1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * IO cost model based controller. 4 * 5 * Copyright (C) 2019 Tejun Heo <tj@kernel.org> 6 * Copyright (C) 2019 Andy Newell <newella@fb.com> 7 * Copyright (C) 2019 Facebook 8 * 9 * One challenge of controlling IO resources is the lack of trivially 10 * observable cost metric. This is distinguished from CPU and memory where 11 * wallclock time and the number of bytes can serve as accurate enough 12 * approximations. 13 * 14 * Bandwidth and iops are the most commonly used metrics for IO devices but 15 * depending on the type and specifics of the device, different IO patterns 16 * easily lead to multiple orders of magnitude variations rendering them 17 * useless for the purpose of IO capacity distribution. While on-device 18 * time, with a lot of clutches, could serve as a useful approximation for 19 * non-queued rotational devices, this is no longer viable with modern 20 * devices, even the rotational ones. 21 * 22 * While there is no cost metric we can trivially observe, it isn't a 23 * complete mystery. For example, on a rotational device, seek cost 24 * dominates while a contiguous transfer contributes a smaller amount 25 * proportional to the size. If we can characterize at least the relative 26 * costs of these different types of IOs, it should be possible to 27 * implement a reasonable work-conserving proportional IO resource 28 * distribution. 29 * 30 * 1. IO Cost Model 31 * 32 * IO cost model estimates the cost of an IO given its basic parameters and 33 * history (e.g. the end sector of the last IO). The cost is measured in 34 * device time. If a given IO is estimated to cost 10ms, the device should 35 * be able to process ~100 of those IOs in a second. 36 * 37 * Currently, there's only one builtin cost model - linear. Each IO is 38 * classified as sequential or random and given a base cost accordingly. 39 * On top of that, a size cost proportional to the length of the IO is 40 * added. While simple, this model captures the operational 41 * characteristics of a wide varienty of devices well enough. Default 42 * paramters for several different classes of devices are provided and the 43 * parameters can be configured from userspace via 44 * /sys/fs/cgroup/io.cost.model. 45 * 46 * If needed, tools/cgroup/iocost_coef_gen.py can be used to generate 47 * device-specific coefficients. 48 * 49 * 2. Control Strategy 50 * 51 * The device virtual time (vtime) is used as the primary control metric. 52 * The control strategy is composed of the following three parts. 53 * 54 * 2-1. Vtime Distribution 55 * 56 * When a cgroup becomes active in terms of IOs, its hierarchical share is 57 * calculated. Please consider the following hierarchy where the numbers 58 * inside parentheses denote the configured weights. 59 * 60 * root 61 * / \ 62 * A (w:100) B (w:300) 63 * / \ 64 * A0 (w:100) A1 (w:100) 65 * 66 * If B is idle and only A0 and A1 are actively issuing IOs, as the two are 67 * of equal weight, each gets 50% share. If then B starts issuing IOs, B 68 * gets 300/(100+300) or 75% share, and A0 and A1 equally splits the rest, 69 * 12.5% each. The distribution mechanism only cares about these flattened 70 * shares. They're called hweights (hierarchical weights) and always add 71 * upto 1 (HWEIGHT_WHOLE). 72 * 73 * A given cgroup's vtime runs slower in inverse proportion to its hweight. 74 * For example, with 12.5% weight, A0's time runs 8 times slower (100/12.5) 75 * against the device vtime - an IO which takes 10ms on the underlying 76 * device is considered to take 80ms on A0. 77 * 78 * This constitutes the basis of IO capacity distribution. Each cgroup's 79 * vtime is running at a rate determined by its hweight. A cgroup tracks 80 * the vtime consumed by past IOs and can issue a new IO iff doing so 81 * wouldn't outrun the current device vtime. Otherwise, the IO is 82 * suspended until the vtime has progressed enough to cover it. 83 * 84 * 2-2. Vrate Adjustment 85 * 86 * It's unrealistic to expect the cost model to be perfect. There are too 87 * many devices and even on the same device the overall performance 88 * fluctuates depending on numerous factors such as IO mixture and device 89 * internal garbage collection. The controller needs to adapt dynamically. 90 * 91 * This is achieved by adjusting the overall IO rate according to how busy 92 * the device is. If the device becomes overloaded, we're sending down too 93 * many IOs and should generally slow down. If there are waiting issuers 94 * but the device isn't saturated, we're issuing too few and should 95 * generally speed up. 96 * 97 * To slow down, we lower the vrate - the rate at which the device vtime 98 * passes compared to the wall clock. For example, if the vtime is running 99 * at the vrate of 75%, all cgroups added up would only be able to issue 100 * 750ms worth of IOs per second, and vice-versa for speeding up. 101 * 102 * Device business is determined using two criteria - rq wait and 103 * completion latencies. 104 * 105 * When a device gets saturated, the on-device and then the request queues 106 * fill up and a bio which is ready to be issued has to wait for a request 107 * to become available. When this delay becomes noticeable, it's a clear 108 * indication that the device is saturated and we lower the vrate. This 109 * saturation signal is fairly conservative as it only triggers when both 110 * hardware and software queues are filled up, and is used as the default 111 * busy signal. 112 * 113 * As devices can have deep queues and be unfair in how the queued commands 114 * are executed, soley depending on rq wait may not result in satisfactory 115 * control quality. For a better control quality, completion latency QoS 116 * parameters can be configured so that the device is considered saturated 117 * if N'th percentile completion latency rises above the set point. 118 * 119 * The completion latency requirements are a function of both the 120 * underlying device characteristics and the desired IO latency quality of 121 * service. There is an inherent trade-off - the tighter the latency QoS, 122 * the higher the bandwidth lossage. Latency QoS is disabled by default 123 * and can be set through /sys/fs/cgroup/io.cost.qos. 124 * 125 * 2-3. Work Conservation 126 * 127 * Imagine two cgroups A and B with equal weights. A is issuing a small IO 128 * periodically while B is sending out enough parallel IOs to saturate the 129 * device on its own. Let's say A's usage amounts to 100ms worth of IO 130 * cost per second, i.e., 10% of the device capacity. The naive 131 * distribution of half and half would lead to 60% utilization of the 132 * device, a significant reduction in the total amount of work done 133 * compared to free-for-all competition. This is too high a cost to pay 134 * for IO control. 135 * 136 * To conserve the total amount of work done, we keep track of how much 137 * each active cgroup is actually using and yield part of its weight if 138 * there are other cgroups which can make use of it. In the above case, 139 * A's weight will be lowered so that it hovers above the actual usage and 140 * B would be able to use the rest. 141 * 142 * As we don't want to penalize a cgroup for donating its weight, the 143 * surplus weight adjustment factors in a margin and has an immediate 144 * snapback mechanism in case the cgroup needs more IO vtime for itself. 145 * 146 * Note that adjusting down surplus weights has the same effects as 147 * accelerating vtime for other cgroups and work conservation can also be 148 * implemented by adjusting vrate dynamically. However, squaring who can 149 * donate and should take back how much requires hweight propagations 150 * anyway making it easier to implement and understand as a separate 151 * mechanism. 152 * 153 * 3. Monitoring 154 * 155 * Instead of debugfs or other clumsy monitoring mechanisms, this 156 * controller uses a drgn based monitoring script - 157 * tools/cgroup/iocost_monitor.py. For details on drgn, please see 158 * https://github.com/osandov/drgn. The ouput looks like the following. 159 * 160 * sdb RUN per=300ms cur_per=234.218:v203.695 busy= +1 vrate= 62.12% 161 * active weight hweight% inflt% dbt delay usages% 162 * test/a * 50/ 50 33.33/ 33.33 27.65 2 0*041 033:033:033 163 * test/b * 100/ 100 66.67/ 66.67 17.56 0 0*000 066:079:077 164 * 165 * - per : Timer period 166 * - cur_per : Internal wall and device vtime clock 167 * - vrate : Device virtual time rate against wall clock 168 * - weight : Surplus-adjusted and configured weights 169 * - hweight : Surplus-adjusted and configured hierarchical weights 170 * - inflt : The percentage of in-flight IO cost at the end of last period 171 * - del_ms : Deferred issuer delay induction level and duration 172 * - usages : Usage history 173 */ 174 175 #include <linux/kernel.h> 176 #include <linux/module.h> 177 #include <linux/timer.h> 178 #include <linux/time64.h> 179 #include <linux/parser.h> 180 #include <linux/sched/signal.h> 181 #include <linux/blk-cgroup.h> 182 #include "blk-rq-qos.h" 183 #include "blk-stat.h" 184 #include "blk-wbt.h" 185 186 #ifdef CONFIG_TRACEPOINTS 187 188 /* copied from TRACE_CGROUP_PATH, see cgroup-internal.h */ 189 #define TRACE_IOCG_PATH_LEN 1024 190 static DEFINE_SPINLOCK(trace_iocg_path_lock); 191 static char trace_iocg_path[TRACE_IOCG_PATH_LEN]; 192 193 #define TRACE_IOCG_PATH(type, iocg, ...) \ 194 do { \ 195 unsigned long flags; \ 196 if (trace_iocost_##type##_enabled()) { \ 197 spin_lock_irqsave(&trace_iocg_path_lock, flags); \ 198 cgroup_path(iocg_to_blkg(iocg)->blkcg->css.cgroup, \ 199 trace_iocg_path, TRACE_IOCG_PATH_LEN); \ 200 trace_iocost_##type(iocg, trace_iocg_path, \ 201 ##__VA_ARGS__); \ 202 spin_unlock_irqrestore(&trace_iocg_path_lock, flags); \ 203 } \ 204 } while (0) 205 206 #else /* CONFIG_TRACE_POINTS */ 207 #define TRACE_IOCG_PATH(type, iocg, ...) do { } while (0) 208 #endif /* CONFIG_TRACE_POINTS */ 209 210 enum { 211 MILLION = 1000000, 212 213 /* timer period is calculated from latency requirements, bound it */ 214 MIN_PERIOD = USEC_PER_MSEC, 215 MAX_PERIOD = USEC_PER_SEC, 216 217 /* 218 * A cgroup's vtime can run 50% behind the device vtime, which 219 * serves as its IO credit buffer. Surplus weight adjustment is 220 * immediately canceled if the vtime margin runs below 10%. 221 */ 222 MARGIN_PCT = 50, 223 INUSE_MARGIN_PCT = 10, 224 225 /* Have some play in waitq timer operations */ 226 WAITQ_TIMER_MARGIN_PCT = 5, 227 228 /* 229 * vtime can wrap well within a reasonable uptime when vrate is 230 * consistently raised. Don't trust recorded cgroup vtime if the 231 * period counter indicates that it's older than 5mins. 232 */ 233 VTIME_VALID_DUR = 300 * USEC_PER_SEC, 234 235 /* 236 * Remember the past three non-zero usages and use the max for 237 * surplus calculation. Three slots guarantee that we remember one 238 * full period usage from the last active stretch even after 239 * partial deactivation and re-activation periods. Don't start 240 * giving away weight before collecting two data points to prevent 241 * hweight adjustments based on one partial activation period. 242 */ 243 NR_USAGE_SLOTS = 3, 244 MIN_VALID_USAGES = 2, 245 246 /* 1/64k is granular enough and can easily be handled w/ u32 */ 247 HWEIGHT_WHOLE = 1 << 16, 248 249 /* 250 * As vtime is used to calculate the cost of each IO, it needs to 251 * be fairly high precision. For example, it should be able to 252 * represent the cost of a single page worth of discard with 253 * suffificient accuracy. At the same time, it should be able to 254 * represent reasonably long enough durations to be useful and 255 * convenient during operation. 256 * 257 * 1s worth of vtime is 2^37. This gives us both sub-nanosecond 258 * granularity and days of wrap-around time even at extreme vrates. 259 */ 260 VTIME_PER_SEC_SHIFT = 37, 261 VTIME_PER_SEC = 1LLU << VTIME_PER_SEC_SHIFT, 262 VTIME_PER_USEC = VTIME_PER_SEC / USEC_PER_SEC, 263 264 /* bound vrate adjustments within two orders of magnitude */ 265 VRATE_MIN_PPM = 10000, /* 1% */ 266 VRATE_MAX_PPM = 100000000, /* 10000% */ 267 268 VRATE_MIN = VTIME_PER_USEC * VRATE_MIN_PPM / MILLION, 269 VRATE_CLAMP_ADJ_PCT = 4, 270 271 /* if IOs end up waiting for requests, issue less */ 272 RQ_WAIT_BUSY_PCT = 5, 273 274 /* unbusy hysterisis */ 275 UNBUSY_THR_PCT = 75, 276 277 /* don't let cmds which take a very long time pin lagging for too long */ 278 MAX_LAGGING_PERIODS = 10, 279 280 /* 281 * If usage% * 1.25 + 2% is lower than hweight% by more than 3%, 282 * donate the surplus. 283 */ 284 SURPLUS_SCALE_PCT = 125, /* * 125% */ 285 SURPLUS_SCALE_ABS = HWEIGHT_WHOLE / 50, /* + 2% */ 286 SURPLUS_MIN_ADJ_DELTA = HWEIGHT_WHOLE / 33, /* 3% */ 287 288 /* switch iff the conditions are met for longer than this */ 289 AUTOP_CYCLE_NSEC = 10LLU * NSEC_PER_SEC, 290 291 /* 292 * Count IO size in 4k pages. The 12bit shift helps keeping 293 * size-proportional components of cost calculation in closer 294 * numbers of digits to per-IO cost components. 295 */ 296 IOC_PAGE_SHIFT = 12, 297 IOC_PAGE_SIZE = 1 << IOC_PAGE_SHIFT, 298 IOC_SECT_TO_PAGE_SHIFT = IOC_PAGE_SHIFT - SECTOR_SHIFT, 299 300 /* if apart further than 16M, consider randio for linear model */ 301 LCOEF_RANDIO_PAGES = 4096, 302 }; 303 304 enum ioc_running { 305 IOC_IDLE, 306 IOC_RUNNING, 307 IOC_STOP, 308 }; 309 310 /* io.cost.qos controls including per-dev enable of the whole controller */ 311 enum { 312 QOS_ENABLE, 313 QOS_CTRL, 314 NR_QOS_CTRL_PARAMS, 315 }; 316 317 /* io.cost.qos params */ 318 enum { 319 QOS_RPPM, 320 QOS_RLAT, 321 QOS_WPPM, 322 QOS_WLAT, 323 QOS_MIN, 324 QOS_MAX, 325 NR_QOS_PARAMS, 326 }; 327 328 /* io.cost.model controls */ 329 enum { 330 COST_CTRL, 331 COST_MODEL, 332 NR_COST_CTRL_PARAMS, 333 }; 334 335 /* builtin linear cost model coefficients */ 336 enum { 337 I_LCOEF_RBPS, 338 I_LCOEF_RSEQIOPS, 339 I_LCOEF_RRANDIOPS, 340 I_LCOEF_WBPS, 341 I_LCOEF_WSEQIOPS, 342 I_LCOEF_WRANDIOPS, 343 NR_I_LCOEFS, 344 }; 345 346 enum { 347 LCOEF_RPAGE, 348 LCOEF_RSEQIO, 349 LCOEF_RRANDIO, 350 LCOEF_WPAGE, 351 LCOEF_WSEQIO, 352 LCOEF_WRANDIO, 353 NR_LCOEFS, 354 }; 355 356 enum { 357 AUTOP_INVALID, 358 AUTOP_HDD, 359 AUTOP_SSD_QD1, 360 AUTOP_SSD_DFL, 361 AUTOP_SSD_FAST, 362 }; 363 364 struct ioc_gq; 365 366 struct ioc_params { 367 u32 qos[NR_QOS_PARAMS]; 368 u64 i_lcoefs[NR_I_LCOEFS]; 369 u64 lcoefs[NR_LCOEFS]; 370 u32 too_fast_vrate_pct; 371 u32 too_slow_vrate_pct; 372 }; 373 374 struct ioc_missed { 375 u32 nr_met; 376 u32 nr_missed; 377 u32 last_met; 378 u32 last_missed; 379 }; 380 381 struct ioc_pcpu_stat { 382 struct ioc_missed missed[2]; 383 384 u64 rq_wait_ns; 385 u64 last_rq_wait_ns; 386 }; 387 388 /* per device */ 389 struct ioc { 390 struct rq_qos rqos; 391 392 bool enabled; 393 394 struct ioc_params params; 395 u32 period_us; 396 u32 margin_us; 397 u64 vrate_min; 398 u64 vrate_max; 399 400 spinlock_t lock; 401 struct timer_list timer; 402 struct list_head active_iocgs; /* active cgroups */ 403 struct ioc_pcpu_stat __percpu *pcpu_stat; 404 405 enum ioc_running running; 406 atomic64_t vtime_rate; 407 408 seqcount_t period_seqcount; 409 u32 period_at; /* wallclock starttime */ 410 u64 period_at_vtime; /* vtime starttime */ 411 412 atomic64_t cur_period; /* inc'd each period */ 413 int busy_level; /* saturation history */ 414 415 u64 inuse_margin_vtime; 416 bool weights_updated; 417 atomic_t hweight_gen; /* for lazy hweights */ 418 419 u64 autop_too_fast_at; 420 u64 autop_too_slow_at; 421 int autop_idx; 422 bool user_qos_params:1; 423 bool user_cost_model:1; 424 }; 425 426 /* per device-cgroup pair */ 427 struct ioc_gq { 428 struct blkg_policy_data pd; 429 struct ioc *ioc; 430 431 /* 432 * A iocg can get its weight from two sources - an explicit 433 * per-device-cgroup configuration or the default weight of the 434 * cgroup. `cfg_weight` is the explicit per-device-cgroup 435 * configuration. `weight` is the effective considering both 436 * sources. 437 * 438 * When an idle cgroup becomes active its `active` goes from 0 to 439 * `weight`. `inuse` is the surplus adjusted active weight. 440 * `active` and `inuse` are used to calculate `hweight_active` and 441 * `hweight_inuse`. 442 * 443 * `last_inuse` remembers `inuse` while an iocg is idle to persist 444 * surplus adjustments. 445 */ 446 u32 cfg_weight; 447 u32 weight; 448 u32 active; 449 u32 inuse; 450 u32 last_inuse; 451 452 sector_t cursor; /* to detect randio */ 453 454 /* 455 * `vtime` is this iocg's vtime cursor which progresses as IOs are 456 * issued. If lagging behind device vtime, the delta represents 457 * the currently available IO budget. If runnning ahead, the 458 * overage. 459 * 460 * `vtime_done` is the same but progressed on completion rather 461 * than issue. The delta behind `vtime` represents the cost of 462 * currently in-flight IOs. 463 * 464 * `last_vtime` is used to remember `vtime` at the end of the last 465 * period to calculate utilization. 466 */ 467 atomic64_t vtime; 468 atomic64_t done_vtime; 469 u64 abs_vdebt; 470 u64 last_vtime; 471 472 /* 473 * The period this iocg was last active in. Used for deactivation 474 * and invalidating `vtime`. 475 */ 476 atomic64_t active_period; 477 struct list_head active_list; 478 479 /* see __propagate_active_weight() and current_hweight() for details */ 480 u64 child_active_sum; 481 u64 child_inuse_sum; 482 int hweight_gen; 483 u32 hweight_active; 484 u32 hweight_inuse; 485 bool has_surplus; 486 487 struct wait_queue_head waitq; 488 struct hrtimer waitq_timer; 489 struct hrtimer delay_timer; 490 491 /* usage is recorded as fractions of HWEIGHT_WHOLE */ 492 int usage_idx; 493 u32 usages[NR_USAGE_SLOTS]; 494 495 /* this iocg's depth in the hierarchy and ancestors including self */ 496 int level; 497 struct ioc_gq *ancestors[]; 498 }; 499 500 /* per cgroup */ 501 struct ioc_cgrp { 502 struct blkcg_policy_data cpd; 503 unsigned int dfl_weight; 504 }; 505 506 struct ioc_now { 507 u64 now_ns; 508 u32 now; 509 u64 vnow; 510 u64 vrate; 511 }; 512 513 struct iocg_wait { 514 struct wait_queue_entry wait; 515 struct bio *bio; 516 u64 abs_cost; 517 bool committed; 518 }; 519 520 struct iocg_wake_ctx { 521 struct ioc_gq *iocg; 522 u32 hw_inuse; 523 s64 vbudget; 524 }; 525 526 static const struct ioc_params autop[] = { 527 [AUTOP_HDD] = { 528 .qos = { 529 [QOS_RLAT] = 250000, /* 250ms */ 530 [QOS_WLAT] = 250000, 531 [QOS_MIN] = VRATE_MIN_PPM, 532 [QOS_MAX] = VRATE_MAX_PPM, 533 }, 534 .i_lcoefs = { 535 [I_LCOEF_RBPS] = 174019176, 536 [I_LCOEF_RSEQIOPS] = 41708, 537 [I_LCOEF_RRANDIOPS] = 370, 538 [I_LCOEF_WBPS] = 178075866, 539 [I_LCOEF_WSEQIOPS] = 42705, 540 [I_LCOEF_WRANDIOPS] = 378, 541 }, 542 }, 543 [AUTOP_SSD_QD1] = { 544 .qos = { 545 [QOS_RLAT] = 25000, /* 25ms */ 546 [QOS_WLAT] = 25000, 547 [QOS_MIN] = VRATE_MIN_PPM, 548 [QOS_MAX] = VRATE_MAX_PPM, 549 }, 550 .i_lcoefs = { 551 [I_LCOEF_RBPS] = 245855193, 552 [I_LCOEF_RSEQIOPS] = 61575, 553 [I_LCOEF_RRANDIOPS] = 6946, 554 [I_LCOEF_WBPS] = 141365009, 555 [I_LCOEF_WSEQIOPS] = 33716, 556 [I_LCOEF_WRANDIOPS] = 26796, 557 }, 558 }, 559 [AUTOP_SSD_DFL] = { 560 .qos = { 561 [QOS_RLAT] = 25000, /* 25ms */ 562 [QOS_WLAT] = 25000, 563 [QOS_MIN] = VRATE_MIN_PPM, 564 [QOS_MAX] = VRATE_MAX_PPM, 565 }, 566 .i_lcoefs = { 567 [I_LCOEF_RBPS] = 488636629, 568 [I_LCOEF_RSEQIOPS] = 8932, 569 [I_LCOEF_RRANDIOPS] = 8518, 570 [I_LCOEF_WBPS] = 427891549, 571 [I_LCOEF_WSEQIOPS] = 28755, 572 [I_LCOEF_WRANDIOPS] = 21940, 573 }, 574 .too_fast_vrate_pct = 500, 575 }, 576 [AUTOP_SSD_FAST] = { 577 .qos = { 578 [QOS_RLAT] = 5000, /* 5ms */ 579 [QOS_WLAT] = 5000, 580 [QOS_MIN] = VRATE_MIN_PPM, 581 [QOS_MAX] = VRATE_MAX_PPM, 582 }, 583 .i_lcoefs = { 584 [I_LCOEF_RBPS] = 3102524156LLU, 585 [I_LCOEF_RSEQIOPS] = 724816, 586 [I_LCOEF_RRANDIOPS] = 778122, 587 [I_LCOEF_WBPS] = 1742780862LLU, 588 [I_LCOEF_WSEQIOPS] = 425702, 589 [I_LCOEF_WRANDIOPS] = 443193, 590 }, 591 .too_slow_vrate_pct = 10, 592 }, 593 }; 594 595 /* 596 * vrate adjust percentages indexed by ioc->busy_level. We adjust up on 597 * vtime credit shortage and down on device saturation. 598 */ 599 static u32 vrate_adj_pct[] = 600 { 0, 0, 0, 0, 601 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 602 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 603 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 16 }; 604 605 static struct blkcg_policy blkcg_policy_iocost; 606 607 /* accessors and helpers */ 608 static struct ioc *rqos_to_ioc(struct rq_qos *rqos) 609 { 610 return container_of(rqos, struct ioc, rqos); 611 } 612 613 static struct ioc *q_to_ioc(struct request_queue *q) 614 { 615 return rqos_to_ioc(rq_qos_id(q, RQ_QOS_COST)); 616 } 617 618 static const char *q_name(struct request_queue *q) 619 { 620 if (test_bit(QUEUE_FLAG_REGISTERED, &q->queue_flags)) 621 return kobject_name(q->kobj.parent); 622 else 623 return "<unknown>"; 624 } 625 626 static const char __maybe_unused *ioc_name(struct ioc *ioc) 627 { 628 return q_name(ioc->rqos.q); 629 } 630 631 static struct ioc_gq *pd_to_iocg(struct blkg_policy_data *pd) 632 { 633 return pd ? container_of(pd, struct ioc_gq, pd) : NULL; 634 } 635 636 static struct ioc_gq *blkg_to_iocg(struct blkcg_gq *blkg) 637 { 638 return pd_to_iocg(blkg_to_pd(blkg, &blkcg_policy_iocost)); 639 } 640 641 static struct blkcg_gq *iocg_to_blkg(struct ioc_gq *iocg) 642 { 643 return pd_to_blkg(&iocg->pd); 644 } 645 646 static struct ioc_cgrp *blkcg_to_iocc(struct blkcg *blkcg) 647 { 648 return container_of(blkcg_to_cpd(blkcg, &blkcg_policy_iocost), 649 struct ioc_cgrp, cpd); 650 } 651 652 /* 653 * Scale @abs_cost to the inverse of @hw_inuse. The lower the hierarchical 654 * weight, the more expensive each IO. Must round up. 655 */ 656 static u64 abs_cost_to_cost(u64 abs_cost, u32 hw_inuse) 657 { 658 return DIV64_U64_ROUND_UP(abs_cost * HWEIGHT_WHOLE, hw_inuse); 659 } 660 661 /* 662 * The inverse of abs_cost_to_cost(). Must round up. 663 */ 664 static u64 cost_to_abs_cost(u64 cost, u32 hw_inuse) 665 { 666 return DIV64_U64_ROUND_UP(cost * hw_inuse, HWEIGHT_WHOLE); 667 } 668 669 static void iocg_commit_bio(struct ioc_gq *iocg, struct bio *bio, u64 cost) 670 { 671 bio->bi_iocost_cost = cost; 672 atomic64_add(cost, &iocg->vtime); 673 } 674 675 #define CREATE_TRACE_POINTS 676 #include <trace/events/iocost.h> 677 678 /* latency Qos params changed, update period_us and all the dependent params */ 679 static void ioc_refresh_period_us(struct ioc *ioc) 680 { 681 u32 ppm, lat, multi, period_us; 682 683 lockdep_assert_held(&ioc->lock); 684 685 /* pick the higher latency target */ 686 if (ioc->params.qos[QOS_RLAT] >= ioc->params.qos[QOS_WLAT]) { 687 ppm = ioc->params.qos[QOS_RPPM]; 688 lat = ioc->params.qos[QOS_RLAT]; 689 } else { 690 ppm = ioc->params.qos[QOS_WPPM]; 691 lat = ioc->params.qos[QOS_WLAT]; 692 } 693 694 /* 695 * We want the period to be long enough to contain a healthy number 696 * of IOs while short enough for granular control. Define it as a 697 * multiple of the latency target. Ideally, the multiplier should 698 * be scaled according to the percentile so that it would nominally 699 * contain a certain number of requests. Let's be simpler and 700 * scale it linearly so that it's 2x >= pct(90) and 10x at pct(50). 701 */ 702 if (ppm) 703 multi = max_t(u32, (MILLION - ppm) / 50000, 2); 704 else 705 multi = 2; 706 period_us = multi * lat; 707 period_us = clamp_t(u32, period_us, MIN_PERIOD, MAX_PERIOD); 708 709 /* calculate dependent params */ 710 ioc->period_us = period_us; 711 ioc->margin_us = period_us * MARGIN_PCT / 100; 712 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( 713 period_us * VTIME_PER_USEC * INUSE_MARGIN_PCT, 100); 714 } 715 716 static int ioc_autop_idx(struct ioc *ioc) 717 { 718 int idx = ioc->autop_idx; 719 const struct ioc_params *p = &autop[idx]; 720 u32 vrate_pct; 721 u64 now_ns; 722 723 /* rotational? */ 724 if (!blk_queue_nonrot(ioc->rqos.q)) 725 return AUTOP_HDD; 726 727 /* handle SATA SSDs w/ broken NCQ */ 728 if (blk_queue_depth(ioc->rqos.q) == 1) 729 return AUTOP_SSD_QD1; 730 731 /* use one of the normal ssd sets */ 732 if (idx < AUTOP_SSD_DFL) 733 return AUTOP_SSD_DFL; 734 735 /* if user is overriding anything, maintain what was there */ 736 if (ioc->user_qos_params || ioc->user_cost_model) 737 return idx; 738 739 /* step up/down based on the vrate */ 740 vrate_pct = div64_u64(atomic64_read(&ioc->vtime_rate) * 100, 741 VTIME_PER_USEC); 742 now_ns = ktime_get_ns(); 743 744 if (p->too_fast_vrate_pct && p->too_fast_vrate_pct <= vrate_pct) { 745 if (!ioc->autop_too_fast_at) 746 ioc->autop_too_fast_at = now_ns; 747 if (now_ns - ioc->autop_too_fast_at >= AUTOP_CYCLE_NSEC) 748 return idx + 1; 749 } else { 750 ioc->autop_too_fast_at = 0; 751 } 752 753 if (p->too_slow_vrate_pct && p->too_slow_vrate_pct >= vrate_pct) { 754 if (!ioc->autop_too_slow_at) 755 ioc->autop_too_slow_at = now_ns; 756 if (now_ns - ioc->autop_too_slow_at >= AUTOP_CYCLE_NSEC) 757 return idx - 1; 758 } else { 759 ioc->autop_too_slow_at = 0; 760 } 761 762 return idx; 763 } 764 765 /* 766 * Take the followings as input 767 * 768 * @bps maximum sequential throughput 769 * @seqiops maximum sequential 4k iops 770 * @randiops maximum random 4k iops 771 * 772 * and calculate the linear model cost coefficients. 773 * 774 * *@page per-page cost 1s / (@bps / 4096) 775 * *@seqio base cost of a seq IO max((1s / @seqiops) - *@page, 0) 776 * @randiops base cost of a rand IO max((1s / @randiops) - *@page, 0) 777 */ 778 static void calc_lcoefs(u64 bps, u64 seqiops, u64 randiops, 779 u64 *page, u64 *seqio, u64 *randio) 780 { 781 u64 v; 782 783 *page = *seqio = *randio = 0; 784 785 if (bps) 786 *page = DIV64_U64_ROUND_UP(VTIME_PER_SEC, 787 DIV_ROUND_UP_ULL(bps, IOC_PAGE_SIZE)); 788 789 if (seqiops) { 790 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, seqiops); 791 if (v > *page) 792 *seqio = v - *page; 793 } 794 795 if (randiops) { 796 v = DIV64_U64_ROUND_UP(VTIME_PER_SEC, randiops); 797 if (v > *page) 798 *randio = v - *page; 799 } 800 } 801 802 static void ioc_refresh_lcoefs(struct ioc *ioc) 803 { 804 u64 *u = ioc->params.i_lcoefs; 805 u64 *c = ioc->params.lcoefs; 806 807 calc_lcoefs(u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 808 &c[LCOEF_RPAGE], &c[LCOEF_RSEQIO], &c[LCOEF_RRANDIO]); 809 calc_lcoefs(u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS], 810 &c[LCOEF_WPAGE], &c[LCOEF_WSEQIO], &c[LCOEF_WRANDIO]); 811 } 812 813 static bool ioc_refresh_params(struct ioc *ioc, bool force) 814 { 815 const struct ioc_params *p; 816 int idx; 817 818 lockdep_assert_held(&ioc->lock); 819 820 idx = ioc_autop_idx(ioc); 821 p = &autop[idx]; 822 823 if (idx == ioc->autop_idx && !force) 824 return false; 825 826 if (idx != ioc->autop_idx) 827 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 828 829 ioc->autop_idx = idx; 830 ioc->autop_too_fast_at = 0; 831 ioc->autop_too_slow_at = 0; 832 833 if (!ioc->user_qos_params) 834 memcpy(ioc->params.qos, p->qos, sizeof(p->qos)); 835 if (!ioc->user_cost_model) 836 memcpy(ioc->params.i_lcoefs, p->i_lcoefs, sizeof(p->i_lcoefs)); 837 838 ioc_refresh_period_us(ioc); 839 ioc_refresh_lcoefs(ioc); 840 841 ioc->vrate_min = DIV64_U64_ROUND_UP((u64)ioc->params.qos[QOS_MIN] * 842 VTIME_PER_USEC, MILLION); 843 ioc->vrate_max = div64_u64((u64)ioc->params.qos[QOS_MAX] * 844 VTIME_PER_USEC, MILLION); 845 846 return true; 847 } 848 849 /* take a snapshot of the current [v]time and vrate */ 850 static void ioc_now(struct ioc *ioc, struct ioc_now *now) 851 { 852 unsigned seq; 853 854 now->now_ns = ktime_get(); 855 now->now = ktime_to_us(now->now_ns); 856 now->vrate = atomic64_read(&ioc->vtime_rate); 857 858 /* 859 * The current vtime is 860 * 861 * vtime at period start + (wallclock time since the start) * vrate 862 * 863 * As a consistent snapshot of `period_at_vtime` and `period_at` is 864 * needed, they're seqcount protected. 865 */ 866 do { 867 seq = read_seqcount_begin(&ioc->period_seqcount); 868 now->vnow = ioc->period_at_vtime + 869 (now->now - ioc->period_at) * now->vrate; 870 } while (read_seqcount_retry(&ioc->period_seqcount, seq)); 871 } 872 873 static void ioc_start_period(struct ioc *ioc, struct ioc_now *now) 874 { 875 lockdep_assert_held(&ioc->lock); 876 WARN_ON_ONCE(ioc->running != IOC_RUNNING); 877 878 write_seqcount_begin(&ioc->period_seqcount); 879 ioc->period_at = now->now; 880 ioc->period_at_vtime = now->vnow; 881 write_seqcount_end(&ioc->period_seqcount); 882 883 ioc->timer.expires = jiffies + usecs_to_jiffies(ioc->period_us); 884 add_timer(&ioc->timer); 885 } 886 887 /* 888 * Update @iocg's `active` and `inuse` to @active and @inuse, update level 889 * weight sums and propagate upwards accordingly. 890 */ 891 static void __propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) 892 { 893 struct ioc *ioc = iocg->ioc; 894 int lvl; 895 896 lockdep_assert_held(&ioc->lock); 897 898 inuse = min(active, inuse); 899 900 for (lvl = iocg->level - 1; lvl >= 0; lvl--) { 901 struct ioc_gq *parent = iocg->ancestors[lvl]; 902 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 903 u32 parent_active = 0, parent_inuse = 0; 904 905 /* update the level sums */ 906 parent->child_active_sum += (s32)(active - child->active); 907 parent->child_inuse_sum += (s32)(inuse - child->inuse); 908 /* apply the udpates */ 909 child->active = active; 910 child->inuse = inuse; 911 912 /* 913 * The delta between inuse and active sums indicates that 914 * that much of weight is being given away. Parent's inuse 915 * and active should reflect the ratio. 916 */ 917 if (parent->child_active_sum) { 918 parent_active = parent->weight; 919 parent_inuse = DIV64_U64_ROUND_UP( 920 parent_active * parent->child_inuse_sum, 921 parent->child_active_sum); 922 } 923 924 /* do we need to keep walking up? */ 925 if (parent_active == parent->active && 926 parent_inuse == parent->inuse) 927 break; 928 929 active = parent_active; 930 inuse = parent_inuse; 931 } 932 933 ioc->weights_updated = true; 934 } 935 936 static void commit_active_weights(struct ioc *ioc) 937 { 938 lockdep_assert_held(&ioc->lock); 939 940 if (ioc->weights_updated) { 941 /* paired with rmb in current_hweight(), see there */ 942 smp_wmb(); 943 atomic_inc(&ioc->hweight_gen); 944 ioc->weights_updated = false; 945 } 946 } 947 948 static void propagate_active_weight(struct ioc_gq *iocg, u32 active, u32 inuse) 949 { 950 __propagate_active_weight(iocg, active, inuse); 951 commit_active_weights(iocg->ioc); 952 } 953 954 static void current_hweight(struct ioc_gq *iocg, u32 *hw_activep, u32 *hw_inusep) 955 { 956 struct ioc *ioc = iocg->ioc; 957 int lvl; 958 u32 hwa, hwi; 959 int ioc_gen; 960 961 /* hot path - if uptodate, use cached */ 962 ioc_gen = atomic_read(&ioc->hweight_gen); 963 if (ioc_gen == iocg->hweight_gen) 964 goto out; 965 966 /* 967 * Paired with wmb in commit_active_weights(). If we saw the 968 * updated hweight_gen, all the weight updates from 969 * __propagate_active_weight() are visible too. 970 * 971 * We can race with weight updates during calculation and get it 972 * wrong. However, hweight_gen would have changed and a future 973 * reader will recalculate and we're guaranteed to discard the 974 * wrong result soon. 975 */ 976 smp_rmb(); 977 978 hwa = hwi = HWEIGHT_WHOLE; 979 for (lvl = 0; lvl <= iocg->level - 1; lvl++) { 980 struct ioc_gq *parent = iocg->ancestors[lvl]; 981 struct ioc_gq *child = iocg->ancestors[lvl + 1]; 982 u32 active_sum = READ_ONCE(parent->child_active_sum); 983 u32 inuse_sum = READ_ONCE(parent->child_inuse_sum); 984 u32 active = READ_ONCE(child->active); 985 u32 inuse = READ_ONCE(child->inuse); 986 987 /* we can race with deactivations and either may read as zero */ 988 if (!active_sum || !inuse_sum) 989 continue; 990 991 active_sum = max(active, active_sum); 992 hwa = hwa * active / active_sum; /* max 16bits * 10000 */ 993 994 inuse_sum = max(inuse, inuse_sum); 995 hwi = hwi * inuse / inuse_sum; /* max 16bits * 10000 */ 996 } 997 998 iocg->hweight_active = max_t(u32, hwa, 1); 999 iocg->hweight_inuse = max_t(u32, hwi, 1); 1000 iocg->hweight_gen = ioc_gen; 1001 out: 1002 if (hw_activep) 1003 *hw_activep = iocg->hweight_active; 1004 if (hw_inusep) 1005 *hw_inusep = iocg->hweight_inuse; 1006 } 1007 1008 static void weight_updated(struct ioc_gq *iocg) 1009 { 1010 struct ioc *ioc = iocg->ioc; 1011 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1012 struct ioc_cgrp *iocc = blkcg_to_iocc(blkg->blkcg); 1013 u32 weight; 1014 1015 lockdep_assert_held(&ioc->lock); 1016 1017 weight = iocg->cfg_weight ?: iocc->dfl_weight; 1018 if (weight != iocg->weight && iocg->active) 1019 propagate_active_weight(iocg, weight, 1020 DIV64_U64_ROUND_UP(iocg->inuse * weight, iocg->weight)); 1021 iocg->weight = weight; 1022 } 1023 1024 static bool iocg_activate(struct ioc_gq *iocg, struct ioc_now *now) 1025 { 1026 struct ioc *ioc = iocg->ioc; 1027 u64 last_period, cur_period, max_period_delta; 1028 u64 vtime, vmargin, vmin; 1029 int i; 1030 1031 /* 1032 * If seem to be already active, just update the stamp to tell the 1033 * timer that we're still active. We don't mind occassional races. 1034 */ 1035 if (!list_empty(&iocg->active_list)) { 1036 ioc_now(ioc, now); 1037 cur_period = atomic64_read(&ioc->cur_period); 1038 if (atomic64_read(&iocg->active_period) != cur_period) 1039 atomic64_set(&iocg->active_period, cur_period); 1040 return true; 1041 } 1042 1043 /* racy check on internal node IOs, treat as root level IOs */ 1044 if (iocg->child_active_sum) 1045 return false; 1046 1047 spin_lock_irq(&ioc->lock); 1048 1049 ioc_now(ioc, now); 1050 1051 /* update period */ 1052 cur_period = atomic64_read(&ioc->cur_period); 1053 last_period = atomic64_read(&iocg->active_period); 1054 atomic64_set(&iocg->active_period, cur_period); 1055 1056 /* already activated or breaking leaf-only constraint? */ 1057 if (!list_empty(&iocg->active_list)) 1058 goto succeed_unlock; 1059 for (i = iocg->level - 1; i > 0; i--) 1060 if (!list_empty(&iocg->ancestors[i]->active_list)) 1061 goto fail_unlock; 1062 1063 if (iocg->child_active_sum) 1064 goto fail_unlock; 1065 1066 /* 1067 * vtime may wrap when vrate is raised substantially due to 1068 * underestimated IO costs. Look at the period and ignore its 1069 * vtime if the iocg has been idle for too long. Also, cap the 1070 * budget it can start with to the margin. 1071 */ 1072 max_period_delta = DIV64_U64_ROUND_UP(VTIME_VALID_DUR, ioc->period_us); 1073 vtime = atomic64_read(&iocg->vtime); 1074 vmargin = ioc->margin_us * now->vrate; 1075 vmin = now->vnow - vmargin; 1076 1077 if (last_period + max_period_delta < cur_period || 1078 time_before64(vtime, vmin)) { 1079 atomic64_add(vmin - vtime, &iocg->vtime); 1080 atomic64_add(vmin - vtime, &iocg->done_vtime); 1081 vtime = vmin; 1082 } 1083 1084 /* 1085 * Activate, propagate weight and start period timer if not 1086 * running. Reset hweight_gen to avoid accidental match from 1087 * wrapping. 1088 */ 1089 iocg->hweight_gen = atomic_read(&ioc->hweight_gen) - 1; 1090 list_add(&iocg->active_list, &ioc->active_iocgs); 1091 propagate_active_weight(iocg, iocg->weight, 1092 iocg->last_inuse ?: iocg->weight); 1093 1094 TRACE_IOCG_PATH(iocg_activate, iocg, now, 1095 last_period, cur_period, vtime); 1096 1097 iocg->last_vtime = vtime; 1098 1099 if (ioc->running == IOC_IDLE) { 1100 ioc->running = IOC_RUNNING; 1101 ioc_start_period(ioc, now); 1102 } 1103 1104 succeed_unlock: 1105 spin_unlock_irq(&ioc->lock); 1106 return true; 1107 1108 fail_unlock: 1109 spin_unlock_irq(&ioc->lock); 1110 return false; 1111 } 1112 1113 static int iocg_wake_fn(struct wait_queue_entry *wq_entry, unsigned mode, 1114 int flags, void *key) 1115 { 1116 struct iocg_wait *wait = container_of(wq_entry, struct iocg_wait, wait); 1117 struct iocg_wake_ctx *ctx = (struct iocg_wake_ctx *)key; 1118 u64 cost = abs_cost_to_cost(wait->abs_cost, ctx->hw_inuse); 1119 1120 ctx->vbudget -= cost; 1121 1122 if (ctx->vbudget < 0) 1123 return -1; 1124 1125 iocg_commit_bio(ctx->iocg, wait->bio, cost); 1126 1127 /* 1128 * autoremove_wake_function() removes the wait entry only when it 1129 * actually changed the task state. We want the wait always 1130 * removed. Remove explicitly and use default_wake_function(). 1131 */ 1132 list_del_init(&wq_entry->entry); 1133 wait->committed = true; 1134 1135 default_wake_function(wq_entry, mode, flags, key); 1136 return 0; 1137 } 1138 1139 static void iocg_kick_waitq(struct ioc_gq *iocg, struct ioc_now *now) 1140 { 1141 struct ioc *ioc = iocg->ioc; 1142 struct iocg_wake_ctx ctx = { .iocg = iocg }; 1143 u64 margin_ns = (u64)(ioc->period_us * 1144 WAITQ_TIMER_MARGIN_PCT / 100) * NSEC_PER_USEC; 1145 u64 vdebt, vshortage, expires, oexpires; 1146 s64 vbudget; 1147 u32 hw_inuse; 1148 1149 lockdep_assert_held(&iocg->waitq.lock); 1150 1151 current_hweight(iocg, NULL, &hw_inuse); 1152 vbudget = now->vnow - atomic64_read(&iocg->vtime); 1153 1154 /* pay off debt */ 1155 vdebt = abs_cost_to_cost(iocg->abs_vdebt, hw_inuse); 1156 if (vdebt && vbudget > 0) { 1157 u64 delta = min_t(u64, vbudget, vdebt); 1158 u64 abs_delta = min(cost_to_abs_cost(delta, hw_inuse), 1159 iocg->abs_vdebt); 1160 1161 atomic64_add(delta, &iocg->vtime); 1162 atomic64_add(delta, &iocg->done_vtime); 1163 iocg->abs_vdebt -= abs_delta; 1164 } 1165 1166 /* 1167 * Wake up the ones which are due and see how much vtime we'll need 1168 * for the next one. 1169 */ 1170 ctx.hw_inuse = hw_inuse; 1171 ctx.vbudget = vbudget - vdebt; 1172 __wake_up_locked_key(&iocg->waitq, TASK_NORMAL, &ctx); 1173 if (!waitqueue_active(&iocg->waitq)) 1174 return; 1175 if (WARN_ON_ONCE(ctx.vbudget >= 0)) 1176 return; 1177 1178 /* determine next wakeup, add a quarter margin to guarantee chunking */ 1179 vshortage = -ctx.vbudget; 1180 expires = now->now_ns + 1181 DIV64_U64_ROUND_UP(vshortage, now->vrate) * NSEC_PER_USEC; 1182 expires += margin_ns / 4; 1183 1184 /* if already active and close enough, don't bother */ 1185 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->waitq_timer)); 1186 if (hrtimer_is_queued(&iocg->waitq_timer) && 1187 abs(oexpires - expires) <= margin_ns / 4) 1188 return; 1189 1190 hrtimer_start_range_ns(&iocg->waitq_timer, ns_to_ktime(expires), 1191 margin_ns / 4, HRTIMER_MODE_ABS); 1192 } 1193 1194 static enum hrtimer_restart iocg_waitq_timer_fn(struct hrtimer *timer) 1195 { 1196 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, waitq_timer); 1197 struct ioc_now now; 1198 unsigned long flags; 1199 1200 ioc_now(iocg->ioc, &now); 1201 1202 spin_lock_irqsave(&iocg->waitq.lock, flags); 1203 iocg_kick_waitq(iocg, &now); 1204 spin_unlock_irqrestore(&iocg->waitq.lock, flags); 1205 1206 return HRTIMER_NORESTART; 1207 } 1208 1209 static bool iocg_kick_delay(struct ioc_gq *iocg, struct ioc_now *now, u64 cost) 1210 { 1211 struct ioc *ioc = iocg->ioc; 1212 struct blkcg_gq *blkg = iocg_to_blkg(iocg); 1213 u64 vtime = atomic64_read(&iocg->vtime); 1214 u64 vmargin = ioc->margin_us * now->vrate; 1215 u64 margin_ns = ioc->margin_us * NSEC_PER_USEC; 1216 u64 expires, oexpires; 1217 u32 hw_inuse; 1218 1219 lockdep_assert_held(&iocg->waitq.lock); 1220 1221 /* debt-adjust vtime */ 1222 current_hweight(iocg, NULL, &hw_inuse); 1223 vtime += abs_cost_to_cost(iocg->abs_vdebt, hw_inuse); 1224 1225 /* 1226 * Clear or maintain depending on the overage. Non-zero vdebt is what 1227 * guarantees that @iocg is online and future iocg_kick_delay() will 1228 * clear use_delay. Don't leave it on when there's no vdebt. 1229 */ 1230 if (!iocg->abs_vdebt || time_before_eq64(vtime, now->vnow)) { 1231 blkcg_clear_delay(blkg); 1232 return false; 1233 } 1234 if (!atomic_read(&blkg->use_delay) && 1235 time_before_eq64(vtime, now->vnow + vmargin)) 1236 return false; 1237 1238 /* use delay */ 1239 if (cost) { 1240 u64 cost_ns = DIV64_U64_ROUND_UP(cost * NSEC_PER_USEC, 1241 now->vrate); 1242 blkcg_add_delay(blkg, now->now_ns, cost_ns); 1243 } 1244 blkcg_use_delay(blkg); 1245 1246 expires = now->now_ns + DIV64_U64_ROUND_UP(vtime - now->vnow, 1247 now->vrate) * NSEC_PER_USEC; 1248 1249 /* if already active and close enough, don't bother */ 1250 oexpires = ktime_to_ns(hrtimer_get_softexpires(&iocg->delay_timer)); 1251 if (hrtimer_is_queued(&iocg->delay_timer) && 1252 abs(oexpires - expires) <= margin_ns / 4) 1253 return true; 1254 1255 hrtimer_start_range_ns(&iocg->delay_timer, ns_to_ktime(expires), 1256 margin_ns / 4, HRTIMER_MODE_ABS); 1257 return true; 1258 } 1259 1260 static enum hrtimer_restart iocg_delay_timer_fn(struct hrtimer *timer) 1261 { 1262 struct ioc_gq *iocg = container_of(timer, struct ioc_gq, delay_timer); 1263 struct ioc_now now; 1264 unsigned long flags; 1265 1266 spin_lock_irqsave(&iocg->waitq.lock, flags); 1267 ioc_now(iocg->ioc, &now); 1268 iocg_kick_delay(iocg, &now, 0); 1269 spin_unlock_irqrestore(&iocg->waitq.lock, flags); 1270 1271 return HRTIMER_NORESTART; 1272 } 1273 1274 static void ioc_lat_stat(struct ioc *ioc, u32 *missed_ppm_ar, u32 *rq_wait_pct_p) 1275 { 1276 u32 nr_met[2] = { }; 1277 u32 nr_missed[2] = { }; 1278 u64 rq_wait_ns = 0; 1279 int cpu, rw; 1280 1281 for_each_online_cpu(cpu) { 1282 struct ioc_pcpu_stat *stat = per_cpu_ptr(ioc->pcpu_stat, cpu); 1283 u64 this_rq_wait_ns; 1284 1285 for (rw = READ; rw <= WRITE; rw++) { 1286 u32 this_met = READ_ONCE(stat->missed[rw].nr_met); 1287 u32 this_missed = READ_ONCE(stat->missed[rw].nr_missed); 1288 1289 nr_met[rw] += this_met - stat->missed[rw].last_met; 1290 nr_missed[rw] += this_missed - stat->missed[rw].last_missed; 1291 stat->missed[rw].last_met = this_met; 1292 stat->missed[rw].last_missed = this_missed; 1293 } 1294 1295 this_rq_wait_ns = READ_ONCE(stat->rq_wait_ns); 1296 rq_wait_ns += this_rq_wait_ns - stat->last_rq_wait_ns; 1297 stat->last_rq_wait_ns = this_rq_wait_ns; 1298 } 1299 1300 for (rw = READ; rw <= WRITE; rw++) { 1301 if (nr_met[rw] + nr_missed[rw]) 1302 missed_ppm_ar[rw] = 1303 DIV64_U64_ROUND_UP((u64)nr_missed[rw] * MILLION, 1304 nr_met[rw] + nr_missed[rw]); 1305 else 1306 missed_ppm_ar[rw] = 0; 1307 } 1308 1309 *rq_wait_pct_p = div64_u64(rq_wait_ns * 100, 1310 ioc->period_us * NSEC_PER_USEC); 1311 } 1312 1313 /* was iocg idle this period? */ 1314 static bool iocg_is_idle(struct ioc_gq *iocg) 1315 { 1316 struct ioc *ioc = iocg->ioc; 1317 1318 /* did something get issued this period? */ 1319 if (atomic64_read(&iocg->active_period) == 1320 atomic64_read(&ioc->cur_period)) 1321 return false; 1322 1323 /* is something in flight? */ 1324 if (atomic64_read(&iocg->done_vtime) != atomic64_read(&iocg->vtime)) 1325 return false; 1326 1327 return true; 1328 } 1329 1330 /* returns usage with margin added if surplus is large enough */ 1331 static u32 surplus_adjusted_hweight_inuse(u32 usage, u32 hw_inuse) 1332 { 1333 /* add margin */ 1334 usage = DIV_ROUND_UP(usage * SURPLUS_SCALE_PCT, 100); 1335 usage += SURPLUS_SCALE_ABS; 1336 1337 /* don't bother if the surplus is too small */ 1338 if (usage + SURPLUS_MIN_ADJ_DELTA > hw_inuse) 1339 return 0; 1340 1341 return usage; 1342 } 1343 1344 static void ioc_timer_fn(struct timer_list *timer) 1345 { 1346 struct ioc *ioc = container_of(timer, struct ioc, timer); 1347 struct ioc_gq *iocg, *tiocg; 1348 struct ioc_now now; 1349 int nr_surpluses = 0, nr_shortages = 0, nr_lagging = 0; 1350 u32 ppm_rthr = MILLION - ioc->params.qos[QOS_RPPM]; 1351 u32 ppm_wthr = MILLION - ioc->params.qos[QOS_WPPM]; 1352 u32 missed_ppm[2], rq_wait_pct; 1353 u64 period_vtime; 1354 int prev_busy_level, i; 1355 1356 /* how were the latencies during the period? */ 1357 ioc_lat_stat(ioc, missed_ppm, &rq_wait_pct); 1358 1359 /* take care of active iocgs */ 1360 spin_lock_irq(&ioc->lock); 1361 1362 ioc_now(ioc, &now); 1363 1364 period_vtime = now.vnow - ioc->period_at_vtime; 1365 if (WARN_ON_ONCE(!period_vtime)) { 1366 spin_unlock_irq(&ioc->lock); 1367 return; 1368 } 1369 1370 /* 1371 * Waiters determine the sleep durations based on the vrate they 1372 * saw at the time of sleep. If vrate has increased, some waiters 1373 * could be sleeping for too long. Wake up tardy waiters which 1374 * should have woken up in the last period and expire idle iocgs. 1375 */ 1376 list_for_each_entry_safe(iocg, tiocg, &ioc->active_iocgs, active_list) { 1377 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 1378 !iocg_is_idle(iocg)) 1379 continue; 1380 1381 spin_lock(&iocg->waitq.lock); 1382 1383 if (waitqueue_active(&iocg->waitq) || iocg->abs_vdebt) { 1384 /* might be oversleeping vtime / hweight changes, kick */ 1385 iocg_kick_waitq(iocg, &now); 1386 iocg_kick_delay(iocg, &now, 0); 1387 } else if (iocg_is_idle(iocg)) { 1388 /* no waiter and idle, deactivate */ 1389 iocg->last_inuse = iocg->inuse; 1390 __propagate_active_weight(iocg, 0, 0); 1391 list_del_init(&iocg->active_list); 1392 } 1393 1394 spin_unlock(&iocg->waitq.lock); 1395 } 1396 commit_active_weights(ioc); 1397 1398 /* calc usages and see whether some weights need to be moved around */ 1399 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 1400 u64 vdone, vtime, vusage, vmargin, vmin; 1401 u32 hw_active, hw_inuse, usage; 1402 1403 /* 1404 * Collect unused and wind vtime closer to vnow to prevent 1405 * iocgs from accumulating a large amount of budget. 1406 */ 1407 vdone = atomic64_read(&iocg->done_vtime); 1408 vtime = atomic64_read(&iocg->vtime); 1409 current_hweight(iocg, &hw_active, &hw_inuse); 1410 1411 /* 1412 * Latency QoS detection doesn't account for IOs which are 1413 * in-flight for longer than a period. Detect them by 1414 * comparing vdone against period start. If lagging behind 1415 * IOs from past periods, don't increase vrate. 1416 */ 1417 if ((ppm_rthr != MILLION || ppm_wthr != MILLION) && 1418 !atomic_read(&iocg_to_blkg(iocg)->use_delay) && 1419 time_after64(vtime, vdone) && 1420 time_after64(vtime, now.vnow - 1421 MAX_LAGGING_PERIODS * period_vtime) && 1422 time_before64(vdone, now.vnow - period_vtime)) 1423 nr_lagging++; 1424 1425 if (waitqueue_active(&iocg->waitq)) 1426 vusage = now.vnow - iocg->last_vtime; 1427 else if (time_before64(iocg->last_vtime, vtime)) 1428 vusage = vtime - iocg->last_vtime; 1429 else 1430 vusage = 0; 1431 1432 iocg->last_vtime += vusage; 1433 /* 1434 * Factor in in-flight vtime into vusage to avoid 1435 * high-latency completions appearing as idle. This should 1436 * be done after the above ->last_time adjustment. 1437 */ 1438 vusage = max(vusage, vtime - vdone); 1439 1440 /* calculate hweight based usage ratio and record */ 1441 if (vusage) { 1442 usage = DIV64_U64_ROUND_UP(vusage * hw_inuse, 1443 period_vtime); 1444 iocg->usage_idx = (iocg->usage_idx + 1) % NR_USAGE_SLOTS; 1445 iocg->usages[iocg->usage_idx] = usage; 1446 } else { 1447 usage = 0; 1448 } 1449 1450 /* see whether there's surplus vtime */ 1451 vmargin = ioc->margin_us * now.vrate; 1452 vmin = now.vnow - vmargin; 1453 1454 iocg->has_surplus = false; 1455 1456 if (!waitqueue_active(&iocg->waitq) && 1457 time_before64(vtime, vmin)) { 1458 u64 delta = vmin - vtime; 1459 1460 /* throw away surplus vtime */ 1461 atomic64_add(delta, &iocg->vtime); 1462 atomic64_add(delta, &iocg->done_vtime); 1463 iocg->last_vtime += delta; 1464 /* if usage is sufficiently low, maybe it can donate */ 1465 if (surplus_adjusted_hweight_inuse(usage, hw_inuse)) { 1466 iocg->has_surplus = true; 1467 nr_surpluses++; 1468 } 1469 } else if (hw_inuse < hw_active) { 1470 u32 new_hwi, new_inuse; 1471 1472 /* was donating but might need to take back some */ 1473 if (waitqueue_active(&iocg->waitq)) { 1474 new_hwi = hw_active; 1475 } else { 1476 new_hwi = max(hw_inuse, 1477 usage * SURPLUS_SCALE_PCT / 100 + 1478 SURPLUS_SCALE_ABS); 1479 } 1480 1481 new_inuse = div64_u64((u64)iocg->inuse * new_hwi, 1482 hw_inuse); 1483 new_inuse = clamp_t(u32, new_inuse, 1, iocg->active); 1484 1485 if (new_inuse > iocg->inuse) { 1486 TRACE_IOCG_PATH(inuse_takeback, iocg, &now, 1487 iocg->inuse, new_inuse, 1488 hw_inuse, new_hwi); 1489 __propagate_active_weight(iocg, iocg->weight, 1490 new_inuse); 1491 } 1492 } else { 1493 /* genuninely out of vtime */ 1494 nr_shortages++; 1495 } 1496 } 1497 1498 if (!nr_shortages || !nr_surpluses) 1499 goto skip_surplus_transfers; 1500 1501 /* there are both shortages and surpluses, transfer surpluses */ 1502 list_for_each_entry(iocg, &ioc->active_iocgs, active_list) { 1503 u32 usage, hw_active, hw_inuse, new_hwi, new_inuse; 1504 int nr_valid = 0; 1505 1506 if (!iocg->has_surplus) 1507 continue; 1508 1509 /* base the decision on max historical usage */ 1510 for (i = 0, usage = 0; i < NR_USAGE_SLOTS; i++) { 1511 if (iocg->usages[i]) { 1512 usage = max(usage, iocg->usages[i]); 1513 nr_valid++; 1514 } 1515 } 1516 if (nr_valid < MIN_VALID_USAGES) 1517 continue; 1518 1519 current_hweight(iocg, &hw_active, &hw_inuse); 1520 new_hwi = surplus_adjusted_hweight_inuse(usage, hw_inuse); 1521 if (!new_hwi) 1522 continue; 1523 1524 new_inuse = DIV64_U64_ROUND_UP((u64)iocg->inuse * new_hwi, 1525 hw_inuse); 1526 if (new_inuse < iocg->inuse) { 1527 TRACE_IOCG_PATH(inuse_giveaway, iocg, &now, 1528 iocg->inuse, new_inuse, 1529 hw_inuse, new_hwi); 1530 __propagate_active_weight(iocg, iocg->weight, new_inuse); 1531 } 1532 } 1533 skip_surplus_transfers: 1534 commit_active_weights(ioc); 1535 1536 /* 1537 * If q is getting clogged or we're missing too much, we're issuing 1538 * too much IO and should lower vtime rate. If we're not missing 1539 * and experiencing shortages but not surpluses, we're too stingy 1540 * and should increase vtime rate. 1541 */ 1542 prev_busy_level = ioc->busy_level; 1543 if (rq_wait_pct > RQ_WAIT_BUSY_PCT || 1544 missed_ppm[READ] > ppm_rthr || 1545 missed_ppm[WRITE] > ppm_wthr) { 1546 /* clearly missing QoS targets, slow down vrate */ 1547 ioc->busy_level = max(ioc->busy_level, 0); 1548 ioc->busy_level++; 1549 } else if (rq_wait_pct <= RQ_WAIT_BUSY_PCT * UNBUSY_THR_PCT / 100 && 1550 missed_ppm[READ] <= ppm_rthr * UNBUSY_THR_PCT / 100 && 1551 missed_ppm[WRITE] <= ppm_wthr * UNBUSY_THR_PCT / 100) { 1552 /* QoS targets are being met with >25% margin */ 1553 if (nr_shortages) { 1554 /* 1555 * We're throttling while the device has spare 1556 * capacity. If vrate was being slowed down, stop. 1557 */ 1558 ioc->busy_level = min(ioc->busy_level, 0); 1559 1560 /* 1561 * If there are IOs spanning multiple periods, wait 1562 * them out before pushing the device harder. If 1563 * there are surpluses, let redistribution work it 1564 * out first. 1565 */ 1566 if (!nr_lagging && !nr_surpluses) 1567 ioc->busy_level--; 1568 } else { 1569 /* 1570 * Nobody is being throttled and the users aren't 1571 * issuing enough IOs to saturate the device. We 1572 * simply don't know how close the device is to 1573 * saturation. Coast. 1574 */ 1575 ioc->busy_level = 0; 1576 } 1577 } else { 1578 /* inside the hysterisis margin, we're good */ 1579 ioc->busy_level = 0; 1580 } 1581 1582 ioc->busy_level = clamp(ioc->busy_level, -1000, 1000); 1583 1584 if (ioc->busy_level > 0 || (ioc->busy_level < 0 && !nr_lagging)) { 1585 u64 vrate = atomic64_read(&ioc->vtime_rate); 1586 u64 vrate_min = ioc->vrate_min, vrate_max = ioc->vrate_max; 1587 1588 /* rq_wait signal is always reliable, ignore user vrate_min */ 1589 if (rq_wait_pct > RQ_WAIT_BUSY_PCT) 1590 vrate_min = VRATE_MIN; 1591 1592 /* 1593 * If vrate is out of bounds, apply clamp gradually as the 1594 * bounds can change abruptly. Otherwise, apply busy_level 1595 * based adjustment. 1596 */ 1597 if (vrate < vrate_min) { 1598 vrate = div64_u64(vrate * (100 + VRATE_CLAMP_ADJ_PCT), 1599 100); 1600 vrate = min(vrate, vrate_min); 1601 } else if (vrate > vrate_max) { 1602 vrate = div64_u64(vrate * (100 - VRATE_CLAMP_ADJ_PCT), 1603 100); 1604 vrate = max(vrate, vrate_max); 1605 } else { 1606 int idx = min_t(int, abs(ioc->busy_level), 1607 ARRAY_SIZE(vrate_adj_pct) - 1); 1608 u32 adj_pct = vrate_adj_pct[idx]; 1609 1610 if (ioc->busy_level > 0) 1611 adj_pct = 100 - adj_pct; 1612 else 1613 adj_pct = 100 + adj_pct; 1614 1615 vrate = clamp(DIV64_U64_ROUND_UP(vrate * adj_pct, 100), 1616 vrate_min, vrate_max); 1617 } 1618 1619 trace_iocost_ioc_vrate_adj(ioc, vrate, missed_ppm, rq_wait_pct, 1620 nr_lagging, nr_shortages, 1621 nr_surpluses); 1622 1623 atomic64_set(&ioc->vtime_rate, vrate); 1624 ioc->inuse_margin_vtime = DIV64_U64_ROUND_UP( 1625 ioc->period_us * vrate * INUSE_MARGIN_PCT, 100); 1626 } else if (ioc->busy_level != prev_busy_level || nr_lagging) { 1627 trace_iocost_ioc_vrate_adj(ioc, atomic64_read(&ioc->vtime_rate), 1628 missed_ppm, rq_wait_pct, nr_lagging, 1629 nr_shortages, nr_surpluses); 1630 } 1631 1632 ioc_refresh_params(ioc, false); 1633 1634 /* 1635 * This period is done. Move onto the next one. If nothing's 1636 * going on with the device, stop the timer. 1637 */ 1638 atomic64_inc(&ioc->cur_period); 1639 1640 if (ioc->running != IOC_STOP) { 1641 if (!list_empty(&ioc->active_iocgs)) { 1642 ioc_start_period(ioc, &now); 1643 } else { 1644 ioc->busy_level = 0; 1645 ioc->running = IOC_IDLE; 1646 } 1647 } 1648 1649 spin_unlock_irq(&ioc->lock); 1650 } 1651 1652 static void calc_vtime_cost_builtin(struct bio *bio, struct ioc_gq *iocg, 1653 bool is_merge, u64 *costp) 1654 { 1655 struct ioc *ioc = iocg->ioc; 1656 u64 coef_seqio, coef_randio, coef_page; 1657 u64 pages = max_t(u64, bio_sectors(bio) >> IOC_SECT_TO_PAGE_SHIFT, 1); 1658 u64 seek_pages = 0; 1659 u64 cost = 0; 1660 1661 switch (bio_op(bio)) { 1662 case REQ_OP_READ: 1663 coef_seqio = ioc->params.lcoefs[LCOEF_RSEQIO]; 1664 coef_randio = ioc->params.lcoefs[LCOEF_RRANDIO]; 1665 coef_page = ioc->params.lcoefs[LCOEF_RPAGE]; 1666 break; 1667 case REQ_OP_WRITE: 1668 coef_seqio = ioc->params.lcoefs[LCOEF_WSEQIO]; 1669 coef_randio = ioc->params.lcoefs[LCOEF_WRANDIO]; 1670 coef_page = ioc->params.lcoefs[LCOEF_WPAGE]; 1671 break; 1672 default: 1673 goto out; 1674 } 1675 1676 if (iocg->cursor) { 1677 seek_pages = abs(bio->bi_iter.bi_sector - iocg->cursor); 1678 seek_pages >>= IOC_SECT_TO_PAGE_SHIFT; 1679 } 1680 1681 if (!is_merge) { 1682 if (seek_pages > LCOEF_RANDIO_PAGES) { 1683 cost += coef_randio; 1684 } else { 1685 cost += coef_seqio; 1686 } 1687 } 1688 cost += pages * coef_page; 1689 out: 1690 *costp = cost; 1691 } 1692 1693 static u64 calc_vtime_cost(struct bio *bio, struct ioc_gq *iocg, bool is_merge) 1694 { 1695 u64 cost; 1696 1697 calc_vtime_cost_builtin(bio, iocg, is_merge, &cost); 1698 return cost; 1699 } 1700 1701 static void ioc_rqos_throttle(struct rq_qos *rqos, struct bio *bio) 1702 { 1703 struct blkcg_gq *blkg = bio->bi_blkg; 1704 struct ioc *ioc = rqos_to_ioc(rqos); 1705 struct ioc_gq *iocg = blkg_to_iocg(blkg); 1706 struct ioc_now now; 1707 struct iocg_wait wait; 1708 u32 hw_active, hw_inuse; 1709 u64 abs_cost, cost, vtime; 1710 1711 /* bypass IOs if disabled or for root cgroup */ 1712 if (!ioc->enabled || !iocg->level) 1713 return; 1714 1715 /* always activate so that even 0 cost IOs get protected to some level */ 1716 if (!iocg_activate(iocg, &now)) 1717 return; 1718 1719 /* calculate the absolute vtime cost */ 1720 abs_cost = calc_vtime_cost(bio, iocg, false); 1721 if (!abs_cost) 1722 return; 1723 1724 iocg->cursor = bio_end_sector(bio); 1725 1726 vtime = atomic64_read(&iocg->vtime); 1727 current_hweight(iocg, &hw_active, &hw_inuse); 1728 1729 if (hw_inuse < hw_active && 1730 time_after_eq64(vtime + ioc->inuse_margin_vtime, now.vnow)) { 1731 TRACE_IOCG_PATH(inuse_reset, iocg, &now, 1732 iocg->inuse, iocg->weight, hw_inuse, hw_active); 1733 spin_lock_irq(&ioc->lock); 1734 propagate_active_weight(iocg, iocg->weight, iocg->weight); 1735 spin_unlock_irq(&ioc->lock); 1736 current_hweight(iocg, &hw_active, &hw_inuse); 1737 } 1738 1739 cost = abs_cost_to_cost(abs_cost, hw_inuse); 1740 1741 /* 1742 * If no one's waiting and within budget, issue right away. The 1743 * tests are racy but the races aren't systemic - we only miss once 1744 * in a while which is fine. 1745 */ 1746 if (!waitqueue_active(&iocg->waitq) && !iocg->abs_vdebt && 1747 time_before_eq64(vtime + cost, now.vnow)) { 1748 iocg_commit_bio(iocg, bio, cost); 1749 return; 1750 } 1751 1752 /* 1753 * We activated above but w/o any synchronization. Deactivation is 1754 * synchronized with waitq.lock and we won't get deactivated as long 1755 * as we're waiting or has debt, so we're good if we're activated 1756 * here. In the unlikely case that we aren't, just issue the IO. 1757 */ 1758 spin_lock_irq(&iocg->waitq.lock); 1759 1760 if (unlikely(list_empty(&iocg->active_list))) { 1761 spin_unlock_irq(&iocg->waitq.lock); 1762 iocg_commit_bio(iocg, bio, cost); 1763 return; 1764 } 1765 1766 /* 1767 * We're over budget. If @bio has to be issued regardless, remember 1768 * the abs_cost instead of advancing vtime. iocg_kick_waitq() will pay 1769 * off the debt before waking more IOs. 1770 * 1771 * This way, the debt is continuously paid off each period with the 1772 * actual budget available to the cgroup. If we just wound vtime, we 1773 * would incorrectly use the current hw_inuse for the entire amount 1774 * which, for example, can lead to the cgroup staying blocked for a 1775 * long time even with substantially raised hw_inuse. 1776 * 1777 * An iocg with vdebt should stay online so that the timer can keep 1778 * deducting its vdebt and [de]activate use_delay mechanism 1779 * accordingly. We don't want to race against the timer trying to 1780 * clear them and leave @iocg inactive w/ dangling use_delay heavily 1781 * penalizing the cgroup and its descendants. 1782 */ 1783 if (bio_issue_as_root_blkg(bio) || fatal_signal_pending(current)) { 1784 iocg->abs_vdebt += abs_cost; 1785 if (iocg_kick_delay(iocg, &now, cost)) 1786 blkcg_schedule_throttle(rqos->q, 1787 (bio->bi_opf & REQ_SWAP) == REQ_SWAP); 1788 spin_unlock_irq(&iocg->waitq.lock); 1789 return; 1790 } 1791 1792 /* 1793 * Append self to the waitq and schedule the wakeup timer if we're 1794 * the first waiter. The timer duration is calculated based on the 1795 * current vrate. vtime and hweight changes can make it too short 1796 * or too long. Each wait entry records the absolute cost it's 1797 * waiting for to allow re-evaluation using a custom wait entry. 1798 * 1799 * If too short, the timer simply reschedules itself. If too long, 1800 * the period timer will notice and trigger wakeups. 1801 * 1802 * All waiters are on iocg->waitq and the wait states are 1803 * synchronized using waitq.lock. 1804 */ 1805 init_waitqueue_func_entry(&wait.wait, iocg_wake_fn); 1806 wait.wait.private = current; 1807 wait.bio = bio; 1808 wait.abs_cost = abs_cost; 1809 wait.committed = false; /* will be set true by waker */ 1810 1811 __add_wait_queue_entry_tail(&iocg->waitq, &wait.wait); 1812 iocg_kick_waitq(iocg, &now); 1813 1814 spin_unlock_irq(&iocg->waitq.lock); 1815 1816 while (true) { 1817 set_current_state(TASK_UNINTERRUPTIBLE); 1818 if (wait.committed) 1819 break; 1820 io_schedule(); 1821 } 1822 1823 /* waker already committed us, proceed */ 1824 finish_wait(&iocg->waitq, &wait.wait); 1825 } 1826 1827 static void ioc_rqos_merge(struct rq_qos *rqos, struct request *rq, 1828 struct bio *bio) 1829 { 1830 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 1831 struct ioc *ioc = iocg->ioc; 1832 sector_t bio_end = bio_end_sector(bio); 1833 struct ioc_now now; 1834 u32 hw_inuse; 1835 u64 abs_cost, cost; 1836 unsigned long flags; 1837 1838 /* bypass if disabled or for root cgroup */ 1839 if (!ioc->enabled || !iocg->level) 1840 return; 1841 1842 abs_cost = calc_vtime_cost(bio, iocg, true); 1843 if (!abs_cost) 1844 return; 1845 1846 ioc_now(ioc, &now); 1847 current_hweight(iocg, NULL, &hw_inuse); 1848 cost = abs_cost_to_cost(abs_cost, hw_inuse); 1849 1850 /* update cursor if backmerging into the request at the cursor */ 1851 if (blk_rq_pos(rq) < bio_end && 1852 blk_rq_pos(rq) + blk_rq_sectors(rq) == iocg->cursor) 1853 iocg->cursor = bio_end; 1854 1855 /* 1856 * Charge if there's enough vtime budget and the existing request has 1857 * cost assigned. 1858 */ 1859 if (rq->bio && rq->bio->bi_iocost_cost && 1860 time_before_eq64(atomic64_read(&iocg->vtime) + cost, now.vnow)) { 1861 iocg_commit_bio(iocg, bio, cost); 1862 return; 1863 } 1864 1865 /* 1866 * Otherwise, account it as debt if @iocg is online, which it should 1867 * be for the vast majority of cases. See debt handling in 1868 * ioc_rqos_throttle() for details. 1869 */ 1870 spin_lock_irqsave(&iocg->waitq.lock, flags); 1871 if (likely(!list_empty(&iocg->active_list))) { 1872 iocg->abs_vdebt += abs_cost; 1873 iocg_kick_delay(iocg, &now, cost); 1874 } else { 1875 iocg_commit_bio(iocg, bio, cost); 1876 } 1877 spin_unlock_irqrestore(&iocg->waitq.lock, flags); 1878 } 1879 1880 static void ioc_rqos_done_bio(struct rq_qos *rqos, struct bio *bio) 1881 { 1882 struct ioc_gq *iocg = blkg_to_iocg(bio->bi_blkg); 1883 1884 if (iocg && bio->bi_iocost_cost) 1885 atomic64_add(bio->bi_iocost_cost, &iocg->done_vtime); 1886 } 1887 1888 static void ioc_rqos_done(struct rq_qos *rqos, struct request *rq) 1889 { 1890 struct ioc *ioc = rqos_to_ioc(rqos); 1891 u64 on_q_ns, rq_wait_ns; 1892 int pidx, rw; 1893 1894 if (!ioc->enabled || !rq->alloc_time_ns || !rq->start_time_ns) 1895 return; 1896 1897 switch (req_op(rq) & REQ_OP_MASK) { 1898 case REQ_OP_READ: 1899 pidx = QOS_RLAT; 1900 rw = READ; 1901 break; 1902 case REQ_OP_WRITE: 1903 pidx = QOS_WLAT; 1904 rw = WRITE; 1905 break; 1906 default: 1907 return; 1908 } 1909 1910 on_q_ns = ktime_get_ns() - rq->alloc_time_ns; 1911 rq_wait_ns = rq->start_time_ns - rq->alloc_time_ns; 1912 1913 if (on_q_ns <= ioc->params.qos[pidx] * NSEC_PER_USEC) 1914 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_met); 1915 else 1916 this_cpu_inc(ioc->pcpu_stat->missed[rw].nr_missed); 1917 1918 this_cpu_add(ioc->pcpu_stat->rq_wait_ns, rq_wait_ns); 1919 } 1920 1921 static void ioc_rqos_queue_depth_changed(struct rq_qos *rqos) 1922 { 1923 struct ioc *ioc = rqos_to_ioc(rqos); 1924 1925 spin_lock_irq(&ioc->lock); 1926 ioc_refresh_params(ioc, false); 1927 spin_unlock_irq(&ioc->lock); 1928 } 1929 1930 static void ioc_rqos_exit(struct rq_qos *rqos) 1931 { 1932 struct ioc *ioc = rqos_to_ioc(rqos); 1933 1934 blkcg_deactivate_policy(rqos->q, &blkcg_policy_iocost); 1935 1936 spin_lock_irq(&ioc->lock); 1937 ioc->running = IOC_STOP; 1938 spin_unlock_irq(&ioc->lock); 1939 1940 del_timer_sync(&ioc->timer); 1941 free_percpu(ioc->pcpu_stat); 1942 kfree(ioc); 1943 } 1944 1945 static struct rq_qos_ops ioc_rqos_ops = { 1946 .throttle = ioc_rqos_throttle, 1947 .merge = ioc_rqos_merge, 1948 .done_bio = ioc_rqos_done_bio, 1949 .done = ioc_rqos_done, 1950 .queue_depth_changed = ioc_rqos_queue_depth_changed, 1951 .exit = ioc_rqos_exit, 1952 }; 1953 1954 static int blk_iocost_init(struct request_queue *q) 1955 { 1956 struct ioc *ioc; 1957 struct rq_qos *rqos; 1958 int ret; 1959 1960 ioc = kzalloc(sizeof(*ioc), GFP_KERNEL); 1961 if (!ioc) 1962 return -ENOMEM; 1963 1964 ioc->pcpu_stat = alloc_percpu(struct ioc_pcpu_stat); 1965 if (!ioc->pcpu_stat) { 1966 kfree(ioc); 1967 return -ENOMEM; 1968 } 1969 1970 rqos = &ioc->rqos; 1971 rqos->id = RQ_QOS_COST; 1972 rqos->ops = &ioc_rqos_ops; 1973 rqos->q = q; 1974 1975 spin_lock_init(&ioc->lock); 1976 timer_setup(&ioc->timer, ioc_timer_fn, 0); 1977 INIT_LIST_HEAD(&ioc->active_iocgs); 1978 1979 ioc->running = IOC_IDLE; 1980 atomic64_set(&ioc->vtime_rate, VTIME_PER_USEC); 1981 seqcount_init(&ioc->period_seqcount); 1982 ioc->period_at = ktime_to_us(ktime_get()); 1983 atomic64_set(&ioc->cur_period, 0); 1984 atomic_set(&ioc->hweight_gen, 0); 1985 1986 spin_lock_irq(&ioc->lock); 1987 ioc->autop_idx = AUTOP_INVALID; 1988 ioc_refresh_params(ioc, true); 1989 spin_unlock_irq(&ioc->lock); 1990 1991 rq_qos_add(q, rqos); 1992 ret = blkcg_activate_policy(q, &blkcg_policy_iocost); 1993 if (ret) { 1994 rq_qos_del(q, rqos); 1995 free_percpu(ioc->pcpu_stat); 1996 kfree(ioc); 1997 return ret; 1998 } 1999 return 0; 2000 } 2001 2002 static struct blkcg_policy_data *ioc_cpd_alloc(gfp_t gfp) 2003 { 2004 struct ioc_cgrp *iocc; 2005 2006 iocc = kzalloc(sizeof(struct ioc_cgrp), gfp); 2007 if (!iocc) 2008 return NULL; 2009 2010 iocc->dfl_weight = CGROUP_WEIGHT_DFL; 2011 return &iocc->cpd; 2012 } 2013 2014 static void ioc_cpd_free(struct blkcg_policy_data *cpd) 2015 { 2016 kfree(container_of(cpd, struct ioc_cgrp, cpd)); 2017 } 2018 2019 static struct blkg_policy_data *ioc_pd_alloc(gfp_t gfp, struct request_queue *q, 2020 struct blkcg *blkcg) 2021 { 2022 int levels = blkcg->css.cgroup->level + 1; 2023 struct ioc_gq *iocg; 2024 2025 iocg = kzalloc_node(sizeof(*iocg) + levels * sizeof(iocg->ancestors[0]), 2026 gfp, q->node); 2027 if (!iocg) 2028 return NULL; 2029 2030 return &iocg->pd; 2031 } 2032 2033 static void ioc_pd_init(struct blkg_policy_data *pd) 2034 { 2035 struct ioc_gq *iocg = pd_to_iocg(pd); 2036 struct blkcg_gq *blkg = pd_to_blkg(&iocg->pd); 2037 struct ioc *ioc = q_to_ioc(blkg->q); 2038 struct ioc_now now; 2039 struct blkcg_gq *tblkg; 2040 unsigned long flags; 2041 2042 ioc_now(ioc, &now); 2043 2044 iocg->ioc = ioc; 2045 atomic64_set(&iocg->vtime, now.vnow); 2046 atomic64_set(&iocg->done_vtime, now.vnow); 2047 atomic64_set(&iocg->active_period, atomic64_read(&ioc->cur_period)); 2048 INIT_LIST_HEAD(&iocg->active_list); 2049 iocg->hweight_active = HWEIGHT_WHOLE; 2050 iocg->hweight_inuse = HWEIGHT_WHOLE; 2051 2052 init_waitqueue_head(&iocg->waitq); 2053 hrtimer_init(&iocg->waitq_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2054 iocg->waitq_timer.function = iocg_waitq_timer_fn; 2055 hrtimer_init(&iocg->delay_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); 2056 iocg->delay_timer.function = iocg_delay_timer_fn; 2057 2058 iocg->level = blkg->blkcg->css.cgroup->level; 2059 2060 for (tblkg = blkg; tblkg; tblkg = tblkg->parent) { 2061 struct ioc_gq *tiocg = blkg_to_iocg(tblkg); 2062 iocg->ancestors[tiocg->level] = tiocg; 2063 } 2064 2065 spin_lock_irqsave(&ioc->lock, flags); 2066 weight_updated(iocg); 2067 spin_unlock_irqrestore(&ioc->lock, flags); 2068 } 2069 2070 static void ioc_pd_free(struct blkg_policy_data *pd) 2071 { 2072 struct ioc_gq *iocg = pd_to_iocg(pd); 2073 struct ioc *ioc = iocg->ioc; 2074 2075 if (ioc) { 2076 spin_lock(&ioc->lock); 2077 if (!list_empty(&iocg->active_list)) { 2078 propagate_active_weight(iocg, 0, 0); 2079 list_del_init(&iocg->active_list); 2080 } 2081 spin_unlock(&ioc->lock); 2082 2083 hrtimer_cancel(&iocg->waitq_timer); 2084 hrtimer_cancel(&iocg->delay_timer); 2085 } 2086 kfree(iocg); 2087 } 2088 2089 static u64 ioc_weight_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 2090 int off) 2091 { 2092 const char *dname = blkg_dev_name(pd->blkg); 2093 struct ioc_gq *iocg = pd_to_iocg(pd); 2094 2095 if (dname && iocg->cfg_weight) 2096 seq_printf(sf, "%s %u\n", dname, iocg->cfg_weight); 2097 return 0; 2098 } 2099 2100 2101 static int ioc_weight_show(struct seq_file *sf, void *v) 2102 { 2103 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2104 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 2105 2106 seq_printf(sf, "default %u\n", iocc->dfl_weight); 2107 blkcg_print_blkgs(sf, blkcg, ioc_weight_prfill, 2108 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2109 return 0; 2110 } 2111 2112 static ssize_t ioc_weight_write(struct kernfs_open_file *of, char *buf, 2113 size_t nbytes, loff_t off) 2114 { 2115 struct blkcg *blkcg = css_to_blkcg(of_css(of)); 2116 struct ioc_cgrp *iocc = blkcg_to_iocc(blkcg); 2117 struct blkg_conf_ctx ctx; 2118 struct ioc_gq *iocg; 2119 u32 v; 2120 int ret; 2121 2122 if (!strchr(buf, ':')) { 2123 struct blkcg_gq *blkg; 2124 2125 if (!sscanf(buf, "default %u", &v) && !sscanf(buf, "%u", &v)) 2126 return -EINVAL; 2127 2128 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 2129 return -EINVAL; 2130 2131 spin_lock(&blkcg->lock); 2132 iocc->dfl_weight = v; 2133 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 2134 struct ioc_gq *iocg = blkg_to_iocg(blkg); 2135 2136 if (iocg) { 2137 spin_lock_irq(&iocg->ioc->lock); 2138 weight_updated(iocg); 2139 spin_unlock_irq(&iocg->ioc->lock); 2140 } 2141 } 2142 spin_unlock(&blkcg->lock); 2143 2144 return nbytes; 2145 } 2146 2147 ret = blkg_conf_prep(blkcg, &blkcg_policy_iocost, buf, &ctx); 2148 if (ret) 2149 return ret; 2150 2151 iocg = blkg_to_iocg(ctx.blkg); 2152 2153 if (!strncmp(ctx.body, "default", 7)) { 2154 v = 0; 2155 } else { 2156 if (!sscanf(ctx.body, "%u", &v)) 2157 goto einval; 2158 if (v < CGROUP_WEIGHT_MIN || v > CGROUP_WEIGHT_MAX) 2159 goto einval; 2160 } 2161 2162 spin_lock(&iocg->ioc->lock); 2163 iocg->cfg_weight = v; 2164 weight_updated(iocg); 2165 spin_unlock(&iocg->ioc->lock); 2166 2167 blkg_conf_finish(&ctx); 2168 return nbytes; 2169 2170 einval: 2171 blkg_conf_finish(&ctx); 2172 return -EINVAL; 2173 } 2174 2175 static u64 ioc_qos_prfill(struct seq_file *sf, struct blkg_policy_data *pd, 2176 int off) 2177 { 2178 const char *dname = blkg_dev_name(pd->blkg); 2179 struct ioc *ioc = pd_to_iocg(pd)->ioc; 2180 2181 if (!dname) 2182 return 0; 2183 2184 seq_printf(sf, "%s enable=%d ctrl=%s rpct=%u.%02u rlat=%u wpct=%u.%02u wlat=%u min=%u.%02u max=%u.%02u\n", 2185 dname, ioc->enabled, ioc->user_qos_params ? "user" : "auto", 2186 ioc->params.qos[QOS_RPPM] / 10000, 2187 ioc->params.qos[QOS_RPPM] % 10000 / 100, 2188 ioc->params.qos[QOS_RLAT], 2189 ioc->params.qos[QOS_WPPM] / 10000, 2190 ioc->params.qos[QOS_WPPM] % 10000 / 100, 2191 ioc->params.qos[QOS_WLAT], 2192 ioc->params.qos[QOS_MIN] / 10000, 2193 ioc->params.qos[QOS_MIN] % 10000 / 100, 2194 ioc->params.qos[QOS_MAX] / 10000, 2195 ioc->params.qos[QOS_MAX] % 10000 / 100); 2196 return 0; 2197 } 2198 2199 static int ioc_qos_show(struct seq_file *sf, void *v) 2200 { 2201 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2202 2203 blkcg_print_blkgs(sf, blkcg, ioc_qos_prfill, 2204 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2205 return 0; 2206 } 2207 2208 static const match_table_t qos_ctrl_tokens = { 2209 { QOS_ENABLE, "enable=%u" }, 2210 { QOS_CTRL, "ctrl=%s" }, 2211 { NR_QOS_CTRL_PARAMS, NULL }, 2212 }; 2213 2214 static const match_table_t qos_tokens = { 2215 { QOS_RPPM, "rpct=%s" }, 2216 { QOS_RLAT, "rlat=%u" }, 2217 { QOS_WPPM, "wpct=%s" }, 2218 { QOS_WLAT, "wlat=%u" }, 2219 { QOS_MIN, "min=%s" }, 2220 { QOS_MAX, "max=%s" }, 2221 { NR_QOS_PARAMS, NULL }, 2222 }; 2223 2224 static ssize_t ioc_qos_write(struct kernfs_open_file *of, char *input, 2225 size_t nbytes, loff_t off) 2226 { 2227 struct gendisk *disk; 2228 struct ioc *ioc; 2229 u32 qos[NR_QOS_PARAMS]; 2230 bool enable, user; 2231 char *p; 2232 int ret; 2233 2234 disk = blkcg_conf_get_disk(&input); 2235 if (IS_ERR(disk)) 2236 return PTR_ERR(disk); 2237 2238 ioc = q_to_ioc(disk->queue); 2239 if (!ioc) { 2240 ret = blk_iocost_init(disk->queue); 2241 if (ret) 2242 goto err; 2243 ioc = q_to_ioc(disk->queue); 2244 } 2245 2246 spin_lock_irq(&ioc->lock); 2247 memcpy(qos, ioc->params.qos, sizeof(qos)); 2248 enable = ioc->enabled; 2249 user = ioc->user_qos_params; 2250 spin_unlock_irq(&ioc->lock); 2251 2252 while ((p = strsep(&input, " \t\n"))) { 2253 substring_t args[MAX_OPT_ARGS]; 2254 char buf[32]; 2255 int tok; 2256 s64 v; 2257 2258 if (!*p) 2259 continue; 2260 2261 switch (match_token(p, qos_ctrl_tokens, args)) { 2262 case QOS_ENABLE: 2263 match_u64(&args[0], &v); 2264 enable = v; 2265 continue; 2266 case QOS_CTRL: 2267 match_strlcpy(buf, &args[0], sizeof(buf)); 2268 if (!strcmp(buf, "auto")) 2269 user = false; 2270 else if (!strcmp(buf, "user")) 2271 user = true; 2272 else 2273 goto einval; 2274 continue; 2275 } 2276 2277 tok = match_token(p, qos_tokens, args); 2278 switch (tok) { 2279 case QOS_RPPM: 2280 case QOS_WPPM: 2281 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 2282 sizeof(buf)) 2283 goto einval; 2284 if (cgroup_parse_float(buf, 2, &v)) 2285 goto einval; 2286 if (v < 0 || v > 10000) 2287 goto einval; 2288 qos[tok] = v * 100; 2289 break; 2290 case QOS_RLAT: 2291 case QOS_WLAT: 2292 if (match_u64(&args[0], &v)) 2293 goto einval; 2294 qos[tok] = v; 2295 break; 2296 case QOS_MIN: 2297 case QOS_MAX: 2298 if (match_strlcpy(buf, &args[0], sizeof(buf)) >= 2299 sizeof(buf)) 2300 goto einval; 2301 if (cgroup_parse_float(buf, 2, &v)) 2302 goto einval; 2303 if (v < 0) 2304 goto einval; 2305 qos[tok] = clamp_t(s64, v * 100, 2306 VRATE_MIN_PPM, VRATE_MAX_PPM); 2307 break; 2308 default: 2309 goto einval; 2310 } 2311 user = true; 2312 } 2313 2314 if (qos[QOS_MIN] > qos[QOS_MAX]) 2315 goto einval; 2316 2317 spin_lock_irq(&ioc->lock); 2318 2319 if (enable) { 2320 blk_queue_flag_set(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 2321 ioc->enabled = true; 2322 } else { 2323 blk_queue_flag_clear(QUEUE_FLAG_RQ_ALLOC_TIME, ioc->rqos.q); 2324 ioc->enabled = false; 2325 } 2326 2327 if (user) { 2328 memcpy(ioc->params.qos, qos, sizeof(qos)); 2329 ioc->user_qos_params = true; 2330 } else { 2331 ioc->user_qos_params = false; 2332 } 2333 2334 ioc_refresh_params(ioc, true); 2335 spin_unlock_irq(&ioc->lock); 2336 2337 put_disk_and_module(disk); 2338 return nbytes; 2339 einval: 2340 ret = -EINVAL; 2341 err: 2342 put_disk_and_module(disk); 2343 return ret; 2344 } 2345 2346 static u64 ioc_cost_model_prfill(struct seq_file *sf, 2347 struct blkg_policy_data *pd, int off) 2348 { 2349 const char *dname = blkg_dev_name(pd->blkg); 2350 struct ioc *ioc = pd_to_iocg(pd)->ioc; 2351 u64 *u = ioc->params.i_lcoefs; 2352 2353 if (!dname) 2354 return 0; 2355 2356 seq_printf(sf, "%s ctrl=%s model=linear " 2357 "rbps=%llu rseqiops=%llu rrandiops=%llu " 2358 "wbps=%llu wseqiops=%llu wrandiops=%llu\n", 2359 dname, ioc->user_cost_model ? "user" : "auto", 2360 u[I_LCOEF_RBPS], u[I_LCOEF_RSEQIOPS], u[I_LCOEF_RRANDIOPS], 2361 u[I_LCOEF_WBPS], u[I_LCOEF_WSEQIOPS], u[I_LCOEF_WRANDIOPS]); 2362 return 0; 2363 } 2364 2365 static int ioc_cost_model_show(struct seq_file *sf, void *v) 2366 { 2367 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 2368 2369 blkcg_print_blkgs(sf, blkcg, ioc_cost_model_prfill, 2370 &blkcg_policy_iocost, seq_cft(sf)->private, false); 2371 return 0; 2372 } 2373 2374 static const match_table_t cost_ctrl_tokens = { 2375 { COST_CTRL, "ctrl=%s" }, 2376 { COST_MODEL, "model=%s" }, 2377 { NR_COST_CTRL_PARAMS, NULL }, 2378 }; 2379 2380 static const match_table_t i_lcoef_tokens = { 2381 { I_LCOEF_RBPS, "rbps=%u" }, 2382 { I_LCOEF_RSEQIOPS, "rseqiops=%u" }, 2383 { I_LCOEF_RRANDIOPS, "rrandiops=%u" }, 2384 { I_LCOEF_WBPS, "wbps=%u" }, 2385 { I_LCOEF_WSEQIOPS, "wseqiops=%u" }, 2386 { I_LCOEF_WRANDIOPS, "wrandiops=%u" }, 2387 { NR_I_LCOEFS, NULL }, 2388 }; 2389 2390 static ssize_t ioc_cost_model_write(struct kernfs_open_file *of, char *input, 2391 size_t nbytes, loff_t off) 2392 { 2393 struct gendisk *disk; 2394 struct ioc *ioc; 2395 u64 u[NR_I_LCOEFS]; 2396 bool user; 2397 char *p; 2398 int ret; 2399 2400 disk = blkcg_conf_get_disk(&input); 2401 if (IS_ERR(disk)) 2402 return PTR_ERR(disk); 2403 2404 ioc = q_to_ioc(disk->queue); 2405 if (!ioc) { 2406 ret = blk_iocost_init(disk->queue); 2407 if (ret) 2408 goto err; 2409 ioc = q_to_ioc(disk->queue); 2410 } 2411 2412 spin_lock_irq(&ioc->lock); 2413 memcpy(u, ioc->params.i_lcoefs, sizeof(u)); 2414 user = ioc->user_cost_model; 2415 spin_unlock_irq(&ioc->lock); 2416 2417 while ((p = strsep(&input, " \t\n"))) { 2418 substring_t args[MAX_OPT_ARGS]; 2419 char buf[32]; 2420 int tok; 2421 u64 v; 2422 2423 if (!*p) 2424 continue; 2425 2426 switch (match_token(p, cost_ctrl_tokens, args)) { 2427 case COST_CTRL: 2428 match_strlcpy(buf, &args[0], sizeof(buf)); 2429 if (!strcmp(buf, "auto")) 2430 user = false; 2431 else if (!strcmp(buf, "user")) 2432 user = true; 2433 else 2434 goto einval; 2435 continue; 2436 case COST_MODEL: 2437 match_strlcpy(buf, &args[0], sizeof(buf)); 2438 if (strcmp(buf, "linear")) 2439 goto einval; 2440 continue; 2441 } 2442 2443 tok = match_token(p, i_lcoef_tokens, args); 2444 if (tok == NR_I_LCOEFS) 2445 goto einval; 2446 if (match_u64(&args[0], &v)) 2447 goto einval; 2448 u[tok] = v; 2449 user = true; 2450 } 2451 2452 spin_lock_irq(&ioc->lock); 2453 if (user) { 2454 memcpy(ioc->params.i_lcoefs, u, sizeof(u)); 2455 ioc->user_cost_model = true; 2456 } else { 2457 ioc->user_cost_model = false; 2458 } 2459 ioc_refresh_params(ioc, true); 2460 spin_unlock_irq(&ioc->lock); 2461 2462 put_disk_and_module(disk); 2463 return nbytes; 2464 2465 einval: 2466 ret = -EINVAL; 2467 err: 2468 put_disk_and_module(disk); 2469 return ret; 2470 } 2471 2472 static struct cftype ioc_files[] = { 2473 { 2474 .name = "weight", 2475 .flags = CFTYPE_NOT_ON_ROOT, 2476 .seq_show = ioc_weight_show, 2477 .write = ioc_weight_write, 2478 }, 2479 { 2480 .name = "cost.qos", 2481 .flags = CFTYPE_ONLY_ON_ROOT, 2482 .seq_show = ioc_qos_show, 2483 .write = ioc_qos_write, 2484 }, 2485 { 2486 .name = "cost.model", 2487 .flags = CFTYPE_ONLY_ON_ROOT, 2488 .seq_show = ioc_cost_model_show, 2489 .write = ioc_cost_model_write, 2490 }, 2491 {} 2492 }; 2493 2494 static struct blkcg_policy blkcg_policy_iocost = { 2495 .dfl_cftypes = ioc_files, 2496 .cpd_alloc_fn = ioc_cpd_alloc, 2497 .cpd_free_fn = ioc_cpd_free, 2498 .pd_alloc_fn = ioc_pd_alloc, 2499 .pd_init_fn = ioc_pd_init, 2500 .pd_free_fn = ioc_pd_free, 2501 }; 2502 2503 static int __init ioc_init(void) 2504 { 2505 return blkcg_policy_register(&blkcg_policy_iocost); 2506 } 2507 2508 static void __exit ioc_exit(void) 2509 { 2510 return blkcg_policy_unregister(&blkcg_policy_iocost); 2511 } 2512 2513 module_init(ioc_init); 2514 module_exit(ioc_exit); 2515
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.