~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/block/partitions/aix.c

Version: ~ [ linux-5.3 ] ~ [ linux-5.2.14 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.72 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.143 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.192 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.192 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.73 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-3.9.11 ] ~ [ linux-3.8.13 ] ~ [ linux-3.7.10 ] ~ [ linux-3.6.11 ] ~ [ linux-3.5.7 ] ~ [ linux-3.4.113 ] ~ [ linux-3.3.8 ] ~ [ linux-3.2.102 ] ~ [ linux-3.1.10 ] ~ [ linux-3.0.101 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  *  fs/partitions/aix.c
  3  *
  4  *  Copyright (C) 2012-2013 Philippe De Muyter <phdm@macqel.be>
  5  */
  6 
  7 #include "check.h"
  8 #include "aix.h"
  9 
 10 struct lvm_rec {
 11         char lvm_id[4]; /* "_LVM" */
 12         char reserved4[16];
 13         __be32 lvmarea_len;
 14         __be32 vgda_len;
 15         __be32 vgda_psn[2];
 16         char reserved36[10];
 17         __be16 pp_size; /* log2(pp_size) */
 18         char reserved46[12];
 19         __be16 version;
 20         };
 21 
 22 struct vgda {
 23         __be32 secs;
 24         __be32 usec;
 25         char reserved8[16];
 26         __be16 numlvs;
 27         __be16 maxlvs;
 28         __be16 pp_size;
 29         __be16 numpvs;
 30         __be16 total_vgdas;
 31         __be16 vgda_size;
 32         };
 33 
 34 struct lvd {
 35         __be16 lv_ix;
 36         __be16 res2;
 37         __be16 res4;
 38         __be16 maxsize;
 39         __be16 lv_state;
 40         __be16 mirror;
 41         __be16 mirror_policy;
 42         __be16 num_lps;
 43         __be16 res10[8];
 44         };
 45 
 46 struct lvname {
 47         char name[64];
 48         };
 49 
 50 struct ppe {
 51         __be16 lv_ix;
 52         unsigned short res2;
 53         unsigned short res4;
 54         __be16 lp_ix;
 55         unsigned short res8[12];
 56         };
 57 
 58 struct pvd {
 59         char reserved0[16];
 60         __be16 pp_count;
 61         char reserved18[2];
 62         __be32 psn_part1;
 63         char reserved24[8];
 64         struct ppe ppe[1016];
 65         };
 66 
 67 #define LVM_MAXLVS 256
 68 
 69 /**
 70  * last_lba(): return number of last logical block of device
 71  * @bdev: block device
 72  *
 73  * Description: Returns last LBA value on success, 0 on error.
 74  * This is stored (by sd and ide-geometry) in
 75  *  the part[0] entry for this disk, and is the number of
 76  *  physical sectors available on the disk.
 77  */
 78 static u64 last_lba(struct block_device *bdev)
 79 {
 80         if (!bdev || !bdev->bd_inode)
 81                 return 0;
 82         return (bdev->bd_inode->i_size >> 9) - 1ULL;
 83 }
 84 
 85 /**
 86  * read_lba(): Read bytes from disk, starting at given LBA
 87  * @state
 88  * @lba
 89  * @buffer
 90  * @count
 91  *
 92  * Description:  Reads @count bytes from @state->bdev into @buffer.
 93  * Returns number of bytes read on success, 0 on error.
 94  */
 95 static size_t read_lba(struct parsed_partitions *state, u64 lba, u8 *buffer,
 96                         size_t count)
 97 {
 98         size_t totalreadcount = 0;
 99 
100         if (!buffer || lba + count / 512 > last_lba(state->bdev))
101                 return 0;
102 
103         while (count) {
104                 int copied = 512;
105                 Sector sect;
106                 unsigned char *data = read_part_sector(state, lba++, &sect);
107                 if (!data)
108                         break;
109                 if (copied > count)
110                         copied = count;
111                 memcpy(buffer, data, copied);
112                 put_dev_sector(sect);
113                 buffer += copied;
114                 totalreadcount += copied;
115                 count -= copied;
116         }
117         return totalreadcount;
118 }
119 
120 /**
121  * alloc_pvd(): reads physical volume descriptor
122  * @state
123  * @lba
124  *
125  * Description: Returns pvd on success,  NULL on error.
126  * Allocates space for pvd and fill it with disk blocks at @lba
127  * Notes: remember to free pvd when you're done!
128  */
129 static struct pvd *alloc_pvd(struct parsed_partitions *state, u32 lba)
130 {
131         size_t count = sizeof(struct pvd);
132         struct pvd *p;
133 
134         p = kmalloc(count, GFP_KERNEL);
135         if (!p)
136                 return NULL;
137 
138         if (read_lba(state, lba, (u8 *) p, count) < count) {
139                 kfree(p);
140                 return NULL;
141         }
142         return p;
143 }
144 
145 /**
146  * alloc_lvn(): reads logical volume names
147  * @state
148  * @lba
149  *
150  * Description: Returns lvn on success,  NULL on error.
151  * Allocates space for lvn and fill it with disk blocks at @lba
152  * Notes: remember to free lvn when you're done!
153  */
154 static struct lvname *alloc_lvn(struct parsed_partitions *state, u32 lba)
155 {
156         size_t count = sizeof(struct lvname) * LVM_MAXLVS;
157         struct lvname *p;
158 
159         p = kmalloc(count, GFP_KERNEL);
160         if (!p)
161                 return NULL;
162 
163         if (read_lba(state, lba, (u8 *) p, count) < count) {
164                 kfree(p);
165                 return NULL;
166         }
167         return p;
168 }
169 
170 int aix_partition(struct parsed_partitions *state)
171 {
172         int ret = 0;
173         Sector sect;
174         unsigned char *d;
175         u32 pp_bytes_size;
176         u32 pp_blocks_size = 0;
177         u32 vgda_sector = 0;
178         u32 vgda_len = 0;
179         int numlvs = 0;
180         struct pvd *pvd;
181         struct lv_info {
182                 unsigned short pps_per_lv;
183                 unsigned short pps_found;
184                 unsigned char lv_is_contiguous;
185         } *lvip;
186         struct lvname *n = NULL;
187 
188         d = read_part_sector(state, 7, &sect);
189         if (d) {
190                 struct lvm_rec *p = (struct lvm_rec *)d;
191                 u16 lvm_version = be16_to_cpu(p->version);
192                 char tmp[64];
193 
194                 if (lvm_version == 1) {
195                         int pp_size_log2 = be16_to_cpu(p->pp_size);
196 
197                         pp_bytes_size = 1 << pp_size_log2;
198                         pp_blocks_size = pp_bytes_size / 512;
199                         snprintf(tmp, sizeof(tmp),
200                                 " AIX LVM header version %u found\n",
201                                 lvm_version);
202                         vgda_len = be32_to_cpu(p->vgda_len);
203                         vgda_sector = be32_to_cpu(p->vgda_psn[0]);
204                 } else {
205                         snprintf(tmp, sizeof(tmp),
206                                 " unsupported AIX LVM version %d found\n",
207                                 lvm_version);
208                 }
209                 strlcat(state->pp_buf, tmp, PAGE_SIZE);
210                 put_dev_sector(sect);
211         }
212         if (vgda_sector && (d = read_part_sector(state, vgda_sector, &sect))) {
213                 struct vgda *p = (struct vgda *)d;
214 
215                 numlvs = be16_to_cpu(p->numlvs);
216                 put_dev_sector(sect);
217         }
218         lvip = kcalloc(state->limit, sizeof(struct lv_info), GFP_KERNEL);
219         if (!lvip)
220                 return 0;
221         if (numlvs && (d = read_part_sector(state, vgda_sector + 1, &sect))) {
222                 struct lvd *p = (struct lvd *)d;
223                 int i;
224 
225                 n = alloc_lvn(state, vgda_sector + vgda_len - 33);
226                 if (n) {
227                         int foundlvs = 0;
228 
229                         for (i = 0; foundlvs < numlvs && i < state->limit; i += 1) {
230                                 lvip[i].pps_per_lv = be16_to_cpu(p[i].num_lps);
231                                 if (lvip[i].pps_per_lv)
232                                         foundlvs += 1;
233                         }
234                 }
235                 put_dev_sector(sect);
236         }
237         pvd = alloc_pvd(state, vgda_sector + 17);
238         if (pvd) {
239                 int numpps = be16_to_cpu(pvd->pp_count);
240                 int psn_part1 = be32_to_cpu(pvd->psn_part1);
241                 int i;
242                 int cur_lv_ix = -1;
243                 int next_lp_ix = 1;
244                 int lp_ix;
245 
246                 for (i = 0; i < numpps; i += 1) {
247                         struct ppe *p = pvd->ppe + i;
248                         unsigned int lv_ix;
249 
250                         lp_ix = be16_to_cpu(p->lp_ix);
251                         if (!lp_ix) {
252                                 next_lp_ix = 1;
253                                 continue;
254                         }
255                         lv_ix = be16_to_cpu(p->lv_ix) - 1;
256                         if (lv_ix >= state->limit) {
257                                 cur_lv_ix = -1;
258                                 continue;
259                         }
260                         lvip[lv_ix].pps_found += 1;
261                         if (lp_ix == 1) {
262                                 cur_lv_ix = lv_ix;
263                                 next_lp_ix = 1;
264                         } else if (lv_ix != cur_lv_ix || lp_ix != next_lp_ix) {
265                                 next_lp_ix = 1;
266                                 continue;
267                         }
268                         if (lp_ix == lvip[lv_ix].pps_per_lv) {
269                                 char tmp[70];
270 
271                                 put_partition(state, lv_ix + 1,
272                                   (i + 1 - lp_ix) * pp_blocks_size + psn_part1,
273                                   lvip[lv_ix].pps_per_lv * pp_blocks_size);
274                                 snprintf(tmp, sizeof(tmp), " <%s>\n",
275                                          n[lv_ix].name);
276                                 strlcat(state->pp_buf, tmp, PAGE_SIZE);
277                                 lvip[lv_ix].lv_is_contiguous = 1;
278                                 ret = 1;
279                                 next_lp_ix = 1;
280                         } else
281                                 next_lp_ix += 1;
282                 }
283                 for (i = 0; i < state->limit; i += 1)
284                         if (lvip[i].pps_found && !lvip[i].lv_is_contiguous)
285                                 pr_warn("partition %s (%u pp's found) is "
286                                         "not contiguous\n",
287                                         n[i].name, lvip[i].pps_found);
288                 kfree(pvd);
289         }
290         kfree(n);
291         kfree(lvip);
292         return ret;
293 }
294 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp