_exit_mmio = read_exit_mmio, 4700 }; 4701 4702 static const struct read_write_emulator_ops write_emultor = { 4703 .read_write_emulate = write_emulate, 4704 .read_write_mmio = write_mmio, 4705 .read_write_exit_mmio = write_exit_mmio, 4706 .write = true, 4707 }; 4708 4709 static int emulator_read_write_onepage(unsigned long addr, void *val, 4710 unsigned int bytes, 4711 struct x86_exception *exception, 4712 struct kvm_vcpu *vcpu, 4713 const struct read_write_emulator_ops *ops) 4714 { 4715 gpa_t gpa; 4716 int handled, ret; 4717 bool write = ops->write; 4718 struct kvm_mmio_fragment *frag; 4719 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 4720 4721 /* 4722 * If the exit was due to a NPF we may already have a GPA. 4723 * If the GPA is present, use it to avoid the GVA to GPA table walk. 4724 * Note, this cannot be used on string operations since string 4725 * operation using rep will only have the initial GPA from the NPF 4726 * occurred. 4727 */ 4728 if (vcpu->arch.gpa_available && 4729 emulator_can_use_gpa(ctxt) && 4730 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) { 4731 gpa = vcpu->arch.gpa_val; 4732 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); 4733 } else { 4734 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); 4735 if (ret < 0) 4736 return X86EMUL_PROPAGATE_FAULT; 4737 } 4738 4739 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) 4740 return X86EMUL_CONTINUE; 4741 4742 /* 4743 * Is this MMIO handled locally? 4744 */ 4745 handled = ops->read_write_mmio(vcpu, gpa, bytes, val); 4746 if (handled == bytes) 4747 return X86EMUL_CONTINUE; 4748 4749 gpa += handled; 4750 bytes -= handled; 4751 val += handled; 4752 4753 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); 4754 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; 4755 frag->gpa = gpa; 4756 frag->data = val; 4757 frag->len = bytes; 4758 return X86EMUL_CONTINUE; 4759 } 4760 4761 static int emulator_read_write(struct x86_emulate_ctxt *ctxt, 4762 unsigned long addr, 4763 void *val, unsigned int bytes, 4764 struct x86_exception *exception, 4765 const struct read_write_emulator_ops *ops) 4766 { 4767 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4768 gpa_t gpa; 4769 int rc; 4770 4771 if (ops->read_write_prepare && 4772 ops->read_write_prepare(vcpu, val, bytes)) 4773 return X86EMUL_CONTINUE; 4774 4775 vcpu->mmio_nr_fragments = 0; 4776 4777 /* Crossing a page boundary? */ 4778 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { 4779 int now; 4780 4781 now = -addr & ~PAGE_MASK; 4782 rc = emulator_read_write_onepage(addr, val, now, exception, 4783 vcpu, ops); 4784 4785 if (rc != X86EMUL_CONTINUE) 4786 return rc; 4787 addr += now; 4788 if (ctxt->mode != X86EMUL_MODE_PROT64) 4789 addr = (u32)addr; 4790 val += now; 4791 bytes -= now; 4792 } 4793 4794 rc = emulator_read_write_onepage(addr, val, bytes, exception, 4795 vcpu, ops); 4796 if (rc != X86EMUL_CONTINUE) 4797 return rc; 4798 4799 if (!vcpu->mmio_nr_fragments) 4800 return rc; 4801 4802 gpa = vcpu->mmio_fragments[0].gpa; 4803 4804 vcpu->mmio_needed = 1; 4805 vcpu->mmio_cur_fragment = 0; 4806 4807 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); 4808 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; 4809 vcpu->run->exit_reason = KVM_EXIT_MMIO; 4810 vcpu->run->mmio.phys_addr = gpa; 4811 4812 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); 4813 } 4814 4815 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, 4816 unsigned long addr, 4817 void *val, 4818 unsigned int bytes, 4819 struct x86_exception *exception) 4820 { 4821 return emulator_read_write(ctxt, addr, val, bytes, 4822 exception, &read_emultor); 4823 } 4824 4825 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, 4826 unsigned long addr, 4827 const void *val, 4828 unsigned int bytes, 4829 struct x86_exception *exception) 4830 { 4831 return emulator_read_write(ctxt, addr, (void *)val, bytes, 4832 exception, &write_emultor); 4833 } 4834 4835 #define CMPXCHG_TYPE(t, ptr, old, new) \ 4836 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) 4837 4838 #ifdef CONFIG_X86_64 4839 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) 4840 #else 4841 # define CMPXCHG64(ptr, old, new) \ 4842 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) 4843 #endif 4844 4845 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, 4846 unsigned long addr, 4847 const void *old, 4848 const void *new, 4849 unsigned int bytes, 4850 struct x86_exception *exception) 4851 { 4852 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4853 gpa_t gpa; 4854 struct page *page; 4855 char *kaddr; 4856 bool exchanged; 4857 4858 /* guests cmpxchg8b have to be emulated atomically */ 4859 if (bytes > 8 || (bytes & (bytes - 1))) 4860 goto emul_write; 4861 4862 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); 4863 4864 if (gpa == UNMAPPED_GVA || 4865 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) 4866 goto emul_write; 4867 4868 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) 4869 goto emul_write; 4870 4871 page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT); 4872 if (is_error_page(page)) 4873 goto emul_write; 4874 4875 kaddr = kmap_atomic(page); 4876 kaddr += offset_in_page(gpa); 4877 switch (bytes) { 4878 case 1: 4879 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); 4880 break; 4881 case 2: 4882 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); 4883 break; 4884 case 4: 4885 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); 4886 break; 4887 case 8: 4888 exchanged = CMPXCHG64(kaddr, old, new); 4889 break; 4890 default: 4891 BUG(); 4892 } 4893 kunmap_atomic(kaddr); 4894 kvm_release_page_dirty(page); 4895 4896 if (!exchanged) 4897 return X86EMUL_CMPXCHG_FAILED; 4898 4899 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 4900 kvm_page_track_write(vcpu, gpa, new, bytes); 4901 4902 return X86EMUL_CONTINUE; 4903 4904 emul_write: 4905 printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); 4906 4907 return emulator_write_emulated(ctxt, addr, new, bytes, exception); 4908 } 4909 4910 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) 4911 { 4912 int r = 0, i; 4913 4914 for (i = 0; i < vcpu->arch.pio.count; i++) { 4915 if (vcpu->arch.pio.in) 4916 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port, 4917 vcpu->arch.pio.size, pd); 4918 else 4919 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, 4920 vcpu->arch.pio.port, vcpu->arch.pio.size, 4921 pd); 4922 if (r) 4923 break; 4924 pd += vcpu->arch.pio.size; 4925 } 4926 return r; 4927 } 4928 4929 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, 4930 unsigned short port, void *val, 4931 unsigned int count, bool in) 4932 { 4933 vcpu->arch.pio.port = port; 4934 vcpu->arch.pio.in = in; 4935 vcpu->arch.pio.count = count; 4936 vcpu->arch.pio.size = size; 4937 4938 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { 4939 vcpu->arch.pio.count = 0; 4940 return 1; 4941 } 4942 4943 vcpu->run->exit_reason = KVM_EXIT_IO; 4944 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; 4945 vcpu->run->io.size = size; 4946 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; 4947 vcpu->run->io.count = count; 4948 vcpu->run->io.port = port; 4949 4950 return 0; 4951 } 4952 4953 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, 4954 int size, unsigned short port, void *val, 4955 unsigned int count) 4956 { 4957 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4958 int ret; 4959 4960 if (vcpu->arch.pio.count) 4961 goto data_avail; 4962 4963 memset(vcpu->arch.pio_data, 0, size * count); 4964 4965 ret = emulator_pio_in_out(vcpu, size, port, val, count, true); 4966 if (ret) { 4967 data_avail: 4968 memcpy(val, vcpu->arch.pio_data, size * count); 4969 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data); 4970 vcpu->arch.pio.count = 0; 4971 return 1; 4972 } 4973 4974 return 0; 4975 } 4976 4977 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, 4978 int size, unsigned short port, 4979 const void *val, unsigned int count) 4980 { 4981 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 4982 4983 memcpy(vcpu->arch.pio_data, val, size * count); 4984 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data); 4985 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); 4986 } 4987 4988 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) 4989 { 4990 return kvm_x86_ops->get_segment_base(vcpu, seg); 4991 } 4992 4993 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) 4994 { 4995 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); 4996 } 4997 4998 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) 4999 { 5000 if (!need_emulate_wbinvd(vcpu)) 5001 return X86EMUL_CONTINUE; 5002 5003 if (kvm_x86_ops->has_wbinvd_exit()) { 5004 int cpu = get_cpu(); 5005 5006 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); 5007 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, 5008 wbinvd_ipi, NULL, 1); 5009 put_cpu(); 5010 cpumask_clear(vcpu->arch.wbinvd_dirty_mask); 5011 } else 5012 wbinvd(); 5013 return X86EMUL_CONTINUE; 5014 } 5015 5016 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) 5017 { 5018 kvm_emulate_wbinvd_noskip(vcpu); 5019 return kvm_skip_emulated_instruction(vcpu); 5020 } 5021 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); 5022 5023 5024 5025 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) 5026 { 5027 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); 5028 } 5029 5030 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, 5031 unsigned long *dest) 5032 { 5033 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); 5034 } 5035 5036 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, 5037 unsigned long value) 5038 { 5039 5040 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); 5041 } 5042 5043 static u64 mk_cr_64(u64 curr_cr, u32 new_val) 5044 { 5045 return (curr_cr & ~((1ULL << 32) - 1)) | new_val; 5046 } 5047 5048 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) 5049 { 5050 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5051 unsigned long value; 5052 5053 switch (cr) { 5054 case 0: 5055 value = kvm_read_cr0(vcpu); 5056 break; 5057 case 2: 5058 value = vcpu->arch.cr2; 5059 break; 5060 case 3: 5061 value = kvm_read_cr3(vcpu); 5062 break; 5063 case 4: 5064 value = kvm_read_cr4(vcpu); 5065 break; 5066 case 8: 5067 value = kvm_get_cr8(vcpu); 5068 break; 5069 default: 5070 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5071 return 0; 5072 } 5073 5074 return value; 5075 } 5076 5077 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) 5078 { 5079 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5080 int res = 0; 5081 5082 switch (cr) { 5083 case 0: 5084 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); 5085 break; 5086 case 2: 5087 vcpu->arch.cr2 = val; 5088 break; 5089 case 3: 5090 res = kvm_set_cr3(vcpu, val); 5091 break; 5092 case 4: 5093 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); 5094 break; 5095 case 8: 5096 res = kvm_set_cr8(vcpu, val); 5097 break; 5098 default: 5099 kvm_err("%s: unexpected cr %u\n", __func__, cr); 5100 res = -1; 5101 } 5102 5103 return res; 5104 } 5105 5106 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) 5107 { 5108 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); 5109 } 5110 5111 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5112 { 5113 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); 5114 } 5115 5116 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5117 { 5118 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); 5119 } 5120 5121 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5122 { 5123 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); 5124 } 5125 5126 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) 5127 { 5128 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); 5129 } 5130 5131 static unsigned long emulator_get_cached_segment_base( 5132 struct x86_emulate_ctxt *ctxt, int seg) 5133 { 5134 return get_segment_base(emul_to_vcpu(ctxt), seg); 5135 } 5136 5137 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, 5138 struct desc_struct *desc, u32 *base3, 5139 int seg) 5140 { 5141 struct kvm_segment var; 5142 5143 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); 5144 *selector = var.selector; 5145 5146 if (var.unusable) { 5147 memset(desc, 0, sizeof(*desc)); 5148 if (base3) 5149 *base3 = 0; 5150 return false; 5151 } 5152 5153 if (var.g) 5154 var.limit >>= 12; 5155 set_desc_limit(desc, var.limit); 5156 set_desc_base(desc, (unsigned long)var.base); 5157 #ifdef CONFIG_X86_64 5158 if (base3) 5159 *base3 = var.base >> 32; 5160 #endif 5161 desc->type = var.type; 5162 desc->s = var.s; 5163 desc->dpl = var.dpl; 5164 desc->p = var.present; 5165 desc->avl = var.avl; 5166 desc->l = var.l; 5167 desc->d = var.db; 5168 desc->g = var.g; 5169 5170 return true; 5171 } 5172 5173 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, 5174 struct desc_struct *desc, u32 base3, 5175 int seg) 5176 { 5177 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5178 struct kvm_segment var; 5179 5180 var.selector = selector; 5181 var.base = get_desc_base(desc); 5182 #ifdef CONFIG_X86_64 5183 var.base |= ((u64)base3) << 32; 5184 #endif 5185 var.limit = get_desc_limit(desc); 5186 if (desc->g) 5187 var.limit = (var.limit << 12) | 0xfff; 5188 var.type = desc->type; 5189 var.dpl = desc->dpl; 5190 var.db = desc->d; 5191 var.s = desc->s; 5192 var.l = desc->l; 5193 var.g = desc->g; 5194 var.avl = desc->avl; 5195 var.present = desc->p; 5196 var.unusable = !var.present; 5197 var.padding = 0; 5198 5199 kvm_set_segment(vcpu, &var, seg); 5200 return; 5201 } 5202 5203 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, 5204 u32 msr_index, u64 *pdata) 5205 { 5206 struct msr_data msr; 5207 int r; 5208 5209 msr.index = msr_index; 5210 msr.host_initiated = false; 5211 r = kvm_get_msr(emul_to_vcpu(ctxt), &msr); 5212 if (r) 5213 return r; 5214 5215 *pdata = msr.data; 5216 return 0; 5217 } 5218 5219 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, 5220 u32 msr_index, u64 data) 5221 { 5222 struct msr_data msr; 5223 5224 msr.data = data; 5225 msr.index = msr_index; 5226 msr.host_initiated = false; 5227 return kvm_set_msr(emul_to_vcpu(ctxt), &msr); 5228 } 5229 5230 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt) 5231 { 5232 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5233 5234 return vcpu->arch.smbase; 5235 } 5236 5237 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase) 5238 { 5239 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5240 5241 vcpu->arch.smbase = smbase; 5242 } 5243 5244 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt, 5245 u32 pmc) 5246 { 5247 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc); 5248 } 5249 5250 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, 5251 u32 pmc, u64 *pdata) 5252 { 5253 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); 5254 } 5255 5256 static void emulator_halt(struct x86_emulate_ctxt *ctxt) 5257 { 5258 emul_to_vcpu(ctxt)->arch.halt_request = 1; 5259 } 5260 5261 static int emulator_intercept(struct x86_emulate_ctxt *ctxt, 5262 struct x86_instruction_info *info, 5263 enum x86_intercept_stage stage) 5264 { 5265 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); 5266 } 5267 5268 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, 5269 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit) 5270 { 5271 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit); 5272 } 5273 5274 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) 5275 { 5276 return kvm_register_read(emul_to_vcpu(ctxt), reg); 5277 } 5278 5279 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) 5280 { 5281 kvm_register_write(emul_to_vcpu(ctxt), reg, val); 5282 } 5283 5284 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) 5285 { 5286 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked); 5287 } 5288 5289 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt) 5290 { 5291 return emul_to_vcpu(ctxt)->arch.hflags; 5292 } 5293 5294 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags) 5295 { 5296 kvm_set_hflags(emul_to_vcpu(ctxt), emul_flags); 5297 } 5298 5299 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt, u64 smbase) 5300 { 5301 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smbase); 5302 } 5303 5304 static const struct x86_emulate_ops emulate_ops = { 5305 .read_gpr = emulator_read_gpr, 5306 .write_gpr = emulator_write_gpr, 5307 .read_std = kvm_read_guest_virt_system, 5308 .write_std = kvm_write_guest_virt_system, 5309 .read_phys = kvm_read_guest_phys_system, 5310 .fetch = kvm_fetch_guest_virt, 5311 .read_emulated = emulator_read_emulated, 5312 .write_emulated = emulator_write_emulated, 5313 .cmpxchg_emulated = emulator_cmpxchg_emulated, 5314 .invlpg = emulator_invlpg, 5315 .pio_in_emulated = emulator_pio_in_emulated, 5316 .pio_out_emulated = emulator_pio_out_emulated, 5317 .get_segment = emulator_get_segment, 5318 .set_segment = emulator_set_segment, 5319 .get_cached_segment_base = emulator_get_cached_segment_base, 5320 .get_gdt = emulator_get_gdt, 5321 .get_idt = emulator_get_idt, 5322 .set_gdt = emulator_set_gdt, 5323 .set_idt = emulator_set_idt, 5324 .get_cr = emulator_get_cr, 5325 .set_cr = emulator_set_cr, 5326 .cpl = emulator_get_cpl, 5327 .get_dr = emulator_get_dr, 5328 .set_dr = emulator_set_dr, 5329 .get_smbase = emulator_get_smbase, 5330 .set_smbase = emulator_set_smbase, 5331 .set_msr = emulator_set_msr, 5332 .get_msr = emulator_get_msr, 5333 .check_pmc = emulator_check_pmc, 5334 .read_pmc = emulator_read_pmc, 5335 .halt = emulator_halt, 5336 .wbinvd = emulator_wbinvd, 5337 .fix_hypercall = emulator_fix_hypercall, 5338 .intercept = emulator_intercept, 5339 .get_cpuid = emulator_get_cpuid, 5340 .set_nmi_mask = emulator_set_nmi_mask, 5341 .get_hflags = emulator_get_hflags, 5342 .set_hflags = emulator_set_hflags, 5343 .pre_leave_smm = emulator_pre_leave_smm, 5344 }; 5345 5346 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) 5347 { 5348 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu); 5349 /* 5350 * an sti; sti; sequence only disable interrupts for the first 5351 * instruction. So, if the last instruction, be it emulated or 5352 * not, left the system with the INT_STI flag enabled, it 5353 * means that the last instruction is an sti. We should not 5354 * leave the flag on in this case. The same goes for mov ss 5355 */ 5356 if (int_shadow & mask) 5357 mask = 0; 5358 if (unlikely(int_shadow || mask)) { 5359 kvm_x86_ops->set_interrupt_shadow(vcpu, mask); 5360 if (!mask) 5361 kvm_make_request(KVM_REQ_EVENT, vcpu); 5362 } 5363 } 5364 5365 static bool inject_emulated_exception(struct kvm_vcpu *vcpu) 5366 { 5367 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5368 if (ctxt->exception.vector == PF_VECTOR) 5369 return kvm_propagate_fault(vcpu, &ctxt->exception); 5370 5371 if (ctxt->exception.error_code_valid) 5372 kvm_queue_exception_e(vcpu, ctxt->exception.vector, 5373 ctxt->exception.error_code); 5374 else 5375 kvm_queue_exception(vcpu, ctxt->exception.vector); 5376 return false; 5377 } 5378 5379 static void init_emulate_ctxt(struct kvm_vcpu *vcpu) 5380 { 5381 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5382 int cs_db, cs_l; 5383 5384 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); 5385 5386 ctxt->eflags = kvm_get_rflags(vcpu); 5387 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; 5388 5389 ctxt->eip = kvm_rip_read(vcpu); 5390 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : 5391 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : 5392 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : 5393 cs_db ? X86EMUL_MODE_PROT32 : 5394 X86EMUL_MODE_PROT16; 5395 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK); 5396 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK); 5397 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK); 5398 5399 init_decode_cache(ctxt); 5400 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5401 } 5402 5403 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) 5404 { 5405 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5406 int ret; 5407 5408 init_emulate_ctxt(vcpu); 5409 5410 ctxt->op_bytes = 2; 5411 ctxt->ad_bytes = 2; 5412 ctxt->_eip = ctxt->eip + inc_eip; 5413 ret = emulate_int_real(ctxt, irq); 5414 5415 if (ret != X86EMUL_CONTINUE) 5416 return EMULATE_FAIL; 5417 5418 ctxt->eip = ctxt->_eip; 5419 kvm_rip_write(vcpu, ctxt->eip); 5420 kvm_set_rflags(vcpu, ctxt->eflags); 5421 5422 if (irq == NMI_VECTOR) 5423 vcpu->arch.nmi_pending = 0; 5424 else 5425 vcpu->arch.interrupt.pending = false; 5426 5427 return EMULATE_DONE; 5428 } 5429 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); 5430 5431 static int handle_emulation_failure(struct kvm_vcpu *vcpu) 5432 { 5433 int r = EMULATE_DONE; 5434 5435 ++vcpu->stat.insn_emulation_fail; 5436 trace_kvm_emulate_insn_failed(vcpu); 5437 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) { 5438 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5439 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5440 vcpu->run->internal.ndata = 0; 5441 r = EMULATE_USER_EXIT; 5442 } 5443 kvm_queue_exception(vcpu, UD_VECTOR); 5444 5445 return r; 5446 } 5447 5448 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, 5449 bool write_fault_to_shadow_pgtable, 5450 int emulation_type) 5451 { 5452 gpa_t gpa = cr2; 5453 kvm_pfn_t pfn; 5454 5455 if (emulation_type & EMULTYPE_NO_REEXECUTE) 5456 return false; 5457 5458 if (!vcpu->arch.mmu.direct_map) { 5459 /* 5460 * Write permission should be allowed since only 5461 * write access need to be emulated. 5462 */ 5463 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5464 5465 /* 5466 * If the mapping is invalid in guest, let cpu retry 5467 * it to generate fault. 5468 */ 5469 if (gpa == UNMAPPED_GVA) 5470 return true; 5471 } 5472 5473 /* 5474 * Do not retry the unhandleable instruction if it faults on the 5475 * readonly host memory, otherwise it will goto a infinite loop: 5476 * retry instruction -> write #PF -> emulation fail -> retry 5477 * instruction -> ... 5478 */ 5479 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); 5480 5481 /* 5482 * If the instruction failed on the error pfn, it can not be fixed, 5483 * report the error to userspace. 5484 */ 5485 if (is_error_noslot_pfn(pfn)) 5486 return false; 5487 5488 kvm_release_pfn_clean(pfn); 5489 5490 /* The instructions are well-emulated on direct mmu. */ 5491 if (vcpu->arch.mmu.direct_map) { 5492 unsigned int indirect_shadow_pages; 5493 5494 spin_lock(&vcpu->kvm->mmu_lock); 5495 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; 5496 spin_unlock(&vcpu->kvm->mmu_lock); 5497 5498 if (indirect_shadow_pages) 5499 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5500 5501 return true; 5502 } 5503 5504 /* 5505 * if emulation was due to access to shadowed page table 5506 * and it failed try to unshadow page and re-enter the 5507 * guest to let CPU execute the instruction. 5508 */ 5509 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5510 5511 /* 5512 * If the access faults on its page table, it can not 5513 * be fixed by unprotecting shadow page and it should 5514 * be reported to userspace. 5515 */ 5516 return !write_fault_to_shadow_pgtable; 5517 } 5518 5519 static bool retry_instruction(struct x86_emulate_ctxt *ctxt, 5520 unsigned long cr2, int emulation_type) 5521 { 5522 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); 5523 unsigned long last_retry_eip, last_retry_addr, gpa = cr2; 5524 5525 last_retry_eip = vcpu->arch.last_retry_eip; 5526 last_retry_addr = vcpu->arch.last_retry_addr; 5527 5528 /* 5529 * If the emulation is caused by #PF and it is non-page_table 5530 * writing instruction, it means the VM-EXIT is caused by shadow 5531 * page protected, we can zap the shadow page and retry this 5532 * instruction directly. 5533 * 5534 * Note: if the guest uses a non-page-table modifying instruction 5535 * on the PDE that points to the instruction, then we will unmap 5536 * the instruction and go to an infinite loop. So, we cache the 5537 * last retried eip and the last fault address, if we meet the eip 5538 * and the address again, we can break out of the potential infinite 5539 * loop. 5540 */ 5541 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; 5542 5543 if (!(emulation_type & EMULTYPE_RETRY)) 5544 return false; 5545 5546 if (x86_page_table_writing_insn(ctxt)) 5547 return false; 5548 5549 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) 5550 return false; 5551 5552 vcpu->arch.last_retry_eip = ctxt->eip; 5553 vcpu->arch.last_retry_addr = cr2; 5554 5555 if (!vcpu->arch.mmu.direct_map) 5556 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); 5557 5558 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); 5559 5560 return true; 5561 } 5562 5563 static int complete_emulated_mmio(struct kvm_vcpu *vcpu); 5564 static int complete_emulated_pio(struct kvm_vcpu *vcpu); 5565 5566 static void kvm_smm_changed(struct kvm_vcpu *vcpu) 5567 { 5568 if (!(vcpu->arch.hflags & HF_SMM_MASK)) { 5569 /* This is a good place to trace that we are exiting SMM. */ 5570 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false); 5571 5572 /* Process a latched INIT or SMI, if any. */ 5573 kvm_make_request(KVM_REQ_EVENT, vcpu); 5574 } 5575 5576 kvm_mmu_reset_context(vcpu); 5577 } 5578 5579 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags) 5580 { 5581 unsigned changed = vcpu->arch.hflags ^ emul_flags; 5582 5583 vcpu->arch.hflags = emul_flags; 5584 5585 if (changed & HF_SMM_MASK) 5586 kvm_smm_changed(vcpu); 5587 } 5588 5589 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, 5590 unsigned long *db) 5591 { 5592 u32 dr6 = 0; 5593 int i; 5594 u32 enable, rwlen; 5595 5596 enable = dr7; 5597 rwlen = dr7 >> 16; 5598 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) 5599 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) 5600 dr6 |= (1 << i); 5601 return dr6; 5602 } 5603 5604 static void kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu, int *r) 5605 { 5606 struct kvm_run *kvm_run = vcpu->run; 5607 5608 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { 5609 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM; 5610 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip; 5611 kvm_run->debug.arch.exception = DB_VECTOR; 5612 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5613 *r = EMULATE_USER_EXIT; 5614 } else { 5615 /* 5616 * "Certain debug exceptions may clear bit 0-3. The 5617 * remaining contents of the DR6 register are never 5618 * cleared by the processor". 5619 */ 5620 vcpu->arch.dr6 &= ~15; 5621 vcpu->arch.dr6 |= DR6_BS | DR6_RTM; 5622 kvm_queue_exception(vcpu, DB_VECTOR); 5623 } 5624 } 5625 5626 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) 5627 { 5628 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5629 int r = EMULATE_DONE; 5630 5631 kvm_x86_ops->skip_emulated_instruction(vcpu); 5632 5633 /* 5634 * rflags is the old, "raw" value of the flags. The new value has 5635 * not been saved yet. 5636 * 5637 * This is correct even for TF set by the guest, because "the 5638 * processor will not generate this exception after the instruction 5639 * that sets the TF flag". 5640 */ 5641 if (unlikely(rflags & X86_EFLAGS_TF)) 5642 kvm_vcpu_do_singlestep(vcpu, &r); 5643 return r == EMULATE_DONE; 5644 } 5645 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); 5646 5647 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r) 5648 { 5649 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && 5650 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { 5651 struct kvm_run *kvm_run = vcpu->run; 5652 unsigned long eip = kvm_get_linear_rip(vcpu); 5653 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5654 vcpu->arch.guest_debug_dr7, 5655 vcpu->arch.eff_db); 5656 5657 if (dr6 != 0) { 5658 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 5659 kvm_run->debug.arch.pc = eip; 5660 kvm_run->debug.arch.exception = DB_VECTOR; 5661 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5662 *r = EMULATE_USER_EXIT; 5663 return true; 5664 } 5665 } 5666 5667 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && 5668 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) { 5669 unsigned long eip = kvm_get_linear_rip(vcpu); 5670 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, 5671 vcpu->arch.dr7, 5672 vcpu->arch.db); 5673 5674 if (dr6 != 0) { 5675 vcpu->arch.dr6 &= ~15; 5676 vcpu->arch.dr6 |= dr6 | DR6_RTM; 5677 kvm_queue_exception(vcpu, DB_VECTOR); 5678 *r = EMULATE_DONE; 5679 return true; 5680 } 5681 } 5682 5683 return false; 5684 } 5685 5686 int x86_emulate_instruction(struct kvm_vcpu *vcpu, 5687 unsigned long cr2, 5688 int emulation_type, 5689 void *insn, 5690 int insn_len) 5691 { 5692 int r; 5693 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 5694 bool writeback = true; 5695 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; 5696 5697 /* 5698 * Clear write_fault_to_shadow_pgtable here to ensure it is 5699 * never reused. 5700 */ 5701 vcpu->arch.write_fault_to_shadow_pgtable = false; 5702 kvm_clear_exception_queue(vcpu); 5703 5704 if (!(emulation_type & EMULTYPE_NO_DECODE)) { 5705 init_emulate_ctxt(vcpu); 5706 5707 /* 5708 * We will reenter on the same instruction since 5709 * we do not set complete_userspace_io. This does not 5710 * handle watchpoints yet, those would be handled in 5711 * the emulate_ops. 5712 */ 5713 if (kvm_vcpu_check_breakpoint(vcpu, &r)) 5714 return r; 5715 5716 ctxt->interruptibility = 0; 5717 ctxt->have_exception = false; 5718 ctxt->exception.vector = -1; 5719 ctxt->perm_ok = false; 5720 5721 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD; 5722 5723 r = x86_decode_insn(ctxt, insn, insn_len); 5724 5725 trace_kvm_emulate_insn_start(vcpu); 5726 ++vcpu->stat.insn_emulation; 5727 if (r != EMULATION_OK) { 5728 if (emulation_type & EMULTYPE_TRAP_UD) 5729 return EMULATE_FAIL; 5730 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5731 emulation_type)) 5732 return EMULATE_DONE; 5733 if (ctxt->have_exception && inject_emulated_exception(vcpu)) 5734 return EMULATE_DONE; 5735 if (emulation_type & EMULTYPE_SKIP) 5736 return EMULATE_FAIL; 5737 return handle_emulation_failure(vcpu); 5738 } 5739 } 5740 5741 if (emulation_type & EMULTYPE_SKIP) { 5742 kvm_rip_write(vcpu, ctxt->_eip); 5743 if (ctxt->eflags & X86_EFLAGS_RF) 5744 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); 5745 return EMULATE_DONE; 5746 } 5747 5748 if (retry_instruction(ctxt, cr2, emulation_type)) 5749 return EMULATE_DONE; 5750 5751 /* this is needed for vmware backdoor interface to work since it 5752 changes registers values during IO operation */ 5753 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { 5754 vcpu->arch.emulate_regs_need_sync_from_vcpu = false; 5755 emulator_invalidate_register_cache(ctxt); 5756 } 5757 5758 restart: 5759 /* Save the faulting GPA (cr2) in the address field */ 5760 ctxt->exception.address = cr2; 5761 5762 r = x86_emulate_insn(ctxt); 5763 5764 if (r == EMULATION_INTERCEPTED) 5765 return EMULATE_DONE; 5766 5767 if (r == EMULATION_FAILED) { 5768 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, 5769 emulation_type)) 5770 return EMULATE_DONE; 5771 5772 return handle_emulation_failure(vcpu); 5773 } 5774 5775 if (ctxt->have_exception) { 5776 r = EMULATE_DONE; 5777 if (inject_emulated_exception(vcpu)) 5778 return r; 5779 } else if (vcpu->arch.pio.count) { 5780 if (!vcpu->arch.pio.in) { 5781 /* FIXME: return into emulator if single-stepping. */ 5782 vcpu->arch.pio.count = 0; 5783 } else { 5784 writeback = false; 5785 vcpu->arch.complete_userspace_io = complete_emulated_pio; 5786 } 5787 r = EMULATE_USER_EXIT; 5788 } else if (vcpu->mmio_needed) { 5789 if (!vcpu->mmio_is_write) 5790 writeback = false; 5791 r = EMULATE_USER_EXIT; 5792 vcpu->arch.complete_userspace_io = complete_emulated_mmio; 5793 } else if (r == EMULATION_RESTART) 5794 goto restart; 5795 else 5796 r = EMULATE_DONE; 5797 5798 if (writeback) { 5799 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); 5800 toggle_interruptibility(vcpu, ctxt->interruptibility); 5801 vcpu->arch.emulate_regs_need_sync_to_vcpu = false; 5802 kvm_rip_write(vcpu, ctxt->eip); 5803 if (r == EMULATE_DONE && 5804 (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) 5805 kvm_vcpu_do_singlestep(vcpu, &r); 5806 if (!ctxt->have_exception || 5807 exception_type(ctxt->exception.vector) == EXCPT_TRAP) 5808 __kvm_set_rflags(vcpu, ctxt->eflags); 5809 5810 /* 5811 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will 5812 * do nothing, and it will be requested again as soon as 5813 * the shadow expires. But we still need to check here, 5814 * because POPF has no interrupt shadow. 5815 */ 5816 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) 5817 kvm_make_request(KVM_REQ_EVENT, vcpu); 5818 } else 5819 vcpu->arch.emulate_regs_need_sync_to_vcpu = true; 5820 5821 return r; 5822 } 5823 EXPORT_SYMBOL_GPL(x86_emulate_instruction); 5824 5825 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) 5826 { 5827 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); 5828 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, 5829 size, port, &val, 1); 5830 /* do not return to emulator after return from userspace */ 5831 vcpu->arch.pio.count = 0; 5832 return ret; 5833 } 5834 EXPORT_SYMBOL_GPL(kvm_fast_pio_out); 5835 5836 static int complete_fast_pio_in(struct kvm_vcpu *vcpu) 5837 { 5838 unsigned long val; 5839 5840 /* We should only ever be called with arch.pio.count equal to 1 */ 5841 BUG_ON(vcpu->arch.pio.count != 1); 5842 5843 /* For size less than 4 we merge, else we zero extend */ 5844 val = (vcpu->arch.pio.size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) 5845 : 0; 5846 5847 /* 5848 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform 5849 * the copy and tracing 5850 */ 5851 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size, 5852 vcpu->arch.pio.port, &val, 1); 5853 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5854 5855 return 1; 5856 } 5857 5858 int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, unsigned short port) 5859 { 5860 unsigned long val; 5861 int ret; 5862 5863 /* For size less than 4 we merge, else we zero extend */ 5864 val = (size < 4) ? kvm_register_read(vcpu, VCPU_REGS_RAX) : 0; 5865 5866 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port, 5867 &val, 1); 5868 if (ret) { 5869 kvm_register_write(vcpu, VCPU_REGS_RAX, val); 5870 return ret; 5871 } 5872 5873 vcpu->arch.complete_userspace_io = complete_fast_pio_in; 5874 5875 return 0; 5876 } 5877 EXPORT_SYMBOL_GPL(kvm_fast_pio_in); 5878 5879 static int kvmclock_cpu_down_prep(unsigned int cpu) 5880 { 5881 __this_cpu_write(cpu_tsc_khz, 0); 5882 return 0; 5883 } 5884 5885 static void tsc_khz_changed(void *data) 5886 { 5887 struct cpufreq_freqs *freq = data; 5888 unsigned long khz = 0; 5889 5890 if (data) 5891 khz = freq->new; 5892 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) 5893 khz = cpufreq_quick_get(raw_smp_processor_id()); 5894 if (!khz) 5895 khz = tsc_khz; 5896 __this_cpu_write(cpu_tsc_khz, khz); 5897 } 5898 5899 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, 5900 void *data) 5901 { 5902 struct cpufreq_freqs *freq = data; 5903 struct kvm *kvm; 5904 struct kvm_vcpu *vcpu; 5905 int i, send_ipi = 0; 5906 5907 /* 5908 * We allow guests to temporarily run on slowing clocks, 5909 * provided we notify them after, or to run on accelerating 5910 * clocks, provided we notify them before. Thus time never 5911 * goes backwards. 5912 * 5913 * However, we have a problem. We can't atomically update 5914 * the frequency of a given CPU from this function; it is 5915 * merely a notifier, which can be called from any CPU. 5916 * Changing the TSC frequency at arbitrary points in time 5917 * requires a recomputation of local variables related to 5918 * the TSC for each VCPU. We must flag these local variables 5919 * to be updated and be sure the update takes place with the 5920 * new frequency before any guests proceed. 5921 * 5922 * Unfortunately, the combination of hotplug CPU and frequency 5923 * change creates an intractable locking scenario; the order 5924 * of when these callouts happen is undefined with respect to 5925 * CPU hotplug, and they can race with each other. As such, 5926 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is 5927 * undefined; you can actually have a CPU frequency change take 5928 * place in between the computation of X and the setting of the 5929 * variable. To protect against this problem, all updates of 5930 * the per_cpu tsc_khz variable are done in an interrupt 5931 * protected IPI, and all callers wishing to update the value 5932 * must wait for a synchronous IPI to complete (which is trivial 5933 * if the caller is on the CPU already). This establishes the 5934 * necessary total order on variable updates. 5935 * 5936 * Note that because a guest time update may take place 5937 * anytime after the setting of the VCPU's request bit, the 5938 * correct TSC value must be set before the request. However, 5939 * to ensure the update actually makes it to any guest which 5940 * starts running in hardware virtualization between the set 5941 * and the acquisition of the spinlock, we must also ping the 5942 * CPU after setting the request bit. 5943 * 5944 */ 5945 5946 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) 5947 return 0; 5948 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) 5949 return 0; 5950 5951 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5952 5953 spin_lock(&kvm_lock); 5954 list_for_each_entry(kvm, &vm_list, vm_list) { 5955 kvm_for_each_vcpu(i, vcpu, kvm) { 5956 if (vcpu->cpu != freq->cpu) 5957 continue; 5958 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); 5959 if (vcpu->cpu != smp_processor_id()) 5960 send_ipi = 1; 5961 } 5962 } 5963 spin_unlock(&kvm_lock); 5964 5965 if (freq->old < freq->new && send_ipi) { 5966 /* 5967 * We upscale the frequency. Must make the guest 5968 * doesn't see old kvmclock values while running with 5969 * the new frequency, otherwise we risk the guest sees 5970 * time go backwards. 5971 * 5972 * In case we update the frequency for another cpu 5973 * (which might be in guest context) send an interrupt 5974 * to kick the cpu out of guest context. Next time 5975 * guest context is entered kvmclock will be updated, 5976 * so the guest will not see stale values. 5977 */ 5978 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); 5979 } 5980 return 0; 5981 } 5982 5983 static struct notifier_block kvmclock_cpufreq_notifier_block = { 5984 .notifier_call = kvmclock_cpufreq_notifier 5985 }; 5986 5987 static int kvmclock_cpu_online(unsigned int cpu) 5988 { 5989 tsc_khz_changed(NULL); 5990 return 0; 5991 } 5992 5993 static void kvm_timer_init(void) 5994 { 5995 max_tsc_khz = tsc_khz; 5996 5997 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { 5998 #ifdef CONFIG_CPU_FREQ 5999 struct cpufreq_policy policy; 6000 int cpu; 6001 6002 memset(&policy, 0, sizeof(policy)); 6003 cpu = get_cpu(); 6004 cpufreq_get_policy(&policy, cpu); 6005 if (policy.cpuinfo.max_freq) 6006 max_tsc_khz = policy.cpuinfo.max_freq; 6007 put_cpu(); 6008 #endif 6009 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, 6010 CPUFREQ_TRANSITION_NOTIFIER); 6011 } 6012 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); 6013 6014 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", 6015 kvmclock_cpu_online, kvmclock_cpu_down_prep); 6016 } 6017 6018 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); 6019 6020 int kvm_is_in_guest(void) 6021 { 6022 return __this_cpu_read(current_vcpu) != NULL; 6023 } 6024 6025 static int kvm_is_user_mode(void) 6026 { 6027 int user_mode = 3; 6028 6029 if (