~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/numa.c

Version: ~ [ linux-5.10-rc1 ] ~ [ linux-5.9.1 ] ~ [ linux-5.8.16 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.72 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.152 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.202 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.240 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.240 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* Common code for 32 and 64-bit NUMA */
  2 #include <linux/kernel.h>
  3 #include <linux/mm.h>
  4 #include <linux/string.h>
  5 #include <linux/init.h>
  6 #include <linux/bootmem.h>
  7 #include <linux/memblock.h>
  8 #include <linux/mmzone.h>
  9 #include <linux/ctype.h>
 10 #include <linux/module.h>
 11 #include <linux/nodemask.h>
 12 #include <linux/sched.h>
 13 #include <linux/topology.h>
 14 
 15 #include <asm/e820.h>
 16 #include <asm/proto.h>
 17 #include <asm/dma.h>
 18 #include <asm/acpi.h>
 19 #include <asm/amd_nb.h>
 20 
 21 #include "numa_internal.h"
 22 
 23 int __initdata numa_off;
 24 nodemask_t numa_nodes_parsed __initdata;
 25 
 26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 27 EXPORT_SYMBOL(node_data);
 28 
 29 static struct numa_meminfo numa_meminfo
 30 #ifndef CONFIG_MEMORY_HOTPLUG
 31 __initdata
 32 #endif
 33 ;
 34 
 35 static int numa_distance_cnt;
 36 static u8 *numa_distance;
 37 
 38 static __init int numa_setup(char *opt)
 39 {
 40         if (!opt)
 41                 return -EINVAL;
 42         if (!strncmp(opt, "off", 3))
 43                 numa_off = 1;
 44 #ifdef CONFIG_NUMA_EMU
 45         if (!strncmp(opt, "fake=", 5))
 46                 numa_emu_cmdline(opt + 5);
 47 #endif
 48 #ifdef CONFIG_ACPI_NUMA
 49         if (!strncmp(opt, "noacpi", 6))
 50                 acpi_numa = -1;
 51 #endif
 52         return 0;
 53 }
 54 early_param("numa", numa_setup);
 55 
 56 /*
 57  * apicid, cpu, node mappings
 58  */
 59 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
 60         [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 61 };
 62 
 63 int __cpuinit numa_cpu_node(int cpu)
 64 {
 65         int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
 66 
 67         if (apicid != BAD_APICID)
 68                 return __apicid_to_node[apicid];
 69         return NUMA_NO_NODE;
 70 }
 71 
 72 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
 73 EXPORT_SYMBOL(node_to_cpumask_map);
 74 
 75 /*
 76  * Map cpu index to node index
 77  */
 78 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
 79 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 80 
 81 void numa_set_node(int cpu, int node)
 82 {
 83         int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
 84 
 85         /* early setting, no percpu area yet */
 86         if (cpu_to_node_map) {
 87                 cpu_to_node_map[cpu] = node;
 88                 return;
 89         }
 90 
 91 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
 92         if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 93                 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
 94                 dump_stack();
 95                 return;
 96         }
 97 #endif
 98         per_cpu(x86_cpu_to_node_map, cpu) = node;
 99 
100         set_cpu_numa_node(cpu, node);
101 }
102 
103 void numa_clear_node(int cpu)
104 {
105         numa_set_node(cpu, NUMA_NO_NODE);
106 }
107 
108 /*
109  * Allocate node_to_cpumask_map based on number of available nodes
110  * Requires node_possible_map to be valid.
111  *
112  * Note: cpumask_of_node() is not valid until after this is done.
113  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
114  */
115 void __init setup_node_to_cpumask_map(void)
116 {
117         unsigned int node;
118 
119         /* setup nr_node_ids if not done yet */
120         if (nr_node_ids == MAX_NUMNODES)
121                 setup_nr_node_ids();
122 
123         /* allocate the map */
124         for (node = 0; node < nr_node_ids; node++)
125                 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
126 
127         /* cpumask_of_node() will now work */
128         pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
129 }
130 
131 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
132                                      struct numa_meminfo *mi)
133 {
134         /* ignore zero length blks */
135         if (start == end)
136                 return 0;
137 
138         /* whine about and ignore invalid blks */
139         if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
140                 pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
141                            nid, start, end - 1);
142                 return 0;
143         }
144 
145         if (mi->nr_blks >= NR_NODE_MEMBLKS) {
146                 pr_err("NUMA: too many memblk ranges\n");
147                 return -EINVAL;
148         }
149 
150         mi->blk[mi->nr_blks].start = start;
151         mi->blk[mi->nr_blks].end = end;
152         mi->blk[mi->nr_blks].nid = nid;
153         mi->nr_blks++;
154         return 0;
155 }
156 
157 /**
158  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
159  * @idx: Index of memblk to remove
160  * @mi: numa_meminfo to remove memblk from
161  *
162  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
163  * decrementing @mi->nr_blks.
164  */
165 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
166 {
167         mi->nr_blks--;
168         memmove(&mi->blk[idx], &mi->blk[idx + 1],
169                 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
170 }
171 
172 /**
173  * numa_add_memblk - Add one numa_memblk to numa_meminfo
174  * @nid: NUMA node ID of the new memblk
175  * @start: Start address of the new memblk
176  * @end: End address of the new memblk
177  *
178  * Add a new memblk to the default numa_meminfo.
179  *
180  * RETURNS:
181  * 0 on success, -errno on failure.
182  */
183 int __init numa_add_memblk(int nid, u64 start, u64 end)
184 {
185         return numa_add_memblk_to(nid, start, end, &numa_meminfo);
186 }
187 
188 /* Initialize NODE_DATA for a node on the local memory */
189 static void __init setup_node_data(int nid, u64 start, u64 end)
190 {
191         const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
192         u64 nd_pa;
193         void *nd;
194         int tnid;
195 
196         /*
197          * Don't confuse VM with a node that doesn't have the
198          * minimum amount of memory:
199          */
200         if (end && (end - start) < NODE_MIN_SIZE)
201                 return;
202 
203         start = roundup(start, ZONE_ALIGN);
204 
205         printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
206                nid, start, end - 1);
207 
208         /*
209          * Allocate node data.  Try node-local memory and then any node.
210          * Never allocate in DMA zone.
211          */
212         nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
213         if (!nd_pa) {
214                 pr_err("Cannot find %zu bytes in node %d\n",
215                        nd_size, nid);
216                 return;
217         }
218         nd = __va(nd_pa);
219 
220         /* report and initialize */
221         printk(KERN_INFO "  NODE_DATA [mem %#010Lx-%#010Lx]\n",
222                nd_pa, nd_pa + nd_size - 1);
223         tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
224         if (tnid != nid)
225                 printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
226 
227         node_data[nid] = nd;
228         memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
229         NODE_DATA(nid)->node_id = nid;
230         NODE_DATA(nid)->node_start_pfn = start >> PAGE_SHIFT;
231         NODE_DATA(nid)->node_spanned_pages = (end - start) >> PAGE_SHIFT;
232 
233         node_set_online(nid);
234 }
235 
236 /**
237  * numa_cleanup_meminfo - Cleanup a numa_meminfo
238  * @mi: numa_meminfo to clean up
239  *
240  * Sanitize @mi by merging and removing unncessary memblks.  Also check for
241  * conflicts and clear unused memblks.
242  *
243  * RETURNS:
244  * 0 on success, -errno on failure.
245  */
246 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
247 {
248         const u64 low = 0;
249         const u64 high = PFN_PHYS(max_pfn);
250         int i, j, k;
251 
252         /* first, trim all entries */
253         for (i = 0; i < mi->nr_blks; i++) {
254                 struct numa_memblk *bi = &mi->blk[i];
255 
256                 /* make sure all blocks are inside the limits */
257                 bi->start = max(bi->start, low);
258                 bi->end = min(bi->end, high);
259 
260                 /* and there's no empty block */
261                 if (bi->start >= bi->end)
262                         numa_remove_memblk_from(i--, mi);
263         }
264 
265         /* merge neighboring / overlapping entries */
266         for (i = 0; i < mi->nr_blks; i++) {
267                 struct numa_memblk *bi = &mi->blk[i];
268 
269                 for (j = i + 1; j < mi->nr_blks; j++) {
270                         struct numa_memblk *bj = &mi->blk[j];
271                         u64 start, end;
272 
273                         /*
274                          * See whether there are overlapping blocks.  Whine
275                          * about but allow overlaps of the same nid.  They
276                          * will be merged below.
277                          */
278                         if (bi->end > bj->start && bi->start < bj->end) {
279                                 if (bi->nid != bj->nid) {
280                                         pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
281                                                bi->nid, bi->start, bi->end - 1,
282                                                bj->nid, bj->start, bj->end - 1);
283                                         return -EINVAL;
284                                 }
285                                 pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
286                                            bi->nid, bi->start, bi->end - 1,
287                                            bj->start, bj->end - 1);
288                         }
289 
290                         /*
291                          * Join together blocks on the same node, holes
292                          * between which don't overlap with memory on other
293                          * nodes.
294                          */
295                         if (bi->nid != bj->nid)
296                                 continue;
297                         start = min(bi->start, bj->start);
298                         end = max(bi->end, bj->end);
299                         for (k = 0; k < mi->nr_blks; k++) {
300                                 struct numa_memblk *bk = &mi->blk[k];
301 
302                                 if (bi->nid == bk->nid)
303                                         continue;
304                                 if (start < bk->end && end > bk->start)
305                                         break;
306                         }
307                         if (k < mi->nr_blks)
308                                 continue;
309                         printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
310                                bi->nid, bi->start, bi->end - 1, bj->start,
311                                bj->end - 1, start, end - 1);
312                         bi->start = start;
313                         bi->end = end;
314                         numa_remove_memblk_from(j--, mi);
315                 }
316         }
317 
318         /* clear unused ones */
319         for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
320                 mi->blk[i].start = mi->blk[i].end = 0;
321                 mi->blk[i].nid = NUMA_NO_NODE;
322         }
323 
324         return 0;
325 }
326 
327 /*
328  * Set nodes, which have memory in @mi, in *@nodemask.
329  */
330 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
331                                               const struct numa_meminfo *mi)
332 {
333         int i;
334 
335         for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
336                 if (mi->blk[i].start != mi->blk[i].end &&
337                     mi->blk[i].nid != NUMA_NO_NODE)
338                         node_set(mi->blk[i].nid, *nodemask);
339 }
340 
341 /**
342  * numa_reset_distance - Reset NUMA distance table
343  *
344  * The current table is freed.  The next numa_set_distance() call will
345  * create a new one.
346  */
347 void __init numa_reset_distance(void)
348 {
349         size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
350 
351         /* numa_distance could be 1LU marking allocation failure, test cnt */
352         if (numa_distance_cnt)
353                 memblock_free(__pa(numa_distance), size);
354         numa_distance_cnt = 0;
355         numa_distance = NULL;   /* enable table creation */
356 }
357 
358 static int __init numa_alloc_distance(void)
359 {
360         nodemask_t nodes_parsed;
361         size_t size;
362         int i, j, cnt = 0;
363         u64 phys;
364 
365         /* size the new table and allocate it */
366         nodes_parsed = numa_nodes_parsed;
367         numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
368 
369         for_each_node_mask(i, nodes_parsed)
370                 cnt = i;
371         cnt++;
372         size = cnt * cnt * sizeof(numa_distance[0]);
373 
374         phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
375                                       size, PAGE_SIZE);
376         if (!phys) {
377                 pr_warning("NUMA: Warning: can't allocate distance table!\n");
378                 /* don't retry until explicitly reset */
379                 numa_distance = (void *)1LU;
380                 return -ENOMEM;
381         }
382         memblock_reserve(phys, size);
383 
384         numa_distance = __va(phys);
385         numa_distance_cnt = cnt;
386 
387         /* fill with the default distances */
388         for (i = 0; i < cnt; i++)
389                 for (j = 0; j < cnt; j++)
390                         numa_distance[i * cnt + j] = i == j ?
391                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
392         printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
393 
394         return 0;
395 }
396 
397 /**
398  * numa_set_distance - Set NUMA distance from one NUMA to another
399  * @from: the 'from' node to set distance
400  * @to: the 'to'  node to set distance
401  * @distance: NUMA distance
402  *
403  * Set the distance from node @from to @to to @distance.  If distance table
404  * doesn't exist, one which is large enough to accommodate all the currently
405  * known nodes will be created.
406  *
407  * If such table cannot be allocated, a warning is printed and further
408  * calls are ignored until the distance table is reset with
409  * numa_reset_distance().
410  *
411  * If @from or @to is higher than the highest known node or lower than zero
412  * at the time of table creation or @distance doesn't make sense, the call
413  * is ignored.
414  * This is to allow simplification of specific NUMA config implementations.
415  */
416 void __init numa_set_distance(int from, int to, int distance)
417 {
418         if (!numa_distance && numa_alloc_distance() < 0)
419                 return;
420 
421         if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
422                         from < 0 || to < 0) {
423                 pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
424                             from, to, distance);
425                 return;
426         }
427 
428         if ((u8)distance != distance ||
429             (from == to && distance != LOCAL_DISTANCE)) {
430                 pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
431                              from, to, distance);
432                 return;
433         }
434 
435         numa_distance[from * numa_distance_cnt + to] = distance;
436 }
437 
438 int __node_distance(int from, int to)
439 {
440         if (from >= numa_distance_cnt || to >= numa_distance_cnt)
441                 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
442         return numa_distance[from * numa_distance_cnt + to];
443 }
444 EXPORT_SYMBOL(__node_distance);
445 
446 /*
447  * Sanity check to catch more bad NUMA configurations (they are amazingly
448  * common).  Make sure the nodes cover all memory.
449  */
450 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
451 {
452         u64 numaram, e820ram;
453         int i;
454 
455         numaram = 0;
456         for (i = 0; i < mi->nr_blks; i++) {
457                 u64 s = mi->blk[i].start >> PAGE_SHIFT;
458                 u64 e = mi->blk[i].end >> PAGE_SHIFT;
459                 numaram += e - s;
460                 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
461                 if ((s64)numaram < 0)
462                         numaram = 0;
463         }
464 
465         e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
466 
467         /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
468         if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
469                 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
470                        (numaram << PAGE_SHIFT) >> 20,
471                        (e820ram << PAGE_SHIFT) >> 20);
472                 return false;
473         }
474         return true;
475 }
476 
477 static int __init numa_register_memblks(struct numa_meminfo *mi)
478 {
479         unsigned long uninitialized_var(pfn_align);
480         int i, nid;
481 
482         /* Account for nodes with cpus and no memory */
483         node_possible_map = numa_nodes_parsed;
484         numa_nodemask_from_meminfo(&node_possible_map, mi);
485         if (WARN_ON(nodes_empty(node_possible_map)))
486                 return -EINVAL;
487 
488         for (i = 0; i < mi->nr_blks; i++) {
489                 struct numa_memblk *mb = &mi->blk[i];
490                 memblock_set_node(mb->start, mb->end - mb->start, mb->nid);
491         }
492 
493         /*
494          * If sections array is gonna be used for pfn -> nid mapping, check
495          * whether its granularity is fine enough.
496          */
497 #ifdef NODE_NOT_IN_PAGE_FLAGS
498         pfn_align = node_map_pfn_alignment();
499         if (pfn_align && pfn_align < PAGES_PER_SECTION) {
500                 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
501                        PFN_PHYS(pfn_align) >> 20,
502                        PFN_PHYS(PAGES_PER_SECTION) >> 20);
503                 return -EINVAL;
504         }
505 #endif
506         if (!numa_meminfo_cover_memory(mi))
507                 return -EINVAL;
508 
509         /* Finally register nodes. */
510         for_each_node_mask(nid, node_possible_map) {
511                 u64 start = PFN_PHYS(max_pfn);
512                 u64 end = 0;
513 
514                 for (i = 0; i < mi->nr_blks; i++) {
515                         if (nid != mi->blk[i].nid)
516                                 continue;
517                         start = min(mi->blk[i].start, start);
518                         end = max(mi->blk[i].end, end);
519                 }
520 
521                 if (start < end)
522                         setup_node_data(nid, start, end);
523         }
524 
525         /* Dump memblock with node info and return. */
526         memblock_dump_all();
527         return 0;
528 }
529 
530 /*
531  * There are unfortunately some poorly designed mainboards around that
532  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
533  * mapping. To avoid this fill in the mapping for all possible CPUs,
534  * as the number of CPUs is not known yet. We round robin the existing
535  * nodes.
536  */
537 static void __init numa_init_array(void)
538 {
539         int rr, i;
540 
541         rr = first_node(node_online_map);
542         for (i = 0; i < nr_cpu_ids; i++) {
543                 if (early_cpu_to_node(i) != NUMA_NO_NODE)
544                         continue;
545                 numa_set_node(i, rr);
546                 rr = next_node(rr, node_online_map);
547                 if (rr == MAX_NUMNODES)
548                         rr = first_node(node_online_map);
549         }
550 }
551 
552 static int __init numa_init(int (*init_func)(void))
553 {
554         int i;
555         int ret;
556 
557         for (i = 0; i < MAX_LOCAL_APIC; i++)
558                 set_apicid_to_node(i, NUMA_NO_NODE);
559 
560         nodes_clear(numa_nodes_parsed);
561         nodes_clear(node_possible_map);
562         nodes_clear(node_online_map);
563         memset(&numa_meminfo, 0, sizeof(numa_meminfo));
564         WARN_ON(memblock_set_node(0, ULLONG_MAX, MAX_NUMNODES));
565         numa_reset_distance();
566 
567         ret = init_func();
568         if (ret < 0)
569                 return ret;
570         ret = numa_cleanup_meminfo(&numa_meminfo);
571         if (ret < 0)
572                 return ret;
573 
574         numa_emulation(&numa_meminfo, numa_distance_cnt);
575 
576         ret = numa_register_memblks(&numa_meminfo);
577         if (ret < 0)
578                 return ret;
579 
580         for (i = 0; i < nr_cpu_ids; i++) {
581                 int nid = early_cpu_to_node(i);
582 
583                 if (nid == NUMA_NO_NODE)
584                         continue;
585                 if (!node_online(nid))
586                         numa_clear_node(i);
587         }
588         numa_init_array();
589         return 0;
590 }
591 
592 /**
593  * dummy_numa_init - Fallback dummy NUMA init
594  *
595  * Used if there's no underlying NUMA architecture, NUMA initialization
596  * fails, or NUMA is disabled on the command line.
597  *
598  * Must online at least one node and add memory blocks that cover all
599  * allowed memory.  This function must not fail.
600  */
601 static int __init dummy_numa_init(void)
602 {
603         printk(KERN_INFO "%s\n",
604                numa_off ? "NUMA turned off" : "No NUMA configuration found");
605         printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
606                0LLU, PFN_PHYS(max_pfn) - 1);
607 
608         node_set(0, numa_nodes_parsed);
609         numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
610 
611         return 0;
612 }
613 
614 /**
615  * x86_numa_init - Initialize NUMA
616  *
617  * Try each configured NUMA initialization method until one succeeds.  The
618  * last fallback is dummy single node config encomapssing whole memory and
619  * never fails.
620  */
621 void __init x86_numa_init(void)
622 {
623         if (!numa_off) {
624 #ifdef CONFIG_X86_NUMAQ
625                 if (!numa_init(numaq_numa_init))
626                         return;
627 #endif
628 #ifdef CONFIG_ACPI_NUMA
629                 if (!numa_init(x86_acpi_numa_init))
630                         return;
631 #endif
632 #ifdef CONFIG_AMD_NUMA
633                 if (!numa_init(amd_numa_init))
634                         return;
635 #endif
636         }
637 
638         numa_init(dummy_numa_init);
639 }
640 
641 static __init int find_near_online_node(int node)
642 {
643         int n, val;
644         int min_val = INT_MAX;
645         int best_node = -1;
646 
647         for_each_online_node(n) {
648                 val = node_distance(node, n);
649 
650                 if (val < min_val) {
651                         min_val = val;
652                         best_node = n;
653                 }
654         }
655 
656         return best_node;
657 }
658 
659 /*
660  * Setup early cpu_to_node.
661  *
662  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
663  * and apicid_to_node[] tables have valid entries for a CPU.
664  * This means we skip cpu_to_node[] initialisation for NUMA
665  * emulation and faking node case (when running a kernel compiled
666  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
667  * is already initialized in a round robin manner at numa_init_array,
668  * prior to this call, and this initialization is good enough
669  * for the fake NUMA cases.
670  *
671  * Called before the per_cpu areas are setup.
672  */
673 void __init init_cpu_to_node(void)
674 {
675         int cpu;
676         u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
677 
678         BUG_ON(cpu_to_apicid == NULL);
679 
680         for_each_possible_cpu(cpu) {
681                 int node = numa_cpu_node(cpu);
682 
683                 if (node == NUMA_NO_NODE)
684                         continue;
685                 if (!node_online(node))
686                         node = find_near_online_node(node);
687                 numa_set_node(cpu, node);
688         }
689 }
690 
691 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
692 
693 # ifndef CONFIG_NUMA_EMU
694 void __cpuinit numa_add_cpu(int cpu)
695 {
696         cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
697 }
698 
699 void __cpuinit numa_remove_cpu(int cpu)
700 {
701         cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
702 }
703 # endif /* !CONFIG_NUMA_EMU */
704 
705 #else   /* !CONFIG_DEBUG_PER_CPU_MAPS */
706 
707 int __cpu_to_node(int cpu)
708 {
709         if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
710                 printk(KERN_WARNING
711                         "cpu_to_node(%d): usage too early!\n", cpu);
712                 dump_stack();
713                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
714         }
715         return per_cpu(x86_cpu_to_node_map, cpu);
716 }
717 EXPORT_SYMBOL(__cpu_to_node);
718 
719 /*
720  * Same function as cpu_to_node() but used if called before the
721  * per_cpu areas are setup.
722  */
723 int early_cpu_to_node(int cpu)
724 {
725         if (early_per_cpu_ptr(x86_cpu_to_node_map))
726                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
727 
728         if (!cpu_possible(cpu)) {
729                 printk(KERN_WARNING
730                         "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
731                 dump_stack();
732                 return NUMA_NO_NODE;
733         }
734         return per_cpu(x86_cpu_to_node_map, cpu);
735 }
736 
737 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
738 {
739         struct cpumask *mask;
740         char buf[64];
741 
742         if (node == NUMA_NO_NODE) {
743                 /* early_cpu_to_node() already emits a warning and trace */
744                 return;
745         }
746         mask = node_to_cpumask_map[node];
747         if (!mask) {
748                 pr_err("node_to_cpumask_map[%i] NULL\n", node);
749                 dump_stack();
750                 return;
751         }
752 
753         if (enable)
754                 cpumask_set_cpu(cpu, mask);
755         else
756                 cpumask_clear_cpu(cpu, mask);
757 
758         cpulist_scnprintf(buf, sizeof(buf), mask);
759         printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
760                 enable ? "numa_add_cpu" : "numa_remove_cpu",
761                 cpu, node, buf);
762         return;
763 }
764 
765 # ifndef CONFIG_NUMA_EMU
766 static void __cpuinit numa_set_cpumask(int cpu, bool enable)
767 {
768         debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
769 }
770 
771 void __cpuinit numa_add_cpu(int cpu)
772 {
773         numa_set_cpumask(cpu, true);
774 }
775 
776 void __cpuinit numa_remove_cpu(int cpu)
777 {
778         numa_set_cpumask(cpu, false);
779 }
780 # endif /* !CONFIG_NUMA_EMU */
781 
782 /*
783  * Returns a pointer to the bitmask of CPUs on Node 'node'.
784  */
785 const struct cpumask *cpumask_of_node(int node)
786 {
787         if (node >= nr_node_ids) {
788                 printk(KERN_WARNING
789                         "cpumask_of_node(%d): node > nr_node_ids(%d)\n",
790                         node, nr_node_ids);
791                 dump_stack();
792                 return cpu_none_mask;
793         }
794         if (node_to_cpumask_map[node] == NULL) {
795                 printk(KERN_WARNING
796                         "cpumask_of_node(%d): no node_to_cpumask_map!\n",
797                         node);
798                 dump_stack();
799                 return cpu_online_mask;
800         }
801         return node_to_cpumask_map[node];
802 }
803 EXPORT_SYMBOL(cpumask_of_node);
804 
805 #endif  /* !CONFIG_DEBUG_PER_CPU_MAPS */
806 
807 #ifdef CONFIG_MEMORY_HOTPLUG
808 int memory_add_physaddr_to_nid(u64 start)
809 {
810         struct numa_meminfo *mi = &numa_meminfo;
811         int nid = mi->blk[0].nid;
812         int i;
813 
814         for (i = 0; i < mi->nr_blks; i++)
815                 if (mi->blk[i].start <= start && mi->blk[i].end > start)
816                         nid = mi->blk[i].nid;
817         return nid;
818 }
819 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
820 #endif
821 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp