1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/backing-dev.h> 11 #include <linux/bio.h> 12 #include <linux/blkdev.h> 13 #include <linux/kmemleak.h> 14 #include <linux/mm.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/workqueue.h> 18 #include <linux/smp.h> 19 #include <linux/llist.h> 20 #include <linux/list_sort.h> 21 #include <linux/cpu.h> 22 #include <linux/cache.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/sched/topology.h> 25 #include <linux/sched/signal.h> 26 #include <linux/delay.h> 27 #include <linux/crash_dump.h> 28 #include <linux/prefetch.h> 29 30 #include <trace/events/block.h> 31 32 #include <linux/blk-mq.h> 33 #include <linux/t10-pi.h> 34 #include "blk.h" 35 #include "blk-mq.h" 36 #include "blk-mq-debugfs.h" 37 #include "blk-mq-tag.h" 38 #include "blk-pm.h" 39 #include "blk-stat.h" 40 #include "blk-mq-sched.h" 41 #include "blk-rq-qos.h" 42 43 static void blk_mq_poll_stats_start(struct request_queue *q); 44 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 45 46 static int blk_mq_poll_stats_bkt(const struct request *rq) 47 { 48 int ddir, sectors, bucket; 49 50 ddir = rq_data_dir(rq); 51 sectors = blk_rq_stats_sectors(rq); 52 53 bucket = ddir + 2 * ilog2(sectors); 54 55 if (bucket < 0) 56 return -1; 57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 59 60 return bucket; 61 } 62 63 /* 64 * Check if any of the ctx, dispatch list or elevator 65 * have pending work in this hardware queue. 66 */ 67 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 68 { 69 return !list_empty_careful(&hctx->dispatch) || 70 sbitmap_any_bit_set(&hctx->ctx_map) || 71 blk_mq_sched_has_work(hctx); 72 } 73 74 /* 75 * Mark this ctx as having pending work in this hardware queue 76 */ 77 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 78 struct blk_mq_ctx *ctx) 79 { 80 const int bit = ctx->index_hw[hctx->type]; 81 82 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 83 sbitmap_set_bit(&hctx->ctx_map, bit); 84 } 85 86 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 87 struct blk_mq_ctx *ctx) 88 { 89 const int bit = ctx->index_hw[hctx->type]; 90 91 sbitmap_clear_bit(&hctx->ctx_map, bit); 92 } 93 94 struct mq_inflight { 95 struct hd_struct *part; 96 unsigned int inflight[2]; 97 }; 98 99 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 100 struct request *rq, void *priv, 101 bool reserved) 102 { 103 struct mq_inflight *mi = priv; 104 105 if (rq->part == mi->part) 106 mi->inflight[rq_data_dir(rq)]++; 107 108 return true; 109 } 110 111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part) 112 { 113 struct mq_inflight mi = { .part = part }; 114 115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 116 117 return mi.inflight[0] + mi.inflight[1]; 118 } 119 120 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part, 121 unsigned int inflight[2]) 122 { 123 struct mq_inflight mi = { .part = part }; 124 125 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 126 inflight[0] = mi.inflight[0]; 127 inflight[1] = mi.inflight[1]; 128 } 129 130 void blk_freeze_queue_start(struct request_queue *q) 131 { 132 mutex_lock(&q->mq_freeze_lock); 133 if (++q->mq_freeze_depth == 1) { 134 percpu_ref_kill(&q->q_usage_counter); 135 mutex_unlock(&q->mq_freeze_lock); 136 if (queue_is_mq(q)) 137 blk_mq_run_hw_queues(q, false); 138 } else { 139 mutex_unlock(&q->mq_freeze_lock); 140 } 141 } 142 EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 143 144 void blk_mq_freeze_queue_wait(struct request_queue *q) 145 { 146 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 147 } 148 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 149 150 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 151 unsigned long timeout) 152 { 153 return wait_event_timeout(q->mq_freeze_wq, 154 percpu_ref_is_zero(&q->q_usage_counter), 155 timeout); 156 } 157 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 158 159 /* 160 * Guarantee no request is in use, so we can change any data structure of 161 * the queue afterward. 162 */ 163 void blk_freeze_queue(struct request_queue *q) 164 { 165 /* 166 * In the !blk_mq case we are only calling this to kill the 167 * q_usage_counter, otherwise this increases the freeze depth 168 * and waits for it to return to zero. For this reason there is 169 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 170 * exported to drivers as the only user for unfreeze is blk_mq. 171 */ 172 blk_freeze_queue_start(q); 173 blk_mq_freeze_queue_wait(q); 174 } 175 176 void blk_mq_freeze_queue(struct request_queue *q) 177 { 178 /* 179 * ...just an alias to keep freeze and unfreeze actions balanced 180 * in the blk_mq_* namespace 181 */ 182 blk_freeze_queue(q); 183 } 184 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 185 186 void blk_mq_unfreeze_queue(struct request_queue *q) 187 { 188 mutex_lock(&q->mq_freeze_lock); 189 q->mq_freeze_depth--; 190 WARN_ON_ONCE(q->mq_freeze_depth < 0); 191 if (!q->mq_freeze_depth) { 192 percpu_ref_resurrect(&q->q_usage_counter); 193 wake_up_all(&q->mq_freeze_wq); 194 } 195 mutex_unlock(&q->mq_freeze_lock); 196 } 197 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 198 199 /* 200 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 201 * mpt3sas driver such that this function can be removed. 202 */ 203 void blk_mq_quiesce_queue_nowait(struct request_queue *q) 204 { 205 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 206 } 207 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 208 209 /** 210 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 211 * @q: request queue. 212 * 213 * Note: this function does not prevent that the struct request end_io() 214 * callback function is invoked. Once this function is returned, we make 215 * sure no dispatch can happen until the queue is unquiesced via 216 * blk_mq_unquiesce_queue(). 217 */ 218 void blk_mq_quiesce_queue(struct request_queue *q) 219 { 220 struct blk_mq_hw_ctx *hctx; 221 unsigned int i; 222 bool rcu = false; 223 224 blk_mq_quiesce_queue_nowait(q); 225 226 queue_for_each_hw_ctx(q, hctx, i) { 227 if (hctx->flags & BLK_MQ_F_BLOCKING) 228 synchronize_srcu(hctx->srcu); 229 else 230 rcu = true; 231 } 232 if (rcu) 233 synchronize_rcu(); 234 } 235 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 236 237 /* 238 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 239 * @q: request queue. 240 * 241 * This function recovers queue into the state before quiescing 242 * which is done by blk_mq_quiesce_queue. 243 */ 244 void blk_mq_unquiesce_queue(struct request_queue *q) 245 { 246 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 247 248 /* dispatch requests which are inserted during quiescing */ 249 blk_mq_run_hw_queues(q, true); 250 } 251 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 252 253 void blk_mq_wake_waiters(struct request_queue *q) 254 { 255 struct blk_mq_hw_ctx *hctx; 256 unsigned int i; 257 258 queue_for_each_hw_ctx(q, hctx, i) 259 if (blk_mq_hw_queue_mapped(hctx)) 260 blk_mq_tag_wakeup_all(hctx->tags, true); 261 } 262 263 /* 264 * Only need start/end time stamping if we have iostat or 265 * blk stats enabled, or using an IO scheduler. 266 */ 267 static inline bool blk_mq_need_time_stamp(struct request *rq) 268 { 269 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 270 } 271 272 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 273 unsigned int tag, unsigned int op, u64 alloc_time_ns) 274 { 275 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 276 struct request *rq = tags->static_rqs[tag]; 277 req_flags_t rq_flags = 0; 278 279 if (data->flags & BLK_MQ_REQ_INTERNAL) { 280 rq->tag = -1; 281 rq->internal_tag = tag; 282 } else { 283 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) { 284 rq_flags = RQF_MQ_INFLIGHT; 285 atomic_inc(&data->hctx->nr_active); 286 } 287 rq->tag = tag; 288 rq->internal_tag = -1; 289 data->hctx->tags->rqs[rq->tag] = rq; 290 } 291 292 /* csd/requeue_work/fifo_time is initialized before use */ 293 rq->q = data->q; 294 rq->mq_ctx = data->ctx; 295 rq->mq_hctx = data->hctx; 296 rq->rq_flags = rq_flags; 297 rq->cmd_flags = op; 298 if (data->flags & BLK_MQ_REQ_PREEMPT) 299 rq->rq_flags |= RQF_PREEMPT; 300 if (blk_queue_io_stat(data->q)) 301 rq->rq_flags |= RQF_IO_STAT; 302 INIT_LIST_HEAD(&rq->queuelist); 303 INIT_HLIST_NODE(&rq->hash); 304 RB_CLEAR_NODE(&rq->rb_node); 305 rq->rq_disk = NULL; 306 rq->part = NULL; 307 #ifdef CONFIG_BLK_RQ_ALLOC_TIME 308 rq->alloc_time_ns = alloc_time_ns; 309 #endif 310 if (blk_mq_need_time_stamp(rq)) 311 rq->start_time_ns = ktime_get_ns(); 312 else 313 rq->start_time_ns = 0; 314 rq->io_start_time_ns = 0; 315 rq->stats_sectors = 0; 316 rq->nr_phys_segments = 0; 317 #if defined(CONFIG_BLK_DEV_INTEGRITY) 318 rq->nr_integrity_segments = 0; 319 #endif 320 /* tag was already set */ 321 rq->extra_len = 0; 322 WRITE_ONCE(rq->deadline, 0); 323 324 rq->timeout = 0; 325 326 rq->end_io = NULL; 327 rq->end_io_data = NULL; 328 329 data->ctx->rq_dispatched[op_is_sync(op)]++; 330 refcount_set(&rq->ref, 1); 331 return rq; 332 } 333 334 static struct request *blk_mq_get_request(struct request_queue *q, 335 struct bio *bio, 336 struct blk_mq_alloc_data *data) 337 { 338 struct elevator_queue *e = q->elevator; 339 struct request *rq; 340 unsigned int tag; 341 bool clear_ctx_on_error = false; 342 u64 alloc_time_ns = 0; 343 344 blk_queue_enter_live(q); 345 346 /* alloc_time includes depth and tag waits */ 347 if (blk_queue_rq_alloc_time(q)) 348 alloc_time_ns = ktime_get_ns(); 349 350 data->q = q; 351 if (likely(!data->ctx)) { 352 data->ctx = blk_mq_get_ctx(q); 353 clear_ctx_on_error = true; 354 } 355 if (likely(!data->hctx)) 356 data->hctx = blk_mq_map_queue(q, data->cmd_flags, 357 data->ctx); 358 if (data->cmd_flags & REQ_NOWAIT) 359 data->flags |= BLK_MQ_REQ_NOWAIT; 360 361 if (e) { 362 data->flags |= BLK_MQ_REQ_INTERNAL; 363 364 /* 365 * Flush requests are special and go directly to the 366 * dispatch list. Don't include reserved tags in the 367 * limiting, as it isn't useful. 368 */ 369 if (!op_is_flush(data->cmd_flags) && 370 e->type->ops.limit_depth && 371 !(data->flags & BLK_MQ_REQ_RESERVED)) 372 e->type->ops.limit_depth(data->cmd_flags, data); 373 } else { 374 blk_mq_tag_busy(data->hctx); 375 } 376 377 tag = blk_mq_get_tag(data); 378 if (tag == BLK_MQ_TAG_FAIL) { 379 if (clear_ctx_on_error) 380 data->ctx = NULL; 381 blk_queue_exit(q); 382 return NULL; 383 } 384 385 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns); 386 if (!op_is_flush(data->cmd_flags)) { 387 rq->elv.icq = NULL; 388 if (e && e->type->ops.prepare_request) { 389 if (e->type->icq_cache) 390 blk_mq_sched_assign_ioc(rq); 391 392 e->type->ops.prepare_request(rq, bio); 393 rq->rq_flags |= RQF_ELVPRIV; 394 } 395 } 396 data->hctx->queued++; 397 return rq; 398 } 399 400 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 401 blk_mq_req_flags_t flags) 402 { 403 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 404 struct request *rq; 405 int ret; 406 407 ret = blk_queue_enter(q, flags); 408 if (ret) 409 return ERR_PTR(ret); 410 411 rq = blk_mq_get_request(q, NULL, &alloc_data); 412 blk_queue_exit(q); 413 414 if (!rq) 415 return ERR_PTR(-EWOULDBLOCK); 416 417 rq->__data_len = 0; 418 rq->__sector = (sector_t) -1; 419 rq->bio = rq->biotail = NULL; 420 return rq; 421 } 422 EXPORT_SYMBOL(blk_mq_alloc_request); 423 424 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 425 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 426 { 427 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op }; 428 struct request *rq; 429 unsigned int cpu; 430 int ret; 431 432 /* 433 * If the tag allocator sleeps we could get an allocation for a 434 * different hardware context. No need to complicate the low level 435 * allocator for this for the rare use case of a command tied to 436 * a specific queue. 437 */ 438 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT))) 439 return ERR_PTR(-EINVAL); 440 441 if (hctx_idx >= q->nr_hw_queues) 442 return ERR_PTR(-EIO); 443 444 ret = blk_queue_enter(q, flags); 445 if (ret) 446 return ERR_PTR(ret); 447 448 /* 449 * Check if the hardware context is actually mapped to anything. 450 * If not tell the caller that it should skip this queue. 451 */ 452 alloc_data.hctx = q->queue_hw_ctx[hctx_idx]; 453 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) { 454 blk_queue_exit(q); 455 return ERR_PTR(-EXDEV); 456 } 457 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask); 458 alloc_data.ctx = __blk_mq_get_ctx(q, cpu); 459 460 rq = blk_mq_get_request(q, NULL, &alloc_data); 461 blk_queue_exit(q); 462 463 if (!rq) 464 return ERR_PTR(-EWOULDBLOCK); 465 466 return rq; 467 } 468 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 469 470 static void __blk_mq_free_request(struct request *rq) 471 { 472 struct request_queue *q = rq->q; 473 struct blk_mq_ctx *ctx = rq->mq_ctx; 474 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 475 const int sched_tag = rq->internal_tag; 476 477 blk_pm_mark_last_busy(rq); 478 rq->mq_hctx = NULL; 479 if (rq->tag != -1) 480 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag); 481 if (sched_tag != -1) 482 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag); 483 blk_mq_sched_restart(hctx); 484 blk_queue_exit(q); 485 } 486 487 void blk_mq_free_request(struct request *rq) 488 { 489 struct request_queue *q = rq->q; 490 struct elevator_queue *e = q->elevator; 491 struct blk_mq_ctx *ctx = rq->mq_ctx; 492 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 493 494 if (rq->rq_flags & RQF_ELVPRIV) { 495 if (e && e->type->ops.finish_request) 496 e->type->ops.finish_request(rq); 497 if (rq->elv.icq) { 498 put_io_context(rq->elv.icq->ioc); 499 rq->elv.icq = NULL; 500 } 501 } 502 503 ctx->rq_completed[rq_is_sync(rq)]++; 504 if (rq->rq_flags & RQF_MQ_INFLIGHT) 505 atomic_dec(&hctx->nr_active); 506 507 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 508 laptop_io_completion(q->backing_dev_info); 509 510 rq_qos_done(q, rq); 511 512 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 513 if (refcount_dec_and_test(&rq->ref)) 514 __blk_mq_free_request(rq); 515 } 516 EXPORT_SYMBOL_GPL(blk_mq_free_request); 517 518 inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 519 { 520 u64 now = 0; 521 522 if (blk_mq_need_time_stamp(rq)) 523 now = ktime_get_ns(); 524 525 if (rq->rq_flags & RQF_STATS) { 526 blk_mq_poll_stats_start(rq->q); 527 blk_stat_add(rq, now); 528 } 529 530 if (rq->internal_tag != -1) 531 blk_mq_sched_completed_request(rq, now); 532 533 blk_account_io_done(rq, now); 534 535 if (rq->end_io) { 536 rq_qos_done(rq->q, rq); 537 rq->end_io(rq, error); 538 } else { 539 blk_mq_free_request(rq); 540 } 541 } 542 EXPORT_SYMBOL(__blk_mq_end_request); 543 544 void blk_mq_end_request(struct request *rq, blk_status_t error) 545 { 546 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 547 BUG(); 548 __blk_mq_end_request(rq, error); 549 } 550 EXPORT_SYMBOL(blk_mq_end_request); 551 552 static void __blk_mq_complete_request_remote(void *data) 553 { 554 struct request *rq = data; 555 struct request_queue *q = rq->q; 556 557 q->mq_ops->complete(rq); 558 } 559 560 static void __blk_mq_complete_request(struct request *rq) 561 { 562 struct blk_mq_ctx *ctx = rq->mq_ctx; 563 struct request_queue *q = rq->q; 564 bool shared = false; 565 int cpu; 566 567 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 568 /* 569 * Most of single queue controllers, there is only one irq vector 570 * for handling IO completion, and the only irq's affinity is set 571 * as all possible CPUs. On most of ARCHs, this affinity means the 572 * irq is handled on one specific CPU. 573 * 574 * So complete IO reqeust in softirq context in case of single queue 575 * for not degrading IO performance by irqsoff latency. 576 */ 577 if (q->nr_hw_queues == 1) { 578 __blk_complete_request(rq); 579 return; 580 } 581 582 /* 583 * For a polled request, always complete locallly, it's pointless 584 * to redirect the completion. 585 */ 586 if ((rq->cmd_flags & REQ_HIPRI) || 587 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) { 588 q->mq_ops->complete(rq); 589 return; 590 } 591 592 cpu = get_cpu(); 593 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags)) 594 shared = cpus_share_cache(cpu, ctx->cpu); 595 596 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) { 597 rq->csd.func = __blk_mq_complete_request_remote; 598 rq->csd.info = rq; 599 rq->csd.flags = 0; 600 smp_call_function_single_async(ctx->cpu, &rq->csd); 601 } else { 602 q->mq_ops->complete(rq); 603 } 604 put_cpu(); 605 } 606 607 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 608 __releases(hctx->srcu) 609 { 610 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 611 rcu_read_unlock(); 612 else 613 srcu_read_unlock(hctx->srcu, srcu_idx); 614 } 615 616 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 617 __acquires(hctx->srcu) 618 { 619 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 620 /* shut up gcc false positive */ 621 *srcu_idx = 0; 622 rcu_read_lock(); 623 } else 624 *srcu_idx = srcu_read_lock(hctx->srcu); 625 } 626 627 /** 628 * blk_mq_complete_request - end I/O on a request 629 * @rq: the request being processed 630 * 631 * Description: 632 * Ends all I/O on a request. It does not handle partial completions. 633 * The actual completion happens out-of-order, through a IPI handler. 634 **/ 635 bool blk_mq_complete_request(struct request *rq) 636 { 637 if (unlikely(blk_should_fake_timeout(rq->q))) 638 return false; 639 __blk_mq_complete_request(rq); 640 return true; 641 } 642 EXPORT_SYMBOL(blk_mq_complete_request); 643 644 void blk_mq_start_request(struct request *rq) 645 { 646 struct request_queue *q = rq->q; 647 648 trace_block_rq_issue(q, rq); 649 650 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 651 rq->io_start_time_ns = ktime_get_ns(); 652 rq->stats_sectors = blk_rq_sectors(rq); 653 rq->rq_flags |= RQF_STATS; 654 rq_qos_issue(q, rq); 655 } 656 657 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 658 659 blk_add_timer(rq); 660 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 661 662 if (q->dma_drain_size && blk_rq_bytes(rq)) { 663 /* 664 * Make sure space for the drain appears. We know we can do 665 * this because max_hw_segments has been adjusted to be one 666 * fewer than the device can handle. 667 */ 668 rq->nr_phys_segments++; 669 } 670 671 #ifdef CONFIG_BLK_DEV_INTEGRITY 672 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 673 q->integrity.profile->prepare_fn(rq); 674 #endif 675 } 676 EXPORT_SYMBOL(blk_mq_start_request); 677 678 static void __blk_mq_requeue_request(struct request *rq) 679 { 680 struct request_queue *q = rq->q; 681 682 blk_mq_put_driver_tag(rq); 683 684 trace_block_rq_requeue(q, rq); 685 rq_qos_requeue(q, rq); 686 687 if (blk_mq_request_started(rq)) { 688 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 689 rq->rq_flags &= ~RQF_TIMED_OUT; 690 if (q->dma_drain_size && blk_rq_bytes(rq)) 691 rq->nr_phys_segments--; 692 } 693 } 694 695 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 696 { 697 __blk_mq_requeue_request(rq); 698 699 /* this request will be re-inserted to io scheduler queue */ 700 blk_mq_sched_requeue_request(rq); 701 702 BUG_ON(!list_empty(&rq->queuelist)); 703 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 704 } 705 EXPORT_SYMBOL(blk_mq_requeue_request); 706 707 static void blk_mq_requeue_work(struct work_struct *work) 708 { 709 struct request_queue *q = 710 container_of(work, struct request_queue, requeue_work.work); 711 LIST_HEAD(rq_list); 712 struct request *rq, *next; 713 714 spin_lock_irq(&q->requeue_lock); 715 list_splice_init(&q->requeue_list, &rq_list); 716 spin_unlock_irq(&q->requeue_lock); 717 718 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 719 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 720 continue; 721 722 rq->rq_flags &= ~RQF_SOFTBARRIER; 723 list_del_init(&rq->queuelist); 724 /* 725 * If RQF_DONTPREP, rq has contained some driver specific 726 * data, so insert it to hctx dispatch list to avoid any 727 * merge. 728 */ 729 if (rq->rq_flags & RQF_DONTPREP) 730 blk_mq_request_bypass_insert(rq, false, false); 731 else 732 blk_mq_sched_insert_request(rq, true, false, false); 733 } 734 735 while (!list_empty(&rq_list)) { 736 rq = list_entry(rq_list.next, struct request, queuelist); 737 list_del_init(&rq->queuelist); 738 blk_mq_sched_insert_request(rq, false, false, false); 739 } 740 741 blk_mq_run_hw_queues(q, false); 742 } 743 744 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 745 bool kick_requeue_list) 746 { 747 struct request_queue *q = rq->q; 748 unsigned long flags; 749 750 /* 751 * We abuse this flag that is otherwise used by the I/O scheduler to 752 * request head insertion from the workqueue. 753 */ 754 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 755 756 spin_lock_irqsave(&q->requeue_lock, flags); 757 if (at_head) { 758 rq->rq_flags |= RQF_SOFTBARRIER; 759 list_add(&rq->queuelist, &q->requeue_list); 760 } else { 761 list_add_tail(&rq->queuelist, &q->requeue_list); 762 } 763 spin_unlock_irqrestore(&q->requeue_lock, flags); 764 765 if (kick_requeue_list) 766 blk_mq_kick_requeue_list(q); 767 } 768 769 void blk_mq_kick_requeue_list(struct request_queue *q) 770 { 771 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 772 } 773 EXPORT_SYMBOL(blk_mq_kick_requeue_list); 774 775 void blk_mq_delay_kick_requeue_list(struct request_queue *q, 776 unsigned long msecs) 777 { 778 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 779 msecs_to_jiffies(msecs)); 780 } 781 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 782 783 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 784 { 785 if (tag < tags->nr_tags) { 786 prefetch(tags->rqs[tag]); 787 return tags->rqs[tag]; 788 } 789 790 return NULL; 791 } 792 EXPORT_SYMBOL(blk_mq_tag_to_rq); 793 794 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 795 void *priv, bool reserved) 796 { 797 /* 798 * If we find a request that is inflight and the queue matches, 799 * we know the queue is busy. Return false to stop the iteration. 800 */ 801 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) { 802 bool *busy = priv; 803 804 *busy = true; 805 return false; 806 } 807 808 return true; 809 } 810 811 bool blk_mq_queue_inflight(struct request_queue *q) 812 { 813 bool busy = false; 814 815 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 816 return busy; 817 } 818 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 819 820 static void blk_mq_rq_timed_out(struct request *req, bool reserved) 821 { 822 req->rq_flags |= RQF_TIMED_OUT; 823 if (req->q->mq_ops->timeout) { 824 enum blk_eh_timer_return ret; 825 826 ret = req->q->mq_ops->timeout(req, reserved); 827 if (ret == BLK_EH_DONE) 828 return; 829 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 830 } 831 832 blk_add_timer(req); 833 } 834 835 static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 836 { 837 unsigned long deadline; 838 839 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 840 return false; 841 if (rq->rq_flags & RQF_TIMED_OUT) 842 return false; 843 844 deadline = READ_ONCE(rq->deadline); 845 if (time_after_eq(jiffies, deadline)) 846 return true; 847 848 if (*next == 0) 849 *next = deadline; 850 else if (time_after(*next, deadline)) 851 *next = deadline; 852 return false; 853 } 854 855 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 856 struct request *rq, void *priv, bool reserved) 857 { 858 unsigned long *next = priv; 859 860 /* 861 * Just do a quick check if it is expired before locking the request in 862 * so we're not unnecessarilly synchronizing across CPUs. 863 */ 864 if (!blk_mq_req_expired(rq, next)) 865 return true; 866 867 /* 868 * We have reason to believe the request may be expired. Take a 869 * reference on the request to lock this request lifetime into its 870 * currently allocated context to prevent it from being reallocated in 871 * the event the completion by-passes this timeout handler. 872 * 873 * If the reference was already released, then the driver beat the 874 * timeout handler to posting a natural completion. 875 */ 876 if (!refcount_inc_not_zero(&rq->ref)) 877 return true; 878 879 /* 880 * The request is now locked and cannot be reallocated underneath the 881 * timeout handler's processing. Re-verify this exact request is truly 882 * expired; if it is not expired, then the request was completed and 883 * reallocated as a new request. 884 */ 885 if (blk_mq_req_expired(rq, next)) 886 blk_mq_rq_timed_out(rq, reserved); 887 888 if (is_flush_rq(rq, hctx)) 889 rq->end_io(rq, 0); 890 else if (refcount_dec_and_test(&rq->ref)) 891 __blk_mq_free_request(rq); 892 893 return true; 894 } 895 896 static void blk_mq_timeout_work(struct work_struct *work) 897 { 898 struct request_queue *q = 899 container_of(work, struct request_queue, timeout_work); 900 unsigned long next = 0; 901 struct blk_mq_hw_ctx *hctx; 902 int i; 903 904 /* A deadlock might occur if a request is stuck requiring a 905 * timeout at the same time a queue freeze is waiting 906 * completion, since the timeout code would not be able to 907 * acquire the queue reference here. 908 * 909 * That's why we don't use blk_queue_enter here; instead, we use 910 * percpu_ref_tryget directly, because we need to be able to 911 * obtain a reference even in the short window between the queue 912 * starting to freeze, by dropping the first reference in 913 * blk_freeze_queue_start, and the moment the last request is 914 * consumed, marked by the instant q_usage_counter reaches 915 * zero. 916 */ 917 if (!percpu_ref_tryget(&q->q_usage_counter)) 918 return; 919 920 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 921 922 if (next != 0) { 923 mod_timer(&q->timeout, next); 924 } else { 925 /* 926 * Request timeouts are handled as a forward rolling timer. If 927 * we end up here it means that no requests are pending and 928 * also that no request has been pending for a while. Mark 929 * each hctx as idle. 930 */ 931 queue_for_each_hw_ctx(q, hctx, i) { 932 /* the hctx may be unmapped, so check it here */ 933 if (blk_mq_hw_queue_mapped(hctx)) 934 blk_mq_tag_idle(hctx); 935 } 936 } 937 blk_queue_exit(q); 938 } 939 940 struct flush_busy_ctx_data { 941 struct blk_mq_hw_ctx *hctx; 942 struct list_head *list; 943 }; 944 945 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 946 { 947 struct flush_busy_ctx_data *flush_data = data; 948 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 949 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 950 enum hctx_type type = hctx->type; 951 952 spin_lock(&ctx->lock); 953 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 954 sbitmap_clear_bit(sb, bitnr); 955 spin_unlock(&ctx->lock); 956 return true; 957 } 958 959 /* 960 * Process software queues that have been marked busy, splicing them 961 * to the for-dispatch 962 */ 963 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 964 { 965 struct flush_busy_ctx_data data = { 966 .hctx = hctx, 967 .list = list, 968 }; 969 970 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 971 } 972 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 973 974 struct dispatch_rq_data { 975 struct blk_mq_hw_ctx *hctx; 976 struct request *rq; 977 }; 978 979 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 980 void *data) 981 { 982 struct dispatch_rq_data *dispatch_data = data; 983 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 984 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 985 enum hctx_type type = hctx->type; 986 987 spin_lock(&ctx->lock); 988 if (!list_empty(&ctx->rq_lists[type])) { 989 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 990 list_del_init(&dispatch_data->rq->queuelist); 991 if (list_empty(&ctx->rq_lists[type])) 992 sbitmap_clear_bit(sb, bitnr); 993 } 994 spin_unlock(&ctx->lock); 995 996 return !dispatch_data->rq; 997 } 998 999 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1000 struct blk_mq_ctx *start) 1001 { 1002 unsigned off = start ? start->index_hw[hctx->type] : 0; 1003 struct dispatch_rq_data data = { 1004 .hctx = hctx, 1005 .rq = NULL, 1006 }; 1007 1008 __sbitmap_for_each_set(&hctx->ctx_map, off, 1009 dispatch_rq_from_ctx, &data); 1010 1011 return data.rq; 1012 } 1013 1014 static inline unsigned int queued_to_index(unsigned int queued) 1015 { 1016 if (!queued) 1017 return 0; 1018 1019 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1020 } 1021 1022 bool blk_mq_get_driver_tag(struct request *rq) 1023 { 1024 struct blk_mq_alloc_data data = { 1025 .q = rq->q, 1026 .hctx = rq->mq_hctx, 1027 .flags = BLK_MQ_REQ_NOWAIT, 1028 .cmd_flags = rq->cmd_flags, 1029 }; 1030 bool shared; 1031 1032 if (rq->tag != -1) 1033 return true; 1034 1035 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag)) 1036 data.flags |= BLK_MQ_REQ_RESERVED; 1037 1038 shared = blk_mq_tag_busy(data.hctx); 1039 rq->tag = blk_mq_get_tag(&data); 1040 if (rq->tag >= 0) { 1041 if (shared) { 1042 rq->rq_flags |= RQF_MQ_INFLIGHT; 1043 atomic_inc(&data.hctx->nr_active); 1044 } 1045 data.hctx->tags->rqs[rq->tag] = rq; 1046 } 1047 1048 return rq->tag != -1; 1049 } 1050 1051 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1052 int flags, void *key) 1053 { 1054 struct blk_mq_hw_ctx *hctx; 1055 1056 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1057 1058 spin_lock(&hctx->dispatch_wait_lock); 1059 if (!list_empty(&wait->entry)) { 1060 struct sbitmap_queue *sbq; 1061 1062 list_del_init(&wait->entry); 1063 sbq = &hctx->tags->bitmap_tags; 1064 atomic_dec(&sbq->ws_active); 1065 } 1066 spin_unlock(&hctx->dispatch_wait_lock); 1067 1068 blk_mq_run_hw_queue(hctx, true); 1069 return 1; 1070 } 1071 1072 /* 1073 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1074 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1075 * restart. For both cases, take care to check the condition again after 1076 * marking us as waiting. 1077 */ 1078 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1079 struct request *rq) 1080 { 1081 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags; 1082 struct wait_queue_head *wq; 1083 wait_queue_entry_t *wait; 1084 bool ret; 1085 1086 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) { 1087 blk_mq_sched_mark_restart_hctx(hctx); 1088 1089 /* 1090 * It's possible that a tag was freed in the window between the 1091 * allocation failure and adding the hardware queue to the wait 1092 * queue. 1093 * 1094 * Don't clear RESTART here, someone else could have set it. 1095 * At most this will cost an extra queue run. 1096 */ 1097 return blk_mq_get_driver_tag(rq); 1098 } 1099 1100 wait = &hctx->dispatch_wait; 1101 if (!list_empty_careful(&wait->entry)) 1102 return false; 1103 1104 wq = &bt_wait_ptr(sbq, hctx)->wait; 1105 1106 spin_lock_irq(&wq->lock); 1107 spin_lock(&hctx->dispatch_wait_lock); 1108 if (!list_empty(&wait->entry)) { 1109 spin_unlock(&hctx->dispatch_wait_lock); 1110 spin_unlock_irq(&wq->lock); 1111 return false; 1112 } 1113 1114 atomic_inc(&sbq->ws_active); 1115 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1116 __add_wait_queue(wq, wait); 1117 1118 /* 1119 * It's possible that a tag was freed in the window between the 1120 * allocation failure and adding the hardware queue to the wait 1121 * queue. 1122 */ 1123 ret = blk_mq_get_driver_tag(rq); 1124 if (!ret) { 1125 spin_unlock(&hctx->dispatch_wait_lock); 1126 spin_unlock_irq(&wq->lock); 1127 return false; 1128 } 1129 1130 /* 1131 * We got a tag, remove ourselves from the wait queue to ensure 1132 * someone else gets the wakeup. 1133 */ 1134 list_del_init(&wait->entry); 1135 atomic_dec(&sbq->ws_active); 1136 spin_unlock(&hctx->dispatch_wait_lock); 1137 spin_unlock_irq(&wq->lock); 1138 1139 return true; 1140 } 1141 1142 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1143 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1144 /* 1145 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1146 * - EWMA is one simple way to compute running average value 1147 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1148 * - take 4 as factor for avoiding to get too small(0) result, and this 1149 * factor doesn't matter because EWMA decreases exponentially 1150 */ 1151 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1152 { 1153 unsigned int ewma; 1154 1155 if (hctx->queue->elevator) 1156 return; 1157 1158 ewma = hctx->dispatch_busy; 1159 1160 if (!ewma && !busy) 1161 return; 1162 1163 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1164 if (busy) 1165 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1166 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1167 1168 hctx->dispatch_busy = ewma; 1169 } 1170 1171 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1172 1173 /* 1174 * Returns true if we did some work AND can potentially do more. 1175 */ 1176 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list, 1177 bool got_budget) 1178 { 1179 struct blk_mq_hw_ctx *hctx; 1180 struct request *rq, *nxt; 1181 bool no_tag = false; 1182 int errors, queued; 1183 blk_status_t ret = BLK_STS_OK; 1184 1185 if (list_empty(list)) 1186 return false; 1187 1188 WARN_ON(!list_is_singular(list) && got_budget); 1189 1190 /* 1191 * Now process all the entries, sending them to the driver. 1192 */ 1193 errors = queued = 0; 1194 do { 1195 struct blk_mq_queue_data bd; 1196 1197 rq = list_first_entry(list, struct request, queuelist); 1198 1199 hctx = rq->mq_hctx; 1200 if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) 1201 break; 1202 1203 if (!blk_mq_get_driver_tag(rq)) { 1204 /* 1205 * The initial allocation attempt failed, so we need to 1206 * rerun the hardware queue when a tag is freed. The 1207 * waitqueue takes care of that. If the queue is run 1208 * before we add this entry back on the dispatch list, 1209 * we'll re-run it below. 1210 */ 1211 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1212 blk_mq_put_dispatch_budget(hctx); 1213 /* 1214 * For non-shared tags, the RESTART check 1215 * will suffice. 1216 */ 1217 if (hctx->flags & BLK_MQ_F_TAG_SHARED) 1218 no_tag = true; 1219 break; 1220 } 1221 } 1222 1223 list_del_init(&rq->queuelist); 1224 1225 bd.rq = rq; 1226 1227 /* 1228 * Flag last if we have no more requests, or if we have more 1229 * but can't assign a driver tag to it. 1230 */ 1231 if (list_empty(list)) 1232 bd.last = true; 1233 else { 1234 nxt = list_first_entry(list, struct request, queuelist); 1235 bd.last = !blk_mq_get_driver_tag(nxt); 1236 } 1237 1238 ret = q->mq_ops->queue_rq(hctx, &bd); 1239 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) { 1240 /* 1241 * If an I/O scheduler has been configured and we got a 1242 * driver tag for the next request already, free it 1243 * again. 1244 */ 1245 if (!list_empty(list)) { 1246 nxt = list_first_entry(list, struct request, queuelist); 1247 blk_mq_put_driver_tag(nxt); 1248 } 1249 list_add(&rq->queuelist, list); 1250 __blk_mq_requeue_request(rq); 1251 break; 1252 } 1253 1254 if (unlikely(ret != BLK_STS_OK)) { 1255 errors++; 1256 blk_mq_end_request(rq, BLK_STS_IOERR); 1257 continue; 1258 } 1259 1260 queued++; 1261 } while (!list_empty(list)); 1262 1263 hctx->dispatched[queued_to_index(queued)]++; 1264 1265 /* 1266 * Any items that need requeuing? Stuff them into hctx->dispatch, 1267 * that is where we will continue on next queue run. 1268 */ 1269 if (!list_empty(list)) { 1270 bool needs_restart; 1271 1272 /* 1273 * If we didn't flush the entire list, we could have told 1274 * the driver there was more coming, but that turned out to 1275 * be a lie. 1276 */ 1277 if (q->mq_ops->commit_rqs) 1278 q->mq_ops->commit_rqs(hctx); 1279 1280 spin_lock(&hctx->lock); 1281 list_splice_tail_init(list, &hctx->dispatch); 1282 spin_unlock(&hctx->lock); 1283 1284 /* 1285 * If SCHED_RESTART was set by the caller of this function and 1286 * it is no longer set that means that it was cleared by another 1287 * thread and hence that a queue rerun is needed. 1288 * 1289 * If 'no_tag' is set, that means that we failed getting 1290 * a driver tag with an I/O scheduler attached. If our dispatch 1291 * waitqueue is no longer active, ensure that we run the queue 1292 * AFTER adding our entries back to the list. 1293 * 1294 * If no I/O scheduler has been configured it is possible that 1295 * the hardware queue got stopped and restarted before requests 1296 * were pushed back onto the dispatch list. Rerun the queue to 1297 * avoid starvation. Notes: 1298 * - blk_mq_run_hw_queue() checks whether or not a queue has 1299 * been stopped before rerunning a queue. 1300 * - Some but not all block drivers stop a queue before 1301 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1302 * and dm-rq. 1303 * 1304 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1305 * bit is set, run queue after a delay to avoid IO stalls 1306 * that could otherwise occur if the queue is idle. 1307 */ 1308 needs_restart = blk_mq_sched_needs_restart(hctx); 1309 if (!needs_restart || 1310 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1311 blk_mq_run_hw_queue(hctx, true); 1312 else if (needs_restart && (ret == BLK_STS_RESOURCE)) 1313 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1314 1315 blk_mq_update_dispatch_busy(hctx, true); 1316 return false; 1317 } else 1318 blk_mq_update_dispatch_busy(hctx, false); 1319 1320 /* 1321 * If the host/device is unable to accept more work, inform the 1322 * caller of that. 1323 */ 1324 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1325 return false; 1326 1327 return (queued + errors) != 0; 1328 } 1329 1330 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1331 { 1332 int srcu_idx; 1333 1334 /* 1335 * We should be running this queue from one of the CPUs that 1336 * are mapped to it. 1337 * 1338 * There are at least two related races now between setting 1339 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running 1340 * __blk_mq_run_hw_queue(): 1341 * 1342 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(), 1343 * but later it becomes online, then this warning is harmless 1344 * at all 1345 * 1346 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(), 1347 * but later it becomes offline, then the warning can't be 1348 * triggered, and we depend on blk-mq timeout handler to 1349 * handle dispatched requests to this hctx 1350 */ 1351 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) && 1352 cpu_online(hctx->next_cpu)) { 1353 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n", 1354 raw_smp_processor_id(), 1355 cpumask_empty(hctx->cpumask) ? "inactive": "active"); 1356 dump_stack(); 1357 } 1358 1359 /* 1360 * We can't run the queue inline with ints disabled. Ensure that 1361 * we catch bad users of this early. 1362 */ 1363 WARN_ON_ONCE(in_interrupt()); 1364 1365 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1366 1367 hctx_lock(hctx, &srcu_idx); 1368 blk_mq_sched_dispatch_requests(hctx); 1369 hctx_unlock(hctx, srcu_idx); 1370 } 1371 1372 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1373 { 1374 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1375 1376 if (cpu >= nr_cpu_ids) 1377 cpu = cpumask_first(hctx->cpumask); 1378 return cpu; 1379 } 1380 1381 /* 1382 * It'd be great if the workqueue API had a way to pass 1383 * in a mask and had some smarts for more clever placement. 1384 * For now we just round-robin here, switching for every 1385 * BLK_MQ_CPU_WORK_BATCH queued items. 1386 */ 1387 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1388 { 1389 bool tried = false; 1390 int next_cpu = hctx->next_cpu; 1391 1392 if (hctx->queue->nr_hw_queues == 1) 1393 return WORK_CPU_UNBOUND; 1394 1395 if (--hctx->next_cpu_batch <= 0) { 1396 select_cpu: 1397 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1398 cpu_online_mask); 1399 if (next_cpu >= nr_cpu_ids) 1400 next_cpu = blk_mq_first_mapped_cpu(hctx); 1401 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1402 } 1403 1404 /* 1405 * Do unbound schedule if we can't find a online CPU for this hctx, 1406 * and it should only happen in the path of handling CPU DEAD. 1407 */ 1408 if (!cpu_online(next_cpu)) { 1409 if (!tried) { 1410 tried = true; 1411 goto select_cpu; 1412 } 1413 1414 /* 1415 * Make sure to re-select CPU next time once after CPUs 1416 * in hctx->cpumask become online again. 1417 */ 1418 hctx->next_cpu = next_cpu; 1419 hctx->next_cpu_batch = 1; 1420 return WORK_CPU_UNBOUND; 1421 } 1422 1423 hctx->next_cpu = next_cpu; 1424 return next_cpu; 1425 } 1426 1427 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1428 unsigned long msecs) 1429 { 1430 if (unlikely(blk_mq_hctx_stopped(hctx))) 1431 return; 1432 1433 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1434 int cpu = get_cpu(); 1435 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1436 __blk_mq_run_hw_queue(hctx); 1437 put_cpu(); 1438 return; 1439 } 1440 1441 put_cpu(); 1442 } 1443 1444 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1445 msecs_to_jiffies(msecs)); 1446 } 1447 1448 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1449 { 1450 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1451 } 1452 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1453 1454 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1455 { 1456 int srcu_idx; 1457 bool need_run; 1458 1459 /* 1460 * When queue is quiesced, we may be switching io scheduler, or 1461 * updating nr_hw_queues, or other things, and we can't run queue 1462 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1463 * 1464 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1465 * quiesced. 1466 */ 1467 hctx_lock(hctx, &srcu_idx); 1468 need_run = !blk_queue_quiesced(hctx->queue) && 1469 blk_mq_hctx_has_pending(hctx); 1470 hctx_unlock(hctx, srcu_idx); 1471 1472 if (need_run) 1473 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1474 } 1475 EXPORT_SYMBOL(blk_mq_run_hw_queue); 1476 1477 void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1478 { 1479 struct blk_mq_hw_ctx *hctx; 1480 int i; 1481 1482 queue_for_each_hw_ctx(q, hctx, i) { 1483 if (blk_mq_hctx_stopped(hctx)) 1484 continue; 1485 1486 blk_mq_run_hw_queue(hctx, async); 1487 } 1488 } 1489 EXPORT_SYMBOL(blk_mq_run_hw_queues); 1490 1491 /** 1492 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1493 * @q: request queue. 1494 * 1495 * The caller is responsible for serializing this function against 1496 * blk_mq_{start,stop}_hw_queue(). 1497 */ 1498 bool blk_mq_queue_stopped(struct request_queue *q) 1499 { 1500 struct blk_mq_hw_ctx *hctx; 1501 int i; 1502 1503 queue_for_each_hw_ctx(q, hctx, i) 1504 if (blk_mq_hctx_stopped(hctx)) 1505 return true; 1506 1507 return false; 1508 } 1509 EXPORT_SYMBOL(blk_mq_queue_stopped); 1510 1511 /* 1512 * This function is often used for pausing .queue_rq() by driver when 1513 * there isn't enough resource or some conditions aren't satisfied, and 1514 * BLK_STS_RESOURCE is usually returned. 1515 * 1516 * We do not guarantee that dispatch can be drained or blocked 1517 * after blk_mq_stop_hw_queue() returns. Please use 1518 * blk_mq_quiesce_queue() for that requirement. 1519 */ 1520 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1521 { 1522 cancel_delayed_work(&hctx->run_work); 1523 1524 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1525 } 1526 EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1527 1528 /* 1529 * This function is often used for pausing .queue_rq() by driver when 1530 * there isn't enough resource or some conditions aren't satisfied, and 1531 * BLK_STS_RESOURCE is usually returned. 1532 * 1533 * We do not guarantee that dispatch can be drained or blocked 1534 * after blk_mq_stop_hw_queues() returns. Please use 1535 * blk_mq_quiesce_queue() for that requirement. 1536 */ 1537 void blk_mq_stop_hw_queues(struct request_queue *q) 1538 { 1539 struct blk_mq_hw_ctx *hctx; 1540 int i; 1541 1542 queue_for_each_hw_ctx(q, hctx, i) 1543 blk_mq_stop_hw_queue(hctx); 1544 } 1545 EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1546 1547 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1548 { 1549 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1550 1551 blk_mq_run_hw_queue(hctx, false); 1552 } 1553 EXPORT_SYMBOL(blk_mq_start_hw_queue); 1554 1555 void blk_mq_start_hw_queues(struct request_queue *q) 1556 { 1557 struct blk_mq_hw_ctx *hctx; 1558 int i; 1559 1560 queue_for_each_hw_ctx(q, hctx, i) 1561 blk_mq_start_hw_queue(hctx); 1562 } 1563 EXPORT_SYMBOL(blk_mq_start_hw_queues); 1564 1565 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1566 { 1567 if (!blk_mq_hctx_stopped(hctx)) 1568 return; 1569 1570 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1571 blk_mq_run_hw_queue(hctx, async); 1572 } 1573 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1574 1575 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1576 { 1577 struct blk_mq_hw_ctx *hctx; 1578 int i; 1579 1580 queue_for_each_hw_ctx(q, hctx, i) 1581 blk_mq_start_stopped_hw_queue(hctx, async); 1582 } 1583 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1584 1585 static void blk_mq_run_work_fn(struct work_struct *work) 1586 { 1587 struct blk_mq_hw_ctx *hctx; 1588 1589 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1590 1591 /* 1592 * If we are stopped, don't run the queue. 1593 */ 1594 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) 1595 return; 1596 1597 __blk_mq_run_hw_queue(hctx); 1598 } 1599 1600 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1601 struct request *rq, 1602 bool at_head) 1603 { 1604 struct blk_mq_ctx *ctx = rq->mq_ctx; 1605 enum hctx_type type = hctx->type; 1606 1607 lockdep_assert_held(&ctx->lock); 1608 1609 trace_block_rq_insert(hctx->queue, rq); 1610 1611 if (at_head) 1612 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1613 else 1614 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1615 } 1616 1617 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1618 bool at_head) 1619 { 1620 struct blk_mq_ctx *ctx = rq->mq_ctx; 1621 1622 lockdep_assert_held(&ctx->lock); 1623 1624 __blk_mq_insert_req_list(hctx, rq, at_head); 1625 blk_mq_hctx_mark_pending(hctx, ctx); 1626 } 1627 1628 /* 1629 * Should only be used carefully, when the caller knows we want to 1630 * bypass a potential IO scheduler on the target device. 1631 */ 1632 void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1633 bool run_queue) 1634 { 1635 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1636 1637 spin_lock(&hctx->lock); 1638 if (at_head) 1639 list_add(&rq->queuelist, &hctx->dispatch); 1640 else 1641 list_add_tail(&rq->queuelist, &hctx->dispatch); 1642 spin_unlock(&hctx->lock); 1643 1644 if (run_queue) 1645 blk_mq_run_hw_queue(hctx, false); 1646 } 1647 1648 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1649 struct list_head *list) 1650 1651 { 1652 struct request *rq; 1653 enum hctx_type type = hctx->type; 1654 1655 /* 1656 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1657 * offline now 1658 */ 1659 list_for_each_entry(rq, list, queuelist) { 1660 BUG_ON(rq->mq_ctx != ctx); 1661 trace_block_rq_insert(hctx->queue, rq); 1662 } 1663 1664 spin_lock(&ctx->lock); 1665 list_splice_tail_init(list, &ctx->rq_lists[type]); 1666 blk_mq_hctx_mark_pending(hctx, ctx); 1667 spin_unlock(&ctx->lock); 1668 } 1669 1670 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 1671 { 1672 struct request *rqa = container_of(a, struct request, queuelist); 1673 struct request *rqb = container_of(b, struct request, queuelist); 1674 1675 if (rqa->mq_ctx < rqb->mq_ctx) 1676 return -1; 1677 else if (rqa->mq_ctx > rqb->mq_ctx) 1678 return 1; 1679 else if (rqa->mq_hctx < rqb->mq_hctx) 1680 return -1; 1681 else if (rqa->mq_hctx > rqb->mq_hctx) 1682 return 1; 1683 1684 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1685 } 1686 1687 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1688 { 1689 struct blk_mq_hw_ctx *this_hctx; 1690 struct blk_mq_ctx *this_ctx; 1691 struct request_queue *this_q; 1692 struct request *rq; 1693 LIST_HEAD(list); 1694 LIST_HEAD(rq_list); 1695 unsigned int depth; 1696 1697 list_splice_init(&plug->mq_list, &list); 1698 1699 if (plug->rq_count > 2 && plug->multiple_queues) 1700 list_sort(NULL, &list, plug_rq_cmp); 1701 1702 plug->rq_count = 0; 1703 1704 this_q = NULL; 1705 this_hctx = NULL; 1706 this_ctx = NULL; 1707 depth = 0; 1708 1709 while (!list_empty(&list)) { 1710 rq = list_entry_rq(list.next); 1711 list_del_init(&rq->queuelist); 1712 BUG_ON(!rq->q); 1713 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) { 1714 if (this_hctx) { 1715 trace_block_unplug(this_q, depth, !from_schedule); 1716 blk_mq_sched_insert_requests(this_hctx, this_ctx, 1717 &rq_list, 1718 from_schedule); 1719 } 1720 1721 this_q = rq->q; 1722 this_ctx = rq->mq_ctx; 1723 this_hctx = rq->mq_hctx; 1724 depth = 0; 1725 } 1726 1727 depth++; 1728 list_add_tail(&rq->queuelist, &rq_list); 1729 } 1730 1731 /* 1732 * If 'this_hctx' is set, we know we have entries to complete 1733 * on 'rq_list'. Do those. 1734 */ 1735 if (this_hctx) { 1736 trace_block_unplug(this_q, depth, !from_schedule); 1737 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1738 from_schedule); 1739 } 1740 } 1741 1742 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1743 unsigned int nr_segs) 1744 { 1745 if (bio->bi_opf & REQ_RAHEAD) 1746 rq->cmd_flags |= REQ_FAILFAST_MASK; 1747 1748 rq->__sector = bio->bi_iter.bi_sector; 1749 rq->write_hint = bio->bi_write_hint; 1750 blk_rq_bio_prep(rq, bio, nr_segs); 1751 1752 blk_account_io_start(rq, true); 1753 } 1754 1755 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1756 struct request *rq, 1757 blk_qc_t *cookie, bool last) 1758 { 1759 struct request_queue *q = rq->q; 1760 struct blk_mq_queue_data bd = { 1761 .rq = rq, 1762 .last = last, 1763 }; 1764 blk_qc_t new_cookie; 1765 blk_status_t ret; 1766 1767 new_cookie = request_to_qc_t(hctx, rq); 1768 1769 /* 1770 * For OK queue, we are done. For error, caller may kill it. 1771 * Any other error (busy), just add it to our list as we 1772 * previously would have done. 1773 */ 1774 ret = q->mq_ops->queue_rq(hctx, &bd); 1775 switch (ret) { 1776 case BLK_STS_OK: 1777 blk_mq_update_dispatch_busy(hctx, false); 1778 *cookie = new_cookie; 1779 break; 1780 case BLK_STS_RESOURCE: 1781 case BLK_STS_DEV_RESOURCE: 1782 blk_mq_update_dispatch_busy(hctx, true); 1783 __blk_mq_requeue_request(rq); 1784 break; 1785 default: 1786 blk_mq_update_dispatch_busy(hctx, false); 1787 *cookie = BLK_QC_T_NONE; 1788 break; 1789 } 1790 1791 return ret; 1792 } 1793 1794 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1795 struct request *rq, 1796 blk_qc_t *cookie, 1797 bool bypass_insert, bool last) 1798 { 1799 struct request_queue *q = rq->q; 1800 bool run_queue = true; 1801 1802 /* 1803 * RCU or SRCU read lock is needed before checking quiesced flag. 1804 * 1805 * When queue is stopped or quiesced, ignore 'bypass_insert' from 1806 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 1807 * and avoid driver to try to dispatch again. 1808 */ 1809 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 1810 run_queue = false; 1811 bypass_insert = false; 1812 goto insert; 1813 } 1814 1815 if (q->elevator && !bypass_insert) 1816 goto insert; 1817 1818 if (!blk_mq_get_dispatch_budget(hctx)) 1819 goto insert; 1820 1821 if (!blk_mq_get_driver_tag(rq)) { 1822 blk_mq_put_dispatch_budget(hctx); 1823 goto insert; 1824 } 1825 1826 return __blk_mq_issue_directly(hctx, rq, cookie, last); 1827 insert: 1828 if (bypass_insert) 1829 return BLK_STS_RESOURCE; 1830 1831 blk_mq_request_bypass_insert(rq, false, run_queue); 1832 return BLK_STS_OK; 1833 } 1834 1835 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 1836 struct request *rq, blk_qc_t *cookie) 1837 { 1838 blk_status_t ret; 1839 int srcu_idx; 1840 1841 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1842 1843 hctx_lock(hctx, &srcu_idx); 1844 1845 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 1846 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 1847 blk_mq_request_bypass_insert(rq, false, true); 1848 else if (ret != BLK_STS_OK) 1849 blk_mq_end_request(rq, ret); 1850 1851 hctx_unlock(hctx, srcu_idx); 1852 } 1853 1854 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 1855 { 1856 blk_status_t ret; 1857 int srcu_idx; 1858 blk_qc_t unused_cookie; 1859 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1860 1861 hctx_lock(hctx, &srcu_idx); 1862 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 1863 hctx_unlock(hctx, srcu_idx); 1864 1865 return ret; 1866 } 1867 1868 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 1869 struct list_head *list) 1870 { 1871 while (!list_empty(list)) { 1872 blk_status_t ret; 1873 struct request *rq = list_first_entry(list, struct request, 1874 queuelist); 1875 1876 list_del_init(&rq->queuelist); 1877 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 1878 if (ret != BLK_STS_OK) { 1879 if (ret == BLK_STS_RESOURCE || 1880 ret == BLK_STS_DEV_RESOURCE) { 1881 blk_mq_request_bypass_insert(rq, false, 1882 list_empty(list)); 1883 break; 1884 } 1885 blk_mq_end_request(rq, ret); 1886 } 1887 } 1888 1889 /* 1890 * If we didn't flush the entire list, we could have told 1891 * the driver there was more coming, but that turned out to 1892 * be a lie. 1893 */ 1894 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs) 1895 hctx->queue->mq_ops->commit_rqs(hctx); 1896 } 1897 1898 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 1899 { 1900 list_add_tail(&rq->queuelist, &plug->mq_list); 1901 plug->rq_count++; 1902 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 1903 struct request *tmp; 1904 1905 tmp = list_first_entry(&plug->mq_list, struct request, 1906 queuelist); 1907 if (tmp->q != rq->q) 1908 plug->multiple_queues = true; 1909 } 1910 } 1911 1912 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio) 1913 { 1914 const int is_sync = op_is_sync(bio->bi_opf); 1915 const int is_flush_fua = op_is_flush(bio->bi_opf); 1916 struct blk_mq_alloc_data data = { .flags = 0}; 1917 struct request *rq; 1918 struct blk_plug *plug; 1919 struct request *same_queue_rq = NULL; 1920 unsigned int nr_segs; 1921 blk_qc_t cookie; 1922 1923 blk_queue_bounce(q, &bio); 1924 __blk_queue_split(q, &bio, &nr_segs); 1925 1926 if (!bio_integrity_prep(bio)) 1927 return BLK_QC_T_NONE; 1928 1929 if (!is_flush_fua && !blk_queue_nomerges(q) && 1930 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 1931 return BLK_QC_T_NONE; 1932 1933 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 1934 return BLK_QC_T_NONE; 1935 1936 rq_qos_throttle(q, bio); 1937 1938 data.cmd_flags = bio->bi_opf; 1939 rq = blk_mq_get_request(q, bio, &data); 1940 if (unlikely(!rq)) { 1941 rq_qos_cleanup(q, bio); 1942 if (bio->bi_opf & REQ_NOWAIT) 1943 bio_wouldblock_error(bio); 1944 return BLK_QC_T_NONE; 1945 } 1946 1947 trace_block_getrq(q, bio, bio->bi_opf); 1948 1949 rq_qos_track(q, rq, bio); 1950 1951 cookie = request_to_qc_t(data.hctx, rq); 1952 1953 blk_mq_bio_to_request(rq, bio, nr_segs); 1954 1955 plug = blk_mq_plug(q, bio); 1956 if (unlikely(is_flush_fua)) { 1957 /* bypass scheduler for flush rq */ 1958 blk_insert_flush(rq); 1959 blk_mq_run_hw_queue(data.hctx, true); 1960 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs || 1961 !blk_queue_nonrot(q))) { 1962 /* 1963 * Use plugging if we have a ->commit_rqs() hook as well, as 1964 * we know the driver uses bd->last in a smart fashion. 1965 * 1966 * Use normal plugging if this disk is slow HDD, as sequential 1967 * IO may benefit a lot from plug merging. 1968 */ 1969 unsigned int request_count = plug->rq_count; 1970 struct request *last = NULL; 1971 1972 if (!request_count) 1973 trace_block_plug(q); 1974 else 1975 last = list_entry_rq(plug->mq_list.prev); 1976 1977 if (request_count >= BLK_MAX_REQUEST_COUNT || (last && 1978 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 1979 blk_flush_plug_list(plug, false); 1980 trace_block_plug(q); 1981 } 1982 1983 blk_add_rq_to_plug(plug, rq); 1984 } else if (q->elevator) { 1985 blk_mq_sched_insert_request(rq, false, true, true); 1986 } else if (plug && !blk_queue_nomerges(q)) { 1987 /* 1988 * We do limited plugging. If the bio can be merged, do that. 1989 * Otherwise the existing request in the plug list will be 1990 * issued. So the plug list will have one request at most 1991 * The plug list might get flushed before this. If that happens, 1992 * the plug list is empty, and same_queue_rq is invalid. 1993 */ 1994 if (list_empty(&plug->mq_list)) 1995 same_queue_rq = NULL; 1996 if (same_queue_rq) { 1997 list_del_init(&same_queue_rq->queuelist); 1998 plug->rq_count--; 1999 } 2000 blk_add_rq_to_plug(plug, rq); 2001 trace_block_plug(q); 2002 2003 if (same_queue_rq) { 2004 data.hctx = same_queue_rq->mq_hctx; 2005 trace_block_unplug(q, 1, true); 2006 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2007 &cookie); 2008 } 2009 } else if ((q->nr_hw_queues > 1 && is_sync) || 2010 !data.hctx->dispatch_busy) { 2011 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2012 } else { 2013 blk_mq_sched_insert_request(rq, false, true, true); 2014 } 2015 2016 return cookie; 2017 } 2018 2019 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2020 unsigned int hctx_idx) 2021 { 2022 struct page *page; 2023 2024 if (tags->rqs && set->ops->exit_request) { 2025 int i; 2026 2027 for (i = 0; i < tags->nr_tags; i++) { 2028 struct request *rq = tags->static_rqs[i]; 2029 2030 if (!rq) 2031 continue; 2032 set->ops->exit_request(set, rq, hctx_idx); 2033 tags->static_rqs[i] = NULL; 2034 } 2035 } 2036 2037 while (!list_empty(&tags->page_list)) { 2038 page = list_first_entry(&tags->page_list, struct page, lru); 2039 list_del_init(&page->lru); 2040 /* 2041 * Remove kmemleak object previously allocated in 2042 * blk_mq_alloc_rqs(). 2043 */ 2044 kmemleak_free(page_address(page)); 2045 __free_pages(page, page->private); 2046 } 2047 } 2048 2049 void blk_mq_free_rq_map(struct blk_mq_tags *tags) 2050 { 2051 kfree(tags->rqs); 2052 tags->rqs = NULL; 2053 kfree(tags->static_rqs); 2054 tags->static_rqs = NULL; 2055 2056 blk_mq_free_tags(tags); 2057 } 2058 2059 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2060 unsigned int hctx_idx, 2061 unsigned int nr_tags, 2062 unsigned int reserved_tags) 2063 { 2064 struct blk_mq_tags *tags; 2065 int node; 2066 2067 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2068 if (node == NUMA_NO_NODE) 2069 node = set->numa_node; 2070 2071 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, 2072 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags)); 2073 if (!tags) 2074 return NULL; 2075 2076 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2077 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2078 node); 2079 if (!tags->rqs) { 2080 blk_mq_free_tags(tags); 2081 return NULL; 2082 } 2083 2084 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2085 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2086 node); 2087 if (!tags->static_rqs) { 2088 kfree(tags->rqs); 2089 blk_mq_free_tags(tags); 2090 return NULL; 2091 } 2092 2093 return tags; 2094 } 2095 2096 static size_t order_to_size(unsigned int order) 2097 { 2098 return (size_t)PAGE_SIZE << order; 2099 } 2100 2101 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2102 unsigned int hctx_idx, int node) 2103 { 2104 int ret; 2105 2106 if (set->ops->init_request) { 2107 ret = set->ops->init_request(set, rq, hctx_idx, node); 2108 if (ret) 2109 return ret; 2110 } 2111 2112 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2113 return 0; 2114 } 2115 2116 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2117 unsigned int hctx_idx, unsigned int depth) 2118 { 2119 unsigned int i, j, entries_per_page, max_order = 4; 2120 size_t rq_size, left; 2121 int node; 2122 2123 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2124 if (node == NUMA_NO_NODE) 2125 node = set->numa_node; 2126 2127 INIT_LIST_HEAD(&tags->page_list); 2128 2129 /* 2130 * rq_size is the size of the request plus driver payload, rounded 2131 * to the cacheline size 2132 */ 2133 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2134 cache_line_size()); 2135 left = rq_size * depth; 2136 2137 for (i = 0; i < depth; ) { 2138 int this_order = max_order; 2139 struct page *page; 2140 int to_do; 2141 void *p; 2142 2143 while (this_order && left < order_to_size(this_order - 1)) 2144 this_order--; 2145 2146 do { 2147 page = alloc_pages_node(node, 2148 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2149 this_order); 2150 if (page) 2151 break; 2152 if (!this_order--) 2153 break; 2154 if (order_to_size(this_order) < rq_size) 2155 break; 2156 } while (1); 2157 2158 if (!page) 2159 goto fail; 2160 2161 page->private = this_order; 2162 list_add_tail(&page->lru, &tags->page_list); 2163 2164 p = page_address(page); 2165 /* 2166 * Allow kmemleak to scan these pages as they contain pointers 2167 * to additional allocations like via ops->init_request(). 2168 */ 2169 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2170 entries_per_page = order_to_size(this_order) / rq_size; 2171 to_do = min(entries_per_page, depth - i); 2172 left -= to_do * rq_size; 2173 for (j = 0; j < to_do; j++) { 2174 struct request *rq = p; 2175 2176 tags->static_rqs[i] = rq; 2177 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2178 tags->static_rqs[i] = NULL; 2179 goto fail; 2180 } 2181 2182 p += rq_size; 2183 i++; 2184 } 2185 } 2186 return 0; 2187 2188 fail: 2189 blk_mq_free_rqs(set, tags, hctx_idx); 2190 return -ENOMEM; 2191 } 2192 2193 /* 2194 * 'cpu' is going away. splice any existing rq_list entries from this 2195 * software queue to the hw queue dispatch list, and ensure that it 2196 * gets run. 2197 */ 2198 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2199 { 2200 struct blk_mq_hw_ctx *hctx; 2201 struct blk_mq_ctx *ctx; 2202 LIST_HEAD(tmp); 2203 enum hctx_type type; 2204 2205 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2206 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2207 type = hctx->type; 2208 2209 spin_lock(&ctx->lock); 2210 if (!list_empty(&ctx->rq_lists[type])) { 2211 list_splice_init(&ctx->rq_lists[type], &tmp); 2212 blk_mq_hctx_clear_pending(hctx, ctx); 2213 } 2214 spin_unlock(&ctx->lock); 2215 2216 if (list_empty(&tmp)) 2217 return 0; 2218 2219 spin_lock(&hctx->lock); 2220 list_splice_tail_init(&tmp, &hctx->dispatch); 2221 spin_unlock(&hctx->lock); 2222 2223 blk_mq_run_hw_queue(hctx, true); 2224 return 0; 2225 } 2226 2227 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2228 { 2229 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2230 &hctx->cpuhp_dead); 2231 } 2232 2233 /* hctx->ctxs will be freed in queue's release handler */ 2234 static void blk_mq_exit_hctx(struct request_queue *q, 2235 struct blk_mq_tag_set *set, 2236 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2237 { 2238 if (blk_mq_hw_queue_mapped(hctx)) 2239 blk_mq_tag_idle(hctx); 2240 2241 if (set->ops->exit_request) 2242 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx); 2243 2244 if (set->ops->exit_hctx) 2245 set->ops->exit_hctx(hctx, hctx_idx); 2246 2247 blk_mq_remove_cpuhp(hctx); 2248 2249 spin_lock(&q->unused_hctx_lock); 2250 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2251 spin_unlock(&q->unused_hctx_lock); 2252 } 2253 2254 static void blk_mq_exit_hw_queues(struct request_queue *q, 2255 struct blk_mq_tag_set *set, int nr_queue) 2256 { 2257 struct blk_mq_hw_ctx *hctx; 2258 unsigned int i; 2259 2260 queue_for_each_hw_ctx(q, hctx, i) { 2261 if (i == nr_queue) 2262 break; 2263 blk_mq_debugfs_unregister_hctx(hctx); 2264 blk_mq_exit_hctx(q, set, hctx, i); 2265 } 2266 } 2267 2268 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2269 { 2270 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2271 2272 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2273 __alignof__(struct blk_mq_hw_ctx)) != 2274 sizeof(struct blk_mq_hw_ctx)); 2275 2276 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2277 hw_ctx_size += sizeof(struct srcu_struct); 2278 2279 return hw_ctx_size; 2280 } 2281 2282 static int blk_mq_init_hctx(struct request_queue *q, 2283 struct blk_mq_tag_set *set, 2284 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2285 { 2286 hctx->queue_num = hctx_idx; 2287 2288 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2289 2290 hctx->tags = set->tags[hctx_idx]; 2291 2292 if (set->ops->init_hctx && 2293 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2294 goto unregister_cpu_notifier; 2295 2296 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2297 hctx->numa_node)) 2298 goto exit_hctx; 2299 return 0; 2300 2301 exit_hctx: 2302 if (set->ops->exit_hctx) 2303 set->ops->exit_hctx(hctx, hctx_idx); 2304 unregister_cpu_notifier: 2305 blk_mq_remove_cpuhp(hctx); 2306 return -1; 2307 } 2308 2309 static struct blk_mq_hw_ctx * 2310 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2311 int node) 2312 { 2313 struct blk_mq_hw_ctx *hctx; 2314 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2315 2316 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2317 if (!hctx) 2318 goto fail_alloc_hctx; 2319 2320 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2321 goto free_hctx; 2322 2323 atomic_set(&hctx->nr_active, 0); 2324 if (node == NUMA_NO_NODE) 2325 node = set->numa_node; 2326 hctx->numa_node = node; 2327 2328 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2329 spin_lock_init(&hctx->lock); 2330 INIT_LIST_HEAD(&hctx->dispatch); 2331 hctx->queue = q; 2332 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED; 2333 2334 INIT_LIST_HEAD(&hctx->hctx_list); 2335 2336 /* 2337 * Allocate space for all possible cpus to avoid allocation at 2338 * runtime 2339 */ 2340 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2341 gfp, node); 2342 if (!hctx->ctxs) 2343 goto free_cpumask; 2344 2345 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2346 gfp, node)) 2347 goto free_ctxs; 2348 hctx->nr_ctx = 0; 2349 2350 spin_lock_init(&hctx->dispatch_wait_lock); 2351 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2352 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2353 2354 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size, 2355 gfp); 2356 if (!hctx->fq) 2357 goto free_bitmap; 2358 2359 if (hctx->flags & BLK_MQ_F_BLOCKING) 2360 init_srcu_struct(hctx->srcu); 2361 blk_mq_hctx_kobj_init(hctx); 2362 2363 return hctx; 2364 2365 free_bitmap: 2366 sbitmap_free(&hctx->ctx_map); 2367 free_ctxs: 2368 kfree(hctx->ctxs); 2369 free_cpumask: 2370 free_cpumask_var(hctx->cpumask); 2371 free_hctx: 2372 kfree(hctx); 2373 fail_alloc_hctx: 2374 return NULL; 2375 } 2376 2377 static void blk_mq_init_cpu_queues(struct request_queue *q, 2378 unsigned int nr_hw_queues) 2379 { 2380 struct blk_mq_tag_set *set = q->tag_set; 2381 unsigned int i, j; 2382 2383 for_each_possible_cpu(i) { 2384 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2385 struct blk_mq_hw_ctx *hctx; 2386 int k; 2387 2388 __ctx->cpu = i; 2389 spin_lock_init(&__ctx->lock); 2390 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2391 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2392 2393 __ctx->queue = q; 2394 2395 /* 2396 * Set local node, IFF we have more than one hw queue. If 2397 * not, we remain on the home node of the device 2398 */ 2399 for (j = 0; j < set->nr_maps; j++) { 2400 hctx = blk_mq_map_queue_type(q, j, i); 2401 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2402 hctx->numa_node = local_memory_node(cpu_to_node(i)); 2403 } 2404 } 2405 } 2406 2407 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx) 2408 { 2409 int ret = 0; 2410 2411 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2412 set->queue_depth, set->reserved_tags); 2413 if (!set->tags[hctx_idx]) 2414 return false; 2415 2416 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2417 set->queue_depth); 2418 if (!ret) 2419 return true; 2420 2421 blk_mq_free_rq_map(set->tags[hctx_idx]); 2422 set->tags[hctx_idx] = NULL; 2423 return false; 2424 } 2425 2426 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2427 unsigned int hctx_idx) 2428 { 2429 if (set->tags && set->tags[hctx_idx]) { 2430 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2431 blk_mq_free_rq_map(set->tags[hctx_idx]); 2432 set->tags[hctx_idx] = NULL; 2433 } 2434 } 2435 2436 static void blk_mq_map_swqueue(struct request_queue *q) 2437 { 2438 unsigned int i, j, hctx_idx; 2439 struct blk_mq_hw_ctx *hctx; 2440 struct blk_mq_ctx *ctx; 2441 struct blk_mq_tag_set *set = q->tag_set; 2442 2443 queue_for_each_hw_ctx(q, hctx, i) { 2444 cpumask_clear(hctx->cpumask); 2445 hctx->nr_ctx = 0; 2446 hctx->dispatch_from = NULL; 2447 } 2448 2449 /* 2450 * Map software to hardware queues. 2451 * 2452 * If the cpu isn't present, the cpu is mapped to first hctx. 2453 */ 2454 for_each_possible_cpu(i) { 2455 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i]; 2456 /* unmapped hw queue can be remapped after CPU topo changed */ 2457 if (!set->tags[hctx_idx] && 2458 !__blk_mq_alloc_rq_map(set, hctx_idx)) { 2459 /* 2460 * If tags initialization fail for some hctx, 2461 * that hctx won't be brought online. In this 2462 * case, remap the current ctx to hctx[0] which 2463 * is guaranteed to always have tags allocated 2464 */ 2465 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0; 2466 } 2467 2468 ctx = per_cpu_ptr(q->queue_ctx, i); 2469 for (j = 0; j < set->nr_maps; j++) { 2470 if (!set->map[j].nr_queues) { 2471 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2472 HCTX_TYPE_DEFAULT, i); 2473 continue; 2474 } 2475 2476 hctx = blk_mq_map_queue_type(q, j, i); 2477 ctx->hctxs[j] = hctx; 2478 /* 2479 * If the CPU is already set in the mask, then we've 2480 * mapped this one already. This can happen if 2481 * devices share queues across queue maps. 2482 */ 2483 if (cpumask_test_cpu(i, hctx->cpumask)) 2484 continue; 2485 2486 cpumask_set_cpu(i, hctx->cpumask); 2487 hctx->type = j; 2488 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2489 hctx->ctxs[hctx->nr_ctx++] = ctx; 2490 2491 /* 2492 * If the nr_ctx type overflows, we have exceeded the 2493 * amount of sw queues we can support. 2494 */ 2495 BUG_ON(!hctx->nr_ctx); 2496 } 2497 2498 for (; j < HCTX_MAX_TYPES; j++) 2499 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2500 HCTX_TYPE_DEFAULT, i); 2501 } 2502 2503 queue_for_each_hw_ctx(q, hctx, i) { 2504 /* 2505 * If no software queues are mapped to this hardware queue, 2506 * disable it and free the request entries. 2507 */ 2508 if (!hctx->nr_ctx) { 2509 /* Never unmap queue 0. We need it as a 2510 * fallback in case of a new remap fails 2511 * allocation 2512 */ 2513 if (i && set->tags[i]) 2514 blk_mq_free_map_and_requests(set, i); 2515 2516 hctx->tags = NULL; 2517 continue; 2518 } 2519 2520 hctx->tags = set->tags[i]; 2521 WARN_ON(!hctx->tags); 2522 2523 /* 2524 * Set the map size to the number of mapped software queues. 2525 * This is more accurate and more efficient than looping 2526 * over all possibly mapped software queues. 2527 */ 2528 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2529 2530 /* 2531 * Initialize batch roundrobin counts 2532 */ 2533 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2534 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2535 } 2536 } 2537 2538 /* 2539 * Caller needs to ensure that we're either frozen/quiesced, or that 2540 * the queue isn't live yet. 2541 */ 2542 static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2543 { 2544 struct blk_mq_hw_ctx *hctx; 2545 int i; 2546 2547 queue_for_each_hw_ctx(q, hctx, i) { 2548 if (shared) 2549 hctx->flags |= BLK_MQ_F_TAG_SHARED; 2550 else 2551 hctx->flags &= ~BLK_MQ_F_TAG_SHARED; 2552 } 2553 } 2554 2555 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, 2556 bool shared) 2557 { 2558 struct request_queue *q; 2559 2560 lockdep_assert_held(&set->tag_list_lock); 2561 2562 list_for_each_entry(q, &set->tag_list, tag_set_list) { 2563 blk_mq_freeze_queue(q); 2564 queue_set_hctx_shared(q, shared); 2565 blk_mq_unfreeze_queue(q); 2566 } 2567 } 2568 2569 static void blk_mq_del_queue_tag_set(struct request_queue *q) 2570 { 2571 struct blk_mq_tag_set *set = q->tag_set; 2572 2573 mutex_lock(&set->tag_list_lock); 2574 list_del_rcu(&q->tag_set_list); 2575 if (list_is_singular(&set->tag_list)) { 2576 /* just transitioned to unshared */ 2577 set->flags &= ~BLK_MQ_F_TAG_SHARED; 2578 /* update existing queue */ 2579 blk_mq_update_tag_set_depth(set, false); 2580 } 2581 mutex_unlock(&set->tag_list_lock); 2582 INIT_LIST_HEAD(&q->tag_set_list); 2583 } 2584 2585 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 2586 struct request_queue *q) 2587 { 2588 mutex_lock(&set->tag_list_lock); 2589 2590 /* 2591 * Check to see if we're transitioning to shared (from 1 to 2 queues). 2592 */ 2593 if (!list_empty(&set->tag_list) && 2594 !(set->flags & BLK_MQ_F_TAG_SHARED)) { 2595 set->flags |= BLK_MQ_F_TAG_SHARED; 2596 /* update existing queue */ 2597 blk_mq_update_tag_set_depth(set, true); 2598 } 2599 if (set->flags & BLK_MQ_F_TAG_SHARED) 2600 queue_set_hctx_shared(q, true); 2601 list_add_tail_rcu(&q->tag_set_list, &set->tag_list); 2602 2603 mutex_unlock(&set->tag_list_lock); 2604 } 2605 2606 /* All allocations will be freed in release handler of q->mq_kobj */ 2607 static int blk_mq_alloc_ctxs(struct request_queue *q) 2608 { 2609 struct blk_mq_ctxs *ctxs; 2610 int cpu; 2611 2612 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 2613 if (!ctxs) 2614 return -ENOMEM; 2615 2616 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 2617 if (!ctxs->queue_ctx) 2618 goto fail; 2619 2620 for_each_possible_cpu(cpu) { 2621 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 2622 ctx->ctxs = ctxs; 2623 } 2624 2625 q->mq_kobj = &ctxs->kobj; 2626 q->queue_ctx = ctxs->queue_ctx; 2627 2628 return 0; 2629 fail: 2630 kfree(ctxs); 2631 return -ENOMEM; 2632 } 2633 2634 /* 2635 * It is the actual release handler for mq, but we do it from 2636 * request queue's release handler for avoiding use-after-free 2637 * and headache because q->mq_kobj shouldn't have been introduced, 2638 * but we can't group ctx/kctx kobj without it. 2639 */ 2640 void blk_mq_release(struct request_queue *q) 2641 { 2642 struct blk_mq_hw_ctx *hctx, *next; 2643 int i; 2644 2645 queue_for_each_hw_ctx(q, hctx, i) 2646 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 2647 2648 /* all hctx are in .unused_hctx_list now */ 2649 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 2650 list_del_init(&hctx->hctx_list); 2651 kobject_put(&hctx->kobj); 2652 } 2653 2654 kfree(q->queue_hw_ctx); 2655 2656 /* 2657 * release .mq_kobj and sw queue's kobject now because 2658 * both share lifetime with request queue. 2659 */ 2660 blk_mq_sysfs_deinit(q); 2661 } 2662 2663 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 2664 { 2665 struct request_queue *uninit_q, *q; 2666 2667 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node); 2668 if (!uninit_q) 2669 return ERR_PTR(-ENOMEM); 2670 2671 /* 2672 * Initialize the queue without an elevator. device_add_disk() will do 2673 * the initialization. 2674 */ 2675 q = blk_mq_init_allocated_queue(set, uninit_q, false); 2676 if (IS_ERR(q)) 2677 blk_cleanup_queue(uninit_q); 2678 2679 return q; 2680 } 2681 EXPORT_SYMBOL(blk_mq_init_queue); 2682 2683 /* 2684 * Helper for setting up a queue with mq ops, given queue depth, and 2685 * the passed in mq ops flags. 2686 */ 2687 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, 2688 const struct blk_mq_ops *ops, 2689 unsigned int queue_depth, 2690 unsigned int set_flags) 2691 { 2692 struct request_queue *q; 2693 int ret; 2694 2695 memset(set, 0, sizeof(*set)); 2696 set->ops = ops; 2697 set->nr_hw_queues = 1; 2698 set->nr_maps = 1; 2699 set->queue_depth = queue_depth; 2700 set->numa_node = NUMA_NO_NODE; 2701 set->flags = set_flags; 2702 2703 ret = blk_mq_alloc_tag_set(set); 2704 if (ret) 2705 return ERR_PTR(ret); 2706 2707 q = blk_mq_init_queue(set); 2708 if (IS_ERR(q)) { 2709 blk_mq_free_tag_set(set); 2710 return q; 2711 } 2712 2713 return q; 2714 } 2715 EXPORT_SYMBOL(blk_mq_init_sq_queue); 2716 2717 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 2718 struct blk_mq_tag_set *set, struct request_queue *q, 2719 int hctx_idx, int node) 2720 { 2721 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 2722 2723 /* reuse dead hctx first */ 2724 spin_lock(&q->unused_hctx_lock); 2725 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 2726 if (tmp->numa_node == node) { 2727 hctx = tmp; 2728 break; 2729 } 2730 } 2731 if (hctx) 2732 list_del_init(&hctx->hctx_list); 2733 spin_unlock(&q->unused_hctx_lock); 2734 2735 if (!hctx) 2736 hctx = blk_mq_alloc_hctx(q, set, node); 2737 if (!hctx) 2738 goto fail; 2739 2740 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 2741 goto free_hctx; 2742 2743 return hctx; 2744 2745 free_hctx: 2746 kobject_put(&hctx->kobj); 2747 fail: 2748 return NULL; 2749 } 2750 2751 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 2752 struct request_queue *q) 2753 { 2754 int i, j, end; 2755 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 2756 2757 if (q->nr_hw_queues < set->nr_hw_queues) { 2758 struct blk_mq_hw_ctx **new_hctxs; 2759 2760 new_hctxs = kcalloc_node(set->nr_hw_queues, 2761 sizeof(*new_hctxs), GFP_KERNEL, 2762 set->numa_node); 2763 if (!new_hctxs) 2764 return; 2765 if (hctxs) 2766 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 2767 sizeof(*hctxs)); 2768 q->queue_hw_ctx = new_hctxs; 2769 kfree(hctxs); 2770 hctxs = new_hctxs; 2771 } 2772 2773 /* protect against switching io scheduler */ 2774 mutex_lock(&q->sysfs_lock); 2775 for (i = 0; i < set->nr_hw_queues; i++) { 2776 int node; 2777 struct blk_mq_hw_ctx *hctx; 2778 2779 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 2780 /* 2781 * If the hw queue has been mapped to another numa node, 2782 * we need to realloc the hctx. If allocation fails, fallback 2783 * to use the previous one. 2784 */ 2785 if (hctxs[i] && (hctxs[i]->numa_node == node)) 2786 continue; 2787 2788 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 2789 if (hctx) { 2790 if (hctxs[i]) 2791 blk_mq_exit_hctx(q, set, hctxs[i], i); 2792 hctxs[i] = hctx; 2793 } else { 2794 if (hctxs[i]) 2795 pr_warn("Allocate new hctx on node %d fails,\ 2796 fallback to previous one on node %d\n", 2797 node, hctxs[i]->numa_node); 2798 else 2799 break; 2800 } 2801 } 2802 /* 2803 * Increasing nr_hw_queues fails. Free the newly allocated 2804 * hctxs and keep the previous q->nr_hw_queues. 2805 */ 2806 if (i != set->nr_hw_queues) { 2807 j = q->nr_hw_queues; 2808 end = i; 2809 } else { 2810 j = i; 2811 end = q->nr_hw_queues; 2812 q->nr_hw_queues = set->nr_hw_queues; 2813 } 2814 2815 for (; j < end; j++) { 2816 struct blk_mq_hw_ctx *hctx = hctxs[j]; 2817 2818 if (hctx) { 2819 if (hctx->tags) 2820 blk_mq_free_map_and_requests(set, j); 2821 blk_mq_exit_hctx(q, set, hctx, j); 2822 hctxs[j] = NULL; 2823 } 2824 } 2825 mutex_unlock(&q->sysfs_lock); 2826 } 2827 2828 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 2829 struct request_queue *q, 2830 bool elevator_init) 2831 { 2832 /* mark the queue as mq asap */ 2833 q->mq_ops = set->ops; 2834 2835 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 2836 blk_mq_poll_stats_bkt, 2837 BLK_MQ_POLL_STATS_BKTS, q); 2838 if (!q->poll_cb) 2839 goto err_exit; 2840 2841 if (blk_mq_alloc_ctxs(q)) 2842 goto err_poll; 2843 2844 /* init q->mq_kobj and sw queues' kobjects */ 2845 blk_mq_sysfs_init(q); 2846 2847 INIT_LIST_HEAD(&q->unused_hctx_list); 2848 spin_lock_init(&q->unused_hctx_lock); 2849 2850 blk_mq_realloc_hw_ctxs(set, q); 2851 if (!q->nr_hw_queues) 2852 goto err_hctxs; 2853 2854 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 2855 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 2856 2857 q->tag_set = set; 2858 2859 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 2860 if (set->nr_maps > HCTX_TYPE_POLL && 2861 set->map[HCTX_TYPE_POLL].nr_queues) 2862 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 2863 2864 q->sg_reserved_size = INT_MAX; 2865 2866 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 2867 INIT_LIST_HEAD(&q->requeue_list); 2868 spin_lock_init(&q->requeue_lock); 2869 2870 blk_queue_make_request(q, blk_mq_make_request); 2871 2872 /* 2873 * Do this after blk_queue_make_request() overrides it... 2874 */ 2875 q->nr_requests = set->queue_depth; 2876 2877 /* 2878 * Default to classic polling 2879 */ 2880 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 2881 2882 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 2883 blk_mq_add_queue_tag_set(set, q); 2884 blk_mq_map_swqueue(q); 2885 2886 if (elevator_init) 2887 elevator_init_mq(q); 2888 2889 return q; 2890 2891 err_hctxs: 2892 kfree(q->queue_hw_ctx); 2893 q->nr_hw_queues = 0; 2894 blk_mq_sysfs_deinit(q); 2895 err_poll: 2896 blk_stat_free_callback(q->poll_cb); 2897 q->poll_cb = NULL; 2898 err_exit: 2899 q->mq_ops = NULL; 2900 return ERR_PTR(-ENOMEM); 2901 } 2902 EXPORT_SYMBOL(blk_mq_init_allocated_queue); 2903 2904 /* tags can _not_ be used after returning from blk_mq_exit_queue */ 2905 void blk_mq_exit_queue(struct request_queue *q) 2906 { 2907 struct blk_mq_tag_set *set = q->tag_set; 2908 2909 blk_mq_del_queue_tag_set(q); 2910 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 2911 } 2912 2913 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2914 { 2915 int i; 2916 2917 for (i = 0; i < set->nr_hw_queues; i++) 2918 if (!__blk_mq_alloc_rq_map(set, i)) 2919 goto out_unwind; 2920 2921 return 0; 2922 2923 out_unwind: 2924 while (--i >= 0) 2925 blk_mq_free_rq_map(set->tags[i]); 2926 2927 return -ENOMEM; 2928 } 2929 2930 /* 2931 * Allocate the request maps associated with this tag_set. Note that this 2932 * may reduce the depth asked for, if memory is tight. set->queue_depth 2933 * will be updated to reflect the allocated depth. 2934 */ 2935 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 2936 { 2937 unsigned int depth; 2938 int err; 2939 2940 depth = set->queue_depth; 2941 do { 2942 err = __blk_mq_alloc_rq_maps(set); 2943 if (!err) 2944 break; 2945 2946 set->queue_depth >>= 1; 2947 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 2948 err = -ENOMEM; 2949 break; 2950 } 2951 } while (set->queue_depth); 2952 2953 if (!set->queue_depth || err) { 2954 pr_err("blk-mq: failed to allocate request map\n"); 2955 return -ENOMEM; 2956 } 2957 2958 if (depth != set->queue_depth) 2959 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 2960 depth, set->queue_depth); 2961 2962 return 0; 2963 } 2964 2965 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 2966 { 2967 /* 2968 * blk_mq_map_queues() and multiple .map_queues() implementations 2969 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 2970 * number of hardware queues. 2971 */ 2972 if (set->nr_maps == 1) 2973 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 2974 2975 if (set->ops->map_queues && !is_kdump_kernel()) { 2976 int i; 2977 2978 /* 2979 * transport .map_queues is usually done in the following 2980 * way: 2981 * 2982 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 2983 * mask = get_cpu_mask(queue) 2984 * for_each_cpu(cpu, mask) 2985 * set->map[x].mq_map[cpu] = queue; 2986 * } 2987 * 2988 * When we need to remap, the table has to be cleared for 2989 * killing stale mapping since one CPU may not be mapped 2990 * to any hw queue. 2991 */ 2992 for (i = 0; i < set->nr_maps; i++) 2993 blk_mq_clear_mq_map(&set->map[i]); 2994 2995 return set->ops->map_queues(set); 2996 } else { 2997 BUG_ON(set->nr_maps > 1); 2998 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 2999 } 3000 } 3001 3002 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3003 int cur_nr_hw_queues, int new_nr_hw_queues) 3004 { 3005 struct blk_mq_tags **new_tags; 3006 3007 if (cur_nr_hw_queues >= new_nr_hw_queues) 3008 return 0; 3009 3010 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3011 GFP_KERNEL, set->numa_node); 3012 if (!new_tags) 3013 return -ENOMEM; 3014 3015 if (set->tags) 3016 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3017 sizeof(*set->tags)); 3018 kfree(set->tags); 3019 set->tags = new_tags; 3020 set->nr_hw_queues = new_nr_hw_queues; 3021 3022 return 0; 3023 } 3024 3025 /* 3026 * Alloc a tag set to be associated with one or more request queues. 3027 * May fail with EINVAL for various error conditions. May adjust the 3028 * requested depth down, if it's too large. In that case, the set 3029 * value will be stored in set->queue_depth. 3030 */ 3031 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3032 { 3033 int i, ret; 3034 3035 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3036 3037 if (!set->nr_hw_queues) 3038 return -EINVAL; 3039 if (!set->queue_depth) 3040 return -EINVAL; 3041 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3042 return -EINVAL; 3043 3044 if (!set->ops->queue_rq) 3045 return -EINVAL; 3046 3047 if (!set->ops->get_budget ^ !set->ops->put_budget) 3048 return -EINVAL; 3049 3050 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3051 pr_info("blk-mq: reduced tag depth to %u\n", 3052 BLK_MQ_MAX_DEPTH); 3053 set->queue_depth = BLK_MQ_MAX_DEPTH; 3054 } 3055 3056 if (!set->nr_maps) 3057 set->nr_maps = 1; 3058 else if (set->nr_maps > HCTX_MAX_TYPES) 3059 return -EINVAL; 3060 3061 /* 3062 * If a crashdump is active, then we are potentially in a very 3063 * memory constrained environment. Limit us to 1 queue and 3064 * 64 tags to prevent using too much memory. 3065 */ 3066 if (is_kdump_kernel()) { 3067 set->nr_hw_queues = 1; 3068 set->nr_maps = 1; 3069 set->queue_depth = min(64U, set->queue_depth); 3070 } 3071 /* 3072 * There is no use for more h/w queues than cpus if we just have 3073 * a single map 3074 */ 3075 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3076 set->nr_hw_queues = nr_cpu_ids; 3077 3078 if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0) 3079 return -ENOMEM; 3080 3081 ret = -ENOMEM; 3082 for (i = 0; i < set->nr_maps; i++) { 3083 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3084 sizeof(set->map[i].mq_map[0]), 3085 GFP_KERNEL, set->numa_node); 3086 if (!set->map[i].mq_map) 3087 goto out_free_mq_map; 3088 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3089 } 3090 3091 ret = blk_mq_update_queue_map(set); 3092 if (ret) 3093 goto out_free_mq_map; 3094 3095 ret = blk_mq_alloc_rq_maps(set); 3096 if (ret) 3097 goto out_free_mq_map; 3098 3099 mutex_init(&set->tag_list_lock); 3100 INIT_LIST_HEAD(&set->tag_list); 3101 3102 return 0; 3103 3104 out_free_mq_map: 3105 for (i = 0; i < set->nr_maps; i++) { 3106 kfree(set->map[i].mq_map); 3107 set->map[i].mq_map = NULL; 3108 } 3109 kfree(set->tags); 3110 set->tags = NULL; 3111 return ret; 3112 } 3113 EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3114 3115 void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3116 { 3117 int i, j; 3118 3119 for (i = 0; i < set->nr_hw_queues; i++) 3120 blk_mq_free_map_and_requests(set, i); 3121 3122 for (j = 0; j < set->nr_maps; j++) { 3123 kfree(set->map[j].mq_map); 3124 set->map[j].mq_map = NULL; 3125 } 3126 3127 kfree(set->tags); 3128 set->tags = NULL; 3129 } 3130 EXPORT_SYMBOL(blk_mq_free_tag_set); 3131 3132 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3133 { 3134 struct blk_mq_tag_set *set = q->tag_set; 3135 struct blk_mq_hw_ctx *hctx; 3136 int i, ret; 3137 3138 if (!set) 3139 return -EINVAL; 3140 3141 if (q->nr_requests == nr) 3142 return 0; 3143 3144 blk_mq_freeze_queue(q); 3145 blk_mq_quiesce_queue(q); 3146 3147 ret = 0; 3148 queue_for_each_hw_ctx(q, hctx, i) { 3149 if (!hctx->tags) 3150 continue; 3151 /* 3152 * If we're using an MQ scheduler, just update the scheduler 3153 * queue depth. This is similar to what the old code would do. 3154 */ 3155 if (!hctx->sched_tags) { 3156 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3157 false); 3158 } else { 3159 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3160 nr, true); 3161 } 3162 if (ret) 3163 break; 3164 if (q->elevator && q->elevator->type->ops.depth_updated) 3165 q->elevator->type->ops.depth_updated(hctx); 3166 } 3167 3168 if (!ret) 3169 q->nr_requests = nr; 3170 3171 blk_mq_unquiesce_queue(q); 3172 blk_mq_unfreeze_queue(q); 3173 3174 return ret; 3175 } 3176 3177 /* 3178 * request_queue and elevator_type pair. 3179 * It is just used by __blk_mq_update_nr_hw_queues to cache 3180 * the elevator_type associated with a request_queue. 3181 */ 3182 struct blk_mq_qe_pair { 3183 struct list_head node; 3184 struct request_queue *q; 3185 struct elevator_type *type; 3186 }; 3187 3188 /* 3189 * Cache the elevator_type in qe pair list and switch the 3190 * io scheduler to 'none' 3191 */ 3192 static bool blk_mq_elv_switch_none(struct list_head *head, 3193 struct request_queue *q) 3194 { 3195 struct blk_mq_qe_pair *qe; 3196 3197 if (!q->elevator) 3198 return true; 3199 3200 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3201 if (!qe) 3202 return false; 3203 3204 INIT_LIST_HEAD(&qe->node); 3205 qe->q = q; 3206 qe->type = q->elevator->type; 3207 list_add(&qe->node, head); 3208 3209 mutex_lock(&q->sysfs_lock); 3210 /* 3211 * After elevator_switch_mq, the previous elevator_queue will be 3212 * released by elevator_release. The reference of the io scheduler 3213 * module get by elevator_get will also be put. So we need to get 3214 * a reference of the io scheduler module here to prevent it to be 3215 * removed. 3216 */ 3217 __module_get(qe->type->elevator_owner); 3218 elevator_switch_mq(q, NULL); 3219 mutex_unlock(&q->sysfs_lock); 3220 3221 return true; 3222 } 3223 3224 static void blk_mq_elv_switch_back(struct list_head *head, 3225 struct request_queue *q) 3226 { 3227 struct blk_mq_qe_pair *qe; 3228 struct elevator_type *t = NULL; 3229 3230 list_for_each_entry(qe, head, node) 3231 if (qe->q == q) { 3232 t = qe->type; 3233 break; 3234 } 3235 3236 if (!t) 3237 return; 3238 3239 list_del(&qe->node); 3240 kfree(qe); 3241 3242 mutex_lock(&q->sysfs_lock); 3243 elevator_switch_mq(q, t); 3244 mutex_unlock(&q->sysfs_lock); 3245 } 3246 3247 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3248 int nr_hw_queues) 3249 { 3250 struct request_queue *q; 3251 LIST_HEAD(head); 3252 int prev_nr_hw_queues; 3253 3254 lockdep_assert_held(&set->tag_list_lock); 3255 3256 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3257 nr_hw_queues = nr_cpu_ids; 3258 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues) 3259 return; 3260 3261 list_for_each_entry(q, &set->tag_list, tag_set_list) 3262 blk_mq_freeze_queue(q); 3263 /* 3264 * Switch IO scheduler to 'none', cleaning up the data associated 3265 * with the previous scheduler. We will switch back once we are done 3266 * updating the new sw to hw queue mappings. 3267 */ 3268 list_for_each_entry(q, &set->tag_list, tag_set_list) 3269 if (!blk_mq_elv_switch_none(&head, q)) 3270 goto switch_back; 3271 3272 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3273 blk_mq_debugfs_unregister_hctxs(q); 3274 blk_mq_sysfs_unregister(q); 3275 } 3276 3277 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3278 0) 3279 goto reregister; 3280 3281 prev_nr_hw_queues = set->nr_hw_queues; 3282 set->nr_hw_queues = nr_hw_queues; 3283 blk_mq_update_queue_map(set); 3284 fallback: 3285 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3286 blk_mq_realloc_hw_ctxs(set, q); 3287 if (q->nr_hw_queues != set->nr_hw_queues) { 3288 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3289 nr_hw_queues, prev_nr_hw_queues); 3290 set->nr_hw_queues = prev_nr_hw_queues; 3291 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3292 goto fallback; 3293 } 3294 blk_mq_map_swqueue(q); 3295 } 3296 3297 reregister: 3298 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3299 blk_mq_sysfs_register(q); 3300 blk_mq_debugfs_register_hctxs(q); 3301 } 3302 3303 switch_back: 3304 list_for_each_entry(q, &set->tag_list, tag_set_list) 3305 blk_mq_elv_switch_back(&head, q); 3306 3307 list_for_each_entry(q, &set->tag_list, tag_set_list) 3308 blk_mq_unfreeze_queue(q); 3309 } 3310 3311 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3312 { 3313 mutex_lock(&set->tag_list_lock); 3314 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3315 mutex_unlock(&set->tag_list_lock); 3316 } 3317 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3318 3319 /* Enable polling stats and return whether they were already enabled. */ 3320 static bool blk_poll_stats_enable(struct request_queue *q) 3321 { 3322 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3323 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3324 return true; 3325 blk_stat_add_callback(q, q->poll_cb); 3326 return false; 3327 } 3328 3329 static void blk_mq_poll_stats_start(struct request_queue *q) 3330 { 3331 /* 3332 * We don't arm the callback if polling stats are not enabled or the 3333 * callback is already active. 3334 */ 3335 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3336 blk_stat_is_active(q->poll_cb)) 3337 return; 3338 3339 blk_stat_activate_msecs(q->poll_cb, 100); 3340 } 3341 3342 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3343 { 3344 struct request_queue *q = cb->data; 3345 int bucket; 3346 3347 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3348 if (cb->stat[bucket].nr_samples) 3349 q->poll_stat[bucket] = cb->stat[bucket]; 3350 } 3351 } 3352 3353 static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3354 struct blk_mq_hw_ctx *hctx, 3355 struct request *rq) 3356 { 3357 unsigned long ret = 0; 3358 int bucket; 3359 3360 /* 3361 * If stats collection isn't on, don't sleep but turn it on for 3362 * future users 3363 */ 3364 if (!blk_poll_stats_enable(q)) 3365 return 0; 3366 3367 /* 3368 * As an optimistic guess, use half of the mean service time 3369 * for this type of request. We can (and should) make this smarter. 3370 * For instance, if the completion latencies are tight, we can 3371 * get closer than just half the mean. This is especially 3372 * important on devices where the completion latencies are longer 3373 * than ~10 usec. We do use the stats for the relevant IO size 3374 * if available which does lead to better estimates. 3375 */ 3376 bucket = blk_mq_poll_stats_bkt(rq); 3377 if (bucket < 0) 3378 return ret; 3379 3380 if (q->poll_stat[bucket].nr_samples) 3381 ret = (q->poll_stat[bucket].mean + 1) / 2; 3382 3383 return ret; 3384 } 3385 3386 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3387 struct blk_mq_hw_ctx *hctx, 3388 struct request *rq) 3389 { 3390 struct hrtimer_sleeper hs; 3391 enum hrtimer_mode mode; 3392 unsigned int nsecs; 3393 ktime_t kt; 3394 3395 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3396 return false; 3397 3398 /* 3399 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3400 * 3401 * 0: use half of prev avg 3402 * >0: use this specific value 3403 */ 3404 if (q->poll_nsec > 0) 3405 nsecs = q->poll_nsec; 3406 else 3407 nsecs = blk_mq_poll_nsecs(q, hctx, rq); 3408 3409 if (!nsecs) 3410 return false; 3411 3412 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3413 3414 /* 3415 * This will be replaced with the stats tracking code, using 3416 * 'avg_completion_time / 2' as the pre-sleep target. 3417 */ 3418 kt = nsecs; 3419 3420 mode = HRTIMER_MODE_REL; 3421 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3422 hrtimer_set_expires(&hs.timer, kt); 3423 3424 do { 3425 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3426 break; 3427 set_current_state(TASK_UNINTERRUPTIBLE); 3428 hrtimer_sleeper_start_expires(&hs, mode); 3429 if (hs.task) 3430 io_schedule(); 3431 hrtimer_cancel(&hs.timer); 3432 mode = HRTIMER_MODE_ABS; 3433 } while (hs.task && !signal_pending(current)); 3434 3435 __set_current_state(TASK_RUNNING); 3436 destroy_hrtimer_on_stack(&hs.timer); 3437 return true; 3438 } 3439 3440 static bool blk_mq_poll_hybrid(struct request_queue *q, 3441 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3442 { 3443 struct request *rq; 3444 3445 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3446 return false; 3447 3448 if (!blk_qc_t_is_internal(cookie)) 3449 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3450 else { 3451 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3452 /* 3453 * With scheduling, if the request has completed, we'll 3454 * get a NULL return here, as we clear the sched tag when 3455 * that happens. The request still remains valid, like always, 3456 * so we should be safe with just the NULL check. 3457 */ 3458 if (!rq) 3459 return false; 3460 } 3461 3462 return blk_mq_poll_hybrid_sleep(q, hctx, rq); 3463 } 3464 3465 /** 3466 * blk_poll - poll for IO completions 3467 * @q: the queue 3468 * @cookie: cookie passed back at IO submission time 3469 * @spin: whether to spin for completions 3470 * 3471 * Description: 3472 * Poll for completions on the passed in queue. Returns number of 3473 * completed entries found. If @spin is true, then blk_poll will continue 3474 * looping until at least one completion is found, unless the task is 3475 * otherwise marked running (or we need to reschedule). 3476 */ 3477 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3478 { 3479 struct blk_mq_hw_ctx *hctx; 3480 long state; 3481 3482 if (!blk_qc_t_valid(cookie) || 3483 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3484 return 0; 3485 3486 if (current->plug) 3487 blk_flush_plug_list(current->plug, false); 3488 3489 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3490 3491 /* 3492 * If we sleep, have the caller restart the poll loop to reset 3493 * the state. Like for the other success return cases, the 3494 * caller is responsible for checking if the IO completed. If 3495 * the IO isn't complete, we'll get called again and will go 3496 * straight to the busy poll loop. 3497 */ 3498 if (blk_mq_poll_hybrid(q, hctx, cookie)) 3499 return 1; 3500 3501 hctx->poll_considered++; 3502 3503 state = current->state; 3504 do { 3505 int ret; 3506 3507 hctx->poll_invoked++; 3508 3509 ret = q->mq_ops->poll(hctx); 3510 if (ret > 0) { 3511 hctx->poll_success++; 3512 __set_current_state(TASK_RUNNING); 3513 return ret; 3514 } 3515 3516 if (signal_pending_state(state, current)) 3517 __set_current_state(TASK_RUNNING); 3518 3519 if (current->state == TASK_RUNNING) 3520 return 1; 3521 if (ret < 0 || !spin) 3522 break; 3523 cpu_relax(); 3524 } while (!need_resched()); 3525 3526 __set_current_state(TASK_RUNNING); 3527 return 0; 3528 } 3529 EXPORT_SYMBOL_GPL(blk_poll); 3530 3531 unsigned int blk_mq_rq_cpu(struct request *rq) 3532 { 3533 return rq->mq_ctx->cpu; 3534 } 3535 EXPORT_SYMBOL(blk_mq_rq_cpu); 3536 3537 static int __init blk_mq_init(void) 3538 { 3539 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 3540 blk_mq_hctx_notify_dead); 3541 return 0; 3542 } 3543 subsys_initcall(blk_mq_init); 3544
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.