1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * mpx.c - Memory Protection eXtensions 4 * 5 * Copyright (c) 2014, Intel Corporation. 6 * Qiaowei Ren <qiaowei.ren@intel.com> 7 * Dave Hansen <dave.hansen@intel.com> 8 */ 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/mm_types.h> 12 #include <linux/syscalls.h> 13 #include <linux/sched/sysctl.h> 14 15 #include <asm/insn.h> 16 #include <asm/insn-eval.h> 17 #include <asm/mman.h> 18 #include <asm/mmu_context.h> 19 #include <asm/mpx.h> 20 #include <asm/processor.h> 21 #include <asm/fpu/internal.h> 22 23 #define CREATE_TRACE_POINTS 24 #include <asm/trace/mpx.h> 25 26 static inline unsigned long mpx_bd_size_bytes(struct mm_struct *mm) 27 { 28 if (is_64bit_mm(mm)) 29 return MPX_BD_SIZE_BYTES_64; 30 else 31 return MPX_BD_SIZE_BYTES_32; 32 } 33 34 static inline unsigned long mpx_bt_size_bytes(struct mm_struct *mm) 35 { 36 if (is_64bit_mm(mm)) 37 return MPX_BT_SIZE_BYTES_64; 38 else 39 return MPX_BT_SIZE_BYTES_32; 40 } 41 42 /* 43 * This is really a simplified "vm_mmap". it only handles MPX 44 * bounds tables (the bounds directory is user-allocated). 45 */ 46 static unsigned long mpx_mmap(unsigned long len) 47 { 48 struct mm_struct *mm = current->mm; 49 unsigned long addr, populate; 50 51 /* Only bounds table can be allocated here */ 52 if (len != mpx_bt_size_bytes(mm)) 53 return -EINVAL; 54 55 down_write(&mm->mmap_sem); 56 addr = do_mmap(NULL, 0, len, PROT_READ | PROT_WRITE, 57 MAP_ANONYMOUS | MAP_PRIVATE, VM_MPX, 0, &populate, NULL); 58 up_write(&mm->mmap_sem); 59 if (populate) 60 mm_populate(addr, populate); 61 62 return addr; 63 } 64 65 static int mpx_insn_decode(struct insn *insn, 66 struct pt_regs *regs) 67 { 68 unsigned char buf[MAX_INSN_SIZE]; 69 int x86_64 = !test_thread_flag(TIF_IA32); 70 int not_copied; 71 int nr_copied; 72 73 not_copied = copy_from_user(buf, (void __user *)regs->ip, sizeof(buf)); 74 nr_copied = sizeof(buf) - not_copied; 75 /* 76 * The decoder _should_ fail nicely if we pass it a short buffer. 77 * But, let's not depend on that implementation detail. If we 78 * did not get anything, just error out now. 79 */ 80 if (!nr_copied) 81 return -EFAULT; 82 insn_init(insn, buf, nr_copied, x86_64); 83 insn_get_length(insn); 84 /* 85 * copy_from_user() tries to get as many bytes as we could see in 86 * the largest possible instruction. If the instruction we are 87 * after is shorter than that _and_ we attempt to copy from 88 * something unreadable, we might get a short read. This is OK 89 * as long as the read did not stop in the middle of the 90 * instruction. Check to see if we got a partial instruction. 91 */ 92 if (nr_copied < insn->length) 93 return -EFAULT; 94 95 insn_get_opcode(insn); 96 /* 97 * We only _really_ need to decode bndcl/bndcn/bndcu 98 * Error out on anything else. 99 */ 100 if (insn->opcode.bytes[0] != 0x0f) 101 goto bad_opcode; 102 if ((insn->opcode.bytes[1] != 0x1a) && 103 (insn->opcode.bytes[1] != 0x1b)) 104 goto bad_opcode; 105 106 return 0; 107 bad_opcode: 108 return -EINVAL; 109 } 110 111 /* 112 * If a bounds overflow occurs then a #BR is generated. This 113 * function decodes MPX instructions to get violation address 114 * and set this address into extended struct siginfo. 115 * 116 * Note that this is not a super precise way of doing this. 117 * Userspace could have, by the time we get here, written 118 * anything it wants in to the instructions. We can not 119 * trust anything about it. They might not be valid 120 * instructions or might encode invalid registers, etc... 121 */ 122 int mpx_fault_info(struct mpx_fault_info *info, struct pt_regs *regs) 123 { 124 const struct mpx_bndreg_state *bndregs; 125 const struct mpx_bndreg *bndreg; 126 struct insn insn; 127 uint8_t bndregno; 128 int err; 129 130 err = mpx_insn_decode(&insn, regs); 131 if (err) 132 goto err_out; 133 134 /* 135 * We know at this point that we are only dealing with 136 * MPX instructions. 137 */ 138 insn_get_modrm(&insn); 139 bndregno = X86_MODRM_REG(insn.modrm.value); 140 if (bndregno > 3) { 141 err = -EINVAL; 142 goto err_out; 143 } 144 /* get bndregs field from current task's xsave area */ 145 bndregs = get_xsave_field_ptr(XFEATURE_MASK_BNDREGS); 146 if (!bndregs) { 147 err = -EINVAL; 148 goto err_out; 149 } 150 /* now go select the individual register in the set of 4 */ 151 bndreg = &bndregs->bndreg[bndregno]; 152 153 /* 154 * The registers are always 64-bit, but the upper 32 155 * bits are ignored in 32-bit mode. Also, note that the 156 * upper bounds are architecturally represented in 1's 157 * complement form. 158 * 159 * The 'unsigned long' cast is because the compiler 160 * complains when casting from integers to different-size 161 * pointers. 162 */ 163 info->lower = (void __user *)(unsigned long)bndreg->lower_bound; 164 info->upper = (void __user *)(unsigned long)~bndreg->upper_bound; 165 info->addr = insn_get_addr_ref(&insn, regs); 166 167 /* 168 * We were not able to extract an address from the instruction, 169 * probably because there was something invalid in it. 170 */ 171 if (info->addr == (void __user *)-1) { 172 err = -EINVAL; 173 goto err_out; 174 } 175 trace_mpx_bounds_register_exception(info->addr, bndreg); 176 return 0; 177 err_out: 178 /* info might be NULL, but kfree() handles that */ 179 return err; 180 } 181 182 static __user void *mpx_get_bounds_dir(void) 183 { 184 const struct mpx_bndcsr *bndcsr; 185 186 if (!cpu_feature_enabled(X86_FEATURE_MPX)) 187 return MPX_INVALID_BOUNDS_DIR; 188 189 /* 190 * The bounds directory pointer is stored in a register 191 * only accessible if we first do an xsave. 192 */ 193 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 194 if (!bndcsr) 195 return MPX_INVALID_BOUNDS_DIR; 196 197 /* 198 * Make sure the register looks valid by checking the 199 * enable bit. 200 */ 201 if (!(bndcsr->bndcfgu & MPX_BNDCFG_ENABLE_FLAG)) 202 return MPX_INVALID_BOUNDS_DIR; 203 204 /* 205 * Lastly, mask off the low bits used for configuration 206 * flags, and return the address of the bounds table. 207 */ 208 return (void __user *)(unsigned long) 209 (bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK); 210 } 211 212 int mpx_enable_management(void) 213 { 214 void __user *bd_base = MPX_INVALID_BOUNDS_DIR; 215 struct mm_struct *mm = current->mm; 216 int ret = 0; 217 218 /* 219 * runtime in the userspace will be responsible for allocation of 220 * the bounds directory. Then, it will save the base of the bounds 221 * directory into XSAVE/XRSTOR Save Area and enable MPX through 222 * XRSTOR instruction. 223 * 224 * The copy_xregs_to_kernel() beneath get_xsave_field_ptr() is 225 * expected to be relatively expensive. Storing the bounds 226 * directory here means that we do not have to do xsave in the 227 * unmap path; we can just use mm->context.bd_addr instead. 228 */ 229 bd_base = mpx_get_bounds_dir(); 230 down_write(&mm->mmap_sem); 231 232 /* MPX doesn't support addresses above 47 bits yet. */ 233 if (find_vma(mm, DEFAULT_MAP_WINDOW)) { 234 pr_warn_once("%s (%d): MPX cannot handle addresses " 235 "above 47-bits. Disabling.", 236 current->comm, current->pid); 237 ret = -ENXIO; 238 goto out; 239 } 240 mm->context.bd_addr = bd_base; 241 if (mm->context.bd_addr == MPX_INVALID_BOUNDS_DIR) 242 ret = -ENXIO; 243 out: 244 up_write(&mm->mmap_sem); 245 return ret; 246 } 247 248 int mpx_disable_management(void) 249 { 250 struct mm_struct *mm = current->mm; 251 252 if (!cpu_feature_enabled(X86_FEATURE_MPX)) 253 return -ENXIO; 254 255 down_write(&mm->mmap_sem); 256 mm->context.bd_addr = MPX_INVALID_BOUNDS_DIR; 257 up_write(&mm->mmap_sem); 258 return 0; 259 } 260 261 static int mpx_cmpxchg_bd_entry(struct mm_struct *mm, 262 unsigned long *curval, 263 unsigned long __user *addr, 264 unsigned long old_val, unsigned long new_val) 265 { 266 int ret; 267 /* 268 * user_atomic_cmpxchg_inatomic() actually uses sizeof() 269 * the pointer that we pass to it to figure out how much 270 * data to cmpxchg. We have to be careful here not to 271 * pass a pointer to a 64-bit data type when we only want 272 * a 32-bit copy. 273 */ 274 if (is_64bit_mm(mm)) { 275 ret = user_atomic_cmpxchg_inatomic(curval, 276 addr, old_val, new_val); 277 } else { 278 u32 uninitialized_var(curval_32); 279 u32 old_val_32 = old_val; 280 u32 new_val_32 = new_val; 281 u32 __user *addr_32 = (u32 __user *)addr; 282 283 ret = user_atomic_cmpxchg_inatomic(&curval_32, 284 addr_32, old_val_32, new_val_32); 285 *curval = curval_32; 286 } 287 return ret; 288 } 289 290 /* 291 * With 32-bit mode, a bounds directory is 4MB, and the size of each 292 * bounds table is 16KB. With 64-bit mode, a bounds directory is 2GB, 293 * and the size of each bounds table is 4MB. 294 */ 295 static int allocate_bt(struct mm_struct *mm, long __user *bd_entry) 296 { 297 unsigned long expected_old_val = 0; 298 unsigned long actual_old_val = 0; 299 unsigned long bt_addr; 300 unsigned long bd_new_entry; 301 int ret = 0; 302 303 /* 304 * Carve the virtual space out of userspace for the new 305 * bounds table: 306 */ 307 bt_addr = mpx_mmap(mpx_bt_size_bytes(mm)); 308 if (IS_ERR((void *)bt_addr)) 309 return PTR_ERR((void *)bt_addr); 310 /* 311 * Set the valid flag (kinda like _PAGE_PRESENT in a pte) 312 */ 313 bd_new_entry = bt_addr | MPX_BD_ENTRY_VALID_FLAG; 314 315 /* 316 * Go poke the address of the new bounds table in to the 317 * bounds directory entry out in userspace memory. Note: 318 * we may race with another CPU instantiating the same table. 319 * In that case the cmpxchg will see an unexpected 320 * 'actual_old_val'. 321 * 322 * This can fault, but that's OK because we do not hold 323 * mmap_sem at this point, unlike some of the other part 324 * of the MPX code that have to pagefault_disable(). 325 */ 326 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, bd_entry, 327 expected_old_val, bd_new_entry); 328 if (ret) 329 goto out_unmap; 330 331 /* 332 * The user_atomic_cmpxchg_inatomic() will only return nonzero 333 * for faults, *not* if the cmpxchg itself fails. Now we must 334 * verify that the cmpxchg itself completed successfully. 335 */ 336 /* 337 * We expected an empty 'expected_old_val', but instead found 338 * an apparently valid entry. Assume we raced with another 339 * thread to instantiate this table and desclare succecss. 340 */ 341 if (actual_old_val & MPX_BD_ENTRY_VALID_FLAG) { 342 ret = 0; 343 goto out_unmap; 344 } 345 /* 346 * We found a non-empty bd_entry but it did not have the 347 * VALID_FLAG set. Return an error which will result in 348 * a SEGV since this probably means that somebody scribbled 349 * some invalid data in to a bounds table. 350 */ 351 if (expected_old_val != actual_old_val) { 352 ret = -EINVAL; 353 goto out_unmap; 354 } 355 trace_mpx_new_bounds_table(bt_addr); 356 return 0; 357 out_unmap: 358 vm_munmap(bt_addr, mpx_bt_size_bytes(mm)); 359 return ret; 360 } 361 362 /* 363 * When a BNDSTX instruction attempts to save bounds to a bounds 364 * table, it will first attempt to look up the table in the 365 * first-level bounds directory. If it does not find a table in 366 * the directory, a #BR is generated and we get here in order to 367 * allocate a new table. 368 * 369 * With 32-bit mode, the size of BD is 4MB, and the size of each 370 * bound table is 16KB. With 64-bit mode, the size of BD is 2GB, 371 * and the size of each bound table is 4MB. 372 */ 373 static int do_mpx_bt_fault(void) 374 { 375 unsigned long bd_entry, bd_base; 376 const struct mpx_bndcsr *bndcsr; 377 struct mm_struct *mm = current->mm; 378 379 bndcsr = get_xsave_field_ptr(XFEATURE_MASK_BNDCSR); 380 if (!bndcsr) 381 return -EINVAL; 382 /* 383 * Mask off the preserve and enable bits 384 */ 385 bd_base = bndcsr->bndcfgu & MPX_BNDCFG_ADDR_MASK; 386 /* 387 * The hardware provides the address of the missing or invalid 388 * entry via BNDSTATUS, so we don't have to go look it up. 389 */ 390 bd_entry = bndcsr->bndstatus & MPX_BNDSTA_ADDR_MASK; 391 /* 392 * Make sure the directory entry is within where we think 393 * the directory is. 394 */ 395 if ((bd_entry < bd_base) || 396 (bd_entry >= bd_base + mpx_bd_size_bytes(mm))) 397 return -EINVAL; 398 399 return allocate_bt(mm, (long __user *)bd_entry); 400 } 401 402 int mpx_handle_bd_fault(void) 403 { 404 /* 405 * Userspace never asked us to manage the bounds tables, 406 * so refuse to help. 407 */ 408 if (!kernel_managing_mpx_tables(current->mm)) 409 return -EINVAL; 410 411 return do_mpx_bt_fault(); 412 } 413 414 /* 415 * A thin wrapper around get_user_pages(). Returns 0 if the 416 * fault was resolved or -errno if not. 417 */ 418 static int mpx_resolve_fault(long __user *addr, int write) 419 { 420 long gup_ret; 421 int nr_pages = 1; 422 423 gup_ret = get_user_pages((unsigned long)addr, nr_pages, 424 write ? FOLL_WRITE : 0, NULL, NULL); 425 /* 426 * get_user_pages() returns number of pages gotten. 427 * 0 means we failed to fault in and get anything, 428 * probably because 'addr' is bad. 429 */ 430 if (!gup_ret) 431 return -EFAULT; 432 /* Other error, return it */ 433 if (gup_ret < 0) 434 return gup_ret; 435 /* must have gup'd a page and gup_ret>0, success */ 436 return 0; 437 } 438 439 static unsigned long mpx_bd_entry_to_bt_addr(struct mm_struct *mm, 440 unsigned long bd_entry) 441 { 442 unsigned long bt_addr = bd_entry; 443 int align_to_bytes; 444 /* 445 * Bit 0 in a bt_entry is always the valid bit. 446 */ 447 bt_addr &= ~MPX_BD_ENTRY_VALID_FLAG; 448 /* 449 * Tables are naturally aligned at 8-byte boundaries 450 * on 64-bit and 4-byte boundaries on 32-bit. The 451 * documentation makes it appear that the low bits 452 * are ignored by the hardware, so we do the same. 453 */ 454 if (is_64bit_mm(mm)) 455 align_to_bytes = 8; 456 else 457 align_to_bytes = 4; 458 bt_addr &= ~(align_to_bytes-1); 459 return bt_addr; 460 } 461 462 /* 463 * We only want to do a 4-byte get_user() on 32-bit. Otherwise, 464 * we might run off the end of the bounds table if we are on 465 * a 64-bit kernel and try to get 8 bytes. 466 */ 467 static int get_user_bd_entry(struct mm_struct *mm, unsigned long *bd_entry_ret, 468 long __user *bd_entry_ptr) 469 { 470 u32 bd_entry_32; 471 int ret; 472 473 if (is_64bit_mm(mm)) 474 return get_user(*bd_entry_ret, bd_entry_ptr); 475 476 /* 477 * Note that get_user() uses the type of the *pointer* to 478 * establish the size of the get, not the destination. 479 */ 480 ret = get_user(bd_entry_32, (u32 __user *)bd_entry_ptr); 481 *bd_entry_ret = bd_entry_32; 482 return ret; 483 } 484 485 /* 486 * Get the base of bounds tables pointed by specific bounds 487 * directory entry. 488 */ 489 static int get_bt_addr(struct mm_struct *mm, 490 long __user *bd_entry_ptr, 491 unsigned long *bt_addr_result) 492 { 493 int ret; 494 int valid_bit; 495 unsigned long bd_entry; 496 unsigned long bt_addr; 497 498 if (!access_ok(VERIFY_READ, (bd_entry_ptr), sizeof(*bd_entry_ptr))) 499 return -EFAULT; 500 501 while (1) { 502 int need_write = 0; 503 504 pagefault_disable(); 505 ret = get_user_bd_entry(mm, &bd_entry, bd_entry_ptr); 506 pagefault_enable(); 507 if (!ret) 508 break; 509 if (ret == -EFAULT) 510 ret = mpx_resolve_fault(bd_entry_ptr, need_write); 511 /* 512 * If we could not resolve the fault, consider it 513 * userspace's fault and error out. 514 */ 515 if (ret) 516 return ret; 517 } 518 519 valid_bit = bd_entry & MPX_BD_ENTRY_VALID_FLAG; 520 bt_addr = mpx_bd_entry_to_bt_addr(mm, bd_entry); 521 522 /* 523 * When the kernel is managing bounds tables, a bounds directory 524 * entry will either have a valid address (plus the valid bit) 525 * *OR* be completely empty. If we see a !valid entry *and* some 526 * data in the address field, we know something is wrong. This 527 * -EINVAL return will cause a SIGSEGV. 528 */ 529 if (!valid_bit && bt_addr) 530 return -EINVAL; 531 /* 532 * Do we have an completely zeroed bt entry? That is OK. It 533 * just means there was no bounds table for this memory. Make 534 * sure to distinguish this from -EINVAL, which will cause 535 * a SEGV. 536 */ 537 if (!valid_bit) 538 return -ENOENT; 539 540 *bt_addr_result = bt_addr; 541 return 0; 542 } 543 544 static inline int bt_entry_size_bytes(struct mm_struct *mm) 545 { 546 if (is_64bit_mm(mm)) 547 return MPX_BT_ENTRY_BYTES_64; 548 else 549 return MPX_BT_ENTRY_BYTES_32; 550 } 551 552 /* 553 * Take a virtual address and turns it in to the offset in bytes 554 * inside of the bounds table where the bounds table entry 555 * controlling 'addr' can be found. 556 */ 557 static unsigned long mpx_get_bt_entry_offset_bytes(struct mm_struct *mm, 558 unsigned long addr) 559 { 560 unsigned long bt_table_nr_entries; 561 unsigned long offset = addr; 562 563 if (is_64bit_mm(mm)) { 564 /* Bottom 3 bits are ignored on 64-bit */ 565 offset >>= 3; 566 bt_table_nr_entries = MPX_BT_NR_ENTRIES_64; 567 } else { 568 /* Bottom 2 bits are ignored on 32-bit */ 569 offset >>= 2; 570 bt_table_nr_entries = MPX_BT_NR_ENTRIES_32; 571 } 572 /* 573 * We know the size of the table in to which we are 574 * indexing, and we have eliminated all the low bits 575 * which are ignored for indexing. 576 * 577 * Mask out all the high bits which we do not need 578 * to index in to the table. Note that the tables 579 * are always powers of two so this gives us a proper 580 * mask. 581 */ 582 offset &= (bt_table_nr_entries-1); 583 /* 584 * We now have an entry offset in terms of *entries* in 585 * the table. We need to scale it back up to bytes. 586 */ 587 offset *= bt_entry_size_bytes(mm); 588 return offset; 589 } 590 591 /* 592 * How much virtual address space does a single bounds 593 * directory entry cover? 594 * 595 * Note, we need a long long because 4GB doesn't fit in 596 * to a long on 32-bit. 597 */ 598 static inline unsigned long bd_entry_virt_space(struct mm_struct *mm) 599 { 600 unsigned long long virt_space; 601 unsigned long long GB = (1ULL << 30); 602 603 /* 604 * This covers 32-bit emulation as well as 32-bit kernels 605 * running on 64-bit hardware. 606 */ 607 if (!is_64bit_mm(mm)) 608 return (4ULL * GB) / MPX_BD_NR_ENTRIES_32; 609 610 /* 611 * 'x86_virt_bits' returns what the hardware is capable 612 * of, and returns the full >32-bit address space when 613 * running 32-bit kernels on 64-bit hardware. 614 */ 615 virt_space = (1ULL << boot_cpu_data.x86_virt_bits); 616 return virt_space / MPX_BD_NR_ENTRIES_64; 617 } 618 619 /* 620 * Free the backing physical pages of bounds table 'bt_addr'. 621 * Assume start...end is within that bounds table. 622 */ 623 static noinline int zap_bt_entries_mapping(struct mm_struct *mm, 624 unsigned long bt_addr, 625 unsigned long start_mapping, unsigned long end_mapping) 626 { 627 struct vm_area_struct *vma; 628 unsigned long addr, len; 629 unsigned long start; 630 unsigned long end; 631 632 /* 633 * if we 'end' on a boundary, the offset will be 0 which 634 * is not what we want. Back it up a byte to get the 635 * last bt entry. Then once we have the entry itself, 636 * move 'end' back up by the table entry size. 637 */ 638 start = bt_addr + mpx_get_bt_entry_offset_bytes(mm, start_mapping); 639 end = bt_addr + mpx_get_bt_entry_offset_bytes(mm, end_mapping - 1); 640 /* 641 * Move end back up by one entry. Among other things 642 * this ensures that it remains page-aligned and does 643 * not screw up zap_page_range() 644 */ 645 end += bt_entry_size_bytes(mm); 646 647 /* 648 * Find the first overlapping vma. If vma->vm_start > start, there 649 * will be a hole in the bounds table. This -EINVAL return will 650 * cause a SIGSEGV. 651 */ 652 vma = find_vma(mm, start); 653 if (!vma || vma->vm_start > start) 654 return -EINVAL; 655 656 /* 657 * A NUMA policy on a VM_MPX VMA could cause this bounds table to 658 * be split. So we need to look across the entire 'start -> end' 659 * range of this bounds table, find all of the VM_MPX VMAs, and 660 * zap only those. 661 */ 662 addr = start; 663 while (vma && vma->vm_start < end) { 664 /* 665 * We followed a bounds directory entry down 666 * here. If we find a non-MPX VMA, that's bad, 667 * so stop immediately and return an error. This 668 * probably results in a SIGSEGV. 669 */ 670 if (!(vma->vm_flags & VM_MPX)) 671 return -EINVAL; 672 673 len = min(vma->vm_end, end) - addr; 674 zap_page_range(vma, addr, len); 675 trace_mpx_unmap_zap(addr, addr+len); 676 677 vma = vma->vm_next; 678 addr = vma->vm_start; 679 } 680 return 0; 681 } 682 683 static unsigned long mpx_get_bd_entry_offset(struct mm_struct *mm, 684 unsigned long addr) 685 { 686 /* 687 * There are several ways to derive the bd offsets. We 688 * use the following approach here: 689 * 1. We know the size of the virtual address space 690 * 2. We know the number of entries in a bounds table 691 * 3. We know that each entry covers a fixed amount of 692 * virtual address space. 693 * So, we can just divide the virtual address by the 694 * virtual space used by one entry to determine which 695 * entry "controls" the given virtual address. 696 */ 697 if (is_64bit_mm(mm)) { 698 int bd_entry_size = 8; /* 64-bit pointer */ 699 /* 700 * Take the 64-bit addressing hole in to account. 701 */ 702 addr &= ((1UL << boot_cpu_data.x86_virt_bits) - 1); 703 return (addr / bd_entry_virt_space(mm)) * bd_entry_size; 704 } else { 705 int bd_entry_size = 4; /* 32-bit pointer */ 706 /* 707 * 32-bit has no hole so this case needs no mask 708 */ 709 return (addr / bd_entry_virt_space(mm)) * bd_entry_size; 710 } 711 /* 712 * The two return calls above are exact copies. If we 713 * pull out a single copy and put it in here, gcc won't 714 * realize that we're doing a power-of-2 divide and use 715 * shifts. It uses a real divide. If we put them up 716 * there, it manages to figure it out (gcc 4.8.3). 717 */ 718 } 719 720 static int unmap_entire_bt(struct mm_struct *mm, 721 long __user *bd_entry, unsigned long bt_addr) 722 { 723 unsigned long expected_old_val = bt_addr | MPX_BD_ENTRY_VALID_FLAG; 724 unsigned long uninitialized_var(actual_old_val); 725 int ret; 726 727 while (1) { 728 int need_write = 1; 729 unsigned long cleared_bd_entry = 0; 730 731 pagefault_disable(); 732 ret = mpx_cmpxchg_bd_entry(mm, &actual_old_val, 733 bd_entry, expected_old_val, cleared_bd_entry); 734 pagefault_enable(); 735 if (!ret) 736 break; 737 if (ret == -EFAULT) 738 ret = mpx_resolve_fault(bd_entry, need_write); 739 /* 740 * If we could not resolve the fault, consider it 741 * userspace's fault and error out. 742 */ 743 if (ret) 744 return ret; 745 } 746 /* 747 * The cmpxchg was performed, check the results. 748 */ 749 if (actual_old_val != expected_old_val) { 750 /* 751 * Someone else raced with us to unmap the table. 752 * That is OK, since we were both trying to do 753 * the same thing. Declare success. 754 */ 755 if (!actual_old_val) 756 return 0; 757 /* 758 * Something messed with the bounds directory 759 * entry. We hold mmap_sem for read or write 760 * here, so it could not be a _new_ bounds table 761 * that someone just allocated. Something is 762 * wrong, so pass up the error and SIGSEGV. 763 */ 764 return -EINVAL; 765 } 766 /* 767 * Note, we are likely being called under do_munmap() already. To 768 * avoid recursion, do_munmap() will check whether it comes 769 * from one bounds table through VM_MPX flag. 770 */ 771 return do_munmap(mm, bt_addr, mpx_bt_size_bytes(mm), NULL); 772 } 773 774 static int try_unmap_single_bt(struct mm_struct *mm, 775 unsigned long start, unsigned long end) 776 { 777 struct vm_area_struct *next; 778 struct vm_area_struct *prev; 779 /* 780 * "bta" == Bounds Table Area: the area controlled by the 781 * bounds table that we are unmapping. 782 */ 783 unsigned long bta_start_vaddr = start & ~(bd_entry_virt_space(mm)-1); 784 unsigned long bta_end_vaddr = bta_start_vaddr + bd_entry_virt_space(mm); 785 unsigned long uninitialized_var(bt_addr); 786 void __user *bde_vaddr; 787 int ret; 788 /* 789 * We already unlinked the VMAs from the mm's rbtree so 'start' 790 * is guaranteed to be in a hole. This gets us the first VMA 791 * before the hole in to 'prev' and the next VMA after the hole 792 * in to 'next'. 793 */ 794 next = find_vma_prev(mm, start, &prev); 795 /* 796 * Do not count other MPX bounds table VMAs as neighbors. 797 * Although theoretically possible, we do not allow bounds 798 * tables for bounds tables so our heads do not explode. 799 * If we count them as neighbors here, we may end up with 800 * lots of tables even though we have no actual table 801 * entries in use. 802 */ 803 while (next && (next->vm_flags & VM_MPX)) 804 next = next->vm_next; 805 while (prev && (prev->vm_flags & VM_MPX)) 806 prev = prev->vm_prev; 807 /* 808 * We know 'start' and 'end' lie within an area controlled 809 * by a single bounds table. See if there are any other 810 * VMAs controlled by that bounds table. If there are not 811 * then we can "expand" the are we are unmapping to possibly 812 * cover the entire table. 813 */ 814 next = find_vma_prev(mm, start, &prev); 815 if ((!prev || prev->vm_end <= bta_start_vaddr) && 816 (!next || next->vm_start >= bta_end_vaddr)) { 817 /* 818 * No neighbor VMAs controlled by same bounds 819 * table. Try to unmap the whole thing 820 */ 821 start = bta_start_vaddr; 822 end = bta_end_vaddr; 823 } 824 825 bde_vaddr = mm->context.bd_addr + mpx_get_bd_entry_offset(mm, start); 826 ret = get_bt_addr(mm, bde_vaddr, &bt_addr); 827 /* 828 * No bounds table there, so nothing to unmap. 829 */ 830 if (ret == -ENOENT) { 831 ret = 0; 832 return 0; 833 } 834 if (ret) 835 return ret; 836 /* 837 * We are unmapping an entire table. Either because the 838 * unmap that started this whole process was large enough 839 * to cover an entire table, or that the unmap was small 840 * but was the area covered by a bounds table. 841 */ 842 if ((start == bta_start_vaddr) && 843 (end == bta_end_vaddr)) 844 return unmap_entire_bt(mm, bde_vaddr, bt_addr); 845 return zap_bt_entries_mapping(mm, bt_addr, start, end); 846 } 847 848 static int mpx_unmap_tables(struct mm_struct *mm, 849 unsigned long start, unsigned long end) 850 { 851 unsigned long one_unmap_start; 852 trace_mpx_unmap_search(start, end); 853 854 one_unmap_start = start; 855 while (one_unmap_start < end) { 856 int ret; 857 unsigned long next_unmap_start = ALIGN(one_unmap_start+1, 858 bd_entry_virt_space(mm)); 859 unsigned long one_unmap_end = end; 860 /* 861 * if the end is beyond the current bounds table, 862 * move it back so we only deal with a single one 863 * at a time 864 */ 865 if (one_unmap_end > next_unmap_start) 866 one_unmap_end = next_unmap_start; 867 ret = try_unmap_single_bt(mm, one_unmap_start, one_unmap_end); 868 if (ret) 869 return ret; 870 871 one_unmap_start = next_unmap_start; 872 } 873 return 0; 874 } 875 876 /* 877 * Free unused bounds tables covered in a virtual address region being 878 * munmap()ed. Assume end > start. 879 * 880 * This function will be called by do_munmap(), and the VMAs covering 881 * the virtual address region start...end have already been split if 882 * necessary, and the 'vma' is the first vma in this range (start -> end). 883 */ 884 void mpx_notify_unmap(struct mm_struct *mm, struct vm_area_struct *vma, 885 unsigned long start, unsigned long end) 886 { 887 int ret; 888 889 /* 890 * Refuse to do anything unless userspace has asked 891 * the kernel to help manage the bounds tables, 892 */ 893 if (!kernel_managing_mpx_tables(current->mm)) 894 return; 895 /* 896 * This will look across the entire 'start -> end' range, 897 * and find all of the non-VM_MPX VMAs. 898 * 899 * To avoid recursion, if a VM_MPX vma is found in the range 900 * (start->end), we will not continue follow-up work. This 901 * recursion represents having bounds tables for bounds tables, 902 * which should not occur normally. Being strict about it here 903 * helps ensure that we do not have an exploitable stack overflow. 904 */ 905 do { 906 if (vma->vm_flags & VM_MPX) 907 return; 908 vma = vma->vm_next; 909 } while (vma && vma->vm_start < end); 910 911 ret = mpx_unmap_tables(mm, start, end); 912 if (ret) 913 force_sig(SIGSEGV, current); 914 } 915 916 /* MPX cannot handle addresses above 47 bits yet. */ 917 unsigned long mpx_unmapped_area_check(unsigned long addr, unsigned long len, 918 unsigned long flags) 919 { 920 if (!kernel_managing_mpx_tables(current->mm)) 921 return addr; 922 if (addr + len <= DEFAULT_MAP_WINDOW) 923 return addr; 924 if (flags & MAP_FIXED) 925 return -ENOMEM; 926 927 /* 928 * Requested len is larger than the whole area we're allowed to map in. 929 * Resetting hinting address wouldn't do much good -- fail early. 930 */ 931 if (len > DEFAULT_MAP_WINDOW) 932 return -ENOMEM; 933 934 /* Look for unmap area within DEFAULT_MAP_WINDOW */ 935 return 0; 936 } 937
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.