1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Software async crypto daemon. 4 * 5 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> 6 * 7 * Added AEAD support to cryptd. 8 * Authors: Tadeusz Struk (tadeusz.struk@intel.com) 9 * Adrian Hoban <adrian.hoban@intel.com> 10 * Gabriele Paoloni <gabriele.paoloni@intel.com> 11 * Aidan O'Mahony (aidan.o.mahony@intel.com) 12 * Copyright (c) 2010, Intel Corporation. 13 */ 14 15 #include <crypto/internal/hash.h> 16 #include <crypto/internal/aead.h> 17 #include <crypto/internal/skcipher.h> 18 #include <crypto/cryptd.h> 19 #include <crypto/crypto_wq.h> 20 #include <linux/atomic.h> 21 #include <linux/err.h> 22 #include <linux/init.h> 23 #include <linux/kernel.h> 24 #include <linux/list.h> 25 #include <linux/module.h> 26 #include <linux/scatterlist.h> 27 #include <linux/sched.h> 28 #include <linux/slab.h> 29 30 static unsigned int cryptd_max_cpu_qlen = 1000; 31 module_param(cryptd_max_cpu_qlen, uint, 0); 32 MODULE_PARM_DESC(cryptd_max_cpu_qlen, "Set cryptd Max queue depth"); 33 34 struct cryptd_cpu_queue { 35 struct crypto_queue queue; 36 struct work_struct work; 37 }; 38 39 struct cryptd_queue { 40 struct cryptd_cpu_queue __percpu *cpu_queue; 41 }; 42 43 struct cryptd_instance_ctx { 44 struct crypto_spawn spawn; 45 struct cryptd_queue *queue; 46 }; 47 48 struct skcipherd_instance_ctx { 49 struct crypto_skcipher_spawn spawn; 50 struct cryptd_queue *queue; 51 }; 52 53 struct hashd_instance_ctx { 54 struct crypto_shash_spawn spawn; 55 struct cryptd_queue *queue; 56 }; 57 58 struct aead_instance_ctx { 59 struct crypto_aead_spawn aead_spawn; 60 struct cryptd_queue *queue; 61 }; 62 63 struct cryptd_skcipher_ctx { 64 atomic_t refcnt; 65 struct crypto_sync_skcipher *child; 66 }; 67 68 struct cryptd_skcipher_request_ctx { 69 crypto_completion_t complete; 70 }; 71 72 struct cryptd_hash_ctx { 73 atomic_t refcnt; 74 struct crypto_shash *child; 75 }; 76 77 struct cryptd_hash_request_ctx { 78 crypto_completion_t complete; 79 struct shash_desc desc; 80 }; 81 82 struct cryptd_aead_ctx { 83 atomic_t refcnt; 84 struct crypto_aead *child; 85 }; 86 87 struct cryptd_aead_request_ctx { 88 crypto_completion_t complete; 89 }; 90 91 static void cryptd_queue_worker(struct work_struct *work); 92 93 static int cryptd_init_queue(struct cryptd_queue *queue, 94 unsigned int max_cpu_qlen) 95 { 96 int cpu; 97 struct cryptd_cpu_queue *cpu_queue; 98 99 queue->cpu_queue = alloc_percpu(struct cryptd_cpu_queue); 100 if (!queue->cpu_queue) 101 return -ENOMEM; 102 for_each_possible_cpu(cpu) { 103 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 104 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); 105 INIT_WORK(&cpu_queue->work, cryptd_queue_worker); 106 } 107 pr_info("cryptd: max_cpu_qlen set to %d\n", max_cpu_qlen); 108 return 0; 109 } 110 111 static void cryptd_fini_queue(struct cryptd_queue *queue) 112 { 113 int cpu; 114 struct cryptd_cpu_queue *cpu_queue; 115 116 for_each_possible_cpu(cpu) { 117 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 118 BUG_ON(cpu_queue->queue.qlen); 119 } 120 free_percpu(queue->cpu_queue); 121 } 122 123 static int cryptd_enqueue_request(struct cryptd_queue *queue, 124 struct crypto_async_request *request) 125 { 126 int cpu, err; 127 struct cryptd_cpu_queue *cpu_queue; 128 atomic_t *refcnt; 129 130 cpu = get_cpu(); 131 cpu_queue = this_cpu_ptr(queue->cpu_queue); 132 err = crypto_enqueue_request(&cpu_queue->queue, request); 133 134 refcnt = crypto_tfm_ctx(request->tfm); 135 136 if (err == -ENOSPC) 137 goto out_put_cpu; 138 139 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); 140 141 if (!atomic_read(refcnt)) 142 goto out_put_cpu; 143 144 atomic_inc(refcnt); 145 146 out_put_cpu: 147 put_cpu(); 148 149 return err; 150 } 151 152 /* Called in workqueue context, do one real cryption work (via 153 * req->complete) and reschedule itself if there are more work to 154 * do. */ 155 static void cryptd_queue_worker(struct work_struct *work) 156 { 157 struct cryptd_cpu_queue *cpu_queue; 158 struct crypto_async_request *req, *backlog; 159 160 cpu_queue = container_of(work, struct cryptd_cpu_queue, work); 161 /* 162 * Only handle one request at a time to avoid hogging crypto workqueue. 163 * preempt_disable/enable is used to prevent being preempted by 164 * cryptd_enqueue_request(). local_bh_disable/enable is used to prevent 165 * cryptd_enqueue_request() being accessed from software interrupts. 166 */ 167 local_bh_disable(); 168 preempt_disable(); 169 backlog = crypto_get_backlog(&cpu_queue->queue); 170 req = crypto_dequeue_request(&cpu_queue->queue); 171 preempt_enable(); 172 local_bh_enable(); 173 174 if (!req) 175 return; 176 177 if (backlog) 178 backlog->complete(backlog, -EINPROGRESS); 179 req->complete(req, 0); 180 181 if (cpu_queue->queue.qlen) 182 queue_work(kcrypto_wq, &cpu_queue->work); 183 } 184 185 static inline struct cryptd_queue *cryptd_get_queue(struct crypto_tfm *tfm) 186 { 187 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 188 struct cryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 189 return ictx->queue; 190 } 191 192 static inline void cryptd_check_internal(struct rtattr **tb, u32 *type, 193 u32 *mask) 194 { 195 struct crypto_attr_type *algt; 196 197 algt = crypto_get_attr_type(tb); 198 if (IS_ERR(algt)) 199 return; 200 201 *type |= algt->type & CRYPTO_ALG_INTERNAL; 202 *mask |= algt->mask & CRYPTO_ALG_INTERNAL; 203 } 204 205 static int cryptd_init_instance(struct crypto_instance *inst, 206 struct crypto_alg *alg) 207 { 208 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, 209 "cryptd(%s)", 210 alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 211 return -ENAMETOOLONG; 212 213 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); 214 215 inst->alg.cra_priority = alg->cra_priority + 50; 216 inst->alg.cra_blocksize = alg->cra_blocksize; 217 inst->alg.cra_alignmask = alg->cra_alignmask; 218 219 return 0; 220 } 221 222 static void *cryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 223 unsigned int tail) 224 { 225 char *p; 226 struct crypto_instance *inst; 227 int err; 228 229 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); 230 if (!p) 231 return ERR_PTR(-ENOMEM); 232 233 inst = (void *)(p + head); 234 235 err = cryptd_init_instance(inst, alg); 236 if (err) 237 goto out_free_inst; 238 239 out: 240 return p; 241 242 out_free_inst: 243 kfree(p); 244 p = ERR_PTR(err); 245 goto out; 246 } 247 248 static int cryptd_skcipher_setkey(struct crypto_skcipher *parent, 249 const u8 *key, unsigned int keylen) 250 { 251 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(parent); 252 struct crypto_sync_skcipher *child = ctx->child; 253 int err; 254 255 crypto_sync_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); 256 crypto_sync_skcipher_set_flags(child, 257 crypto_skcipher_get_flags(parent) & 258 CRYPTO_TFM_REQ_MASK); 259 err = crypto_sync_skcipher_setkey(child, key, keylen); 260 crypto_skcipher_set_flags(parent, 261 crypto_sync_skcipher_get_flags(child) & 262 CRYPTO_TFM_RES_MASK); 263 return err; 264 } 265 266 static void cryptd_skcipher_complete(struct skcipher_request *req, int err) 267 { 268 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 269 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 270 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 271 int refcnt = atomic_read(&ctx->refcnt); 272 273 local_bh_disable(); 274 rctx->complete(&req->base, err); 275 local_bh_enable(); 276 277 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 278 crypto_free_skcipher(tfm); 279 } 280 281 static void cryptd_skcipher_encrypt(struct crypto_async_request *base, 282 int err) 283 { 284 struct skcipher_request *req = skcipher_request_cast(base); 285 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 286 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 287 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 288 struct crypto_sync_skcipher *child = ctx->child; 289 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child); 290 291 if (unlikely(err == -EINPROGRESS)) 292 goto out; 293 294 skcipher_request_set_sync_tfm(subreq, child); 295 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, 296 NULL, NULL); 297 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 298 req->iv); 299 300 err = crypto_skcipher_encrypt(subreq); 301 skcipher_request_zero(subreq); 302 303 req->base.complete = rctx->complete; 304 305 out: 306 cryptd_skcipher_complete(req, err); 307 } 308 309 static void cryptd_skcipher_decrypt(struct crypto_async_request *base, 310 int err) 311 { 312 struct skcipher_request *req = skcipher_request_cast(base); 313 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 314 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 315 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 316 struct crypto_sync_skcipher *child = ctx->child; 317 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, child); 318 319 if (unlikely(err == -EINPROGRESS)) 320 goto out; 321 322 skcipher_request_set_sync_tfm(subreq, child); 323 skcipher_request_set_callback(subreq, CRYPTO_TFM_REQ_MAY_SLEEP, 324 NULL, NULL); 325 skcipher_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, 326 req->iv); 327 328 err = crypto_skcipher_decrypt(subreq); 329 skcipher_request_zero(subreq); 330 331 req->base.complete = rctx->complete; 332 333 out: 334 cryptd_skcipher_complete(req, err); 335 } 336 337 static int cryptd_skcipher_enqueue(struct skcipher_request *req, 338 crypto_completion_t compl) 339 { 340 struct cryptd_skcipher_request_ctx *rctx = skcipher_request_ctx(req); 341 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 342 struct cryptd_queue *queue; 343 344 queue = cryptd_get_queue(crypto_skcipher_tfm(tfm)); 345 rctx->complete = req->base.complete; 346 req->base.complete = compl; 347 348 return cryptd_enqueue_request(queue, &req->base); 349 } 350 351 static int cryptd_skcipher_encrypt_enqueue(struct skcipher_request *req) 352 { 353 return cryptd_skcipher_enqueue(req, cryptd_skcipher_encrypt); 354 } 355 356 static int cryptd_skcipher_decrypt_enqueue(struct skcipher_request *req) 357 { 358 return cryptd_skcipher_enqueue(req, cryptd_skcipher_decrypt); 359 } 360 361 static int cryptd_skcipher_init_tfm(struct crypto_skcipher *tfm) 362 { 363 struct skcipher_instance *inst = skcipher_alg_instance(tfm); 364 struct skcipherd_instance_ctx *ictx = skcipher_instance_ctx(inst); 365 struct crypto_skcipher_spawn *spawn = &ictx->spawn; 366 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 367 struct crypto_skcipher *cipher; 368 369 cipher = crypto_spawn_skcipher(spawn); 370 if (IS_ERR(cipher)) 371 return PTR_ERR(cipher); 372 373 ctx->child = (struct crypto_sync_skcipher *)cipher; 374 crypto_skcipher_set_reqsize( 375 tfm, sizeof(struct cryptd_skcipher_request_ctx)); 376 return 0; 377 } 378 379 static void cryptd_skcipher_exit_tfm(struct crypto_skcipher *tfm) 380 { 381 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(tfm); 382 383 crypto_free_sync_skcipher(ctx->child); 384 } 385 386 static void cryptd_skcipher_free(struct skcipher_instance *inst) 387 { 388 struct skcipherd_instance_ctx *ctx = skcipher_instance_ctx(inst); 389 390 crypto_drop_skcipher(&ctx->spawn); 391 kfree(inst); 392 } 393 394 static int cryptd_create_skcipher(struct crypto_template *tmpl, 395 struct rtattr **tb, 396 struct cryptd_queue *queue) 397 { 398 struct skcipherd_instance_ctx *ctx; 399 struct skcipher_instance *inst; 400 struct skcipher_alg *alg; 401 const char *name; 402 u32 type; 403 u32 mask; 404 int err; 405 406 type = 0; 407 mask = CRYPTO_ALG_ASYNC; 408 409 cryptd_check_internal(tb, &type, &mask); 410 411 name = crypto_attr_alg_name(tb[1]); 412 if (IS_ERR(name)) 413 return PTR_ERR(name); 414 415 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 416 if (!inst) 417 return -ENOMEM; 418 419 ctx = skcipher_instance_ctx(inst); 420 ctx->queue = queue; 421 422 crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst)); 423 err = crypto_grab_skcipher(&ctx->spawn, name, type, mask); 424 if (err) 425 goto out_free_inst; 426 427 alg = crypto_spawn_skcipher_alg(&ctx->spawn); 428 err = cryptd_init_instance(skcipher_crypto_instance(inst), &alg->base); 429 if (err) 430 goto out_drop_skcipher; 431 432 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC | 433 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); 434 435 inst->alg.ivsize = crypto_skcipher_alg_ivsize(alg); 436 inst->alg.chunksize = crypto_skcipher_alg_chunksize(alg); 437 inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg); 438 inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg); 439 440 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_skcipher_ctx); 441 442 inst->alg.init = cryptd_skcipher_init_tfm; 443 inst->alg.exit = cryptd_skcipher_exit_tfm; 444 445 inst->alg.setkey = cryptd_skcipher_setkey; 446 inst->alg.encrypt = cryptd_skcipher_encrypt_enqueue; 447 inst->alg.decrypt = cryptd_skcipher_decrypt_enqueue; 448 449 inst->free = cryptd_skcipher_free; 450 451 err = skcipher_register_instance(tmpl, inst); 452 if (err) { 453 out_drop_skcipher: 454 crypto_drop_skcipher(&ctx->spawn); 455 out_free_inst: 456 kfree(inst); 457 } 458 return err; 459 } 460 461 static int cryptd_hash_init_tfm(struct crypto_tfm *tfm) 462 { 463 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 464 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); 465 struct crypto_shash_spawn *spawn = &ictx->spawn; 466 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 467 struct crypto_shash *hash; 468 469 hash = crypto_spawn_shash(spawn); 470 if (IS_ERR(hash)) 471 return PTR_ERR(hash); 472 473 ctx->child = hash; 474 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 475 sizeof(struct cryptd_hash_request_ctx) + 476 crypto_shash_descsize(hash)); 477 return 0; 478 } 479 480 static void cryptd_hash_exit_tfm(struct crypto_tfm *tfm) 481 { 482 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 483 484 crypto_free_shash(ctx->child); 485 } 486 487 static int cryptd_hash_setkey(struct crypto_ahash *parent, 488 const u8 *key, unsigned int keylen) 489 { 490 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); 491 struct crypto_shash *child = ctx->child; 492 int err; 493 494 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK); 495 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) & 496 CRYPTO_TFM_REQ_MASK); 497 err = crypto_shash_setkey(child, key, keylen); 498 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) & 499 CRYPTO_TFM_RES_MASK); 500 return err; 501 } 502 503 static int cryptd_hash_enqueue(struct ahash_request *req, 504 crypto_completion_t compl) 505 { 506 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 507 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 508 struct cryptd_queue *queue = 509 cryptd_get_queue(crypto_ahash_tfm(tfm)); 510 511 rctx->complete = req->base.complete; 512 req->base.complete = compl; 513 514 return cryptd_enqueue_request(queue, &req->base); 515 } 516 517 static void cryptd_hash_complete(struct ahash_request *req, int err) 518 { 519 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 520 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); 521 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 522 int refcnt = atomic_read(&ctx->refcnt); 523 524 local_bh_disable(); 525 rctx->complete(&req->base, err); 526 local_bh_enable(); 527 528 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 529 crypto_free_ahash(tfm); 530 } 531 532 static void cryptd_hash_init(struct crypto_async_request *req_async, int err) 533 { 534 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 535 struct crypto_shash *child = ctx->child; 536 struct ahash_request *req = ahash_request_cast(req_async); 537 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 538 struct shash_desc *desc = &rctx->desc; 539 540 if (unlikely(err == -EINPROGRESS)) 541 goto out; 542 543 desc->tfm = child; 544 545 err = crypto_shash_init(desc); 546 547 req->base.complete = rctx->complete; 548 549 out: 550 cryptd_hash_complete(req, err); 551 } 552 553 static int cryptd_hash_init_enqueue(struct ahash_request *req) 554 { 555 return cryptd_hash_enqueue(req, cryptd_hash_init); 556 } 557 558 static void cryptd_hash_update(struct crypto_async_request *req_async, int err) 559 { 560 struct ahash_request *req = ahash_request_cast(req_async); 561 struct cryptd_hash_request_ctx *rctx; 562 563 rctx = ahash_request_ctx(req); 564 565 if (unlikely(err == -EINPROGRESS)) 566 goto out; 567 568 err = shash_ahash_update(req, &rctx->desc); 569 570 req->base.complete = rctx->complete; 571 572 out: 573 cryptd_hash_complete(req, err); 574 } 575 576 static int cryptd_hash_update_enqueue(struct ahash_request *req) 577 { 578 return cryptd_hash_enqueue(req, cryptd_hash_update); 579 } 580 581 static void cryptd_hash_final(struct crypto_async_request *req_async, int err) 582 { 583 struct ahash_request *req = ahash_request_cast(req_async); 584 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 585 586 if (unlikely(err == -EINPROGRESS)) 587 goto out; 588 589 err = crypto_shash_final(&rctx->desc, req->result); 590 591 req->base.complete = rctx->complete; 592 593 out: 594 cryptd_hash_complete(req, err); 595 } 596 597 static int cryptd_hash_final_enqueue(struct ahash_request *req) 598 { 599 return cryptd_hash_enqueue(req, cryptd_hash_final); 600 } 601 602 static void cryptd_hash_finup(struct crypto_async_request *req_async, int err) 603 { 604 struct ahash_request *req = ahash_request_cast(req_async); 605 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 606 607 if (unlikely(err == -EINPROGRESS)) 608 goto out; 609 610 err = shash_ahash_finup(req, &rctx->desc); 611 612 req->base.complete = rctx->complete; 613 614 out: 615 cryptd_hash_complete(req, err); 616 } 617 618 static int cryptd_hash_finup_enqueue(struct ahash_request *req) 619 { 620 return cryptd_hash_enqueue(req, cryptd_hash_finup); 621 } 622 623 static void cryptd_hash_digest(struct crypto_async_request *req_async, int err) 624 { 625 struct cryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 626 struct crypto_shash *child = ctx->child; 627 struct ahash_request *req = ahash_request_cast(req_async); 628 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 629 struct shash_desc *desc = &rctx->desc; 630 631 if (unlikely(err == -EINPROGRESS)) 632 goto out; 633 634 desc->tfm = child; 635 636 err = shash_ahash_digest(req, desc); 637 638 req->base.complete = rctx->complete; 639 640 out: 641 cryptd_hash_complete(req, err); 642 } 643 644 static int cryptd_hash_digest_enqueue(struct ahash_request *req) 645 { 646 return cryptd_hash_enqueue(req, cryptd_hash_digest); 647 } 648 649 static int cryptd_hash_export(struct ahash_request *req, void *out) 650 { 651 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 652 653 return crypto_shash_export(&rctx->desc, out); 654 } 655 656 static int cryptd_hash_import(struct ahash_request *req, const void *in) 657 { 658 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 659 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(tfm); 660 struct shash_desc *desc = cryptd_shash_desc(req); 661 662 desc->tfm = ctx->child; 663 664 return crypto_shash_import(desc, in); 665 } 666 667 static int cryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, 668 struct cryptd_queue *queue) 669 { 670 struct hashd_instance_ctx *ctx; 671 struct ahash_instance *inst; 672 struct shash_alg *salg; 673 struct crypto_alg *alg; 674 u32 type = 0; 675 u32 mask = 0; 676 int err; 677 678 cryptd_check_internal(tb, &type, &mask); 679 680 salg = shash_attr_alg(tb[1], type, mask); 681 if (IS_ERR(salg)) 682 return PTR_ERR(salg); 683 684 alg = &salg->base; 685 inst = cryptd_alloc_instance(alg, ahash_instance_headroom(), 686 sizeof(*ctx)); 687 err = PTR_ERR(inst); 688 if (IS_ERR(inst)) 689 goto out_put_alg; 690 691 ctx = ahash_instance_ctx(inst); 692 ctx->queue = queue; 693 694 err = crypto_init_shash_spawn(&ctx->spawn, salg, 695 ahash_crypto_instance(inst)); 696 if (err) 697 goto out_free_inst; 698 699 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC | 700 (alg->cra_flags & (CRYPTO_ALG_INTERNAL | 701 CRYPTO_ALG_OPTIONAL_KEY)); 702 703 inst->alg.halg.digestsize = salg->digestsize; 704 inst->alg.halg.statesize = salg->statesize; 705 inst->alg.halg.base.cra_ctxsize = sizeof(struct cryptd_hash_ctx); 706 707 inst->alg.halg.base.cra_init = cryptd_hash_init_tfm; 708 inst->alg.halg.base.cra_exit = cryptd_hash_exit_tfm; 709 710 inst->alg.init = cryptd_hash_init_enqueue; 711 inst->alg.update = cryptd_hash_update_enqueue; 712 inst->alg.final = cryptd_hash_final_enqueue; 713 inst->alg.finup = cryptd_hash_finup_enqueue; 714 inst->alg.export = cryptd_hash_export; 715 inst->alg.import = cryptd_hash_import; 716 if (crypto_shash_alg_has_setkey(salg)) 717 inst->alg.setkey = cryptd_hash_setkey; 718 inst->alg.digest = cryptd_hash_digest_enqueue; 719 720 err = ahash_register_instance(tmpl, inst); 721 if (err) { 722 crypto_drop_shash(&ctx->spawn); 723 out_free_inst: 724 kfree(inst); 725 } 726 727 out_put_alg: 728 crypto_mod_put(alg); 729 return err; 730 } 731 732 static int cryptd_aead_setkey(struct crypto_aead *parent, 733 const u8 *key, unsigned int keylen) 734 { 735 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); 736 struct crypto_aead *child = ctx->child; 737 738 return crypto_aead_setkey(child, key, keylen); 739 } 740 741 static int cryptd_aead_setauthsize(struct crypto_aead *parent, 742 unsigned int authsize) 743 { 744 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(parent); 745 struct crypto_aead *child = ctx->child; 746 747 return crypto_aead_setauthsize(child, authsize); 748 } 749 750 static void cryptd_aead_crypt(struct aead_request *req, 751 struct crypto_aead *child, 752 int err, 753 int (*crypt)(struct aead_request *req)) 754 { 755 struct cryptd_aead_request_ctx *rctx; 756 struct cryptd_aead_ctx *ctx; 757 crypto_completion_t compl; 758 struct crypto_aead *tfm; 759 int refcnt; 760 761 rctx = aead_request_ctx(req); 762 compl = rctx->complete; 763 764 tfm = crypto_aead_reqtfm(req); 765 766 if (unlikely(err == -EINPROGRESS)) 767 goto out; 768 aead_request_set_tfm(req, child); 769 err = crypt( req ); 770 771 out: 772 ctx = crypto_aead_ctx(tfm); 773 refcnt = atomic_read(&ctx->refcnt); 774 775 local_bh_disable(); 776 compl(&req->base, err); 777 local_bh_enable(); 778 779 if (err != -EINPROGRESS && refcnt && atomic_dec_and_test(&ctx->refcnt)) 780 crypto_free_aead(tfm); 781 } 782 783 static void cryptd_aead_encrypt(struct crypto_async_request *areq, int err) 784 { 785 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm); 786 struct crypto_aead *child = ctx->child; 787 struct aead_request *req; 788 789 req = container_of(areq, struct aead_request, base); 790 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->encrypt); 791 } 792 793 static void cryptd_aead_decrypt(struct crypto_async_request *areq, int err) 794 { 795 struct cryptd_aead_ctx *ctx = crypto_tfm_ctx(areq->tfm); 796 struct crypto_aead *child = ctx->child; 797 struct aead_request *req; 798 799 req = container_of(areq, struct aead_request, base); 800 cryptd_aead_crypt(req, child, err, crypto_aead_alg(child)->decrypt); 801 } 802 803 static int cryptd_aead_enqueue(struct aead_request *req, 804 crypto_completion_t compl) 805 { 806 struct cryptd_aead_request_ctx *rctx = aead_request_ctx(req); 807 struct crypto_aead *tfm = crypto_aead_reqtfm(req); 808 struct cryptd_queue *queue = cryptd_get_queue(crypto_aead_tfm(tfm)); 809 810 rctx->complete = req->base.complete; 811 req->base.complete = compl; 812 return cryptd_enqueue_request(queue, &req->base); 813 } 814 815 static int cryptd_aead_encrypt_enqueue(struct aead_request *req) 816 { 817 return cryptd_aead_enqueue(req, cryptd_aead_encrypt ); 818 } 819 820 static int cryptd_aead_decrypt_enqueue(struct aead_request *req) 821 { 822 return cryptd_aead_enqueue(req, cryptd_aead_decrypt ); 823 } 824 825 static int cryptd_aead_init_tfm(struct crypto_aead *tfm) 826 { 827 struct aead_instance *inst = aead_alg_instance(tfm); 828 struct aead_instance_ctx *ictx = aead_instance_ctx(inst); 829 struct crypto_aead_spawn *spawn = &ictx->aead_spawn; 830 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); 831 struct crypto_aead *cipher; 832 833 cipher = crypto_spawn_aead(spawn); 834 if (IS_ERR(cipher)) 835 return PTR_ERR(cipher); 836 837 ctx->child = cipher; 838 crypto_aead_set_reqsize( 839 tfm, max((unsigned)sizeof(struct cryptd_aead_request_ctx), 840 crypto_aead_reqsize(cipher))); 841 return 0; 842 } 843 844 static void cryptd_aead_exit_tfm(struct crypto_aead *tfm) 845 { 846 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(tfm); 847 crypto_free_aead(ctx->child); 848 } 849 850 static int cryptd_create_aead(struct crypto_template *tmpl, 851 struct rtattr **tb, 852 struct cryptd_queue *queue) 853 { 854 struct aead_instance_ctx *ctx; 855 struct aead_instance *inst; 856 struct aead_alg *alg; 857 const char *name; 858 u32 type = 0; 859 u32 mask = CRYPTO_ALG_ASYNC; 860 int err; 861 862 cryptd_check_internal(tb, &type, &mask); 863 864 name = crypto_attr_alg_name(tb[1]); 865 if (IS_ERR(name)) 866 return PTR_ERR(name); 867 868 inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL); 869 if (!inst) 870 return -ENOMEM; 871 872 ctx = aead_instance_ctx(inst); 873 ctx->queue = queue; 874 875 crypto_set_aead_spawn(&ctx->aead_spawn, aead_crypto_instance(inst)); 876 err = crypto_grab_aead(&ctx->aead_spawn, name, type, mask); 877 if (err) 878 goto out_free_inst; 879 880 alg = crypto_spawn_aead_alg(&ctx->aead_spawn); 881 err = cryptd_init_instance(aead_crypto_instance(inst), &alg->base); 882 if (err) 883 goto out_drop_aead; 884 885 inst->alg.base.cra_flags = CRYPTO_ALG_ASYNC | 886 (alg->base.cra_flags & CRYPTO_ALG_INTERNAL); 887 inst->alg.base.cra_ctxsize = sizeof(struct cryptd_aead_ctx); 888 889 inst->alg.ivsize = crypto_aead_alg_ivsize(alg); 890 inst->alg.maxauthsize = crypto_aead_alg_maxauthsize(alg); 891 892 inst->alg.init = cryptd_aead_init_tfm; 893 inst->alg.exit = cryptd_aead_exit_tfm; 894 inst->alg.setkey = cryptd_aead_setkey; 895 inst->alg.setauthsize = cryptd_aead_setauthsize; 896 inst->alg.encrypt = cryptd_aead_encrypt_enqueue; 897 inst->alg.decrypt = cryptd_aead_decrypt_enqueue; 898 899 err = aead_register_instance(tmpl, inst); 900 if (err) { 901 out_drop_aead: 902 crypto_drop_aead(&ctx->aead_spawn); 903 out_free_inst: 904 kfree(inst); 905 } 906 return err; 907 } 908 909 static struct cryptd_queue queue; 910 911 static int cryptd_create(struct crypto_template *tmpl, struct rtattr **tb) 912 { 913 struct crypto_attr_type *algt; 914 915 algt = crypto_get_attr_type(tb); 916 if (IS_ERR(algt)) 917 return PTR_ERR(algt); 918 919 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { 920 case CRYPTO_ALG_TYPE_BLKCIPHER: 921 return cryptd_create_skcipher(tmpl, tb, &queue); 922 case CRYPTO_ALG_TYPE_DIGEST: 923 return cryptd_create_hash(tmpl, tb, &queue); 924 case CRYPTO_ALG_TYPE_AEAD: 925 return cryptd_create_aead(tmpl, tb, &queue); 926 } 927 928 return -EINVAL; 929 } 930 931 static void cryptd_free(struct crypto_instance *inst) 932 { 933 struct cryptd_instance_ctx *ctx = crypto_instance_ctx(inst); 934 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); 935 struct aead_instance_ctx *aead_ctx = crypto_instance_ctx(inst); 936 937 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { 938 case CRYPTO_ALG_TYPE_AHASH: 939 crypto_drop_shash(&hctx->spawn); 940 kfree(ahash_instance(inst)); 941 return; 942 case CRYPTO_ALG_TYPE_AEAD: 943 crypto_drop_aead(&aead_ctx->aead_spawn); 944 kfree(aead_instance(inst)); 945 return; 946 default: 947 crypto_drop_spawn(&ctx->spawn); 948 kfree(inst); 949 } 950 } 951 952 static struct crypto_template cryptd_tmpl = { 953 .name = "cryptd", 954 .create = cryptd_create, 955 .free = cryptd_free, 956 .module = THIS_MODULE, 957 }; 958 959 struct cryptd_skcipher *cryptd_alloc_skcipher(const char *alg_name, 960 u32 type, u32 mask) 961 { 962 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 963 struct cryptd_skcipher_ctx *ctx; 964 struct crypto_skcipher *tfm; 965 966 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 967 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 968 return ERR_PTR(-EINVAL); 969 970 tfm = crypto_alloc_skcipher(cryptd_alg_name, type, mask); 971 if (IS_ERR(tfm)) 972 return ERR_CAST(tfm); 973 974 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 975 crypto_free_skcipher(tfm); 976 return ERR_PTR(-EINVAL); 977 } 978 979 ctx = crypto_skcipher_ctx(tfm); 980 atomic_set(&ctx->refcnt, 1); 981 982 return container_of(tfm, struct cryptd_skcipher, base); 983 } 984 EXPORT_SYMBOL_GPL(cryptd_alloc_skcipher); 985 986 struct crypto_skcipher *cryptd_skcipher_child(struct cryptd_skcipher *tfm) 987 { 988 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 989 990 return &ctx->child->base; 991 } 992 EXPORT_SYMBOL_GPL(cryptd_skcipher_child); 993 994 bool cryptd_skcipher_queued(struct cryptd_skcipher *tfm) 995 { 996 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 997 998 return atomic_read(&ctx->refcnt) - 1; 999 } 1000 EXPORT_SYMBOL_GPL(cryptd_skcipher_queued); 1001 1002 void cryptd_free_skcipher(struct cryptd_skcipher *tfm) 1003 { 1004 struct cryptd_skcipher_ctx *ctx = crypto_skcipher_ctx(&tfm->base); 1005 1006 if (atomic_dec_and_test(&ctx->refcnt)) 1007 crypto_free_skcipher(&tfm->base); 1008 } 1009 EXPORT_SYMBOL_GPL(cryptd_free_skcipher); 1010 1011 struct cryptd_ahash *cryptd_alloc_ahash(const char *alg_name, 1012 u32 type, u32 mask) 1013 { 1014 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 1015 struct cryptd_hash_ctx *ctx; 1016 struct crypto_ahash *tfm; 1017 1018 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 1019 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 1020 return ERR_PTR(-EINVAL); 1021 tfm = crypto_alloc_ahash(cryptd_alg_name, type, mask); 1022 if (IS_ERR(tfm)) 1023 return ERR_CAST(tfm); 1024 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 1025 crypto_free_ahash(tfm); 1026 return ERR_PTR(-EINVAL); 1027 } 1028 1029 ctx = crypto_ahash_ctx(tfm); 1030 atomic_set(&ctx->refcnt, 1); 1031 1032 return __cryptd_ahash_cast(tfm); 1033 } 1034 EXPORT_SYMBOL_GPL(cryptd_alloc_ahash); 1035 1036 struct crypto_shash *cryptd_ahash_child(struct cryptd_ahash *tfm) 1037 { 1038 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1039 1040 return ctx->child; 1041 } 1042 EXPORT_SYMBOL_GPL(cryptd_ahash_child); 1043 1044 struct shash_desc *cryptd_shash_desc(struct ahash_request *req) 1045 { 1046 struct cryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 1047 return &rctx->desc; 1048 } 1049 EXPORT_SYMBOL_GPL(cryptd_shash_desc); 1050 1051 bool cryptd_ahash_queued(struct cryptd_ahash *tfm) 1052 { 1053 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1054 1055 return atomic_read(&ctx->refcnt) - 1; 1056 } 1057 EXPORT_SYMBOL_GPL(cryptd_ahash_queued); 1058 1059 void cryptd_free_ahash(struct cryptd_ahash *tfm) 1060 { 1061 struct cryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 1062 1063 if (atomic_dec_and_test(&ctx->refcnt)) 1064 crypto_free_ahash(&tfm->base); 1065 } 1066 EXPORT_SYMBOL_GPL(cryptd_free_ahash); 1067 1068 struct cryptd_aead *cryptd_alloc_aead(const char *alg_name, 1069 u32 type, u32 mask) 1070 { 1071 char cryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 1072 struct cryptd_aead_ctx *ctx; 1073 struct crypto_aead *tfm; 1074 1075 if (snprintf(cryptd_alg_name, CRYPTO_MAX_ALG_NAME, 1076 "cryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 1077 return ERR_PTR(-EINVAL); 1078 tfm = crypto_alloc_aead(cryptd_alg_name, type, mask); 1079 if (IS_ERR(tfm)) 1080 return ERR_CAST(tfm); 1081 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 1082 crypto_free_aead(tfm); 1083 return ERR_PTR(-EINVAL); 1084 } 1085 1086 ctx = crypto_aead_ctx(tfm); 1087 atomic_set(&ctx->refcnt, 1); 1088 1089 return __cryptd_aead_cast(tfm); 1090 } 1091 EXPORT_SYMBOL_GPL(cryptd_alloc_aead); 1092 1093 struct crypto_aead *cryptd_aead_child(struct cryptd_aead *tfm) 1094 { 1095 struct cryptd_aead_ctx *ctx; 1096 ctx = crypto_aead_ctx(&tfm->base); 1097 return ctx->child; 1098 } 1099 EXPORT_SYMBOL_GPL(cryptd_aead_child); 1100 1101 bool cryptd_aead_queued(struct cryptd_aead *tfm) 1102 { 1103 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); 1104 1105 return atomic_read(&ctx->refcnt) - 1; 1106 } 1107 EXPORT_SYMBOL_GPL(cryptd_aead_queued); 1108 1109 void cryptd_free_aead(struct cryptd_aead *tfm) 1110 { 1111 struct cryptd_aead_ctx *ctx = crypto_aead_ctx(&tfm->base); 1112 1113 if (atomic_dec_and_test(&ctx->refcnt)) 1114 crypto_free_aead(&tfm->base); 1115 } 1116 EXPORT_SYMBOL_GPL(cryptd_free_aead); 1117 1118 static int __init cryptd_init(void) 1119 { 1120 int err; 1121 1122 err = cryptd_init_queue(&queue, cryptd_max_cpu_qlen); 1123 if (err) 1124 return err; 1125 1126 err = crypto_register_template(&cryptd_tmpl); 1127 if (err) 1128 cryptd_fini_queue(&queue); 1129 1130 return err; 1131 } 1132 1133 static void __exit cryptd_exit(void) 1134 { 1135 cryptd_fini_queue(&queue); 1136 crypto_unregister_template(&cryptd_tmpl); 1137 } 1138 1139 subsys_initcall(cryptd_init); 1140 module_exit(cryptd_exit); 1141 1142 MODULE_LICENSE("GPL"); 1143 MODULE_DESCRIPTION("Software async crypto daemon"); 1144 MODULE_ALIAS_CRYPTO("cryptd"); 1145
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.