~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/numa.c

Version: ~ [ linux-5.12-rc7 ] ~ [ linux-5.11.13 ] ~ [ linux-5.10.29 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.111 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.186 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.230 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.266 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.266 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.18.140 ] ~ [ linux-3.16.85 ] ~ [ linux-3.14.79 ] ~ [ linux-3.12.74 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* Common code for 32 and 64-bit NUMA */
  2 #include <linux/kernel.h>
  3 #include <linux/mm.h>
  4 #include <linux/string.h>
  5 #include <linux/init.h>
  6 #include <linux/bootmem.h>
  7 #include <linux/memblock.h>
  8 #include <linux/mmzone.h>
  9 #include <linux/ctype.h>
 10 #include <linux/module.h>
 11 #include <linux/nodemask.h>
 12 #include <linux/sched.h>
 13 #include <linux/topology.h>
 14 
 15 #include <asm/e820.h>
 16 #include <asm/proto.h>
 17 #include <asm/dma.h>
 18 #include <asm/acpi.h>
 19 #include <asm/amd_nb.h>
 20 
 21 #include "numa_internal.h"
 22 
 23 int __initdata numa_off;
 24 nodemask_t numa_nodes_parsed __initdata;
 25 
 26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 27 EXPORT_SYMBOL(node_data);
 28 
 29 static struct numa_meminfo numa_meminfo
 30 #ifndef CONFIG_MEMORY_HOTPLUG
 31 __initdata
 32 #endif
 33 ;
 34 
 35 static int numa_distance_cnt;
 36 static u8 *numa_distance;
 37 
 38 static __init int numa_setup(char *opt)
 39 {
 40         if (!opt)
 41                 return -EINVAL;
 42         if (!strncmp(opt, "off", 3))
 43                 numa_off = 1;
 44 #ifdef CONFIG_NUMA_EMU
 45         if (!strncmp(opt, "fake=", 5))
 46                 numa_emu_cmdline(opt + 5);
 47 #endif
 48 #ifdef CONFIG_ACPI_NUMA
 49         if (!strncmp(opt, "noacpi", 6))
 50                 acpi_numa = -1;
 51 #endif
 52         return 0;
 53 }
 54 early_param("numa", numa_setup);
 55 
 56 /*
 57  * apicid, cpu, node mappings
 58  */
 59 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
 60         [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 61 };
 62 
 63 int numa_cpu_node(int cpu)
 64 {
 65         int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
 66 
 67         if (apicid != BAD_APICID)
 68                 return __apicid_to_node[apicid];
 69         return NUMA_NO_NODE;
 70 }
 71 
 72 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
 73 EXPORT_SYMBOL(node_to_cpumask_map);
 74 
 75 /*
 76  * Map cpu index to node index
 77  */
 78 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
 79 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 80 
 81 void numa_set_node(int cpu, int node)
 82 {
 83         int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
 84 
 85         /* early setting, no percpu area yet */
 86         if (cpu_to_node_map) {
 87                 cpu_to_node_map[cpu] = node;
 88                 return;
 89         }
 90 
 91 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
 92         if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 93                 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
 94                 dump_stack();
 95                 return;
 96         }
 97 #endif
 98         per_cpu(x86_cpu_to_node_map, cpu) = node;
 99 
100         set_cpu_numa_node(cpu, node);
101 }
102 
103 void numa_clear_node(int cpu)
104 {
105         numa_set_node(cpu, NUMA_NO_NODE);
106 }
107 
108 /*
109  * Allocate node_to_cpumask_map based on number of available nodes
110  * Requires node_possible_map to be valid.
111  *
112  * Note: cpumask_of_node() is not valid until after this is done.
113  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
114  */
115 void __init setup_node_to_cpumask_map(void)
116 {
117         unsigned int node;
118 
119         /* setup nr_node_ids if not done yet */
120         if (nr_node_ids == MAX_NUMNODES)
121                 setup_nr_node_ids();
122 
123         /* allocate the map */
124         for (node = 0; node < nr_node_ids; node++)
125                 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
126 
127         /* cpumask_of_node() will now work */
128         pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
129 }
130 
131 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
132                                      struct numa_meminfo *mi)
133 {
134         /* ignore zero length blks */
135         if (start == end)
136                 return 0;
137 
138         /* whine about and ignore invalid blks */
139         if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
140                 pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
141                            nid, start, end - 1);
142                 return 0;
143         }
144 
145         if (mi->nr_blks >= NR_NODE_MEMBLKS) {
146                 pr_err("NUMA: too many memblk ranges\n");
147                 return -EINVAL;
148         }
149 
150         mi->blk[mi->nr_blks].start = start;
151         mi->blk[mi->nr_blks].end = end;
152         mi->blk[mi->nr_blks].nid = nid;
153         mi->nr_blks++;
154         return 0;
155 }
156 
157 /**
158  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
159  * @idx: Index of memblk to remove
160  * @mi: numa_meminfo to remove memblk from
161  *
162  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
163  * decrementing @mi->nr_blks.
164  */
165 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
166 {
167         mi->nr_blks--;
168         memmove(&mi->blk[idx], &mi->blk[idx + 1],
169                 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
170 }
171 
172 /**
173  * numa_add_memblk - Add one numa_memblk to numa_meminfo
174  * @nid: NUMA node ID of the new memblk
175  * @start: Start address of the new memblk
176  * @end: End address of the new memblk
177  *
178  * Add a new memblk to the default numa_meminfo.
179  *
180  * RETURNS:
181  * 0 on success, -errno on failure.
182  */
183 int __init numa_add_memblk(int nid, u64 start, u64 end)
184 {
185         return numa_add_memblk_to(nid, start, end, &numa_meminfo);
186 }
187 
188 /* Initialize NODE_DATA for a node on the local memory */
189 static void __init setup_node_data(int nid, u64 start, u64 end)
190 {
191         const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
192         u64 nd_pa;
193         void *nd;
194         int tnid;
195 
196         /*
197          * Don't confuse VM with a node that doesn't have the
198          * minimum amount of memory:
199          */
200         if (end && (end - start) < NODE_MIN_SIZE)
201                 return;
202 
203         start = roundup(start, ZONE_ALIGN);
204 
205         printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
206                nid, start, end - 1);
207 
208         /*
209          * Allocate node data.  Try node-local memory and then any node.
210          * Never allocate in DMA zone.
211          */
212         nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
213         if (!nd_pa) {
214                 nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
215                                               MEMBLOCK_ALLOC_ACCESSIBLE);
216                 if (!nd_pa) {
217                         pr_err("Cannot find %zu bytes in node %d\n",
218                                nd_size, nid);
219                         return;
220                 }
221         }
222         nd = __va(nd_pa);
223 
224         /* report and initialize */
225         printk(KERN_INFO "  NODE_DATA [mem %#010Lx-%#010Lx]\n",
226                nd_pa, nd_pa + nd_size - 1);
227         tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
228         if (tnid != nid)
229                 printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
230 
231         node_data[nid] = nd;
232         memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
233         NODE_DATA(nid)->node_id = nid;
234         NODE_DATA(nid)->node_start_pfn = start >> PAGE_SHIFT;
235         NODE_DATA(nid)->node_spanned_pages = (end - start) >> PAGE_SHIFT;
236 
237         node_set_online(nid);
238 }
239 
240 /**
241  * numa_cleanup_meminfo - Cleanup a numa_meminfo
242  * @mi: numa_meminfo to clean up
243  *
244  * Sanitize @mi by merging and removing unncessary memblks.  Also check for
245  * conflicts and clear unused memblks.
246  *
247  * RETURNS:
248  * 0 on success, -errno on failure.
249  */
250 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
251 {
252         const u64 low = 0;
253         const u64 high = PFN_PHYS(max_pfn);
254         int i, j, k;
255 
256         /* first, trim all entries */
257         for (i = 0; i < mi->nr_blks; i++) {
258                 struct numa_memblk *bi = &mi->blk[i];
259 
260                 /* make sure all blocks are inside the limits */
261                 bi->start = max(bi->start, low);
262                 bi->end = min(bi->end, high);
263 
264                 /* and there's no empty block */
265                 if (bi->start >= bi->end)
266                         numa_remove_memblk_from(i--, mi);
267         }
268 
269         /* merge neighboring / overlapping entries */
270         for (i = 0; i < mi->nr_blks; i++) {
271                 struct numa_memblk *bi = &mi->blk[i];
272 
273                 for (j = i + 1; j < mi->nr_blks; j++) {
274                         struct numa_memblk *bj = &mi->blk[j];
275                         u64 start, end;
276 
277                         /*
278                          * See whether there are overlapping blocks.  Whine
279                          * about but allow overlaps of the same nid.  They
280                          * will be merged below.
281                          */
282                         if (bi->end > bj->start && bi->start < bj->end) {
283                                 if (bi->nid != bj->nid) {
284                                         pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
285                                                bi->nid, bi->start, bi->end - 1,
286                                                bj->nid, bj->start, bj->end - 1);
287                                         return -EINVAL;
288                                 }
289                                 pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
290                                            bi->nid, bi->start, bi->end - 1,
291                                            bj->start, bj->end - 1);
292                         }
293 
294                         /*
295                          * Join together blocks on the same node, holes
296                          * between which don't overlap with memory on other
297                          * nodes.
298                          */
299                         if (bi->nid != bj->nid)
300                                 continue;
301                         start = min(bi->start, bj->start);
302                         end = max(bi->end, bj->end);
303                         for (k = 0; k < mi->nr_blks; k++) {
304                                 struct numa_memblk *bk = &mi->blk[k];
305 
306                                 if (bi->nid == bk->nid)
307                                         continue;
308                                 if (start < bk->end && end > bk->start)
309                                         break;
310                         }
311                         if (k < mi->nr_blks)
312                                 continue;
313                         printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
314                                bi->nid, bi->start, bi->end - 1, bj->start,
315                                bj->end - 1, start, end - 1);
316                         bi->start = start;
317                         bi->end = end;
318                         numa_remove_memblk_from(j--, mi);
319                 }
320         }
321 
322         /* clear unused ones */
323         for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
324                 mi->blk[i].start = mi->blk[i].end = 0;
325                 mi->blk[i].nid = NUMA_NO_NODE;
326         }
327 
328         return 0;
329 }
330 
331 /*
332  * Set nodes, which have memory in @mi, in *@nodemask.
333  */
334 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
335                                               const struct numa_meminfo *mi)
336 {
337         int i;
338 
339         for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
340                 if (mi->blk[i].start != mi->blk[i].end &&
341                     mi->blk[i].nid != NUMA_NO_NODE)
342                         node_set(mi->blk[i].nid, *nodemask);
343 }
344 
345 /**
346  * numa_reset_distance - Reset NUMA distance table
347  *
348  * The current table is freed.  The next numa_set_distance() call will
349  * create a new one.
350  */
351 void __init numa_reset_distance(void)
352 {
353         size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
354 
355         /* numa_distance could be 1LU marking allocation failure, test cnt */
356         if (numa_distance_cnt)
357                 memblock_free(__pa(numa_distance), size);
358         numa_distance_cnt = 0;
359         numa_distance = NULL;   /* enable table creation */
360 }
361 
362 static int __init numa_alloc_distance(void)
363 {
364         nodemask_t nodes_parsed;
365         size_t size;
366         int i, j, cnt = 0;
367         u64 phys;
368 
369         /* size the new table and allocate it */
370         nodes_parsed = numa_nodes_parsed;
371         numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
372 
373         for_each_node_mask(i, nodes_parsed)
374                 cnt = i;
375         cnt++;
376         size = cnt * cnt * sizeof(numa_distance[0]);
377 
378         phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
379                                       size, PAGE_SIZE);
380         if (!phys) {
381                 pr_warning("NUMA: Warning: can't allocate distance table!\n");
382                 /* don't retry until explicitly reset */
383                 numa_distance = (void *)1LU;
384                 return -ENOMEM;
385         }
386         memblock_reserve(phys, size);
387 
388         numa_distance = __va(phys);
389         numa_distance_cnt = cnt;
390 
391         /* fill with the default distances */
392         for (i = 0; i < cnt; i++)
393                 for (j = 0; j < cnt; j++)
394                         numa_distance[i * cnt + j] = i == j ?
395                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
396         printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
397 
398         return 0;
399 }
400 
401 /**
402  * numa_set_distance - Set NUMA distance from one NUMA to another
403  * @from: the 'from' node to set distance
404  * @to: the 'to'  node to set distance
405  * @distance: NUMA distance
406  *
407  * Set the distance from node @from to @to to @distance.  If distance table
408  * doesn't exist, one which is large enough to accommodate all the currently
409  * known nodes will be created.
410  *
411  * If such table cannot be allocated, a warning is printed and further
412  * calls are ignored until the distance table is reset with
413  * numa_reset_distance().
414  *
415  * If @from or @to is higher than the highest known node or lower than zero
416  * at the time of table creation or @distance doesn't make sense, the call
417  * is ignored.
418  * This is to allow simplification of specific NUMA config implementations.
419  */
420 void __init numa_set_distance(int from, int to, int distance)
421 {
422         if (!numa_distance && numa_alloc_distance() < 0)
423                 return;
424 
425         if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
426                         from < 0 || to < 0) {
427                 pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
428                             from, to, distance);
429                 return;
430         }
431 
432         if ((u8)distance != distance ||
433             (from == to && distance != LOCAL_DISTANCE)) {
434                 pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
435                              from, to, distance);
436                 return;
437         }
438 
439         numa_distance[from * numa_distance_cnt + to] = distance;
440 }
441 
442 int __node_distance(int from, int to)
443 {
444         if (from >= numa_distance_cnt || to >= numa_distance_cnt)
445                 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
446         return numa_distance[from * numa_distance_cnt + to];
447 }
448 EXPORT_SYMBOL(__node_distance);
449 
450 /*
451  * Sanity check to catch more bad NUMA configurations (they are amazingly
452  * common).  Make sure the nodes cover all memory.
453  */
454 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
455 {
456         u64 numaram, e820ram;
457         int i;
458 
459         numaram = 0;
460         for (i = 0; i < mi->nr_blks; i++) {
461                 u64 s = mi->blk[i].start >> PAGE_SHIFT;
462                 u64 e = mi->blk[i].end >> PAGE_SHIFT;
463                 numaram += e - s;
464                 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
465                 if ((s64)numaram < 0)
466                         numaram = 0;
467         }
468 
469         e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
470 
471         /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
472         if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
473                 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
474                        (numaram << PAGE_SHIFT) >> 20,
475                        (e820ram << PAGE_SHIFT) >> 20);
476                 return false;
477         }
478         return true;
479 }
480 
481 static int __init numa_register_memblks(struct numa_meminfo *mi)
482 {
483         unsigned long uninitialized_var(pfn_align);
484         int i, nid;
485 
486         /* Account for nodes with cpus and no memory */
487         node_possible_map = numa_nodes_parsed;
488         numa_nodemask_from_meminfo(&node_possible_map, mi);
489         if (WARN_ON(nodes_empty(node_possible_map)))
490                 return -EINVAL;
491 
492         for (i = 0; i < mi->nr_blks; i++) {
493                 struct numa_memblk *mb = &mi->blk[i];
494                 memblock_set_node(mb->start, mb->end - mb->start,
495                                   &memblock.memory, mb->nid);
496         }
497 
498         /*
499          * If sections array is gonna be used for pfn -> nid mapping, check
500          * whether its granularity is fine enough.
501          */
502 #ifdef NODE_NOT_IN_PAGE_FLAGS
503         pfn_align = node_map_pfn_alignment();
504         if (pfn_align && pfn_align < PAGES_PER_SECTION) {
505                 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
506                        PFN_PHYS(pfn_align) >> 20,
507                        PFN_PHYS(PAGES_PER_SECTION) >> 20);
508                 return -EINVAL;
509         }
510 #endif
511         if (!numa_meminfo_cover_memory(mi))
512                 return -EINVAL;
513 
514         /* Finally register nodes. */
515         for_each_node_mask(nid, node_possible_map) {
516                 u64 start = PFN_PHYS(max_pfn);
517                 u64 end = 0;
518 
519                 for (i = 0; i < mi->nr_blks; i++) {
520                         if (nid != mi->blk[i].nid)
521                                 continue;
522                         start = min(mi->blk[i].start, start);
523                         end = max(mi->blk[i].end, end);
524                 }
525 
526                 if (start < end)
527                         setup_node_data(nid, start, end);
528         }
529 
530         /* Dump memblock with node info and return. */
531         memblock_dump_all();
532         return 0;
533 }
534 
535 /*
536  * There are unfortunately some poorly designed mainboards around that
537  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
538  * mapping. To avoid this fill in the mapping for all possible CPUs,
539  * as the number of CPUs is not known yet. We round robin the existing
540  * nodes.
541  */
542 static void __init numa_init_array(void)
543 {
544         int rr, i;
545 
546         rr = first_node(node_online_map);
547         for (i = 0; i < nr_cpu_ids; i++) {
548                 if (early_cpu_to_node(i) != NUMA_NO_NODE)
549                         continue;
550                 numa_set_node(i, rr);
551                 rr = next_node(rr, node_online_map);
552                 if (rr == MAX_NUMNODES)
553                         rr = first_node(node_online_map);
554         }
555 }
556 
557 static void __init numa_clear_kernel_node_hotplug(void)
558 {
559         int i, nid;
560         nodemask_t numa_kernel_nodes = NODE_MASK_NONE;
561         unsigned long start, end;
562         struct memblock_type *type = &memblock.reserved;
563 
564         /*
565          * At this time, all memory regions reserved by memblock are
566          * used by the kernel. Set the nid in memblock.reserved will
567          * mark out all the nodes the kernel resides in.
568          */
569         for (i = 0; i < numa_meminfo.nr_blks; i++) {
570                 struct numa_memblk *mb = &numa_meminfo.blk[i];
571                 memblock_set_node(mb->start, mb->end - mb->start,
572                                   &memblock.reserved, mb->nid);
573         }
574 
575         /* Mark all kernel nodes. */
576         for (i = 0; i < type->cnt; i++)
577                 node_set(type->regions[i].nid, numa_kernel_nodes);
578 
579         /* Clear MEMBLOCK_HOTPLUG flag for memory in kernel nodes. */
580         for (i = 0; i < numa_meminfo.nr_blks; i++) {
581                 nid = numa_meminfo.blk[i].nid;
582                 if (!node_isset(nid, numa_kernel_nodes))
583                         continue;
584 
585                 start = numa_meminfo.blk[i].start;
586                 end = numa_meminfo.blk[i].end;
587 
588                 memblock_clear_hotplug(start, end - start);
589         }
590 }
591 
592 static int __init numa_init(int (*init_func)(void))
593 {
594         int i;
595         int ret;
596 
597         for (i = 0; i < MAX_LOCAL_APIC; i++)
598                 set_apicid_to_node(i, NUMA_NO_NODE);
599 
600         nodes_clear(numa_nodes_parsed);
601         nodes_clear(node_possible_map);
602         nodes_clear(node_online_map);
603         memset(&numa_meminfo, 0, sizeof(numa_meminfo));
604         WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
605                                   MAX_NUMNODES));
606         WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
607                                   MAX_NUMNODES));
608         /* In case that parsing SRAT failed. */
609         WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
610         numa_reset_distance();
611 
612         ret = init_func();
613         if (ret < 0)
614                 return ret;
615 
616         /*
617          * We reset memblock back to the top-down direction
618          * here because if we configured ACPI_NUMA, we have
619          * parsed SRAT in init_func(). It is ok to have the
620          * reset here even if we did't configure ACPI_NUMA
621          * or acpi numa init fails and fallbacks to dummy
622          * numa init.
623          */
624         memblock_set_bottom_up(false);
625 
626         ret = numa_cleanup_meminfo(&numa_meminfo);
627         if (ret < 0)
628                 return ret;
629 
630         numa_emulation(&numa_meminfo, numa_distance_cnt);
631 
632         ret = numa_register_memblks(&numa_meminfo);
633         if (ret < 0)
634                 return ret;
635 
636         for (i = 0; i < nr_cpu_ids; i++) {
637                 int nid = early_cpu_to_node(i);
638 
639                 if (nid == NUMA_NO_NODE)
640                         continue;
641                 if (!node_online(nid))
642                         numa_clear_node(i);
643         }
644         numa_init_array();
645 
646         /*
647          * At very early time, the kernel have to use some memory such as
648          * loading the kernel image. We cannot prevent this anyway. So any
649          * node the kernel resides in should be un-hotpluggable.
650          *
651          * And when we come here, numa_init() won't fail.
652          */
653         numa_clear_kernel_node_hotplug();
654 
655         return 0;
656 }
657 
658 /**
659  * dummy_numa_init - Fallback dummy NUMA init
660  *
661  * Used if there's no underlying NUMA architecture, NUMA initialization
662  * fails, or NUMA is disabled on the command line.
663  *
664  * Must online at least one node and add memory blocks that cover all
665  * allowed memory.  This function must not fail.
666  */
667 static int __init dummy_numa_init(void)
668 {
669         printk(KERN_INFO "%s\n",
670                numa_off ? "NUMA turned off" : "No NUMA configuration found");
671         printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
672                0LLU, PFN_PHYS(max_pfn) - 1);
673 
674         node_set(0, numa_nodes_parsed);
675         numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
676 
677         return 0;
678 }
679 
680 /**
681  * x86_numa_init - Initialize NUMA
682  *
683  * Try each configured NUMA initialization method until one succeeds.  The
684  * last fallback is dummy single node config encomapssing whole memory and
685  * never fails.
686  */
687 void __init x86_numa_init(void)
688 {
689         if (!numa_off) {
690 #ifdef CONFIG_X86_NUMAQ
691                 if (!numa_init(numaq_numa_init))
692                         return;
693 #endif
694 #ifdef CONFIG_ACPI_NUMA
695                 if (!numa_init(x86_acpi_numa_init))
696                         return;
697 #endif
698 #ifdef CONFIG_AMD_NUMA
699                 if (!numa_init(amd_numa_init))
700                         return;
701 #endif
702         }
703 
704         numa_init(dummy_numa_init);
705 }
706 
707 static __init int find_near_online_node(int node)
708 {
709         int n, val;
710         int min_val = INT_MAX;
711         int best_node = -1;
712 
713         for_each_online_node(n) {
714                 val = node_distance(node, n);
715 
716                 if (val < min_val) {
717                         min_val = val;
718                         best_node = n;
719                 }
720         }
721 
722         return best_node;
723 }
724 
725 /*
726  * Setup early cpu_to_node.
727  *
728  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
729  * and apicid_to_node[] tables have valid entries for a CPU.
730  * This means we skip cpu_to_node[] initialisation for NUMA
731  * emulation and faking node case (when running a kernel compiled
732  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
733  * is already initialized in a round robin manner at numa_init_array,
734  * prior to this call, and this initialization is good enough
735  * for the fake NUMA cases.
736  *
737  * Called before the per_cpu areas are setup.
738  */
739 void __init init_cpu_to_node(void)
740 {
741         int cpu;
742         u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
743 
744         BUG_ON(cpu_to_apicid == NULL);
745 
746         for_each_possible_cpu(cpu) {
747                 int node = numa_cpu_node(cpu);
748 
749                 if (node == NUMA_NO_NODE)
750                         continue;
751                 if (!node_online(node))
752                         node = find_near_online_node(node);
753                 numa_set_node(cpu, node);
754         }
755 }
756 
757 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
758 
759 # ifndef CONFIG_NUMA_EMU
760 void numa_add_cpu(int cpu)
761 {
762         cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
763 }
764 
765 void numa_remove_cpu(int cpu)
766 {
767         cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
768 }
769 # endif /* !CONFIG_NUMA_EMU */
770 
771 #else   /* !CONFIG_DEBUG_PER_CPU_MAPS */
772 
773 int __cpu_to_node(int cpu)
774 {
775         if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
776                 printk(KERN_WARNING
777                         "cpu_to_node(%d): usage too early!\n", cpu);
778                 dump_stack();
779                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
780         }
781         return per_cpu(x86_cpu_to_node_map, cpu);
782 }
783 EXPORT_SYMBOL(__cpu_to_node);
784 
785 /*
786  * Same function as cpu_to_node() but used if called before the
787  * per_cpu areas are setup.
788  */
789 int early_cpu_to_node(int cpu)
790 {
791         if (early_per_cpu_ptr(x86_cpu_to_node_map))
792                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
793 
794         if (!cpu_possible(cpu)) {
795                 printk(KERN_WARNING
796                         "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
797                 dump_stack();
798                 return NUMA_NO_NODE;
799         }
800         return per_cpu(x86_cpu_to_node_map, cpu);
801 }
802 
803 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
804 {
805         struct cpumask *mask;
806         char buf[64];
807 
808         if (node == NUMA_NO_NODE) {
809                 /* early_cpu_to_node() already emits a warning and trace */
810                 return;
811         }
812         mask = node_to_cpumask_map[node];
813         if (!mask) {
814                 pr_err("node_to_cpumask_map[%i] NULL\n", node);
815                 dump_stack();
816                 return;
817         }
818 
819         if (enable)
820                 cpumask_set_cpu(cpu, mask);
821         else
822                 cpumask_clear_cpu(cpu, mask);
823 
824         cpulist_scnprintf(buf, sizeof(buf), mask);
825         printk(KERN_DEBUG "%s cpu %d node %d: mask now %s\n",
826                 enable ? "numa_add_cpu" : "numa_remove_cpu",
827                 cpu, node, buf);
828         return;
829 }
830 
831 # ifndef CONFIG_NUMA_EMU
832 static void numa_set_cpumask(int cpu, bool enable)
833 {
834         debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
835 }
836 
837 void numa_add_cpu(int cpu)
838 {
839         numa_set_cpumask(cpu, true);
840 }
841 
842 void numa_remove_cpu(int cpu)
843 {
844         numa_set_cpumask(cpu, false);
845 }
846 # endif /* !CONFIG_NUMA_EMU */
847 
848 /*
849  * Returns a pointer to the bitmask of CPUs on Node 'node'.
850  */
851 const struct cpumask *cpumask_of_node(int node)
852 {
853         if (node >= nr_node_ids) {
854                 printk(KERN_WARNING
855                         "cpumask_of_node(%d): node > nr_node_ids(%d)\n",
856                         node, nr_node_ids);
857                 dump_stack();
858                 return cpu_none_mask;
859         }
860         if (node_to_cpumask_map[node] == NULL) {
861                 printk(KERN_WARNING
862                         "cpumask_of_node(%d): no node_to_cpumask_map!\n",
863                         node);
864                 dump_stack();
865                 return cpu_online_mask;
866         }
867         return node_to_cpumask_map[node];
868 }
869 EXPORT_SYMBOL(cpumask_of_node);
870 
871 #endif  /* !CONFIG_DEBUG_PER_CPU_MAPS */
872 
873 #ifdef CONFIG_MEMORY_HOTPLUG
874 int memory_add_physaddr_to_nid(u64 start)
875 {
876         struct numa_meminfo *mi = &numa_meminfo;
877         int nid = mi->blk[0].nid;
878         int i;
879 
880         for (i = 0; i < mi->nr_blks; i++)
881                 if (mi->blk[i].start <= start && mi->blk[i].end > start)
882                         nid = mi->blk[i].nid;
883         return nid;
884 }
885 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
886 #endif
887 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp