1 /* 2 * gendisk handling 3 */ 4 5 #include <linux/module.h> 6 #include <linux/fs.h> 7 #include <linux/genhd.h> 8 #include <linux/kdev_t.h> 9 #include <linux/kernel.h> 10 #include <linux/blkdev.h> 11 #include <linux/init.h> 12 #include <linux/spinlock.h> 13 #include <linux/proc_fs.h> 14 #include <linux/seq_file.h> 15 #include <linux/slab.h> 16 #include <linux/kmod.h> 17 #include <linux/kobj_map.h> 18 #include <linux/mutex.h> 19 #include <linux/idr.h> 20 #include <linux/log2.h> 21 #include <linux/pm_runtime.h> 22 23 #include "blk.h" 24 25 static DEFINE_MUTEX(block_class_lock); 26 struct kobject *block_depr; 27 28 /* for extended dynamic devt allocation, currently only one major is used */ 29 #define NR_EXT_DEVT (1 << MINORBITS) 30 31 /* For extended devt allocation. ext_devt_lock prevents look up 32 * results from going away underneath its user. 33 */ 34 static DEFINE_SPINLOCK(ext_devt_lock); 35 static DEFINE_IDR(ext_devt_idr); 36 37 static struct device_type disk_type; 38 39 static void disk_check_events(struct disk_events *ev, 40 unsigned int *clearing_ptr); 41 static void disk_alloc_events(struct gendisk *disk); 42 static void disk_add_events(struct gendisk *disk); 43 static void disk_del_events(struct gendisk *disk); 44 static void disk_release_events(struct gendisk *disk); 45 46 /** 47 * disk_get_part - get partition 48 * @disk: disk to look partition from 49 * @partno: partition number 50 * 51 * Look for partition @partno from @disk. If found, increment 52 * reference count and return it. 53 * 54 * CONTEXT: 55 * Don't care. 56 * 57 * RETURNS: 58 * Pointer to the found partition on success, NULL if not found. 59 */ 60 struct hd_struct *disk_get_part(struct gendisk *disk, int partno) 61 { 62 struct hd_struct *part = NULL; 63 struct disk_part_tbl *ptbl; 64 65 if (unlikely(partno < 0)) 66 return NULL; 67 68 rcu_read_lock(); 69 70 ptbl = rcu_dereference(disk->part_tbl); 71 if (likely(partno < ptbl->len)) { 72 part = rcu_dereference(ptbl->part[partno]); 73 if (part) 74 get_device(part_to_dev(part)); 75 } 76 77 rcu_read_unlock(); 78 79 return part; 80 } 81 EXPORT_SYMBOL_GPL(disk_get_part); 82 83 /** 84 * disk_part_iter_init - initialize partition iterator 85 * @piter: iterator to initialize 86 * @disk: disk to iterate over 87 * @flags: DISK_PITER_* flags 88 * 89 * Initialize @piter so that it iterates over partitions of @disk. 90 * 91 * CONTEXT: 92 * Don't care. 93 */ 94 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk, 95 unsigned int flags) 96 { 97 struct disk_part_tbl *ptbl; 98 99 rcu_read_lock(); 100 ptbl = rcu_dereference(disk->part_tbl); 101 102 piter->disk = disk; 103 piter->part = NULL; 104 105 if (flags & DISK_PITER_REVERSE) 106 piter->idx = ptbl->len - 1; 107 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0)) 108 piter->idx = 0; 109 else 110 piter->idx = 1; 111 112 piter->flags = flags; 113 114 rcu_read_unlock(); 115 } 116 EXPORT_SYMBOL_GPL(disk_part_iter_init); 117 118 /** 119 * disk_part_iter_next - proceed iterator to the next partition and return it 120 * @piter: iterator of interest 121 * 122 * Proceed @piter to the next partition and return it. 123 * 124 * CONTEXT: 125 * Don't care. 126 */ 127 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter) 128 { 129 struct disk_part_tbl *ptbl; 130 int inc, end; 131 132 /* put the last partition */ 133 disk_put_part(piter->part); 134 piter->part = NULL; 135 136 /* get part_tbl */ 137 rcu_read_lock(); 138 ptbl = rcu_dereference(piter->disk->part_tbl); 139 140 /* determine iteration parameters */ 141 if (piter->flags & DISK_PITER_REVERSE) { 142 inc = -1; 143 if (piter->flags & (DISK_PITER_INCL_PART0 | 144 DISK_PITER_INCL_EMPTY_PART0)) 145 end = -1; 146 else 147 end = 0; 148 } else { 149 inc = 1; 150 end = ptbl->len; 151 } 152 153 /* iterate to the next partition */ 154 for (; piter->idx != end; piter->idx += inc) { 155 struct hd_struct *part; 156 157 part = rcu_dereference(ptbl->part[piter->idx]); 158 if (!part) 159 continue; 160 if (!part_nr_sects_read(part) && 161 !(piter->flags & DISK_PITER_INCL_EMPTY) && 162 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 && 163 piter->idx == 0)) 164 continue; 165 166 get_device(part_to_dev(part)); 167 piter->part = part; 168 piter->idx += inc; 169 break; 170 } 171 172 rcu_read_unlock(); 173 174 return piter->part; 175 } 176 EXPORT_SYMBOL_GPL(disk_part_iter_next); 177 178 /** 179 * disk_part_iter_exit - finish up partition iteration 180 * @piter: iter of interest 181 * 182 * Called when iteration is over. Cleans up @piter. 183 * 184 * CONTEXT: 185 * Don't care. 186 */ 187 void disk_part_iter_exit(struct disk_part_iter *piter) 188 { 189 disk_put_part(piter->part); 190 piter->part = NULL; 191 } 192 EXPORT_SYMBOL_GPL(disk_part_iter_exit); 193 194 static inline int sector_in_part(struct hd_struct *part, sector_t sector) 195 { 196 return part->start_sect <= sector && 197 sector < part->start_sect + part_nr_sects_read(part); 198 } 199 200 /** 201 * disk_map_sector_rcu - map sector to partition 202 * @disk: gendisk of interest 203 * @sector: sector to map 204 * 205 * Find out which partition @sector maps to on @disk. This is 206 * primarily used for stats accounting. 207 * 208 * CONTEXT: 209 * RCU read locked. The returned partition pointer is valid only 210 * while preemption is disabled. 211 * 212 * RETURNS: 213 * Found partition on success, part0 is returned if no partition matches 214 */ 215 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector) 216 { 217 struct disk_part_tbl *ptbl; 218 struct hd_struct *part; 219 int i; 220 221 ptbl = rcu_dereference(disk->part_tbl); 222 223 part = rcu_dereference(ptbl->last_lookup); 224 if (part && sector_in_part(part, sector)) 225 return part; 226 227 for (i = 1; i < ptbl->len; i++) { 228 part = rcu_dereference(ptbl->part[i]); 229 230 if (part && sector_in_part(part, sector)) { 231 rcu_assign_pointer(ptbl->last_lookup, part); 232 return part; 233 } 234 } 235 return &disk->part0; 236 } 237 EXPORT_SYMBOL_GPL(disk_map_sector_rcu); 238 239 /* 240 * Can be deleted altogether. Later. 241 * 242 */ 243 static struct blk_major_name { 244 struct blk_major_name *next; 245 int major; 246 char name[16]; 247 } *major_names[BLKDEV_MAJOR_HASH_SIZE]; 248 249 /* index in the above - for now: assume no multimajor ranges */ 250 static inline int major_to_index(unsigned major) 251 { 252 return major % BLKDEV_MAJOR_HASH_SIZE; 253 } 254 255 #ifdef CONFIG_PROC_FS 256 void blkdev_show(struct seq_file *seqf, off_t offset) 257 { 258 struct blk_major_name *dp; 259 260 if (offset < BLKDEV_MAJOR_HASH_SIZE) { 261 mutex_lock(&block_class_lock); 262 for (dp = major_names[offset]; dp; dp = dp->next) 263 seq_printf(seqf, "%3d %s\n", dp->major, dp->name); 264 mutex_unlock(&block_class_lock); 265 } 266 } 267 #endif /* CONFIG_PROC_FS */ 268 269 /** 270 * register_blkdev - register a new block device 271 * 272 * @major: the requested major device number [1..255]. If @major=0, try to 273 * allocate any unused major number. 274 * @name: the name of the new block device as a zero terminated string 275 * 276 * The @name must be unique within the system. 277 * 278 * The return value depends on the @major input parameter. 279 * - if a major device number was requested in range [1..255] then the 280 * function returns zero on success, or a negative error code 281 * - if any unused major number was requested with @major=0 parameter 282 * then the return value is the allocated major number in range 283 * [1..255] or a negative error code otherwise 284 */ 285 int register_blkdev(unsigned int major, const char *name) 286 { 287 struct blk_major_name **n, *p; 288 int index, ret = 0; 289 290 mutex_lock(&block_class_lock); 291 292 /* temporary */ 293 if (major == 0) { 294 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) { 295 if (major_names[index] == NULL) 296 break; 297 } 298 299 if (index == 0) { 300 printk("register_blkdev: failed to get major for %s\n", 301 name); 302 ret = -EBUSY; 303 goto out; 304 } 305 major = index; 306 ret = major; 307 } 308 309 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL); 310 if (p == NULL) { 311 ret = -ENOMEM; 312 goto out; 313 } 314 315 p->major = major; 316 strlcpy(p->name, name, sizeof(p->name)); 317 p->next = NULL; 318 index = major_to_index(major); 319 320 for (n = &major_names[index]; *n; n = &(*n)->next) { 321 if ((*n)->major == major) 322 break; 323 } 324 if (!*n) 325 *n = p; 326 else 327 ret = -EBUSY; 328 329 if (ret < 0) { 330 printk("register_blkdev: cannot get major %d for %s\n", 331 major, name); 332 kfree(p); 333 } 334 out: 335 mutex_unlock(&block_class_lock); 336 return ret; 337 } 338 339 EXPORT_SYMBOL(register_blkdev); 340 341 void unregister_blkdev(unsigned int major, const char *name) 342 { 343 struct blk_major_name **n; 344 struct blk_major_name *p = NULL; 345 int index = major_to_index(major); 346 347 mutex_lock(&block_class_lock); 348 for (n = &major_names[index]; *n; n = &(*n)->next) 349 if ((*n)->major == major) 350 break; 351 if (!*n || strcmp((*n)->name, name)) { 352 WARN_ON(1); 353 } else { 354 p = *n; 355 *n = p->next; 356 } 357 mutex_unlock(&block_class_lock); 358 kfree(p); 359 } 360 361 EXPORT_SYMBOL(unregister_blkdev); 362 363 static struct kobj_map *bdev_map; 364 365 /** 366 * blk_mangle_minor - scatter minor numbers apart 367 * @minor: minor number to mangle 368 * 369 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT 370 * is enabled. Mangling twice gives the original value. 371 * 372 * RETURNS: 373 * Mangled value. 374 * 375 * CONTEXT: 376 * Don't care. 377 */ 378 static int blk_mangle_minor(int minor) 379 { 380 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT 381 int i; 382 383 for (i = 0; i < MINORBITS / 2; i++) { 384 int low = minor & (1 << i); 385 int high = minor & (1 << (MINORBITS - 1 - i)); 386 int distance = MINORBITS - 1 - 2 * i; 387 388 minor ^= low | high; /* clear both bits */ 389 low <<= distance; /* swap the positions */ 390 high >>= distance; 391 minor |= low | high; /* and set */ 392 } 393 #endif 394 return minor; 395 } 396 397 /** 398 * blk_alloc_devt - allocate a dev_t for a partition 399 * @part: partition to allocate dev_t for 400 * @devt: out parameter for resulting dev_t 401 * 402 * Allocate a dev_t for block device. 403 * 404 * RETURNS: 405 * 0 on success, allocated dev_t is returned in *@devt. -errno on 406 * failure. 407 * 408 * CONTEXT: 409 * Might sleep. 410 */ 411 int blk_alloc_devt(struct hd_struct *part, dev_t *devt) 412 { 413 struct gendisk *disk = part_to_disk(part); 414 int idx; 415 416 /* in consecutive minor range? */ 417 if (part->partno < disk->minors) { 418 *devt = MKDEV(disk->major, disk->first_minor + part->partno); 419 return 0; 420 } 421 422 /* allocate ext devt */ 423 idr_preload(GFP_KERNEL); 424 425 spin_lock_bh(&ext_devt_lock); 426 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT); 427 spin_unlock_bh(&ext_devt_lock); 428 429 idr_preload_end(); 430 if (idx < 0) 431 return idx == -ENOSPC ? -EBUSY : idx; 432 433 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx)); 434 return 0; 435 } 436 437 /** 438 * blk_free_devt - free a dev_t 439 * @devt: dev_t to free 440 * 441 * Free @devt which was allocated using blk_alloc_devt(). 442 * 443 * CONTEXT: 444 * Might sleep. 445 */ 446 void blk_free_devt(dev_t devt) 447 { 448 if (devt == MKDEV(0, 0)) 449 return; 450 451 if (MAJOR(devt) == BLOCK_EXT_MAJOR) { 452 spin_lock_bh(&ext_devt_lock); 453 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 454 spin_unlock_bh(&ext_devt_lock); 455 } 456 } 457 458 static char *bdevt_str(dev_t devt, char *buf) 459 { 460 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) { 461 char tbuf[BDEVT_SIZE]; 462 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt)); 463 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf); 464 } else 465 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt)); 466 467 return buf; 468 } 469 470 /* 471 * Register device numbers dev..(dev+range-1) 472 * range must be nonzero 473 * The hash chain is sorted on range, so that subranges can override. 474 */ 475 void blk_register_region(dev_t devt, unsigned long range, struct module *module, 476 struct kobject *(*probe)(dev_t, int *, void *), 477 int (*lock)(dev_t, void *), void *data) 478 { 479 kobj_map(bdev_map, devt, range, module, probe, lock, data); 480 } 481 482 EXPORT_SYMBOL(blk_register_region); 483 484 void blk_unregister_region(dev_t devt, unsigned long range) 485 { 486 kobj_unmap(bdev_map, devt, range); 487 } 488 489 EXPORT_SYMBOL(blk_unregister_region); 490 491 static struct kobject *exact_match(dev_t devt, int *partno, void *data) 492 { 493 struct gendisk *p = data; 494 495 return &disk_to_dev(p)->kobj; 496 } 497 498 static int exact_lock(dev_t devt, void *data) 499 { 500 struct gendisk *p = data; 501 502 if (!get_disk(p)) 503 return -1; 504 return 0; 505 } 506 507 static void register_disk(struct gendisk *disk) 508 { 509 struct device *ddev = disk_to_dev(disk); 510 struct block_device *bdev; 511 struct disk_part_iter piter; 512 struct hd_struct *part; 513 int err; 514 515 ddev->parent = disk->driverfs_dev; 516 517 dev_set_name(ddev, "%s", disk->disk_name); 518 519 /* delay uevents, until we scanned partition table */ 520 dev_set_uevent_suppress(ddev, 1); 521 522 if (device_add(ddev)) 523 return; 524 if (!sysfs_deprecated) { 525 err = sysfs_create_link(block_depr, &ddev->kobj, 526 kobject_name(&ddev->kobj)); 527 if (err) { 528 device_del(ddev); 529 return; 530 } 531 } 532 533 /* 534 * avoid probable deadlock caused by allocating memory with 535 * GFP_KERNEL in runtime_resume callback of its all ancestor 536 * devices 537 */ 538 pm_runtime_set_memalloc_noio(ddev, true); 539 540 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj); 541 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj); 542 543 /* No minors to use for partitions */ 544 if (!disk_part_scan_enabled(disk)) 545 goto exit; 546 547 /* No such device (e.g., media were just removed) */ 548 if (!get_capacity(disk)) 549 goto exit; 550 551 bdev = bdget_disk(disk, 0); 552 if (!bdev) 553 goto exit; 554 555 bdev->bd_invalidated = 1; 556 err = blkdev_get(bdev, FMODE_READ, NULL); 557 if (err < 0) 558 goto exit; 559 blkdev_put(bdev, FMODE_READ); 560 561 exit: 562 /* announce disk after possible partitions are created */ 563 dev_set_uevent_suppress(ddev, 0); 564 kobject_uevent(&ddev->kobj, KOBJ_ADD); 565 566 /* announce possible partitions */ 567 disk_part_iter_init(&piter, disk, 0); 568 while ((part = disk_part_iter_next(&piter))) 569 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD); 570 disk_part_iter_exit(&piter); 571 } 572 573 /** 574 * add_disk - add partitioning information to kernel list 575 * @disk: per-device partitioning information 576 * 577 * This function registers the partitioning information in @disk 578 * with the kernel. 579 * 580 * FIXME: error handling 581 */ 582 void add_disk(struct gendisk *disk) 583 { 584 struct backing_dev_info *bdi; 585 dev_t devt; 586 int retval; 587 588 /* minors == 0 indicates to use ext devt from part0 and should 589 * be accompanied with EXT_DEVT flag. Make sure all 590 * parameters make sense. 591 */ 592 WARN_ON(disk->minors && !(disk->major || disk->first_minor)); 593 WARN_ON(!disk->minors && !(disk->flags & GENHD_FL_EXT_DEVT)); 594 595 disk->flags |= GENHD_FL_UP; 596 597 retval = blk_alloc_devt(&disk->part0, &devt); 598 if (retval) { 599 WARN_ON(1); 600 return; 601 } 602 disk_to_dev(disk)->devt = devt; 603 604 /* ->major and ->first_minor aren't supposed to be 605 * dereferenced from here on, but set them just in case. 606 */ 607 disk->major = MAJOR(devt); 608 disk->first_minor = MINOR(devt); 609 610 disk_alloc_events(disk); 611 612 /* Register BDI before referencing it from bdev */ 613 bdi = &disk->queue->backing_dev_info; 614 bdi_register_dev(bdi, disk_devt(disk)); 615 616 blk_register_region(disk_devt(disk), disk->minors, NULL, 617 exact_match, exact_lock, disk); 618 register_disk(disk); 619 blk_register_queue(disk); 620 621 /* 622 * Take an extra ref on queue which will be put on disk_release() 623 * so that it sticks around as long as @disk is there. 624 */ 625 WARN_ON_ONCE(!blk_get_queue(disk->queue)); 626 627 retval = sysfs_create_link(&disk_to_dev(disk)->kobj, &bdi->dev->kobj, 628 "bdi"); 629 WARN_ON(retval); 630 631 disk_add_events(disk); 632 } 633 EXPORT_SYMBOL(add_disk); 634 635 void del_gendisk(struct gendisk *disk) 636 { 637 struct disk_part_iter piter; 638 struct hd_struct *part; 639 640 disk_del_events(disk); 641 642 /* invalidate stuff */ 643 disk_part_iter_init(&piter, disk, 644 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE); 645 while ((part = disk_part_iter_next(&piter))) { 646 invalidate_partition(disk, part->partno); 647 delete_partition(disk, part->partno); 648 } 649 disk_part_iter_exit(&piter); 650 651 invalidate_partition(disk, 0); 652 set_capacity(disk, 0); 653 disk->flags &= ~GENHD_FL_UP; 654 655 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi"); 656 blk_unregister_queue(disk); 657 blk_unregister_region(disk_devt(disk), disk->minors); 658 659 part_stat_set_all(&disk->part0, 0); 660 disk->part0.stamp = 0; 661 662 kobject_put(disk->part0.holder_dir); 663 kobject_put(disk->slave_dir); 664 disk->driverfs_dev = NULL; 665 if (!sysfs_deprecated) 666 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk))); 667 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false); 668 device_del(disk_to_dev(disk)); 669 } 670 EXPORT_SYMBOL(del_gendisk); 671 672 /** 673 * get_gendisk - get partitioning information for a given device 674 * @devt: device to get partitioning information for 675 * @partno: returned partition index 676 * 677 * This function gets the structure containing partitioning 678 * information for the given device @devt. 679 */ 680 struct gendisk *get_gendisk(dev_t devt, int *partno) 681 { 682 struct gendisk *disk = NULL; 683 684 if (MAJOR(devt) != BLOCK_EXT_MAJOR) { 685 struct kobject *kobj; 686 687 kobj = kobj_lookup(bdev_map, devt, partno); 688 if (kobj) 689 disk = dev_to_disk(kobj_to_dev(kobj)); 690 } else { 691 struct hd_struct *part; 692 693 spin_lock_bh(&ext_devt_lock); 694 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt))); 695 if (part && get_disk(part_to_disk(part))) { 696 *partno = part->partno; 697 disk = part_to_disk(part); 698 } 699 spin_unlock_bh(&ext_devt_lock); 700 } 701 702 return disk; 703 } 704 EXPORT_SYMBOL(get_gendisk); 705 706 /** 707 * bdget_disk - do bdget() by gendisk and partition number 708 * @disk: gendisk of interest 709 * @partno: partition number 710 * 711 * Find partition @partno from @disk, do bdget() on it. 712 * 713 * CONTEXT: 714 * Don't care. 715 * 716 * RETURNS: 717 * Resulting block_device on success, NULL on failure. 718 */ 719 struct block_device *bdget_disk(struct gendisk *disk, int partno) 720 { 721 struct hd_struct *part; 722 struct block_device *bdev = NULL; 723 724 part = disk_get_part(disk, partno); 725 if (part) 726 bdev = bdget(part_devt(part)); 727 disk_put_part(part); 728 729 return bdev; 730 } 731 EXPORT_SYMBOL(bdget_disk); 732 733 /* 734 * print a full list of all partitions - intended for places where the root 735 * filesystem can't be mounted and thus to give the victim some idea of what 736 * went wrong 737 */ 738 void __init printk_all_partitions(void) 739 { 740 struct class_dev_iter iter; 741 struct device *dev; 742 743 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 744 while ((dev = class_dev_iter_next(&iter))) { 745 struct gendisk *disk = dev_to_disk(dev); 746 struct disk_part_iter piter; 747 struct hd_struct *part; 748 char name_buf[BDEVNAME_SIZE]; 749 char devt_buf[BDEVT_SIZE]; 750 751 /* 752 * Don't show empty devices or things that have been 753 * suppressed 754 */ 755 if (get_capacity(disk) == 0 || 756 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)) 757 continue; 758 759 /* 760 * Note, unlike /proc/partitions, I am showing the 761 * numbers in hex - the same format as the root= 762 * option takes. 763 */ 764 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0); 765 while ((part = disk_part_iter_next(&piter))) { 766 bool is_part0 = part == &disk->part0; 767 768 printk("%s%s %10llu %s %s", is_part0 ? "" : " ", 769 bdevt_str(part_devt(part), devt_buf), 770 (unsigned long long)part_nr_sects_read(part) >> 1 771 , disk_name(disk, part->partno, name_buf), 772 part->info ? part->info->uuid : ""); 773 if (is_part0) { 774 if (disk->driverfs_dev != NULL && 775 disk->driverfs_dev->driver != NULL) 776 printk(" driver: %s\n", 777 disk->driverfs_dev->driver->name); 778 else 779 printk(" (driver?)\n"); 780 } else 781 printk("\n"); 782 } 783 disk_part_iter_exit(&piter); 784 } 785 class_dev_iter_exit(&iter); 786 } 787 788 #ifdef CONFIG_PROC_FS 789 /* iterator */ 790 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos) 791 { 792 loff_t skip = *pos; 793 struct class_dev_iter *iter; 794 struct device *dev; 795 796 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 797 if (!iter) 798 return ERR_PTR(-ENOMEM); 799 800 seqf->private = iter; 801 class_dev_iter_init(iter, &block_class, NULL, &disk_type); 802 do { 803 dev = class_dev_iter_next(iter); 804 if (!dev) 805 return NULL; 806 } while (skip--); 807 808 return dev_to_disk(dev); 809 } 810 811 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos) 812 { 813 struct device *dev; 814 815 (*pos)++; 816 dev = class_dev_iter_next(seqf->private); 817 if (dev) 818 return dev_to_disk(dev); 819 820 return NULL; 821 } 822 823 static void disk_seqf_stop(struct seq_file *seqf, void *v) 824 { 825 struct class_dev_iter *iter = seqf->private; 826 827 /* stop is called even after start failed :-( */ 828 if (iter) { 829 class_dev_iter_exit(iter); 830 kfree(iter); 831 } 832 } 833 834 static void *show_partition_start(struct seq_file *seqf, loff_t *pos) 835 { 836 void *p; 837 838 p = disk_seqf_start(seqf, pos); 839 if (!IS_ERR_OR_NULL(p) && !*pos) 840 seq_puts(seqf, "major minor #blocks name\n\n"); 841 return p; 842 } 843 844 static int show_partition(struct seq_file *seqf, void *v) 845 { 846 struct gendisk *sgp = v; 847 struct disk_part_iter piter; 848 struct hd_struct *part; 849 char buf[BDEVNAME_SIZE]; 850 851 /* Don't show non-partitionable removeable devices or empty devices */ 852 if (!get_capacity(sgp) || (!disk_max_parts(sgp) && 853 (sgp->flags & GENHD_FL_REMOVABLE))) 854 return 0; 855 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO) 856 return 0; 857 858 /* show the full disk and all non-0 size partitions of it */ 859 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0); 860 while ((part = disk_part_iter_next(&piter))) 861 seq_printf(seqf, "%4d %7d %10llu %s\n", 862 MAJOR(part_devt(part)), MINOR(part_devt(part)), 863 (unsigned long long)part_nr_sects_read(part) >> 1, 864 disk_name(sgp, part->partno, buf)); 865 disk_part_iter_exit(&piter); 866 867 return 0; 868 } 869 870 static const struct seq_operations partitions_op = { 871 .start = show_partition_start, 872 .next = disk_seqf_next, 873 .stop = disk_seqf_stop, 874 .show = show_partition 875 }; 876 877 static int partitions_open(struct inode *inode, struct file *file) 878 { 879 return seq_open(file, &partitions_op); 880 } 881 882 static const struct file_operations proc_partitions_operations = { 883 .open = partitions_open, 884 .read = seq_read, 885 .llseek = seq_lseek, 886 .release = seq_release, 887 }; 888 #endif 889 890 891 static struct kobject *base_probe(dev_t devt, int *partno, void *data) 892 { 893 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0) 894 /* Make old-style 2.4 aliases work */ 895 request_module("block-major-%d", MAJOR(devt)); 896 return NULL; 897 } 898 899 static int __init genhd_device_init(void) 900 { 901 int error; 902 903 block_class.dev_kobj = sysfs_dev_block_kobj; 904 error = class_register(&block_class); 905 if (unlikely(error)) 906 return error; 907 bdev_map = kobj_map_init(base_probe, &block_class_lock); 908 blk_dev_init(); 909 910 register_blkdev(BLOCK_EXT_MAJOR, "blkext"); 911 912 /* create top-level block dir */ 913 if (!sysfs_deprecated) 914 block_depr = kobject_create_and_add("block", NULL); 915 return 0; 916 } 917 918 subsys_initcall(genhd_device_init); 919 920 static ssize_t disk_range_show(struct device *dev, 921 struct device_attribute *attr, char *buf) 922 { 923 struct gendisk *disk = dev_to_disk(dev); 924 925 return sprintf(buf, "%d\n", disk->minors); 926 } 927 928 static ssize_t disk_ext_range_show(struct device *dev, 929 struct device_attribute *attr, char *buf) 930 { 931 struct gendisk *disk = dev_to_disk(dev); 932 933 return sprintf(buf, "%d\n", disk_max_parts(disk)); 934 } 935 936 static ssize_t disk_removable_show(struct device *dev, 937 struct device_attribute *attr, char *buf) 938 { 939 struct gendisk *disk = dev_to_disk(dev); 940 941 return sprintf(buf, "%d\n", 942 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0)); 943 } 944 945 static ssize_t disk_ro_show(struct device *dev, 946 struct device_attribute *attr, char *buf) 947 { 948 struct gendisk *disk = dev_to_disk(dev); 949 950 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0); 951 } 952 953 static ssize_t disk_capability_show(struct device *dev, 954 struct device_attribute *attr, char *buf) 955 { 956 struct gendisk *disk = dev_to_disk(dev); 957 958 return sprintf(buf, "%x\n", disk->flags); 959 } 960 961 static ssize_t disk_alignment_offset_show(struct device *dev, 962 struct device_attribute *attr, 963 char *buf) 964 { 965 struct gendisk *disk = dev_to_disk(dev); 966 967 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue)); 968 } 969 970 static ssize_t disk_discard_alignment_show(struct device *dev, 971 struct device_attribute *attr, 972 char *buf) 973 { 974 struct gendisk *disk = dev_to_disk(dev); 975 976 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue)); 977 } 978 979 static DEVICE_ATTR(range, S_IRUGO, disk_range_show, NULL); 980 static DEVICE_ATTR(ext_range, S_IRUGO, disk_ext_range_show, NULL); 981 static DEVICE_ATTR(removable, S_IRUGO, disk_removable_show, NULL); 982 static DEVICE_ATTR(ro, S_IRUGO, disk_ro_show, NULL); 983 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL); 984 static DEVICE_ATTR(alignment_offset, S_IRUGO, disk_alignment_offset_show, NULL); 985 static DEVICE_ATTR(discard_alignment, S_IRUGO, disk_discard_alignment_show, 986 NULL); 987 static DEVICE_ATTR(capability, S_IRUGO, disk_capability_show, NULL); 988 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL); 989 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL); 990 #ifdef CONFIG_FAIL_MAKE_REQUEST 991 static struct device_attribute dev_attr_fail = 992 __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store); 993 #endif 994 #ifdef CONFIG_FAIL_IO_TIMEOUT 995 static struct device_attribute dev_attr_fail_timeout = 996 __ATTR(io-timeout-fail, S_IRUGO|S_IWUSR, part_timeout_show, 997 part_timeout_store); 998 #endif 999 1000 static struct attribute *disk_attrs[] = { 1001 &dev_attr_range.attr, 1002 &dev_attr_ext_range.attr, 1003 &dev_attr_removable.attr, 1004 &dev_attr_ro.attr, 1005 &dev_attr_size.attr, 1006 &dev_attr_alignment_offset.attr, 1007 &dev_attr_discard_alignment.attr, 1008 &dev_attr_capability.attr, 1009 &dev_attr_stat.attr, 1010 &dev_attr_inflight.attr, 1011 #ifdef CONFIG_FAIL_MAKE_REQUEST 1012 &dev_attr_fail.attr, 1013 #endif 1014 #ifdef CONFIG_FAIL_IO_TIMEOUT 1015 &dev_attr_fail_timeout.attr, 1016 #endif 1017 NULL 1018 }; 1019 1020 static struct attribute_group disk_attr_group = { 1021 .attrs = disk_attrs, 1022 }; 1023 1024 static const struct attribute_group *disk_attr_groups[] = { 1025 &disk_attr_group, 1026 NULL 1027 }; 1028 1029 /** 1030 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way 1031 * @disk: disk to replace part_tbl for 1032 * @new_ptbl: new part_tbl to install 1033 * 1034 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The 1035 * original ptbl is freed using RCU callback. 1036 * 1037 * LOCKING: 1038 * Matching bd_mutx locked. 1039 */ 1040 static void disk_replace_part_tbl(struct gendisk *disk, 1041 struct disk_part_tbl *new_ptbl) 1042 { 1043 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1044 1045 rcu_assign_pointer(disk->part_tbl, new_ptbl); 1046 1047 if (old_ptbl) { 1048 rcu_assign_pointer(old_ptbl->last_lookup, NULL); 1049 kfree_rcu(old_ptbl, rcu_head); 1050 } 1051 } 1052 1053 /** 1054 * disk_expand_part_tbl - expand disk->part_tbl 1055 * @disk: disk to expand part_tbl for 1056 * @partno: expand such that this partno can fit in 1057 * 1058 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl 1059 * uses RCU to allow unlocked dereferencing for stats and other stuff. 1060 * 1061 * LOCKING: 1062 * Matching bd_mutex locked, might sleep. 1063 * 1064 * RETURNS: 1065 * 0 on success, -errno on failure. 1066 */ 1067 int disk_expand_part_tbl(struct gendisk *disk, int partno) 1068 { 1069 struct disk_part_tbl *old_ptbl = disk->part_tbl; 1070 struct disk_part_tbl *new_ptbl; 1071 int len = old_ptbl ? old_ptbl->len : 0; 1072 int i, target; 1073 size_t size; 1074 1075 /* 1076 * check for int overflow, since we can get here from blkpg_ioctl() 1077 * with a user passed 'partno'. 1078 */ 1079 target = partno + 1; 1080 if (target < 0) 1081 return -EINVAL; 1082 1083 /* disk_max_parts() is zero during initialization, ignore if so */ 1084 if (disk_max_parts(disk) && target > disk_max_parts(disk)) 1085 return -EINVAL; 1086 1087 if (target <= len) 1088 return 0; 1089 1090 size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]); 1091 new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id); 1092 if (!new_ptbl) 1093 return -ENOMEM; 1094 1095 new_ptbl->len = target; 1096 1097 for (i = 0; i < len; i++) 1098 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]); 1099 1100 disk_replace_part_tbl(disk, new_ptbl); 1101 return 0; 1102 } 1103 1104 static void disk_release(struct device *dev) 1105 { 1106 struct gendisk *disk = dev_to_disk(dev); 1107 1108 blk_free_devt(dev->devt); 1109 disk_release_events(disk); 1110 kfree(disk->random); 1111 disk_replace_part_tbl(disk, NULL); 1112 free_part_stats(&disk->part0); 1113 free_part_info(&disk->part0); 1114 if (disk->queue) 1115 blk_put_queue(disk->queue); 1116 kfree(disk); 1117 } 1118 struct class block_class = { 1119 .name = "block", 1120 }; 1121 1122 static char *block_devnode(struct device *dev, umode_t *mode, 1123 kuid_t *uid, kgid_t *gid) 1124 { 1125 struct gendisk *disk = dev_to_disk(dev); 1126 1127 if (disk->devnode) 1128 return disk->devnode(disk, mode); 1129 return NULL; 1130 } 1131 1132 static struct device_type disk_type = { 1133 .name = "disk", 1134 .groups = disk_attr_groups, 1135 .release = disk_release, 1136 .devnode = block_devnode, 1137 }; 1138 1139 #ifdef CONFIG_PROC_FS 1140 /* 1141 * aggregate disk stat collector. Uses the same stats that the sysfs 1142 * entries do, above, but makes them available through one seq_file. 1143 * 1144 * The output looks suspiciously like /proc/partitions with a bunch of 1145 * extra fields. 1146 */ 1147 static int diskstats_show(struct seq_file *seqf, void *v) 1148 { 1149 struct gendisk *gp = v; 1150 struct disk_part_iter piter; 1151 struct hd_struct *hd; 1152 char buf[BDEVNAME_SIZE]; 1153 int cpu; 1154 1155 /* 1156 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next) 1157 seq_puts(seqf, "major minor name" 1158 " rio rmerge rsect ruse wio wmerge " 1159 "wsect wuse running use aveq" 1160 "\n\n"); 1161 */ 1162 1163 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0); 1164 while ((hd = disk_part_iter_next(&piter))) { 1165 cpu = part_stat_lock(); 1166 part_round_stats(cpu, hd); 1167 part_stat_unlock(); 1168 seq_printf(seqf, "%4d %7d %s %lu %lu %lu " 1169 "%u %lu %lu %lu %u %u %u %u\n", 1170 MAJOR(part_devt(hd)), MINOR(part_devt(hd)), 1171 disk_name(gp, hd->partno, buf), 1172 part_stat_read(hd, ios[READ]), 1173 part_stat_read(hd, merges[READ]), 1174 part_stat_read(hd, sectors[READ]), 1175 jiffies_to_msecs(part_stat_read(hd, ticks[READ])), 1176 part_stat_read(hd, ios[WRITE]), 1177 part_stat_read(hd, merges[WRITE]), 1178 part_stat_read(hd, sectors[WRITE]), 1179 jiffies_to_msecs(part_stat_read(hd, ticks[WRITE])), 1180 part_in_flight(hd), 1181 jiffies_to_msecs(part_stat_read(hd, io_ticks)), 1182 jiffies_to_msecs(part_stat_read(hd, time_in_queue)) 1183 ); 1184 } 1185 disk_part_iter_exit(&piter); 1186 1187 return 0; 1188 } 1189 1190 static const struct seq_operations diskstats_op = { 1191 .start = disk_seqf_start, 1192 .next = disk_seqf_next, 1193 .stop = disk_seqf_stop, 1194 .show = diskstats_show 1195 }; 1196 1197 static int diskstats_open(struct inode *inode, struct file *file) 1198 { 1199 return seq_open(file, &diskstats_op); 1200 } 1201 1202 static const struct file_operations proc_diskstats_operations = { 1203 .open = diskstats_open, 1204 .read = seq_read, 1205 .llseek = seq_lseek, 1206 .release = seq_release, 1207 }; 1208 1209 static int __init proc_genhd_init(void) 1210 { 1211 proc_create("diskstats", 0, NULL, &proc_diskstats_operations); 1212 proc_create("partitions", 0, NULL, &proc_partitions_operations); 1213 return 0; 1214 } 1215 module_init(proc_genhd_init); 1216 #endif /* CONFIG_PROC_FS */ 1217 1218 dev_t blk_lookup_devt(const char *name, int partno) 1219 { 1220 dev_t devt = MKDEV(0, 0); 1221 struct class_dev_iter iter; 1222 struct device *dev; 1223 1224 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1225 while ((dev = class_dev_iter_next(&iter))) { 1226 struct gendisk *disk = dev_to_disk(dev); 1227 struct hd_struct *part; 1228 1229 if (strcmp(dev_name(dev), name)) 1230 continue; 1231 1232 if (partno < disk->minors) { 1233 /* We need to return the right devno, even 1234 * if the partition doesn't exist yet. 1235 */ 1236 devt = MKDEV(MAJOR(dev->devt), 1237 MINOR(dev->devt) + partno); 1238 break; 1239 } 1240 part = disk_get_part(disk, partno); 1241 if (part) { 1242 devt = part_devt(part); 1243 disk_put_part(part); 1244 break; 1245 } 1246 disk_put_part(part); 1247 } 1248 class_dev_iter_exit(&iter); 1249 return devt; 1250 } 1251 EXPORT_SYMBOL(blk_lookup_devt); 1252 1253 struct gendisk *alloc_disk(int minors) 1254 { 1255 return alloc_disk_node(minors, NUMA_NO_NODE); 1256 } 1257 EXPORT_SYMBOL(alloc_disk); 1258 1259 struct gendisk *alloc_disk_node(int minors, int node_id) 1260 { 1261 struct gendisk *disk; 1262 1263 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id); 1264 if (disk) { 1265 if (!init_part_stats(&disk->part0)) { 1266 kfree(disk); 1267 return NULL; 1268 } 1269 disk->node_id = node_id; 1270 if (disk_expand_part_tbl(disk, 0)) { 1271 free_part_stats(&disk->part0); 1272 kfree(disk); 1273 return NULL; 1274 } 1275 disk->part_tbl->part[0] = &disk->part0; 1276 1277 /* 1278 * set_capacity() and get_capacity() currently don't use 1279 * seqcounter to read/update the part0->nr_sects. Still init 1280 * the counter as we can read the sectors in IO submission 1281 * patch using seqence counters. 1282 * 1283 * TODO: Ideally set_capacity() and get_capacity() should be 1284 * converted to make use of bd_mutex and sequence counters. 1285 */ 1286 seqcount_init(&disk->part0.nr_sects_seq); 1287 hd_ref_init(&disk->part0); 1288 1289 disk->minors = minors; 1290 rand_initialize_disk(disk); 1291 disk_to_dev(disk)->class = &block_class; 1292 disk_to_dev(disk)->type = &disk_type; 1293 device_initialize(disk_to_dev(disk)); 1294 } 1295 return disk; 1296 } 1297 EXPORT_SYMBOL(alloc_disk_node); 1298 1299 struct kobject *get_disk(struct gendisk *disk) 1300 { 1301 struct module *owner; 1302 struct kobject *kobj; 1303 1304 if (!disk->fops) 1305 return NULL; 1306 owner = disk->fops->owner; 1307 if (owner && !try_module_get(owner)) 1308 return NULL; 1309 kobj = kobject_get(&disk_to_dev(disk)->kobj); 1310 if (kobj == NULL) { 1311 module_put(owner); 1312 return NULL; 1313 } 1314 return kobj; 1315 1316 } 1317 1318 EXPORT_SYMBOL(get_disk); 1319 1320 void put_disk(struct gendisk *disk) 1321 { 1322 if (disk) 1323 kobject_put(&disk_to_dev(disk)->kobj); 1324 } 1325 1326 EXPORT_SYMBOL(put_disk); 1327 1328 static void set_disk_ro_uevent(struct gendisk *gd, int ro) 1329 { 1330 char event[] = "DISK_RO=1"; 1331 char *envp[] = { event, NULL }; 1332 1333 if (!ro) 1334 event[8] = ''; 1335 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp); 1336 } 1337 1338 void set_device_ro(struct block_device *bdev, int flag) 1339 { 1340 bdev->bd_part->policy = flag; 1341 } 1342 1343 EXPORT_SYMBOL(set_device_ro); 1344 1345 void set_disk_ro(struct gendisk *disk, int flag) 1346 { 1347 struct disk_part_iter piter; 1348 struct hd_struct *part; 1349 1350 if (disk->part0.policy != flag) { 1351 set_disk_ro_uevent(disk, flag); 1352 disk->part0.policy = flag; 1353 } 1354 1355 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY); 1356 while ((part = disk_part_iter_next(&piter))) 1357 part->policy = flag; 1358 disk_part_iter_exit(&piter); 1359 } 1360 1361 EXPORT_SYMBOL(set_disk_ro); 1362 1363 int bdev_read_only(struct block_device *bdev) 1364 { 1365 if (!bdev) 1366 return 0; 1367 return bdev->bd_part->policy; 1368 } 1369 1370 EXPORT_SYMBOL(bdev_read_only); 1371 1372 int invalidate_partition(struct gendisk *disk, int partno) 1373 { 1374 int res = 0; 1375 struct block_device *bdev = bdget_disk(disk, partno); 1376 if (bdev) { 1377 fsync_bdev(bdev); 1378 res = __invalidate_device(bdev, true); 1379 bdput(bdev); 1380 } 1381 return res; 1382 } 1383 1384 EXPORT_SYMBOL(invalidate_partition); 1385 1386 /* 1387 * Disk events - monitor disk events like media change and eject request. 1388 */ 1389 struct disk_events { 1390 struct list_head node; /* all disk_event's */ 1391 struct gendisk *disk; /* the associated disk */ 1392 spinlock_t lock; 1393 1394 struct mutex block_mutex; /* protects blocking */ 1395 int block; /* event blocking depth */ 1396 unsigned int pending; /* events already sent out */ 1397 unsigned int clearing; /* events being cleared */ 1398 1399 long poll_msecs; /* interval, -1 for default */ 1400 struct delayed_work dwork; 1401 }; 1402 1403 static const char *disk_events_strs[] = { 1404 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change", 1405 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request", 1406 }; 1407 1408 static char *disk_uevents[] = { 1409 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1", 1410 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1", 1411 }; 1412 1413 /* list of all disk_events */ 1414 static DEFINE_MUTEX(disk_events_mutex); 1415 static LIST_HEAD(disk_events); 1416 1417 /* disable in-kernel polling by default */ 1418 static unsigned long disk_events_dfl_poll_msecs = 0; 1419 1420 static unsigned long disk_events_poll_jiffies(struct gendisk *disk) 1421 { 1422 struct disk_events *ev = disk->ev; 1423 long intv_msecs = 0; 1424 1425 /* 1426 * If device-specific poll interval is set, always use it. If 1427 * the default is being used, poll iff there are events which 1428 * can't be monitored asynchronously. 1429 */ 1430 if (ev->poll_msecs >= 0) 1431 intv_msecs = ev->poll_msecs; 1432 else if (disk->events & ~disk->async_events) 1433 intv_msecs = disk_events_dfl_poll_msecs; 1434 1435 return msecs_to_jiffies(intv_msecs); 1436 } 1437 1438 /** 1439 * disk_block_events - block and flush disk event checking 1440 * @disk: disk to block events for 1441 * 1442 * On return from this function, it is guaranteed that event checking 1443 * isn't in progress and won't happen until unblocked by 1444 * disk_unblock_events(). Events blocking is counted and the actual 1445 * unblocking happens after the matching number of unblocks are done. 1446 * 1447 * Note that this intentionally does not block event checking from 1448 * disk_clear_events(). 1449 * 1450 * CONTEXT: 1451 * Might sleep. 1452 */ 1453 void disk_block_events(struct gendisk *disk) 1454 { 1455 struct disk_events *ev = disk->ev; 1456 unsigned long flags; 1457 bool cancel; 1458 1459 if (!ev) 1460 return; 1461 1462 /* 1463 * Outer mutex ensures that the first blocker completes canceling 1464 * the event work before further blockers are allowed to finish. 1465 */ 1466 mutex_lock(&ev->block_mutex); 1467 1468 spin_lock_irqsave(&ev->lock, flags); 1469 cancel = !ev->block++; 1470 spin_unlock_irqrestore(&ev->lock, flags); 1471 1472 if (cancel) 1473 cancel_delayed_work_sync(&disk->ev->dwork); 1474 1475 mutex_unlock(&ev->block_mutex); 1476 } 1477 1478 static void __disk_unblock_events(struct gendisk *disk, bool check_now) 1479 { 1480 struct disk_events *ev = disk->ev; 1481 unsigned long intv; 1482 unsigned long flags; 1483 1484 spin_lock_irqsave(&ev->lock, flags); 1485 1486 if (WARN_ON_ONCE(ev->block <= 0)) 1487 goto out_unlock; 1488 1489 if (--ev->block) 1490 goto out_unlock; 1491 1492 /* 1493 * Not exactly a latency critical operation, set poll timer 1494 * slack to 25% and kick event check. 1495 */ 1496 intv = disk_events_poll_jiffies(disk); 1497 set_timer_slack(&ev->dwork.timer, intv / 4); 1498 if (check_now) 1499 queue_delayed_work(system_freezable_power_efficient_wq, 1500 &ev->dwork, 0); 1501 else if (intv) 1502 queue_delayed_work(system_freezable_power_efficient_wq, 1503 &ev->dwork, intv); 1504 out_unlock: 1505 spin_unlock_irqrestore(&ev->lock, flags); 1506 } 1507 1508 /** 1509 * disk_unblock_events - unblock disk event checking 1510 * @disk: disk to unblock events for 1511 * 1512 * Undo disk_block_events(). When the block count reaches zero, it 1513 * starts events polling if configured. 1514 * 1515 * CONTEXT: 1516 * Don't care. Safe to call from irq context. 1517 */ 1518 void disk_unblock_events(struct gendisk *disk) 1519 { 1520 if (disk->ev) 1521 __disk_unblock_events(disk, false); 1522 } 1523 1524 /** 1525 * disk_flush_events - schedule immediate event checking and flushing 1526 * @disk: disk to check and flush events for 1527 * @mask: events to flush 1528 * 1529 * Schedule immediate event checking on @disk if not blocked. Events in 1530 * @mask are scheduled to be cleared from the driver. Note that this 1531 * doesn't clear the events from @disk->ev. 1532 * 1533 * CONTEXT: 1534 * If @mask is non-zero must be called with bdev->bd_mutex held. 1535 */ 1536 void disk_flush_events(struct gendisk *disk, unsigned int mask) 1537 { 1538 struct disk_events *ev = disk->ev; 1539 1540 if (!ev) 1541 return; 1542 1543 spin_lock_irq(&ev->lock); 1544 ev->clearing |= mask; 1545 if (!ev->block) 1546 mod_delayed_work(system_freezable_power_efficient_wq, 1547 &ev->dwork, 0); 1548 spin_unlock_irq(&ev->lock); 1549 } 1550 1551 /** 1552 * disk_clear_events - synchronously check, clear and return pending events 1553 * @disk: disk to fetch and clear events from 1554 * @mask: mask of events to be fetched and cleared 1555 * 1556 * Disk events are synchronously checked and pending events in @mask 1557 * are cleared and returned. This ignores the block count. 1558 * 1559 * CONTEXT: 1560 * Might sleep. 1561 */ 1562 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask) 1563 { 1564 const struct block_device_operations *bdops = disk->fops; 1565 struct disk_events *ev = disk->ev; 1566 unsigned int pending; 1567 unsigned int clearing = mask; 1568 1569 if (!ev) { 1570 /* for drivers still using the old ->media_changed method */ 1571 if ((mask & DISK_EVENT_MEDIA_CHANGE) && 1572 bdops->media_changed && bdops->media_changed(disk)) 1573 return DISK_EVENT_MEDIA_CHANGE; 1574 return 0; 1575 } 1576 1577 disk_block_events(disk); 1578 1579 /* 1580 * store the union of mask and ev->clearing on the stack so that the 1581 * race with disk_flush_events does not cause ambiguity (ev->clearing 1582 * can still be modified even if events are blocked). 1583 */ 1584 spin_lock_irq(&ev->lock); 1585 clearing |= ev->clearing; 1586 ev->clearing = 0; 1587 spin_unlock_irq(&ev->lock); 1588 1589 disk_check_events(ev, &clearing); 1590 /* 1591 * if ev->clearing is not 0, the disk_flush_events got called in the 1592 * middle of this function, so we want to run the workfn without delay. 1593 */ 1594 __disk_unblock_events(disk, ev->clearing ? true : false); 1595 1596 /* then, fetch and clear pending events */ 1597 spin_lock_irq(&ev->lock); 1598 pending = ev->pending & mask; 1599 ev->pending &= ~mask; 1600 spin_unlock_irq(&ev->lock); 1601 WARN_ON_ONCE(clearing & mask); 1602 1603 return pending; 1604 } 1605 1606 /* 1607 * Separate this part out so that a different pointer for clearing_ptr can be 1608 * passed in for disk_clear_events. 1609 */ 1610 static void disk_events_workfn(struct work_struct *work) 1611 { 1612 struct delayed_work *dwork = to_delayed_work(work); 1613 struct disk_events *ev = container_of(dwork, struct disk_events, dwork); 1614 1615 disk_check_events(ev, &ev->clearing); 1616 } 1617 1618 static void disk_check_events(struct disk_events *ev, 1619 unsigned int *clearing_ptr) 1620 { 1621 struct gendisk *disk = ev->disk; 1622 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { }; 1623 unsigned int clearing = *clearing_ptr; 1624 unsigned int events; 1625 unsigned long intv; 1626 int nr_events = 0, i; 1627 1628 /* check events */ 1629 events = disk->fops->check_events(disk, clearing); 1630 1631 /* accumulate pending events and schedule next poll if necessary */ 1632 spin_lock_irq(&ev->lock); 1633 1634 events &= ~ev->pending; 1635 ev->pending |= events; 1636 *clearing_ptr &= ~clearing; 1637 1638 intv = disk_events_poll_jiffies(disk); 1639 if (!ev->block && intv) 1640 queue_delayed_work(system_freezable_power_efficient_wq, 1641 &ev->dwork, intv); 1642 1643 spin_unlock_irq(&ev->lock); 1644 1645 /* 1646 * Tell userland about new events. Only the events listed in 1647 * @disk->events are reported. Unlisted events are processed the 1648 * same internally but never get reported to userland. 1649 */ 1650 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++) 1651 if (events & disk->events & (1 << i)) 1652 envp[nr_events++] = disk_uevents[i]; 1653 1654 if (nr_events) 1655 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp); 1656 } 1657 1658 /* 1659 * A disk events enabled device has the following sysfs nodes under 1660 * its /sys/block/X/ directory. 1661 * 1662 * events : list of all supported events 1663 * events_async : list of events which can be detected w/o polling 1664 * events_poll_msecs : polling interval, 0: disable, -1: system default 1665 */ 1666 static ssize_t __disk_events_show(unsigned int events, char *buf) 1667 { 1668 const char *delim = ""; 1669 ssize_t pos = 0; 1670 int i; 1671 1672 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++) 1673 if (events & (1 << i)) { 1674 pos += sprintf(buf + pos, "%s%s", 1675 delim, disk_events_strs[i]); 1676 delim = " "; 1677 } 1678 if (pos) 1679 pos += sprintf(buf + pos, "\n"); 1680 return pos; 1681 } 1682 1683 static ssize_t disk_events_show(struct device *dev, 1684 struct device_attribute *attr, char *buf) 1685 { 1686 struct gendisk *disk = dev_to_disk(dev); 1687 1688 return __disk_events_show(disk->events, buf); 1689 } 1690 1691 static ssize_t disk_events_async_show(struct device *dev, 1692 struct device_attribute *attr, char *buf) 1693 { 1694 struct gendisk *disk = dev_to_disk(dev); 1695 1696 return __disk_events_show(disk->async_events, buf); 1697 } 1698 1699 static ssize_t disk_events_poll_msecs_show(struct device *dev, 1700 struct device_attribute *attr, 1701 char *buf) 1702 { 1703 struct gendisk *disk = dev_to_disk(dev); 1704 1705 return sprintf(buf, "%ld\n", disk->ev->poll_msecs); 1706 } 1707 1708 static ssize_t disk_events_poll_msecs_store(struct device *dev, 1709 struct device_attribute *attr, 1710 const char *buf, size_t count) 1711 { 1712 struct gendisk *disk = dev_to_disk(dev); 1713 long intv; 1714 1715 if (!count || !sscanf(buf, "%ld", &intv)) 1716 return -EINVAL; 1717 1718 if (intv < 0 && intv != -1) 1719 return -EINVAL; 1720 1721 disk_block_events(disk); 1722 disk->ev->poll_msecs = intv; 1723 __disk_unblock_events(disk, true); 1724 1725 return count; 1726 } 1727 1728 static const DEVICE_ATTR(events, S_IRUGO, disk_events_show, NULL); 1729 static const DEVICE_ATTR(events_async, S_IRUGO, disk_events_async_show, NULL); 1730 static const DEVICE_ATTR(events_poll_msecs, S_IRUGO|S_IWUSR, 1731 disk_events_poll_msecs_show, 1732 disk_events_poll_msecs_store); 1733 1734 static const struct attribute *disk_events_attrs[] = { 1735 &dev_attr_events.attr, 1736 &dev_attr_events_async.attr, 1737 &dev_attr_events_poll_msecs.attr, 1738 NULL, 1739 }; 1740 1741 /* 1742 * The default polling interval can be specified by the kernel 1743 * parameter block.events_dfl_poll_msecs which defaults to 0 1744 * (disable). This can also be modified runtime by writing to 1745 * /sys/module/block/events_dfl_poll_msecs. 1746 */ 1747 static int disk_events_set_dfl_poll_msecs(const char *val, 1748 const struct kernel_param *kp) 1749 { 1750 struct disk_events *ev; 1751 int ret; 1752 1753 ret = param_set_ulong(val, kp); 1754 if (ret < 0) 1755 return ret; 1756 1757 mutex_lock(&disk_events_mutex); 1758 1759 list_for_each_entry(ev, &disk_events, node) 1760 disk_flush_events(ev->disk, 0); 1761 1762 mutex_unlock(&disk_events_mutex); 1763 1764 return 0; 1765 } 1766 1767 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = { 1768 .set = disk_events_set_dfl_poll_msecs, 1769 .get = param_get_ulong, 1770 }; 1771 1772 #undef MODULE_PARAM_PREFIX 1773 #define MODULE_PARAM_PREFIX "block." 1774 1775 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops, 1776 &disk_events_dfl_poll_msecs, 0644); 1777 1778 /* 1779 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events. 1780 */ 1781 static void disk_alloc_events(struct gendisk *disk) 1782 { 1783 struct disk_events *ev; 1784 1785 if (!disk->fops->check_events) 1786 return; 1787 1788 ev = kzalloc(sizeof(*ev), GFP_KERNEL); 1789 if (!ev) { 1790 pr_warn("%s: failed to initialize events\n", disk->disk_name); 1791 return; 1792 } 1793 1794 INIT_LIST_HEAD(&ev->node); 1795 ev->disk = disk; 1796 spin_lock_init(&ev->lock); 1797 mutex_init(&ev->block_mutex); 1798 ev->block = 1; 1799 ev->poll_msecs = -1; 1800 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn); 1801 1802 disk->ev = ev; 1803 } 1804 1805 static void disk_add_events(struct gendisk *disk) 1806 { 1807 if (!disk->ev) 1808 return; 1809 1810 /* FIXME: error handling */ 1811 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0) 1812 pr_warn("%s: failed to create sysfs files for events\n", 1813 disk->disk_name); 1814 1815 mutex_lock(&disk_events_mutex); 1816 list_add_tail(&disk->ev->node, &disk_events); 1817 mutex_unlock(&disk_events_mutex); 1818 1819 /* 1820 * Block count is initialized to 1 and the following initial 1821 * unblock kicks it into action. 1822 */ 1823 __disk_unblock_events(disk, true); 1824 } 1825 1826 static void disk_del_events(struct gendisk *disk) 1827 { 1828 if (!disk->ev) 1829 return; 1830 1831 disk_block_events(disk); 1832 1833 mutex_lock(&disk_events_mutex); 1834 list_del_init(&disk->ev->node); 1835 mutex_unlock(&disk_events_mutex); 1836 1837 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs); 1838 } 1839 1840 static void disk_release_events(struct gendisk *disk) 1841 { 1842 /* the block count should be 1 from disk_del_events() */ 1843 WARN_ON_ONCE(disk->ev && disk->ev->block != 1); 1844 kfree(disk->ev); 1845 } 1846
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.