~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/arch/x86/mm/numa.c

Version: ~ [ linux-5.3-rc5 ] ~ [ linux-5.2.9 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.67 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.139 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.189 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.189 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.72 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* Common code for 32 and 64-bit NUMA */
  2 #include <linux/acpi.h>
  3 #include <linux/kernel.h>
  4 #include <linux/mm.h>
  5 #include <linux/string.h>
  6 #include <linux/init.h>
  7 #include <linux/bootmem.h>
  8 #include <linux/memblock.h>
  9 #include <linux/mmzone.h>
 10 #include <linux/ctype.h>
 11 #include <linux/nodemask.h>
 12 #include <linux/sched.h>
 13 #include <linux/topology.h>
 14 
 15 #include <asm/e820.h>
 16 #include <asm/proto.h>
 17 #include <asm/dma.h>
 18 #include <asm/amd_nb.h>
 19 
 20 #include "numa_internal.h"
 21 
 22 int numa_off;
 23 nodemask_t numa_nodes_parsed __initdata;
 24 
 25 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
 26 EXPORT_SYMBOL(node_data);
 27 
 28 static struct numa_meminfo numa_meminfo
 29 #ifndef CONFIG_MEMORY_HOTPLUG
 30 __initdata
 31 #endif
 32 ;
 33 
 34 static int numa_distance_cnt;
 35 static u8 *numa_distance;
 36 
 37 static __init int numa_setup(char *opt)
 38 {
 39         if (!opt)
 40                 return -EINVAL;
 41         if (!strncmp(opt, "off", 3))
 42                 numa_off = 1;
 43 #ifdef CONFIG_NUMA_EMU
 44         if (!strncmp(opt, "fake=", 5))
 45                 numa_emu_cmdline(opt + 5);
 46 #endif
 47 #ifdef CONFIG_ACPI_NUMA
 48         if (!strncmp(opt, "noacpi", 6))
 49                 acpi_numa = -1;
 50 #endif
 51         return 0;
 52 }
 53 early_param("numa", numa_setup);
 54 
 55 /*
 56  * apicid, cpu, node mappings
 57  */
 58 s16 __apicid_to_node[MAX_LOCAL_APIC] = {
 59         [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
 60 };
 61 
 62 int numa_cpu_node(int cpu)
 63 {
 64         int apicid = early_per_cpu(x86_cpu_to_apicid, cpu);
 65 
 66         if (apicid != BAD_APICID)
 67                 return __apicid_to_node[apicid];
 68         return NUMA_NO_NODE;
 69 }
 70 
 71 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
 72 EXPORT_SYMBOL(node_to_cpumask_map);
 73 
 74 /*
 75  * Map cpu index to node index
 76  */
 77 DEFINE_EARLY_PER_CPU(int, x86_cpu_to_node_map, NUMA_NO_NODE);
 78 EXPORT_EARLY_PER_CPU_SYMBOL(x86_cpu_to_node_map);
 79 
 80 void numa_set_node(int cpu, int node)
 81 {
 82         int *cpu_to_node_map = early_per_cpu_ptr(x86_cpu_to_node_map);
 83 
 84         /* early setting, no percpu area yet */
 85         if (cpu_to_node_map) {
 86                 cpu_to_node_map[cpu] = node;
 87                 return;
 88         }
 89 
 90 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
 91         if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
 92                 printk(KERN_ERR "numa_set_node: invalid cpu# (%d)\n", cpu);
 93                 dump_stack();
 94                 return;
 95         }
 96 #endif
 97         per_cpu(x86_cpu_to_node_map, cpu) = node;
 98 
 99         set_cpu_numa_node(cpu, node);
100 }
101 
102 void numa_clear_node(int cpu)
103 {
104         numa_set_node(cpu, NUMA_NO_NODE);
105 }
106 
107 /*
108  * Allocate node_to_cpumask_map based on number of available nodes
109  * Requires node_possible_map to be valid.
110  *
111  * Note: cpumask_of_node() is not valid until after this is done.
112  * (Use CONFIG_DEBUG_PER_CPU_MAPS to check this.)
113  */
114 void __init setup_node_to_cpumask_map(void)
115 {
116         unsigned int node;
117 
118         /* setup nr_node_ids if not done yet */
119         if (nr_node_ids == MAX_NUMNODES)
120                 setup_nr_node_ids();
121 
122         /* allocate the map */
123         for (node = 0; node < nr_node_ids; node++)
124                 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
125 
126         /* cpumask_of_node() will now work */
127         pr_debug("Node to cpumask map for %d nodes\n", nr_node_ids);
128 }
129 
130 static int __init numa_add_memblk_to(int nid, u64 start, u64 end,
131                                      struct numa_meminfo *mi)
132 {
133         /* ignore zero length blks */
134         if (start == end)
135                 return 0;
136 
137         /* whine about and ignore invalid blks */
138         if (start > end || nid < 0 || nid >= MAX_NUMNODES) {
139                 pr_warning("NUMA: Warning: invalid memblk node %d [mem %#010Lx-%#010Lx]\n",
140                            nid, start, end - 1);
141                 return 0;
142         }
143 
144         if (mi->nr_blks >= NR_NODE_MEMBLKS) {
145                 pr_err("NUMA: too many memblk ranges\n");
146                 return -EINVAL;
147         }
148 
149         mi->blk[mi->nr_blks].start = start;
150         mi->blk[mi->nr_blks].end = end;
151         mi->blk[mi->nr_blks].nid = nid;
152         mi->nr_blks++;
153         return 0;
154 }
155 
156 /**
157  * numa_remove_memblk_from - Remove one numa_memblk from a numa_meminfo
158  * @idx: Index of memblk to remove
159  * @mi: numa_meminfo to remove memblk from
160  *
161  * Remove @idx'th numa_memblk from @mi by shifting @mi->blk[] and
162  * decrementing @mi->nr_blks.
163  */
164 void __init numa_remove_memblk_from(int idx, struct numa_meminfo *mi)
165 {
166         mi->nr_blks--;
167         memmove(&mi->blk[idx], &mi->blk[idx + 1],
168                 (mi->nr_blks - idx) * sizeof(mi->blk[0]));
169 }
170 
171 /**
172  * numa_add_memblk - Add one numa_memblk to numa_meminfo
173  * @nid: NUMA node ID of the new memblk
174  * @start: Start address of the new memblk
175  * @end: End address of the new memblk
176  *
177  * Add a new memblk to the default numa_meminfo.
178  *
179  * RETURNS:
180  * 0 on success, -errno on failure.
181  */
182 int __init numa_add_memblk(int nid, u64 start, u64 end)
183 {
184         return numa_add_memblk_to(nid, start, end, &numa_meminfo);
185 }
186 
187 /* Allocate NODE_DATA for a node on the local memory */
188 static void __init alloc_node_data(int nid)
189 {
190         const size_t nd_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
191         u64 nd_pa;
192         void *nd;
193         int tnid;
194 
195         /*
196          * Allocate node data.  Try node-local memory and then any node.
197          * Never allocate in DMA zone.
198          */
199         nd_pa = memblock_alloc_nid(nd_size, SMP_CACHE_BYTES, nid);
200         if (!nd_pa) {
201                 nd_pa = __memblock_alloc_base(nd_size, SMP_CACHE_BYTES,
202                                               MEMBLOCK_ALLOC_ACCESSIBLE);
203                 if (!nd_pa) {
204                         pr_err("Cannot find %zu bytes in node %d\n",
205                                nd_size, nid);
206                         return;
207                 }
208         }
209         nd = __va(nd_pa);
210 
211         /* report and initialize */
212         printk(KERN_INFO "NODE_DATA(%d) allocated [mem %#010Lx-%#010Lx]\n", nid,
213                nd_pa, nd_pa + nd_size - 1);
214         tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
215         if (tnid != nid)
216                 printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nid, tnid);
217 
218         node_data[nid] = nd;
219         memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
220 
221         node_set_online(nid);
222 }
223 
224 /**
225  * numa_cleanup_meminfo - Cleanup a numa_meminfo
226  * @mi: numa_meminfo to clean up
227  *
228  * Sanitize @mi by merging and removing unncessary memblks.  Also check for
229  * conflicts and clear unused memblks.
230  *
231  * RETURNS:
232  * 0 on success, -errno on failure.
233  */
234 int __init numa_cleanup_meminfo(struct numa_meminfo *mi)
235 {
236         const u64 low = 0;
237         const u64 high = PFN_PHYS(max_pfn);
238         int i, j, k;
239 
240         /* first, trim all entries */
241         for (i = 0; i < mi->nr_blks; i++) {
242                 struct numa_memblk *bi = &mi->blk[i];
243 
244                 /* make sure all blocks are inside the limits */
245                 bi->start = max(bi->start, low);
246                 bi->end = min(bi->end, high);
247 
248                 /* and there's no empty or non-exist block */
249                 if (bi->start >= bi->end ||
250                     !memblock_overlaps_region(&memblock.memory,
251                         bi->start, bi->end - bi->start))
252                         numa_remove_memblk_from(i--, mi);
253         }
254 
255         /* merge neighboring / overlapping entries */
256         for (i = 0; i < mi->nr_blks; i++) {
257                 struct numa_memblk *bi = &mi->blk[i];
258 
259                 for (j = i + 1; j < mi->nr_blks; j++) {
260                         struct numa_memblk *bj = &mi->blk[j];
261                         u64 start, end;
262 
263                         /*
264                          * See whether there are overlapping blocks.  Whine
265                          * about but allow overlaps of the same nid.  They
266                          * will be merged below.
267                          */
268                         if (bi->end > bj->start && bi->start < bj->end) {
269                                 if (bi->nid != bj->nid) {
270                                         pr_err("NUMA: node %d [mem %#010Lx-%#010Lx] overlaps with node %d [mem %#010Lx-%#010Lx]\n",
271                                                bi->nid, bi->start, bi->end - 1,
272                                                bj->nid, bj->start, bj->end - 1);
273                                         return -EINVAL;
274                                 }
275                                 pr_warning("NUMA: Warning: node %d [mem %#010Lx-%#010Lx] overlaps with itself [mem %#010Lx-%#010Lx]\n",
276                                            bi->nid, bi->start, bi->end - 1,
277                                            bj->start, bj->end - 1);
278                         }
279 
280                         /*
281                          * Join together blocks on the same node, holes
282                          * between which don't overlap with memory on other
283                          * nodes.
284                          */
285                         if (bi->nid != bj->nid)
286                                 continue;
287                         start = min(bi->start, bj->start);
288                         end = max(bi->end, bj->end);
289                         for (k = 0; k < mi->nr_blks; k++) {
290                                 struct numa_memblk *bk = &mi->blk[k];
291 
292                                 if (bi->nid == bk->nid)
293                                         continue;
294                                 if (start < bk->end && end > bk->start)
295                                         break;
296                         }
297                         if (k < mi->nr_blks)
298                                 continue;
299                         printk(KERN_INFO "NUMA: Node %d [mem %#010Lx-%#010Lx] + [mem %#010Lx-%#010Lx] -> [mem %#010Lx-%#010Lx]\n",
300                                bi->nid, bi->start, bi->end - 1, bj->start,
301                                bj->end - 1, start, end - 1);
302                         bi->start = start;
303                         bi->end = end;
304                         numa_remove_memblk_from(j--, mi);
305                 }
306         }
307 
308         /* clear unused ones */
309         for (i = mi->nr_blks; i < ARRAY_SIZE(mi->blk); i++) {
310                 mi->blk[i].start = mi->blk[i].end = 0;
311                 mi->blk[i].nid = NUMA_NO_NODE;
312         }
313 
314         return 0;
315 }
316 
317 /*
318  * Set nodes, which have memory in @mi, in *@nodemask.
319  */
320 static void __init numa_nodemask_from_meminfo(nodemask_t *nodemask,
321                                               const struct numa_meminfo *mi)
322 {
323         int i;
324 
325         for (i = 0; i < ARRAY_SIZE(mi->blk); i++)
326                 if (mi->blk[i].start != mi->blk[i].end &&
327                     mi->blk[i].nid != NUMA_NO_NODE)
328                         node_set(mi->blk[i].nid, *nodemask);
329 }
330 
331 /**
332  * numa_reset_distance - Reset NUMA distance table
333  *
334  * The current table is freed.  The next numa_set_distance() call will
335  * create a new one.
336  */
337 void __init numa_reset_distance(void)
338 {
339         size_t size = numa_distance_cnt * numa_distance_cnt * sizeof(numa_distance[0]);
340 
341         /* numa_distance could be 1LU marking allocation failure, test cnt */
342         if (numa_distance_cnt)
343                 memblock_free(__pa(numa_distance), size);
344         numa_distance_cnt = 0;
345         numa_distance = NULL;   /* enable table creation */
346 }
347 
348 static int __init numa_alloc_distance(void)
349 {
350         nodemask_t nodes_parsed;
351         size_t size;
352         int i, j, cnt = 0;
353         u64 phys;
354 
355         /* size the new table and allocate it */
356         nodes_parsed = numa_nodes_parsed;
357         numa_nodemask_from_meminfo(&nodes_parsed, &numa_meminfo);
358 
359         for_each_node_mask(i, nodes_parsed)
360                 cnt = i;
361         cnt++;
362         size = cnt * cnt * sizeof(numa_distance[0]);
363 
364         phys = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
365                                       size, PAGE_SIZE);
366         if (!phys) {
367                 pr_warning("NUMA: Warning: can't allocate distance table!\n");
368                 /* don't retry until explicitly reset */
369                 numa_distance = (void *)1LU;
370                 return -ENOMEM;
371         }
372         memblock_reserve(phys, size);
373 
374         numa_distance = __va(phys);
375         numa_distance_cnt = cnt;
376 
377         /* fill with the default distances */
378         for (i = 0; i < cnt; i++)
379                 for (j = 0; j < cnt; j++)
380                         numa_distance[i * cnt + j] = i == j ?
381                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
382         printk(KERN_DEBUG "NUMA: Initialized distance table, cnt=%d\n", cnt);
383 
384         return 0;
385 }
386 
387 /**
388  * numa_set_distance - Set NUMA distance from one NUMA to another
389  * @from: the 'from' node to set distance
390  * @to: the 'to'  node to set distance
391  * @distance: NUMA distance
392  *
393  * Set the distance from node @from to @to to @distance.  If distance table
394  * doesn't exist, one which is large enough to accommodate all the currently
395  * known nodes will be created.
396  *
397  * If such table cannot be allocated, a warning is printed and further
398  * calls are ignored until the distance table is reset with
399  * numa_reset_distance().
400  *
401  * If @from or @to is higher than the highest known node or lower than zero
402  * at the time of table creation or @distance doesn't make sense, the call
403  * is ignored.
404  * This is to allow simplification of specific NUMA config implementations.
405  */
406 void __init numa_set_distance(int from, int to, int distance)
407 {
408         if (!numa_distance && numa_alloc_distance() < 0)
409                 return;
410 
411         if (from >= numa_distance_cnt || to >= numa_distance_cnt ||
412                         from < 0 || to < 0) {
413                 pr_warn_once("NUMA: Warning: node ids are out of bound, from=%d to=%d distance=%d\n",
414                             from, to, distance);
415                 return;
416         }
417 
418         if ((u8)distance != distance ||
419             (from == to && distance != LOCAL_DISTANCE)) {
420                 pr_warn_once("NUMA: Warning: invalid distance parameter, from=%d to=%d distance=%d\n",
421                              from, to, distance);
422                 return;
423         }
424 
425         numa_distance[from * numa_distance_cnt + to] = distance;
426 }
427 
428 int __node_distance(int from, int to)
429 {
430         if (from >= numa_distance_cnt || to >= numa_distance_cnt)
431                 return from == to ? LOCAL_DISTANCE : REMOTE_DISTANCE;
432         return numa_distance[from * numa_distance_cnt + to];
433 }
434 EXPORT_SYMBOL(__node_distance);
435 
436 /*
437  * Sanity check to catch more bad NUMA configurations (they are amazingly
438  * common).  Make sure the nodes cover all memory.
439  */
440 static bool __init numa_meminfo_cover_memory(const struct numa_meminfo *mi)
441 {
442         u64 numaram, e820ram;
443         int i;
444 
445         numaram = 0;
446         for (i = 0; i < mi->nr_blks; i++) {
447                 u64 s = mi->blk[i].start >> PAGE_SHIFT;
448                 u64 e = mi->blk[i].end >> PAGE_SHIFT;
449                 numaram += e - s;
450                 numaram -= __absent_pages_in_range(mi->blk[i].nid, s, e);
451                 if ((s64)numaram < 0)
452                         numaram = 0;
453         }
454 
455         e820ram = max_pfn - absent_pages_in_range(0, max_pfn);
456 
457         /* We seem to lose 3 pages somewhere. Allow 1M of slack. */
458         if ((s64)(e820ram - numaram) >= (1 << (20 - PAGE_SHIFT))) {
459                 printk(KERN_ERR "NUMA: nodes only cover %LuMB of your %LuMB e820 RAM. Not used.\n",
460                        (numaram << PAGE_SHIFT) >> 20,
461                        (e820ram << PAGE_SHIFT) >> 20);
462                 return false;
463         }
464         return true;
465 }
466 
467 /*
468  * Mark all currently memblock-reserved physical memory (which covers the
469  * kernel's own memory ranges) as hot-unswappable.
470  */
471 static void __init numa_clear_kernel_node_hotplug(void)
472 {
473         nodemask_t reserved_nodemask = NODE_MASK_NONE;
474         struct memblock_region *mb_region;
475         int i;
476 
477         /*
478          * We have to do some preprocessing of memblock regions, to
479          * make them suitable for reservation.
480          *
481          * At this time, all memory regions reserved by memblock are
482          * used by the kernel, but those regions are not split up
483          * along node boundaries yet, and don't necessarily have their
484          * node ID set yet either.
485          *
486          * So iterate over all memory known to the x86 architecture,
487          * and use those ranges to set the nid in memblock.reserved.
488          * This will split up the memblock regions along node
489          * boundaries and will set the node IDs as well.
490          */
491         for (i = 0; i < numa_meminfo.nr_blks; i++) {
492                 struct numa_memblk *mb = numa_meminfo.blk + i;
493                 int ret;
494 
495                 ret = memblock_set_node(mb->start, mb->end - mb->start, &memblock.reserved, mb->nid);
496                 WARN_ON_ONCE(ret);
497         }
498 
499         /*
500          * Now go over all reserved memblock regions, to construct a
501          * node mask of all kernel reserved memory areas.
502          *
503          * [ Note, when booting with mem=nn[kMG] or in a kdump kernel,
504          *   numa_meminfo might not include all memblock.reserved
505          *   memory ranges, because quirks such as trim_snb_memory()
506          *   reserve specific pages for Sandy Bridge graphics. ]
507          */
508         for_each_memblock(reserved, mb_region) {
509                 if (mb_region->nid != MAX_NUMNODES)
510                         node_set(mb_region->nid, reserved_nodemask);
511         }
512 
513         /*
514          * Finally, clear the MEMBLOCK_HOTPLUG flag for all memory
515          * belonging to the reserved node mask.
516          *
517          * Note that this will include memory regions that reside
518          * on nodes that contain kernel memory - entire nodes
519          * become hot-unpluggable:
520          */
521         for (i = 0; i < numa_meminfo.nr_blks; i++) {
522                 struct numa_memblk *mb = numa_meminfo.blk + i;
523 
524                 if (!node_isset(mb->nid, reserved_nodemask))
525                         continue;
526 
527                 memblock_clear_hotplug(mb->start, mb->end - mb->start);
528         }
529 }
530 
531 static int __init numa_register_memblks(struct numa_meminfo *mi)
532 {
533         unsigned long uninitialized_var(pfn_align);
534         int i, nid;
535 
536         /* Account for nodes with cpus and no memory */
537         node_possible_map = numa_nodes_parsed;
538         numa_nodemask_from_meminfo(&node_possible_map, mi);
539         if (WARN_ON(nodes_empty(node_possible_map)))
540                 return -EINVAL;
541 
542         for (i = 0; i < mi->nr_blks; i++) {
543                 struct numa_memblk *mb = &mi->blk[i];
544                 memblock_set_node(mb->start, mb->end - mb->start,
545                                   &memblock.memory, mb->nid);
546         }
547 
548         /*
549          * At very early time, the kernel have to use some memory such as
550          * loading the kernel image. We cannot prevent this anyway. So any
551          * node the kernel resides in should be un-hotpluggable.
552          *
553          * And when we come here, alloc node data won't fail.
554          */
555         numa_clear_kernel_node_hotplug();
556 
557         /*
558          * If sections array is gonna be used for pfn -> nid mapping, check
559          * whether its granularity is fine enough.
560          */
561 #ifdef NODE_NOT_IN_PAGE_FLAGS
562         pfn_align = node_map_pfn_alignment();
563         if (pfn_align && pfn_align < PAGES_PER_SECTION) {
564                 printk(KERN_WARNING "Node alignment %LuMB < min %LuMB, rejecting NUMA config\n",
565                        PFN_PHYS(pfn_align) >> 20,
566                        PFN_PHYS(PAGES_PER_SECTION) >> 20);
567                 return -EINVAL;
568         }
569 #endif
570         if (!numa_meminfo_cover_memory(mi))
571                 return -EINVAL;
572 
573         /* Finally register nodes. */
574         for_each_node_mask(nid, node_possible_map) {
575                 u64 start = PFN_PHYS(max_pfn);
576                 u64 end = 0;
577 
578                 for (i = 0; i < mi->nr_blks; i++) {
579                         if (nid != mi->blk[i].nid)
580                                 continue;
581                         start = min(mi->blk[i].start, start);
582                         end = max(mi->blk[i].end, end);
583                 }
584 
585                 if (start >= end)
586                         continue;
587 
588                 /*
589                  * Don't confuse VM with a node that doesn't have the
590                  * minimum amount of memory:
591                  */
592                 if (end && (end - start) < NODE_MIN_SIZE)
593                         continue;
594 
595                 alloc_node_data(nid);
596         }
597 
598         /* Dump memblock with node info and return. */
599         memblock_dump_all();
600         return 0;
601 }
602 
603 /*
604  * There are unfortunately some poorly designed mainboards around that
605  * only connect memory to a single CPU. This breaks the 1:1 cpu->node
606  * mapping. To avoid this fill in the mapping for all possible CPUs,
607  * as the number of CPUs is not known yet. We round robin the existing
608  * nodes.
609  */
610 static void __init numa_init_array(void)
611 {
612         int rr, i;
613 
614         rr = first_node(node_online_map);
615         for (i = 0; i < nr_cpu_ids; i++) {
616                 if (early_cpu_to_node(i) != NUMA_NO_NODE)
617                         continue;
618                 numa_set_node(i, rr);
619                 rr = next_node_in(rr, node_online_map);
620         }
621 }
622 
623 static int __init numa_init(int (*init_func)(void))
624 {
625         int i;
626         int ret;
627 
628         for (i = 0; i < MAX_LOCAL_APIC; i++)
629                 set_apicid_to_node(i, NUMA_NO_NODE);
630 
631         nodes_clear(numa_nodes_parsed);
632         nodes_clear(node_possible_map);
633         nodes_clear(node_online_map);
634         memset(&numa_meminfo, 0, sizeof(numa_meminfo));
635         WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.memory,
636                                   MAX_NUMNODES));
637         WARN_ON(memblock_set_node(0, ULLONG_MAX, &memblock.reserved,
638                                   MAX_NUMNODES));
639         /* In case that parsing SRAT failed. */
640         WARN_ON(memblock_clear_hotplug(0, ULLONG_MAX));
641         numa_reset_distance();
642 
643         ret = init_func();
644         if (ret < 0)
645                 return ret;
646 
647         /*
648          * We reset memblock back to the top-down direction
649          * here because if we configured ACPI_NUMA, we have
650          * parsed SRAT in init_func(). It is ok to have the
651          * reset here even if we did't configure ACPI_NUMA
652          * or acpi numa init fails and fallbacks to dummy
653          * numa init.
654          */
655         memblock_set_bottom_up(false);
656 
657         ret = numa_cleanup_meminfo(&numa_meminfo);
658         if (ret < 0)
659                 return ret;
660 
661         numa_emulation(&numa_meminfo, numa_distance_cnt);
662 
663         ret = numa_register_memblks(&numa_meminfo);
664         if (ret < 0)
665                 return ret;
666 
667         for (i = 0; i < nr_cpu_ids; i++) {
668                 int nid = early_cpu_to_node(i);
669 
670                 if (nid == NUMA_NO_NODE)
671                         continue;
672                 if (!node_online(nid))
673                         numa_clear_node(i);
674         }
675         numa_init_array();
676 
677         return 0;
678 }
679 
680 /**
681  * dummy_numa_init - Fallback dummy NUMA init
682  *
683  * Used if there's no underlying NUMA architecture, NUMA initialization
684  * fails, or NUMA is disabled on the command line.
685  *
686  * Must online at least one node and add memory blocks that cover all
687  * allowed memory.  This function must not fail.
688  */
689 static int __init dummy_numa_init(void)
690 {
691         printk(KERN_INFO "%s\n",
692                numa_off ? "NUMA turned off" : "No NUMA configuration found");
693         printk(KERN_INFO "Faking a node at [mem %#018Lx-%#018Lx]\n",
694                0LLU, PFN_PHYS(max_pfn) - 1);
695 
696         node_set(0, numa_nodes_parsed);
697         numa_add_memblk(0, 0, PFN_PHYS(max_pfn));
698 
699         return 0;
700 }
701 
702 /**
703  * x86_numa_init - Initialize NUMA
704  *
705  * Try each configured NUMA initialization method until one succeeds.  The
706  * last fallback is dummy single node config encomapssing whole memory and
707  * never fails.
708  */
709 void __init x86_numa_init(void)
710 {
711         if (!numa_off) {
712 #ifdef CONFIG_ACPI_NUMA
713                 if (!numa_init(x86_acpi_numa_init))
714                         return;
715 #endif
716 #ifdef CONFIG_AMD_NUMA
717                 if (!numa_init(amd_numa_init))
718                         return;
719 #endif
720         }
721 
722         numa_init(dummy_numa_init);
723 }
724 
725 static void __init init_memory_less_node(int nid)
726 {
727         unsigned long zones_size[MAX_NR_ZONES] = {0};
728         unsigned long zholes_size[MAX_NR_ZONES] = {0};
729 
730         /* Allocate and initialize node data. Memory-less node is now online.*/
731         alloc_node_data(nid);
732         free_area_init_node(nid, zones_size, 0, zholes_size);
733 
734         /*
735          * All zonelists will be built later in start_kernel() after per cpu
736          * areas are initialized.
737          */
738 }
739 
740 /*
741  * Setup early cpu_to_node.
742  *
743  * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
744  * and apicid_to_node[] tables have valid entries for a CPU.
745  * This means we skip cpu_to_node[] initialisation for NUMA
746  * emulation and faking node case (when running a kernel compiled
747  * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
748  * is already initialized in a round robin manner at numa_init_array,
749  * prior to this call, and this initialization is good enough
750  * for the fake NUMA cases.
751  *
752  * Called before the per_cpu areas are setup.
753  */
754 void __init init_cpu_to_node(void)
755 {
756         int cpu;
757         u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);
758 
759         BUG_ON(cpu_to_apicid == NULL);
760 
761         for_each_possible_cpu(cpu) {
762                 int node = numa_cpu_node(cpu);
763 
764                 if (node == NUMA_NO_NODE)
765                         continue;
766 
767                 if (!node_online(node))
768                         init_memory_less_node(node);
769 
770                 numa_set_node(cpu, node);
771         }
772 }
773 
774 #ifndef CONFIG_DEBUG_PER_CPU_MAPS
775 
776 # ifndef CONFIG_NUMA_EMU
777 void numa_add_cpu(int cpu)
778 {
779         cpumask_set_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
780 }
781 
782 void numa_remove_cpu(int cpu)
783 {
784         cpumask_clear_cpu(cpu, node_to_cpumask_map[early_cpu_to_node(cpu)]);
785 }
786 # endif /* !CONFIG_NUMA_EMU */
787 
788 #else   /* !CONFIG_DEBUG_PER_CPU_MAPS */
789 
790 int __cpu_to_node(int cpu)
791 {
792         if (early_per_cpu_ptr(x86_cpu_to_node_map)) {
793                 printk(KERN_WARNING
794                         "cpu_to_node(%d): usage too early!\n", cpu);
795                 dump_stack();
796                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
797         }
798         return per_cpu(x86_cpu_to_node_map, cpu);
799 }
800 EXPORT_SYMBOL(__cpu_to_node);
801 
802 /*
803  * Same function as cpu_to_node() but used if called before the
804  * per_cpu areas are setup.
805  */
806 int early_cpu_to_node(int cpu)
807 {
808         if (early_per_cpu_ptr(x86_cpu_to_node_map))
809                 return early_per_cpu_ptr(x86_cpu_to_node_map)[cpu];
810 
811         if (!cpu_possible(cpu)) {
812                 printk(KERN_WARNING
813                         "early_cpu_to_node(%d): no per_cpu area!\n", cpu);
814                 dump_stack();
815                 return NUMA_NO_NODE;
816         }
817         return per_cpu(x86_cpu_to_node_map, cpu);
818 }
819 
820 void debug_cpumask_set_cpu(int cpu, int node, bool enable)
821 {
822         struct cpumask *mask;
823 
824         if (node == NUMA_NO_NODE) {
825                 /* early_cpu_to_node() already emits a warning and trace */
826                 return;
827         }
828         mask = node_to_cpumask_map[node];
829         if (!mask) {
830                 pr_err("node_to_cpumask_map[%i] NULL\n", node);
831                 dump_stack();
832                 return;
833         }
834 
835         if (enable)
836                 cpumask_set_cpu(cpu, mask);
837         else
838                 cpumask_clear_cpu(cpu, mask);
839 
840         printk(KERN_DEBUG "%s cpu %d node %d: mask now %*pbl\n",
841                 enable ? "numa_add_cpu" : "numa_remove_cpu",
842                 cpu, node, cpumask_pr_args(mask));
843         return;
844 }
845 
846 # ifndef CONFIG_NUMA_EMU
847 static void numa_set_cpumask(int cpu, bool enable)
848 {
849         debug_cpumask_set_cpu(cpu, early_cpu_to_node(cpu), enable);
850 }
851 
852 void numa_add_cpu(int cpu)
853 {
854         numa_set_cpumask(cpu, true);
855 }
856 
857 void numa_remove_cpu(int cpu)
858 {
859         numa_set_cpumask(cpu, false);
860 }
861 # endif /* !CONFIG_NUMA_EMU */
862 
863 /*
864  * Returns a pointer to the bitmask of CPUs on Node 'node'.
865  */
866 const struct cpumask *cpumask_of_node(int node)
867 {
868         if (node >= nr_node_ids) {
869                 printk(KERN_WARNING
870                         "cpumask_of_node(%d): node > nr_node_ids(%d)\n",
871                         node, nr_node_ids);
872                 dump_stack();
873                 return cpu_none_mask;
874         }
875         if (node_to_cpumask_map[node] == NULL) {
876                 printk(KERN_WARNING
877                         "cpumask_of_node(%d): no node_to_cpumask_map!\n",
878                         node);
879                 dump_stack();
880                 return cpu_online_mask;
881         }
882         return node_to_cpumask_map[node];
883 }
884 EXPORT_SYMBOL(cpumask_of_node);
885 
886 #endif  /* !CONFIG_DEBUG_PER_CPU_MAPS */
887 
888 #ifdef CONFIG_MEMORY_HOTPLUG
889 int memory_add_physaddr_to_nid(u64 start)
890 {
891         struct numa_meminfo *mi = &numa_meminfo;
892         int nid = mi->blk[0].nid;
893         int i;
894 
895         for (i = 0; i < mi->nr_blks; i++)
896                 if (mi->blk[i].start <= start && mi->blk[i].end > start)
897                         nid = mi->blk[i].nid;
898         return nid;
899 }
900 EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
901 #endif
902 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp