1 /* 2 * Software multibuffer async crypto daemon. 3 * 4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com> 5 * 6 * Adapted from crypto daemon. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 */ 14 15 #include <crypto/algapi.h> 16 #include <crypto/internal/hash.h> 17 #include <crypto/internal/aead.h> 18 #include <crypto/mcryptd.h> 19 #include <crypto/crypto_wq.h> 20 #include <linux/err.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/scatterlist.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/hardirq.h> 29 30 #define MCRYPTD_MAX_CPU_QLEN 100 31 #define MCRYPTD_BATCH 9 32 33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 34 unsigned int tail); 35 36 struct mcryptd_flush_list { 37 struct list_head list; 38 struct mutex lock; 39 }; 40 41 static struct mcryptd_flush_list __percpu *mcryptd_flist; 42 43 struct hashd_instance_ctx { 44 struct crypto_shash_spawn spawn; 45 struct mcryptd_queue *queue; 46 }; 47 48 static void mcryptd_queue_worker(struct work_struct *work); 49 50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay) 51 { 52 struct mcryptd_flush_list *flist; 53 54 if (!cstate->flusher_engaged) { 55 /* put the flusher on the flush list */ 56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 57 mutex_lock(&flist->lock); 58 list_add_tail(&cstate->flush_list, &flist->list); 59 cstate->flusher_engaged = true; 60 cstate->next_flush = jiffies + delay; 61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq, 62 &cstate->flush, delay); 63 mutex_unlock(&flist->lock); 64 } 65 } 66 EXPORT_SYMBOL(mcryptd_arm_flusher); 67 68 static int mcryptd_init_queue(struct mcryptd_queue *queue, 69 unsigned int max_cpu_qlen) 70 { 71 int cpu; 72 struct mcryptd_cpu_queue *cpu_queue; 73 74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue); 75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue); 76 if (!queue->cpu_queue) 77 return -ENOMEM; 78 for_each_possible_cpu(cpu) { 79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue); 81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); 82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker); 83 } 84 return 0; 85 } 86 87 static void mcryptd_fini_queue(struct mcryptd_queue *queue) 88 { 89 int cpu; 90 struct mcryptd_cpu_queue *cpu_queue; 91 92 for_each_possible_cpu(cpu) { 93 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 94 BUG_ON(cpu_queue->queue.qlen); 95 } 96 free_percpu(queue->cpu_queue); 97 } 98 99 static int mcryptd_enqueue_request(struct mcryptd_queue *queue, 100 struct crypto_async_request *request, 101 struct mcryptd_hash_request_ctx *rctx) 102 { 103 int cpu, err; 104 struct mcryptd_cpu_queue *cpu_queue; 105 106 cpu = get_cpu(); 107 cpu_queue = this_cpu_ptr(queue->cpu_queue); 108 rctx->tag.cpu = cpu; 109 110 err = crypto_enqueue_request(&cpu_queue->queue, request); 111 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n", 112 cpu, cpu_queue, request); 113 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); 114 put_cpu(); 115 116 return err; 117 } 118 119 /* 120 * Try to opportunisticlly flush the partially completed jobs if 121 * crypto daemon is the only task running. 122 */ 123 static void mcryptd_opportunistic_flush(void) 124 { 125 struct mcryptd_flush_list *flist; 126 struct mcryptd_alg_cstate *cstate; 127 128 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 129 while (single_task_running()) { 130 mutex_lock(&flist->lock); 131 if (list_empty(&flist->list)) { 132 mutex_unlock(&flist->lock); 133 return; 134 } 135 cstate = list_entry(flist->list.next, 136 struct mcryptd_alg_cstate, flush_list); 137 if (!cstate->flusher_engaged) { 138 mutex_unlock(&flist->lock); 139 return; 140 } 141 list_del(&cstate->flush_list); 142 cstate->flusher_engaged = false; 143 mutex_unlock(&flist->lock); 144 cstate->alg_state->flusher(cstate); 145 } 146 } 147 148 /* 149 * Called in workqueue context, do one real cryption work (via 150 * req->complete) and reschedule itself if there are more work to 151 * do. 152 */ 153 static void mcryptd_queue_worker(struct work_struct *work) 154 { 155 struct mcryptd_cpu_queue *cpu_queue; 156 struct crypto_async_request *req, *backlog; 157 int i; 158 159 /* 160 * Need to loop through more than once for multi-buffer to 161 * be effective. 162 */ 163 164 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work); 165 i = 0; 166 while (i < MCRYPTD_BATCH || single_task_running()) { 167 /* 168 * preempt_disable/enable is used to prevent 169 * being preempted by mcryptd_enqueue_request() 170 */ 171 local_bh_disable(); 172 preempt_disable(); 173 backlog = crypto_get_backlog(&cpu_queue->queue); 174 req = crypto_dequeue_request(&cpu_queue->queue); 175 preempt_enable(); 176 local_bh_enable(); 177 178 if (!req) { 179 mcryptd_opportunistic_flush(); 180 return; 181 } 182 183 if (backlog) 184 backlog->complete(backlog, -EINPROGRESS); 185 req->complete(req, 0); 186 if (!cpu_queue->queue.qlen) 187 return; 188 ++i; 189 } 190 if (cpu_queue->queue.qlen) 191 queue_work(kcrypto_wq, &cpu_queue->work); 192 } 193 194 void mcryptd_flusher(struct work_struct *__work) 195 { 196 struct mcryptd_alg_cstate *alg_cpu_state; 197 struct mcryptd_alg_state *alg_state; 198 struct mcryptd_flush_list *flist; 199 int cpu; 200 201 cpu = smp_processor_id(); 202 alg_cpu_state = container_of(to_delayed_work(__work), 203 struct mcryptd_alg_cstate, flush); 204 alg_state = alg_cpu_state->alg_state; 205 if (alg_cpu_state->cpu != cpu) 206 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n", 207 cpu, alg_cpu_state->cpu); 208 209 if (alg_cpu_state->flusher_engaged) { 210 flist = per_cpu_ptr(mcryptd_flist, cpu); 211 mutex_lock(&flist->lock); 212 list_del(&alg_cpu_state->flush_list); 213 alg_cpu_state->flusher_engaged = false; 214 mutex_unlock(&flist->lock); 215 alg_state->flusher(alg_cpu_state); 216 } 217 } 218 EXPORT_SYMBOL_GPL(mcryptd_flusher); 219 220 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm) 221 { 222 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 223 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 224 225 return ictx->queue; 226 } 227 228 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 229 unsigned int tail) 230 { 231 char *p; 232 struct crypto_instance *inst; 233 int err; 234 235 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); 236 if (!p) 237 return ERR_PTR(-ENOMEM); 238 239 inst = (void *)(p + head); 240 241 err = -ENAMETOOLONG; 242 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, 243 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 244 goto out_free_inst; 245 246 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); 247 248 inst->alg.cra_priority = alg->cra_priority + 50; 249 inst->alg.cra_blocksize = alg->cra_blocksize; 250 inst->alg.cra_alignmask = alg->cra_alignmask; 251 252 out: 253 return p; 254 255 out_free_inst: 256 kfree(p); 257 p = ERR_PTR(err); 258 goto out; 259 } 260 261 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm) 262 { 263 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 264 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); 265 struct crypto_shash_spawn *spawn = &ictx->spawn; 266 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 267 struct crypto_shash *hash; 268 269 hash = crypto_spawn_shash(spawn); 270 if (IS_ERR(hash)) 271 return PTR_ERR(hash); 272 273 ctx->child = hash; 274 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 275 sizeof(struct mcryptd_hash_request_ctx) + 276 crypto_shash_descsize(hash)); 277 return 0; 278 } 279 280 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm) 281 { 282 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 283 284 crypto_free_shash(ctx->child); 285 } 286 287 static int mcryptd_hash_setkey(struct crypto_ahash *parent, 288 const u8 *key, unsigned int keylen) 289 { 290 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); 291 struct crypto_shash *child = ctx->child; 292 int err; 293 294 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK); 295 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) & 296 CRYPTO_TFM_REQ_MASK); 297 err = crypto_shash_setkey(child, key, keylen); 298 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) & 299 CRYPTO_TFM_RES_MASK); 300 return err; 301 } 302 303 static int mcryptd_hash_enqueue(struct ahash_request *req, 304 crypto_completion_t complete) 305 { 306 int ret; 307 308 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 309 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 310 struct mcryptd_queue *queue = 311 mcryptd_get_queue(crypto_ahash_tfm(tfm)); 312 313 rctx->complete = req->base.complete; 314 req->base.complete = complete; 315 316 ret = mcryptd_enqueue_request(queue, &req->base, rctx); 317 318 return ret; 319 } 320 321 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err) 322 { 323 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 324 struct crypto_shash *child = ctx->child; 325 struct ahash_request *req = ahash_request_cast(req_async); 326 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 327 struct shash_desc *desc = &rctx->desc; 328 329 if (unlikely(err == -EINPROGRESS)) 330 goto out; 331 332 desc->tfm = child; 333 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; 334 335 err = crypto_shash_init(desc); 336 337 req->base.complete = rctx->complete; 338 339 out: 340 local_bh_disable(); 341 rctx->complete(&req->base, err); 342 local_bh_enable(); 343 } 344 345 static int mcryptd_hash_init_enqueue(struct ahash_request *req) 346 { 347 return mcryptd_hash_enqueue(req, mcryptd_hash_init); 348 } 349 350 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err) 351 { 352 struct ahash_request *req = ahash_request_cast(req_async); 353 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 354 355 if (unlikely(err == -EINPROGRESS)) 356 goto out; 357 358 err = shash_ahash_mcryptd_update(req, &rctx->desc); 359 if (err) { 360 req->base.complete = rctx->complete; 361 goto out; 362 } 363 364 return; 365 out: 366 local_bh_disable(); 367 rctx->complete(&req->base, err); 368 local_bh_enable(); 369 } 370 371 static int mcryptd_hash_update_enqueue(struct ahash_request *req) 372 { 373 return mcryptd_hash_enqueue(req, mcryptd_hash_update); 374 } 375 376 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err) 377 { 378 struct ahash_request *req = ahash_request_cast(req_async); 379 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 380 381 if (unlikely(err == -EINPROGRESS)) 382 goto out; 383 384 err = shash_ahash_mcryptd_final(req, &rctx->desc); 385 if (err) { 386 req->base.complete = rctx->complete; 387 goto out; 388 } 389 390 return; 391 out: 392 local_bh_disable(); 393 rctx->complete(&req->base, err); 394 local_bh_enable(); 395 } 396 397 static int mcryptd_hash_final_enqueue(struct ahash_request *req) 398 { 399 return mcryptd_hash_enqueue(req, mcryptd_hash_final); 400 } 401 402 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err) 403 { 404 struct ahash_request *req = ahash_request_cast(req_async); 405 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 406 407 if (unlikely(err == -EINPROGRESS)) 408 goto out; 409 410 err = shash_ahash_mcryptd_finup(req, &rctx->desc); 411 412 if (err) { 413 req->base.complete = rctx->complete; 414 goto out; 415 } 416 417 return; 418 out: 419 local_bh_disable(); 420 rctx->complete(&req->base, err); 421 local_bh_enable(); 422 } 423 424 static int mcryptd_hash_finup_enqueue(struct ahash_request *req) 425 { 426 return mcryptd_hash_enqueue(req, mcryptd_hash_finup); 427 } 428 429 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err) 430 { 431 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 432 struct crypto_shash *child = ctx->child; 433 struct ahash_request *req = ahash_request_cast(req_async); 434 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 435 struct shash_desc *desc = &rctx->desc; 436 437 if (unlikely(err == -EINPROGRESS)) 438 goto out; 439 440 desc->tfm = child; 441 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; /* check this again */ 442 443 err = shash_ahash_mcryptd_digest(req, desc); 444 445 if (err) { 446 req->base.complete = rctx->complete; 447 goto out; 448 } 449 450 return; 451 out: 452 local_bh_disable(); 453 rctx->complete(&req->base, err); 454 local_bh_enable(); 455 } 456 457 static int mcryptd_hash_digest_enqueue(struct ahash_request *req) 458 { 459 return mcryptd_hash_enqueue(req, mcryptd_hash_digest); 460 } 461 462 static int mcryptd_hash_export(struct ahash_request *req, void *out) 463 { 464 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 465 466 return crypto_shash_export(&rctx->desc, out); 467 } 468 469 static int mcryptd_hash_import(struct ahash_request *req, const void *in) 470 { 471 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 472 473 return crypto_shash_import(&rctx->desc, in); 474 } 475 476 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, 477 struct mcryptd_queue *queue) 478 { 479 struct hashd_instance_ctx *ctx; 480 struct ahash_instance *inst; 481 struct shash_alg *salg; 482 struct crypto_alg *alg; 483 int err; 484 485 salg = shash_attr_alg(tb[1], 0, 0); 486 if (IS_ERR(salg)) 487 return PTR_ERR(salg); 488 489 alg = &salg->base; 490 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name); 491 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(), 492 sizeof(*ctx)); 493 err = PTR_ERR(inst); 494 if (IS_ERR(inst)) 495 goto out_put_alg; 496 497 ctx = ahash_instance_ctx(inst); 498 ctx->queue = queue; 499 500 err = crypto_init_shash_spawn(&ctx->spawn, salg, 501 ahash_crypto_instance(inst)); 502 if (err) 503 goto out_free_inst; 504 505 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC; 506 507 inst->alg.halg.digestsize = salg->digestsize; 508 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx); 509 510 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm; 511 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm; 512 513 inst->alg.init = mcryptd_hash_init_enqueue; 514 inst->alg.update = mcryptd_hash_update_enqueue; 515 inst->alg.final = mcryptd_hash_final_enqueue; 516 inst->alg.finup = mcryptd_hash_finup_enqueue; 517 inst->alg.export = mcryptd_hash_export; 518 inst->alg.import = mcryptd_hash_import; 519 inst->alg.setkey = mcryptd_hash_setkey; 520 inst->alg.digest = mcryptd_hash_digest_enqueue; 521 522 err = ahash_register_instance(tmpl, inst); 523 if (err) { 524 crypto_drop_shash(&ctx->spawn); 525 out_free_inst: 526 kfree(inst); 527 } 528 529 out_put_alg: 530 crypto_mod_put(alg); 531 return err; 532 } 533 534 static struct mcryptd_queue mqueue; 535 536 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb) 537 { 538 struct crypto_attr_type *algt; 539 540 algt = crypto_get_attr_type(tb); 541 if (IS_ERR(algt)) 542 return PTR_ERR(algt); 543 544 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { 545 case CRYPTO_ALG_TYPE_DIGEST: 546 return mcryptd_create_hash(tmpl, tb, &mqueue); 547 break; 548 } 549 550 return -EINVAL; 551 } 552 553 static void mcryptd_free(struct crypto_instance *inst) 554 { 555 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst); 556 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); 557 558 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { 559 case CRYPTO_ALG_TYPE_AHASH: 560 crypto_drop_shash(&hctx->spawn); 561 kfree(ahash_instance(inst)); 562 return; 563 default: 564 crypto_drop_spawn(&ctx->spawn); 565 kfree(inst); 566 } 567 } 568 569 static struct crypto_template mcryptd_tmpl = { 570 .name = "mcryptd", 571 .create = mcryptd_create, 572 .free = mcryptd_free, 573 .module = THIS_MODULE, 574 }; 575 576 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name, 577 u32 type, u32 mask) 578 { 579 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 580 struct crypto_ahash *tfm; 581 582 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME, 583 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 584 return ERR_PTR(-EINVAL); 585 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask); 586 if (IS_ERR(tfm)) 587 return ERR_CAST(tfm); 588 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 589 crypto_free_ahash(tfm); 590 return ERR_PTR(-EINVAL); 591 } 592 593 return __mcryptd_ahash_cast(tfm); 594 } 595 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash); 596 597 int shash_ahash_mcryptd_digest(struct ahash_request *req, 598 struct shash_desc *desc) 599 { 600 int err; 601 602 err = crypto_shash_init(desc) ?: 603 shash_ahash_mcryptd_finup(req, desc); 604 605 return err; 606 } 607 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest); 608 609 int shash_ahash_mcryptd_update(struct ahash_request *req, 610 struct shash_desc *desc) 611 { 612 struct crypto_shash *tfm = desc->tfm; 613 struct shash_alg *shash = crypto_shash_alg(tfm); 614 615 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 616 617 return shash->update(desc, NULL, 0); 618 } 619 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update); 620 621 int shash_ahash_mcryptd_finup(struct ahash_request *req, 622 struct shash_desc *desc) 623 { 624 struct crypto_shash *tfm = desc->tfm; 625 struct shash_alg *shash = crypto_shash_alg(tfm); 626 627 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 628 629 return shash->finup(desc, NULL, 0, req->result); 630 } 631 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup); 632 633 int shash_ahash_mcryptd_final(struct ahash_request *req, 634 struct shash_desc *desc) 635 { 636 struct crypto_shash *tfm = desc->tfm; 637 struct shash_alg *shash = crypto_shash_alg(tfm); 638 639 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 640 641 return shash->final(desc, req->result); 642 } 643 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final); 644 645 struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm) 646 { 647 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 648 649 return ctx->child; 650 } 651 EXPORT_SYMBOL_GPL(mcryptd_ahash_child); 652 653 struct shash_desc *mcryptd_shash_desc(struct ahash_request *req) 654 { 655 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 656 return &rctx->desc; 657 } 658 EXPORT_SYMBOL_GPL(mcryptd_shash_desc); 659 660 void mcryptd_free_ahash(struct mcryptd_ahash *tfm) 661 { 662 crypto_free_ahash(&tfm->base); 663 } 664 EXPORT_SYMBOL_GPL(mcryptd_free_ahash); 665 666 667 static int __init mcryptd_init(void) 668 { 669 int err, cpu; 670 struct mcryptd_flush_list *flist; 671 672 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list); 673 for_each_possible_cpu(cpu) { 674 flist = per_cpu_ptr(mcryptd_flist, cpu); 675 INIT_LIST_HEAD(&flist->list); 676 mutex_init(&flist->lock); 677 } 678 679 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN); 680 if (err) { 681 free_percpu(mcryptd_flist); 682 return err; 683 } 684 685 err = crypto_register_template(&mcryptd_tmpl); 686 if (err) { 687 mcryptd_fini_queue(&mqueue); 688 free_percpu(mcryptd_flist); 689 } 690 691 return err; 692 } 693 694 static void __exit mcryptd_exit(void) 695 { 696 mcryptd_fini_queue(&mqueue); 697 crypto_unregister_template(&mcryptd_tmpl); 698 free_percpu(mcryptd_flist); 699 } 700 701 subsys_initcall(mcryptd_init); 702 module_exit(mcryptd_exit); 703 704 MODULE_LICENSE("GPL"); 705 MODULE_DESCRIPTION("Software async multibuffer crypto daemon"); 706 MODULE_ALIAS_CRYPTO("mcryptd"); 707
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.