~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/cryptd.c

Version: ~ [ linux-5.10-rc1 ] ~ [ linux-5.9.1 ] ~ [ linux-5.8.16 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.72 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.152 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.202 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.240 ] ~ [ linux-4.8.17 ] ~ [ linux-4.7.10 ] ~ [ linux-4.6.7 ] ~ [ linux-4.5.7 ] ~ [ linux-4.4.240 ] ~ [ linux-4.3.6 ] ~ [ linux-4.2.8 ] ~ [ linux-4.1.52 ] ~ [ linux-4.0.9 ] ~ [ linux-3.19.8 ] ~ [ linux-3.18.140 ] ~ [ linux-3.17.8 ] ~ [ linux-3.16.85 ] ~ [ linux-3.15.10 ] ~ [ linux-3.14.79 ] ~ [ linux-3.13.11 ] ~ [ linux-3.12.74 ] ~ [ linux-3.11.10 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.5 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Software async crypto daemon.
  3  *
  4  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
  5  *
  6  * Added AEAD support to cryptd.
  7  *    Authors: Tadeusz Struk (tadeusz.struk@intel.com)
  8  *             Adrian Hoban <adrian.hoban@intel.com>
  9  *             Gabriele Paoloni <gabriele.paoloni@intel.com>
 10  *             Aidan O'Mahony (aidan.o.mahony@intel.com)
 11  *    Copyright (c) 2010, Intel Corporation.
 12  *
 13  * This program is free software; you can redistribute it and/or modify it
 14  * under the terms of the GNU General Public License as published by the Free
 15  * Software Foundation; either version 2 of the License, or (at your option)
 16  * any later version.
 17  *
 18  */
 19 
 20 #include <crypto/algapi.h>
 21 #include <crypto/internal/hash.h>
 22 #include <crypto/internal/aead.h>
 23 #include <crypto/cryptd.h>
 24 #include <crypto/crypto_wq.h>
 25 #include <linux/err.h>
 26 #include <linux/init.h>
 27 #include <linux/kernel.h>
 28 #include <linux/list.h>
 29 #include <linux/module.h>
 30 #include <linux/scatterlist.h>
 31 #include <linux/sched.h>
 32 #include <linux/slab.h>
 33 
 34 #define CRYPTD_MAX_CPU_QLEN 100
 35 
 36 struct cryptd_cpu_queue {
 37         struct crypto_queue queue;
 38         struct work_struct work;
 39 };
 40 
 41 struct cryptd_queue {
 42         struct cryptd_cpu_queue __percpu *cpu_queue;
 43 };
 44 
 45 struct cryptd_instance_ctx {
 46         struct crypto_spawn spawn;
 47         struct cryptd_queue *queue;
 48 };
 49 
 50 struct hashd_instance_ctx {
 51         struct crypto_shash_spawn spawn;
 52         struct cryptd_queue *queue;
 53 };
 54 
 55 struct aead_instance_ctx {
 56         struct crypto_aead_spawn aead_spawn;
 57         struct cryptd_queue *queue;
 58 };
 59 
 60 struct cryptd_blkcipher_ctx {
 61         struct crypto_blkcipher *child;
 62 };
 63 
 64 struct cryptd_blkcipher_request_ctx {
 65         crypto_completion_t complete;
 66 };
 67 
 68 struct cryptd_hash_ctx {
 69         struct crypto_shash *child;
 70 };
 71 
 72 struct cryptd_hash_request_ctx {
 73         crypto_completion_t complete;
 74         struct shash_desc desc;
 75 };
 76 
 77 struct cryptd_aead_ctx {
 78         struct crypto_aead *child;
 79 };
 80 
 81 struct cryptd_aead_request_ctx {
 82         crypto_completion_t complete;
 83 };
 84 
 85 static void cryptd_queue_worker(struct work_struct *work);
 86 
 87 static int cryptd_init_queue(struct cryptd_queue *queue,
 88                              unsigned int max_cpu_qlen)
 89 {
 90         int cpu;
 91         struct cryptd_cpu_queue *cpu_queue;
 92 
 93         queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue);
 94         if (!queue->cpu_queue)
 95                 return -ENOMEM;
 96         for_each_possible_cpu(cpu) {
 97                 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
 98                 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
 99                 INIT_WORK(&cpu_queue->work, cryptd_queue_worker);
100         }
101         return 0;
102 }
103 
104 static void cryptd_fini_queue(struct cryptd_queue *queue)
105 {
106         int cpu;
107         struct cryptd_cpu_queue *cpu_queue;
108 
109         for_each_possible_cpu(cpu) {
110                 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
111                 BUG_ON(cpu_queue->queue.qlen);
112         }
113         free_percpu(queue->cpu_queue);
114 }
115 
116 static int cryptd_enqueue_request(struct cryptd_queue *queue,
117                                   struct crypto_async_request *request)
118 {
119         int cpu, err;
120         struct cryptd_cpu_queue *cpu_queue;
121 
122         cpu = get_cpu();
123         cpu_queue = this_cpu_ptr(queue->cpu_queue);
124         err = crypto_enqueue_request(&cpu_queue->queue, request);
125         queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
126         put_cpu();
127 
128         return err;
129 }
130 
131 /* Called in workqueue context, do one real cryption work (via
132  * req->complete) and reschedule itself if there are more work to
133  * do. */
134 static void cryptd_queue_worker(struct work_struct *work)
135 {
136         struct cryptd_cpu_queue *cpu_queue;
137         struct crypto_async_request *req, *backlog;
138 
139         cpu_queue = container_of(work, struct cryptd_cpu_queue, work);
140         /*
141          * Only handle one request at a time to avoid hogging crypto workqueue.
142          * preempt_disable/enable is used to prevent being preempted by
143          * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent
144          * cryptd_enqueue_request() being accessed from software interrupts.
145          */
146         local_bh_disable();
147         preempt_disable();
148         backlog = crypto_get_backlog(&cpu_queue->queue);
149         req = crypto_dequeue_request(&cpu_queue->queue);
150         preempt_enable();
151         local_bh_enable();
152 
153         if (!req)
154                 return;
155 
156         if (backlog)
157                 backlog->complete(backlog, -EINPROGRESS);
158         req->complete(req, 0);
159 
160         if (cpu_queue->queue.qlen)
161                 queue_work(kcrypto_wq, &cpu_queue->work);
162 }
163 
164 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm)
165 {
166         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
167         struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
168         return ictx->queue;
169 }
170 
171 static int cryptd_blkcipher_setkey(struct crypto_ablkcipher *parent,
172                                    const u8 *key, unsigned int keylen)
173 {
174         struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(parent);
175         struct crypto_blkcipher *child = ctx->child;
176         int err;
177 
178         crypto_blkcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
179         crypto_blkcipher_set_flags(child, crypto_ablkcipher_get_flags(parent) &
180                                           CRYPTO_TFM_REQ_MASK);
181         err = crypto_blkcipher_setkey(child, key, keylen);
182         crypto_ablkcipher_set_flags(parent, crypto_blkcipher_get_flags(child) &
183                                             CRYPTO_TFM_RES_MASK);
184         return err;
185 }
186 
187 static void cryptd_blkcipher_crypt(struct ablkcipher_request *req,
188                                    struct crypto_blkcipher *child,
189                                    int err,
190                                    int (*crypt)(struct blkcipher_desc *desc,
191                                                 struct scatterlist *dst,
192                                                 struct scatterlist *src,
193                                                 unsigned int len))
194 {
195         struct cryptd_blkcipher_request_ctx *rctx;
196         struct blkcipher_desc desc;
197 
198         rctx = ablkcipher_request_ctx(req);
199 
200         if (unlikely(err == -EINPROGRESS))
201                 goto out;
202 
203         desc.tfm = child;
204         desc.info = req->info;
205         desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
206 
207         err = crypt(&desc, req->dst, req->src, req->nbytes);
208 
209         req->base.complete = rctx->complete;
210 
211 out:
212         local_bh_disable();
213         rctx->complete(&req->base, err);
214         local_bh_enable();
215 }
216 
217 static void cryptd_blkcipher_encrypt(struct crypto_async_request *req, int err)
218 {
219         struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
220         struct crypto_blkcipher *child = ctx->child;
221 
222         cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
223                                crypto_blkcipher_crt(child)->encrypt);
224 }
225 
226 static void cryptd_blkcipher_decrypt(struct crypto_async_request *req, int err)
227 {
228         struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(req->tfm);
229         struct crypto_blkcipher *child = ctx->child;
230 
231         cryptd_blkcipher_crypt(ablkcipher_request_cast(req), child, err,
232                                crypto_blkcipher_crt(child)->decrypt);
233 }
234 
235 static int cryptd_blkcipher_enqueue(struct ablkcipher_request *req,
236                                     crypto_completion_t complete)
237 {
238         struct cryptd_blkcipher_request_ctx *rctx = ablkcipher_request_ctx(req);
239         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
240         struct cryptd_queue *queue;
241 
242         queue = cryptd_get_queue(crypto_ablkcipher_tfm(tfm));
243         rctx->complete = req->base.complete;
244         req->base.complete = complete;
245 
246         return cryptd_enqueue_request(queue, &req->base);
247 }
248 
249 static int cryptd_blkcipher_encrypt_enqueue(struct ablkcipher_request *req)
250 {
251         return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_encrypt);
252 }
253 
254 static int cryptd_blkcipher_decrypt_enqueue(struct ablkcipher_request *req)
255 {
256         return cryptd_blkcipher_enqueue(req, cryptd_blkcipher_decrypt);
257 }
258 
259 static int cryptd_blkcipher_init_tfm(struct crypto_tfm *tfm)
260 {
261         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
262         struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
263         struct crypto_spawn *spawn = &ictx->spawn;
264         struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
265         struct crypto_blkcipher *cipher;
266 
267         cipher = crypto_spawn_blkcipher(spawn);
268         if (IS_ERR(cipher))
269                 return PTR_ERR(cipher);
270 
271         ctx->child = cipher;
272         tfm->crt_ablkcipher.reqsize =
273                 sizeof(struct cryptd_blkcipher_request_ctx);
274         return 0;
275 }
276 
277 static void cryptd_blkcipher_exit_tfm(struct crypto_tfm *tfm)
278 {
279         struct cryptd_blkcipher_ctx *ctx = crypto_tfm_ctx(tfm);
280 
281         crypto_free_blkcipher(ctx->child);
282 }
283 
284 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
285                                    unsigned int tail)
286 {
287         char *p;
288         struct crypto_instance *inst;
289         int err;
290 
291         p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
292         if (!p)
293                 return ERR_PTR(-ENOMEM);
294 
295         inst = (void *)(p + head);
296 
297         err = -ENAMETOOLONG;
298         if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
299                      "cryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
300                 goto out_free_inst;
301 
302         memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
303 
304         inst->alg.cra_priority = alg->cra_priority + 50;
305         inst->alg.cra_blocksize = alg->cra_blocksize;
306         inst->alg.cra_alignmask = alg->cra_alignmask;
307 
308 out:
309         return p;
310 
311 out_free_inst:
312         kfree(p);
313         p = ERR_PTR(err);
314         goto out;
315 }
316 
317 static int cryptd_create_blkcipher(struct crypto_template *tmpl,
318                                    struct rtattr **tb,
319                                    struct cryptd_queue *queue)
320 {
321         struct cryptd_instance_ctx *ctx;
322         struct crypto_instance *inst;
323         struct crypto_alg *alg;
324         int err;
325 
326         alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_BLKCIPHER,
327                                   CRYPTO_ALG_TYPE_MASK);
328         if (IS_ERR(alg))
329                 return PTR_ERR(alg);
330 
331         inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
332         err = PTR_ERR(inst);
333         if (IS_ERR(inst))
334                 goto out_put_alg;
335 
336         ctx = crypto_instance_ctx(inst);
337         ctx->queue = queue;
338 
339         err = crypto_init_spawn(&ctx->spawn, alg, inst,
340                                 CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
341         if (err)
342                 goto out_free_inst;
343 
344         inst->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
345         inst->alg.cra_type = &crypto_ablkcipher_type;
346 
347         inst->alg.cra_ablkcipher.ivsize = alg->cra_blkcipher.ivsize;
348         inst->alg.cra_ablkcipher.min_keysize = alg->cra_blkcipher.min_keysize;
349         inst->alg.cra_ablkcipher.max_keysize = alg->cra_blkcipher.max_keysize;
350 
351         inst->alg.cra_ablkcipher.geniv = alg->cra_blkcipher.geniv;
352 
353         inst->alg.cra_ctxsize = sizeof(struct cryptd_blkcipher_ctx);
354 
355         inst->alg.cra_init = cryptd_blkcipher_init_tfm;
356         inst->alg.cra_exit = cryptd_blkcipher_exit_tfm;
357 
358         inst->alg.cra_ablkcipher.setkey = cryptd_blkcipher_setkey;
359         inst->alg.cra_ablkcipher.encrypt = cryptd_blkcipher_encrypt_enqueue;
360         inst->alg.cra_ablkcipher.decrypt = cryptd_blkcipher_decrypt_enqueue;
361 
362         err = crypto_register_instance(tmpl, inst);
363         if (err) {
364                 crypto_drop_spawn(&ctx->spawn);
365 out_free_inst:
366                 kfree(inst);
367         }
368 
369 out_put_alg:
370         crypto_mod_put(alg);
371         return err;
372 }
373 
374 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm)
375 {
376         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
377         struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
378         struct crypto_shash_spawn *spawn = &ictx->spawn;
379         struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
380         struct crypto_shash *hash;
381 
382         hash = crypto_spawn_shash(spawn);
383         if (IS_ERR(hash))
384                 return PTR_ERR(hash);
385 
386         ctx->child = hash;
387         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
388                                  sizeof(struct cryptd_hash_request_ctx) +
389                                  crypto_shash_descsize(hash));
390         return 0;
391 }
392 
393 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm)
394 {
395         struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
396 
397         crypto_free_shash(ctx->child);
398 }
399 
400 static int cryptd_hash_setkey(struct crypto_ahash *parent,
401                                    const u8 *key, unsigned int keylen)
402 {
403         struct cryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
404         struct crypto_shash *child = ctx->child;
405         int err;
406 
407         crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
408         crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
409                                       CRYPTO_TFM_REQ_MASK);
410         err = crypto_shash_setkey(child, key, keylen);
411         crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
412                                        CRYPTO_TFM_RES_MASK);
413         return err;
414 }
415 
416 static int cryptd_hash_enqueue(struct ahash_request *req,
417                                 crypto_completion_t complete)
418 {
419         struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
420         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
421         struct cryptd_queue *queue =
422                 cryptd_get_queue(crypto_ahash_tfm(tfm));
423 
424         rctx->complete = req->base.complete;
425         req->base.complete = complete;
426 
427         return cryptd_enqueue_request(queue, &req->base);
428 }
429 
430 static void cryptd_hash_init(struct crypto_async_request *req_async, int err)
431 {
432         struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
433         struct crypto_shash *child = ctx->child;
434         struct ahash_request *req = ahash_request_cast(req_async);
435         struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
436         struct shash_desc *desc = &rctx->desc;
437 
438         if (unlikely(err == -EINPROGRESS))
439                 goto out;
440 
441         desc->tfm = child;
442         desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
443 
444         err = crypto_shash_init(desc);
445 
446         req->base.complete = rctx->complete;
447 
448 out:
449         local_bh_disable();
450         rctx->complete(&req->base, err);
451         local_bh_enable();
452 }
453 
454 static int cryptd_hash_init_enqueue(struct ahash_request *req)
455 {
456         return cryptd_hash_enqueue(req, cryptd_hash_init);
457 }
458 
459 static void cryptd_hash_update(struct crypto_async_request *req_async, int err)
460 {
461         struct ahash_request *req = ahash_request_cast(req_async);
462         struct cryptd_hash_request_ctx *rctx;
463 
464         rctx = ahash_request_ctx(req);
465 
466         if (unlikely(err == -EINPROGRESS))
467                 goto out;
468 
469         err = shash_ahash_update(req, &rctx->desc);
470 
471         req->base.complete = rctx->complete;
472 
473 out:
474         local_bh_disable();
475         rctx->complete(&req->base, err);
476         local_bh_enable();
477 }
478 
479 static int cryptd_hash_update_enqueue(struct ahash_request *req)
480 {
481         return cryptd_hash_enqueue(req, cryptd_hash_update);
482 }
483 
484 static void cryptd_hash_final(struct crypto_async_request *req_async, int err)
485 {
486         struct ahash_request *req = ahash_request_cast(req_async);
487         struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
488 
489         if (unlikely(err == -EINPROGRESS))
490                 goto out;
491 
492         err = crypto_shash_final(&rctx->desc, req->result);
493 
494         req->base.complete = rctx->complete;
495 
496 out:
497         local_bh_disable();
498         rctx->complete(&req->base, err);
499         local_bh_enable();
500 }
501 
502 static int cryptd_hash_final_enqueue(struct ahash_request *req)
503 {
504         return cryptd_hash_enqueue(req, cryptd_hash_final);
505 }
506 
507 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err)
508 {
509         struct ahash_request *req = ahash_request_cast(req_async);
510         struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
511 
512         if (unlikely(err == -EINPROGRESS))
513                 goto out;
514 
515         err = shash_ahash_finup(req, &rctx->desc);
516 
517         req->base.complete = rctx->complete;
518 
519 out:
520         local_bh_disable();
521         rctx->complete(&req->base, err);
522         local_bh_enable();
523 }
524 
525 static int cryptd_hash_finup_enqueue(struct ahash_request *req)
526 {
527         return cryptd_hash_enqueue(req, cryptd_hash_finup);
528 }
529 
530 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err)
531 {
532         struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
533         struct crypto_shash *child = ctx->child;
534         struct ahash_request *req = ahash_request_cast(req_async);
535         struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
536         struct shash_desc *desc = &rctx->desc;
537 
538         if (unlikely(err == -EINPROGRESS))
539                 goto out;
540 
541         desc->tfm = child;
542         desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
543 
544         err = shash_ahash_digest(req, desc);
545 
546         req->base.complete = rctx->complete;
547 
548 out:
549         local_bh_disable();
550         rctx->complete(&req->base, err);
551         local_bh_enable();
552 }
553 
554 static int cryptd_hash_digest_enqueue(struct ahash_request *req)
555 {
556         return cryptd_hash_enqueue(req, cryptd_hash_digest);
557 }
558 
559 static int cryptd_hash_export(struct ahash_request *req, void *out)
560 {
561         struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
562 
563         return crypto_shash_export(&rctx->desc, out);
564 }
565 
566 static int cryptd_hash_import(struct ahash_request *req, const void *in)
567 {
568         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
569         struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm);
570         struct shash_desc *desc = cryptd_shash_desc(req);
571 
572         desc->tfm = ctx->child;
573         desc->flags = req->base.flags;
574 
575         return crypto_shash_import(desc, in);
576 }
577 
578 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
579                               struct cryptd_queue *queue)
580 {
581         struct hashd_instance_ctx *ctx;
582         struct ahash_instance *inst;
583         struct shash_alg *salg;
584         struct crypto_alg *alg;
585         int err;
586 
587         salg = shash_attr_alg(tb[1], 0, 0);
588         if (IS_ERR(salg))
589                 return PTR_ERR(salg);
590 
591         alg = &salg->base;
592         inst = cryptd_alloc_instance(alg, ahash_instance_headroom(),
593                                      sizeof(*ctx));
594         err = PTR_ERR(inst);
595         if (IS_ERR(inst))
596                 goto out_put_alg;
597 
598         ctx = ahash_instance_ctx(inst);
599         ctx->queue = queue;
600 
601         err = crypto_init_shash_spawn(&ctx->spawn, salg,
602                                       ahash_crypto_instance(inst));
603         if (err)
604                 goto out_free_inst;
605 
606         inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC;
607 
608         inst->alg.halg.digestsize = salg->digestsize;
609         inst->alg.halg.statesize = salg->statesize;
610         inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx);
611 
612         inst->alg.halg.base.cra_init = cryptd_hash_init_tfm;
613         inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm;
614 
615         inst->alg.init   = cryptd_hash_init_enqueue;
616         inst->alg.update = cryptd_hash_update_enqueue;
617         inst->alg.final  = cryptd_hash_final_enqueue;
618         inst->alg.finup  = cryptd_hash_finup_enqueue;
619         inst->alg.export = cryptd_hash_export;
620         inst->alg.import = cryptd_hash_import;
621         inst->alg.setkey = cryptd_hash_setkey;
622         inst->alg.digest = cryptd_hash_digest_enqueue;
623 
624         err = ahash_register_instance(tmpl, inst);
625         if (err) {
626                 crypto_drop_shash(&ctx->spawn);
627 out_free_inst:
628                 kfree(inst);
629         }
630 
631 out_put_alg:
632         crypto_mod_put(alg);
633         return err;
634 }
635 
636 static void cryptd_aead_crypt(struct aead_request *req,
637                         struct crypto_aead *child,
638                         int err,
639                         int (*crypt)(struct aead_request *req))
640 {
641         struct cryptd_aead_request_ctx *rctx;
642         rctx = aead_request_ctx(req);
643 
644         if (unlikely(err == -EINPROGRESS))
645                 goto out;
646         aead_request_set_tfm(req, child);
647         err = crypt( req );
648         req->base.complete = rctx->complete;
649 out:
650         local_bh_disable();
651         rctx->complete(&req->base, err);
652         local_bh_enable();
653 }
654 
655 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err)
656 {
657         struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
658         struct crypto_aead *child = ctx->child;
659         struct aead_request *req;
660 
661         req = container_of(areq, struct aead_request, base);
662         cryptd_aead_crypt(req, child, err, crypto_aead_crt(child)->encrypt);
663 }
664 
665 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err)
666 {
667         struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm);
668         struct crypto_aead *child = ctx->child;
669         struct aead_request *req;
670 
671         req = container_of(areq, struct aead_request, base);
672         cryptd_aead_crypt(req, child, err, crypto_aead_crt(child)->decrypt);
673 }
674 
675 static int cryptd_aead_enqueue(struct aead_request *req,
676                                     crypto_completion_t complete)
677 {
678         struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req);
679         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
680         struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm));
681 
682         rctx->complete = req->base.complete;
683         req->base.complete = complete;
684         return cryptd_enqueue_request(queue, &req->base);
685 }
686 
687 static int cryptd_aead_encrypt_enqueue(struct aead_request *req)
688 {
689         return cryptd_aead_enqueue(req, cryptd_aead_encrypt );
690 }
691 
692 static int cryptd_aead_decrypt_enqueue(struct aead_request *req)
693 {
694         return cryptd_aead_enqueue(req, cryptd_aead_decrypt );
695 }
696 
697 static int cryptd_aead_init_tfm(struct crypto_tfm *tfm)
698 {
699         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
700         struct aead_instance_ctx *ictx = crypto_instance_ctx(inst);
701         struct crypto_aead_spawn *spawn = &ictx->aead_spawn;
702         struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(tfm);
703         struct crypto_aead *cipher;
704 
705         cipher = crypto_spawn_aead(spawn);
706         if (IS_ERR(cipher))
707                 return PTR_ERR(cipher);
708 
709         crypto_aead_set_flags(cipher, CRYPTO_TFM_REQ_MAY_SLEEP);
710         ctx->child = cipher;
711         tfm->crt_aead.reqsize = sizeof(struct cryptd_aead_request_ctx);
712         return 0;
713 }
714 
715 static void cryptd_aead_exit_tfm(struct crypto_tfm *tfm)
716 {
717         struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(tfm);
718         crypto_free_aead(ctx->child);
719 }
720 
721 static int cryptd_create_aead(struct crypto_template *tmpl,
722                               struct rtattr **tb,
723                               struct cryptd_queue *queue)
724 {
725         struct aead_instance_ctx *ctx;
726         struct crypto_instance *inst;
727         struct crypto_alg *alg;
728         int err;
729 
730         alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_AEAD,
731                                 CRYPTO_ALG_TYPE_MASK);
732         if (IS_ERR(alg))
733                 return PTR_ERR(alg);
734 
735         inst = cryptd_alloc_instance(alg, 0, sizeof(*ctx));
736         err = PTR_ERR(inst);
737         if (IS_ERR(inst))
738                 goto out_put_alg;
739 
740         ctx = crypto_instance_ctx(inst);
741         ctx->queue = queue;
742 
743         err = crypto_init_spawn(&ctx->aead_spawn.base, alg, inst,
744                         CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_ASYNC);
745         if (err)
746                 goto out_free_inst;
747 
748         inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
749         inst->alg.cra_type = alg->cra_type;
750         inst->alg.cra_ctxsize = sizeof(struct cryptd_aead_ctx);
751         inst->alg.cra_init = cryptd_aead_init_tfm;
752         inst->alg.cra_exit = cryptd_aead_exit_tfm;
753         inst->alg.cra_aead.setkey      = alg->cra_aead.setkey;
754         inst->alg.cra_aead.setauthsize = alg->cra_aead.setauthsize;
755         inst->alg.cra_aead.geniv       = alg->cra_aead.geniv;
756         inst->alg.cra_aead.ivsize      = alg->cra_aead.ivsize;
757         inst->alg.cra_aead.maxauthsize = alg->cra_aead.maxauthsize;
758         inst->alg.cra_aead.encrypt     = cryptd_aead_encrypt_enqueue;
759         inst->alg.cra_aead.decrypt     = cryptd_aead_decrypt_enqueue;
760         inst->alg.cra_aead.givencrypt  = alg->cra_aead.givencrypt;
761         inst->alg.cra_aead.givdecrypt  = alg->cra_aead.givdecrypt;
762 
763         err = crypto_register_instance(tmpl, inst);
764         if (err) {
765                 crypto_drop_spawn(&ctx->aead_spawn.base);
766 out_free_inst:
767                 kfree(inst);
768         }
769 out_put_alg:
770         crypto_mod_put(alg);
771         return err;
772 }
773 
774 static struct cryptd_queue queue;
775 
776 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
777 {
778         struct crypto_attr_type *algt;
779 
780         algt = crypto_get_attr_type(tb);
781         if (IS_ERR(algt))
782                 return PTR_ERR(algt);
783 
784         switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
785         case CRYPTO_ALG_TYPE_BLKCIPHER:
786                 return cryptd_create_blkcipher(tmpl, tb, &queue);
787         case CRYPTO_ALG_TYPE_DIGEST:
788                 return cryptd_create_hash(tmpl, tb, &queue);
789         case CRYPTO_ALG_TYPE_AEAD:
790                 return cryptd_create_aead(tmpl, tb, &queue);
791         }
792 
793         return -EINVAL;
794 }
795 
796 static void cryptd_free(struct crypto_instance *inst)
797 {
798         struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
799         struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
800         struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst);
801 
802         switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
803         case CRYPTO_ALG_TYPE_AHASH:
804                 crypto_drop_shash(&hctx->spawn);
805                 kfree(ahash_instance(inst));
806                 return;
807         case CRYPTO_ALG_TYPE_AEAD:
808                 crypto_drop_spawn(&aead_ctx->aead_spawn.base);
809                 kfree(inst);
810                 return;
811         default:
812                 crypto_drop_spawn(&ctx->spawn);
813                 kfree(inst);
814         }
815 }
816 
817 static struct crypto_template cryptd_tmpl = {
818         .name = "cryptd",
819         .create = cryptd_create,
820         .free = cryptd_free,
821         .module = THIS_MODULE,
822 };
823 
824 struct cryptd_ablkcipher *cryptd_alloc_ablkcipher(const char *alg_name,
825                                                   u32 type, u32 mask)
826 {
827         char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
828         struct crypto_tfm *tfm;
829 
830         if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
831                      "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
832                 return ERR_PTR(-EINVAL);
833         type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
834         type |= CRYPTO_ALG_TYPE_BLKCIPHER;
835         mask &= ~CRYPTO_ALG_TYPE_MASK;
836         mask |= (CRYPTO_ALG_GENIV | CRYPTO_ALG_TYPE_BLKCIPHER_MASK);
837         tfm = crypto_alloc_base(cryptd_alg_name, type, mask);
838         if (IS_ERR(tfm))
839                 return ERR_CAST(tfm);
840         if (tfm->__crt_alg->cra_module != THIS_MODULE) {
841                 crypto_free_tfm(tfm);
842                 return ERR_PTR(-EINVAL);
843         }
844 
845         return __cryptd_ablkcipher_cast(__crypto_ablkcipher_cast(tfm));
846 }
847 EXPORT_SYMBOL_GPL(cryptd_alloc_ablkcipher);
848 
849 struct crypto_blkcipher *cryptd_ablkcipher_child(struct cryptd_ablkcipher *tfm)
850 {
851         struct cryptd_blkcipher_ctx *ctx = crypto_ablkcipher_ctx(&tfm->base);
852         return ctx->child;
853 }
854 EXPORT_SYMBOL_GPL(cryptd_ablkcipher_child);
855 
856 void cryptd_free_ablkcipher(struct cryptd_ablkcipher *tfm)
857 {
858         crypto_free_ablkcipher(&tfm->base);
859 }
860 EXPORT_SYMBOL_GPL(cryptd_free_ablkcipher);
861 
862 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name,
863                                         u32 type, u32 mask)
864 {
865         char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
866         struct crypto_ahash *tfm;
867 
868         if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
869                      "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
870                 return ERR_PTR(-EINVAL);
871         tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask);
872         if (IS_ERR(tfm))
873                 return ERR_CAST(tfm);
874         if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
875                 crypto_free_ahash(tfm);
876                 return ERR_PTR(-EINVAL);
877         }
878 
879         return __cryptd_ahash_cast(tfm);
880 }
881 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash);
882 
883 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm)
884 {
885         struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
886 
887         return ctx->child;
888 }
889 EXPORT_SYMBOL_GPL(cryptd_ahash_child);
890 
891 struct shash_desc *cryptd_shash_desc(struct ahash_request *req)
892 {
893         struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
894         return &rctx->desc;
895 }
896 EXPORT_SYMBOL_GPL(cryptd_shash_desc);
897 
898 void cryptd_free_ahash(struct cryptd_ahash *tfm)
899 {
900         crypto_free_ahash(&tfm->base);
901 }
902 EXPORT_SYMBOL_GPL(cryptd_free_ahash);
903 
904 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name,
905                                                   u32 type, u32 mask)
906 {
907         char cryptd_alg_name[CRYPTO_MAX_ALG_NAME];
908         struct crypto_aead *tfm;
909 
910         if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME,
911                      "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
912                 return ERR_PTR(-EINVAL);
913         tfm = crypto_alloc_aead(cryptd_alg_name, type, mask);
914         if (IS_ERR(tfm))
915                 return ERR_CAST(tfm);
916         if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
917                 crypto_free_aead(tfm);
918                 return ERR_PTR(-EINVAL);
919         }
920         return __cryptd_aead_cast(tfm);
921 }
922 EXPORT_SYMBOL_GPL(cryptd_alloc_aead);
923 
924 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm)
925 {
926         struct cryptd_aead_ctx *ctx;
927         ctx = crypto_aead_ctx(&tfm->base);
928         return ctx->child;
929 }
930 EXPORT_SYMBOL_GPL(cryptd_aead_child);
931 
932 void cryptd_free_aead(struct cryptd_aead *tfm)
933 {
934         crypto_free_aead(&tfm->base);
935 }
936 EXPORT_SYMBOL_GPL(cryptd_free_aead);
937 
938 static int __init cryptd_init(void)
939 {
940         int err;
941 
942         err = cryptd_init_queue(&queue, CRYPTD_MAX_CPU_QLEN);
943         if (err)
944                 return err;
945 
946         err = crypto_register_template(&cryptd_tmpl);
947         if (err)
948                 cryptd_fini_queue(&queue);
949 
950         return err;
951 }
952 
953 static void __exit cryptd_exit(void)
954 {
955         cryptd_fini_queue(&queue);
956         crypto_unregister_template(&cryptd_tmpl);
957 }
958 
959 subsys_initcall(cryptd_init);
960 module_exit(cryptd_exit);
961 
962 MODULE_LICENSE("GPL");
963 MODULE_DESCRIPTION("Software async crypto daemon");
964 MODULE_ALIAS_CRYPTO("cryptd");
965 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | Wiki (Japanese) | Wiki (English) | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp