1 /* 2 * Software multibuffer async crypto daemon. 3 * 4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com> 5 * 6 * Adapted from crypto daemon. 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the Free 10 * Software Foundation; either version 2 of the License, or (at your option) 11 * any later version. 12 * 13 */ 14 15 #include <crypto/algapi.h> 16 #include <crypto/internal/hash.h> 17 #include <crypto/internal/aead.h> 18 #include <crypto/mcryptd.h> 19 #include <crypto/crypto_wq.h> 20 #include <linux/err.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/list.h> 24 #include <linux/module.h> 25 #include <linux/scatterlist.h> 26 #include <linux/sched.h> 27 #include <linux/slab.h> 28 #include <linux/hardirq.h> 29 30 #define MCRYPTD_MAX_CPU_QLEN 100 31 #define MCRYPTD_BATCH 9 32 33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 34 unsigned int tail); 35 36 struct mcryptd_flush_list { 37 struct list_head list; 38 struct mutex lock; 39 }; 40 41 static struct mcryptd_flush_list __percpu *mcryptd_flist; 42 43 struct hashd_instance_ctx { 44 struct crypto_ahash_spawn spawn; 45 struct mcryptd_queue *queue; 46 }; 47 48 static void mcryptd_queue_worker(struct work_struct *work); 49 50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay) 51 { 52 struct mcryptd_flush_list *flist; 53 54 if (!cstate->flusher_engaged) { 55 /* put the flusher on the flush list */ 56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 57 mutex_lock(&flist->lock); 58 list_add_tail(&cstate->flush_list, &flist->list); 59 cstate->flusher_engaged = true; 60 cstate->next_flush = jiffies + delay; 61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq, 62 &cstate->flush, delay); 63 mutex_unlock(&flist->lock); 64 } 65 } 66 EXPORT_SYMBOL(mcryptd_arm_flusher); 67 68 static int mcryptd_init_queue(struct mcryptd_queue *queue, 69 unsigned int max_cpu_qlen) 70 { 71 int cpu; 72 struct mcryptd_cpu_queue *cpu_queue; 73 74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue); 75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue); 76 if (!queue->cpu_queue) 77 return -ENOMEM; 78 for_each_possible_cpu(cpu) { 79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue); 81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen); 82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker); 83 spin_lock_init(&cpu_queue->q_lock); 84 } 85 return 0; 86 } 87 88 static void mcryptd_fini_queue(struct mcryptd_queue *queue) 89 { 90 int cpu; 91 struct mcryptd_cpu_queue *cpu_queue; 92 93 for_each_possible_cpu(cpu) { 94 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu); 95 BUG_ON(cpu_queue->queue.qlen); 96 } 97 free_percpu(queue->cpu_queue); 98 } 99 100 static int mcryptd_enqueue_request(struct mcryptd_queue *queue, 101 struct crypto_async_request *request, 102 struct mcryptd_hash_request_ctx *rctx) 103 { 104 int cpu, err; 105 struct mcryptd_cpu_queue *cpu_queue; 106 107 cpu_queue = raw_cpu_ptr(queue->cpu_queue); 108 spin_lock(&cpu_queue->q_lock); 109 cpu = smp_processor_id(); 110 rctx->tag.cpu = smp_processor_id(); 111 112 err = crypto_enqueue_request(&cpu_queue->queue, request); 113 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n", 114 cpu, cpu_queue, request); 115 spin_unlock(&cpu_queue->q_lock); 116 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work); 117 118 return err; 119 } 120 121 /* 122 * Try to opportunisticlly flush the partially completed jobs if 123 * crypto daemon is the only task running. 124 */ 125 static void mcryptd_opportunistic_flush(void) 126 { 127 struct mcryptd_flush_list *flist; 128 struct mcryptd_alg_cstate *cstate; 129 130 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id()); 131 while (single_task_running()) { 132 mutex_lock(&flist->lock); 133 cstate = list_first_entry_or_null(&flist->list, 134 struct mcryptd_alg_cstate, flush_list); 135 if (!cstate || !cstate->flusher_engaged) { 136 mutex_unlock(&flist->lock); 137 return; 138 } 139 list_del(&cstate->flush_list); 140 cstate->flusher_engaged = false; 141 mutex_unlock(&flist->lock); 142 cstate->alg_state->flusher(cstate); 143 } 144 } 145 146 /* 147 * Called in workqueue context, do one real cryption work (via 148 * req->complete) and reschedule itself if there are more work to 149 * do. 150 */ 151 static void mcryptd_queue_worker(struct work_struct *work) 152 { 153 struct mcryptd_cpu_queue *cpu_queue; 154 struct crypto_async_request *req, *backlog; 155 int i; 156 157 /* 158 * Need to loop through more than once for multi-buffer to 159 * be effective. 160 */ 161 162 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work); 163 i = 0; 164 while (i < MCRYPTD_BATCH || single_task_running()) { 165 166 spin_lock_bh(&cpu_queue->q_lock); 167 backlog = crypto_get_backlog(&cpu_queue->queue); 168 req = crypto_dequeue_request(&cpu_queue->queue); 169 spin_unlock_bh(&cpu_queue->q_lock); 170 171 if (!req) { 172 mcryptd_opportunistic_flush(); 173 return; 174 } 175 176 if (backlog) 177 backlog->complete(backlog, -EINPROGRESS); 178 req->complete(req, 0); 179 if (!cpu_queue->queue.qlen) 180 return; 181 ++i; 182 } 183 if (cpu_queue->queue.qlen) 184 queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work); 185 } 186 187 void mcryptd_flusher(struct work_struct *__work) 188 { 189 struct mcryptd_alg_cstate *alg_cpu_state; 190 struct mcryptd_alg_state *alg_state; 191 struct mcryptd_flush_list *flist; 192 int cpu; 193 194 cpu = smp_processor_id(); 195 alg_cpu_state = container_of(to_delayed_work(__work), 196 struct mcryptd_alg_cstate, flush); 197 alg_state = alg_cpu_state->alg_state; 198 if (alg_cpu_state->cpu != cpu) 199 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n", 200 cpu, alg_cpu_state->cpu); 201 202 if (alg_cpu_state->flusher_engaged) { 203 flist = per_cpu_ptr(mcryptd_flist, cpu); 204 mutex_lock(&flist->lock); 205 list_del(&alg_cpu_state->flush_list); 206 alg_cpu_state->flusher_engaged = false; 207 mutex_unlock(&flist->lock); 208 alg_state->flusher(alg_cpu_state); 209 } 210 } 211 EXPORT_SYMBOL_GPL(mcryptd_flusher); 212 213 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm) 214 { 215 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 216 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst); 217 218 return ictx->queue; 219 } 220 221 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head, 222 unsigned int tail) 223 { 224 char *p; 225 struct crypto_instance *inst; 226 int err; 227 228 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL); 229 if (!p) 230 return ERR_PTR(-ENOMEM); 231 232 inst = (void *)(p + head); 233 234 err = -ENAMETOOLONG; 235 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, 236 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME) 237 goto out_free_inst; 238 239 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME); 240 241 inst->alg.cra_priority = alg->cra_priority + 50; 242 inst->alg.cra_blocksize = alg->cra_blocksize; 243 inst->alg.cra_alignmask = alg->cra_alignmask; 244 245 out: 246 return p; 247 248 out_free_inst: 249 kfree(p); 250 p = ERR_PTR(err); 251 goto out; 252 } 253 254 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type, 255 u32 *mask) 256 { 257 struct crypto_attr_type *algt; 258 259 algt = crypto_get_attr_type(tb); 260 if (IS_ERR(algt)) 261 return false; 262 263 *type |= algt->type & CRYPTO_ALG_INTERNAL; 264 *mask |= algt->mask & CRYPTO_ALG_INTERNAL; 265 266 if (*type & *mask & CRYPTO_ALG_INTERNAL) 267 return true; 268 else 269 return false; 270 } 271 272 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm) 273 { 274 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); 275 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst); 276 struct crypto_ahash_spawn *spawn = &ictx->spawn; 277 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 278 struct crypto_ahash *hash; 279 280 hash = crypto_spawn_ahash(spawn); 281 if (IS_ERR(hash)) 282 return PTR_ERR(hash); 283 284 ctx->child = hash; 285 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), 286 sizeof(struct mcryptd_hash_request_ctx) + 287 crypto_ahash_reqsize(hash)); 288 return 0; 289 } 290 291 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm) 292 { 293 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm); 294 295 crypto_free_ahash(ctx->child); 296 } 297 298 static int mcryptd_hash_setkey(struct crypto_ahash *parent, 299 const u8 *key, unsigned int keylen) 300 { 301 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent); 302 struct crypto_ahash *child = ctx->child; 303 int err; 304 305 crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK); 306 crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) & 307 CRYPTO_TFM_REQ_MASK); 308 err = crypto_ahash_setkey(child, key, keylen); 309 crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) & 310 CRYPTO_TFM_RES_MASK); 311 return err; 312 } 313 314 static int mcryptd_hash_enqueue(struct ahash_request *req, 315 crypto_completion_t complete) 316 { 317 int ret; 318 319 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 320 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); 321 struct mcryptd_queue *queue = 322 mcryptd_get_queue(crypto_ahash_tfm(tfm)); 323 324 rctx->complete = req->base.complete; 325 req->base.complete = complete; 326 327 ret = mcryptd_enqueue_request(queue, &req->base, rctx); 328 329 return ret; 330 } 331 332 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err) 333 { 334 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 335 struct crypto_ahash *child = ctx->child; 336 struct ahash_request *req = ahash_request_cast(req_async); 337 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 338 struct ahash_request *desc = &rctx->areq; 339 340 if (unlikely(err == -EINPROGRESS)) 341 goto out; 342 343 ahash_request_set_tfm(desc, child); 344 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP, 345 rctx->complete, req_async); 346 347 rctx->out = req->result; 348 err = crypto_ahash_init(desc); 349 350 out: 351 local_bh_disable(); 352 rctx->complete(&req->base, err); 353 local_bh_enable(); 354 } 355 356 static int mcryptd_hash_init_enqueue(struct ahash_request *req) 357 { 358 return mcryptd_hash_enqueue(req, mcryptd_hash_init); 359 } 360 361 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err) 362 { 363 struct ahash_request *req = ahash_request_cast(req_async); 364 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 365 366 if (unlikely(err == -EINPROGRESS)) 367 goto out; 368 369 rctx->out = req->result; 370 err = ahash_mcryptd_update(&rctx->areq); 371 if (err) { 372 req->base.complete = rctx->complete; 373 goto out; 374 } 375 376 return; 377 out: 378 local_bh_disable(); 379 rctx->complete(&req->base, err); 380 local_bh_enable(); 381 } 382 383 static int mcryptd_hash_update_enqueue(struct ahash_request *req) 384 { 385 return mcryptd_hash_enqueue(req, mcryptd_hash_update); 386 } 387 388 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err) 389 { 390 struct ahash_request *req = ahash_request_cast(req_async); 391 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 392 393 if (unlikely(err == -EINPROGRESS)) 394 goto out; 395 396 rctx->out = req->result; 397 err = ahash_mcryptd_final(&rctx->areq); 398 if (err) { 399 req->base.complete = rctx->complete; 400 goto out; 401 } 402 403 return; 404 out: 405 local_bh_disable(); 406 rctx->complete(&req->base, err); 407 local_bh_enable(); 408 } 409 410 static int mcryptd_hash_final_enqueue(struct ahash_request *req) 411 { 412 return mcryptd_hash_enqueue(req, mcryptd_hash_final); 413 } 414 415 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err) 416 { 417 struct ahash_request *req = ahash_request_cast(req_async); 418 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 419 420 if (unlikely(err == -EINPROGRESS)) 421 goto out; 422 rctx->out = req->result; 423 err = ahash_mcryptd_finup(&rctx->areq); 424 425 if (err) { 426 req->base.complete = rctx->complete; 427 goto out; 428 } 429 430 return; 431 out: 432 local_bh_disable(); 433 rctx->complete(&req->base, err); 434 local_bh_enable(); 435 } 436 437 static int mcryptd_hash_finup_enqueue(struct ahash_request *req) 438 { 439 return mcryptd_hash_enqueue(req, mcryptd_hash_finup); 440 } 441 442 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err) 443 { 444 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm); 445 struct crypto_ahash *child = ctx->child; 446 struct ahash_request *req = ahash_request_cast(req_async); 447 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 448 struct ahash_request *desc = &rctx->areq; 449 450 if (unlikely(err == -EINPROGRESS)) 451 goto out; 452 453 ahash_request_set_tfm(desc, child); 454 ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP, 455 rctx->complete, req_async); 456 457 rctx->out = req->result; 458 err = ahash_mcryptd_digest(desc); 459 460 out: 461 local_bh_disable(); 462 rctx->complete(&req->base, err); 463 local_bh_enable(); 464 } 465 466 static int mcryptd_hash_digest_enqueue(struct ahash_request *req) 467 { 468 return mcryptd_hash_enqueue(req, mcryptd_hash_digest); 469 } 470 471 static int mcryptd_hash_export(struct ahash_request *req, void *out) 472 { 473 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 474 475 return crypto_ahash_export(&rctx->areq, out); 476 } 477 478 static int mcryptd_hash_import(struct ahash_request *req, const void *in) 479 { 480 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 481 482 return crypto_ahash_import(&rctx->areq, in); 483 } 484 485 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb, 486 struct mcryptd_queue *queue) 487 { 488 struct hashd_instance_ctx *ctx; 489 struct ahash_instance *inst; 490 struct hash_alg_common *halg; 491 struct crypto_alg *alg; 492 u32 type = 0; 493 u32 mask = 0; 494 int err; 495 496 if (!mcryptd_check_internal(tb, &type, &mask)) 497 return -EINVAL; 498 499 halg = ahash_attr_alg(tb[1], type, mask); 500 if (IS_ERR(halg)) 501 return PTR_ERR(halg); 502 503 alg = &halg->base; 504 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name); 505 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(), 506 sizeof(*ctx)); 507 err = PTR_ERR(inst); 508 if (IS_ERR(inst)) 509 goto out_put_alg; 510 511 ctx = ahash_instance_ctx(inst); 512 ctx->queue = queue; 513 514 err = crypto_init_ahash_spawn(&ctx->spawn, halg, 515 ahash_crypto_instance(inst)); 516 if (err) 517 goto out_free_inst; 518 519 inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC | 520 (alg->cra_flags & (CRYPTO_ALG_INTERNAL | 521 CRYPTO_ALG_OPTIONAL_KEY)); 522 523 inst->alg.halg.digestsize = halg->digestsize; 524 inst->alg.halg.statesize = halg->statesize; 525 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx); 526 527 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm; 528 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm; 529 530 inst->alg.init = mcryptd_hash_init_enqueue; 531 inst->alg.update = mcryptd_hash_update_enqueue; 532 inst->alg.final = mcryptd_hash_final_enqueue; 533 inst->alg.finup = mcryptd_hash_finup_enqueue; 534 inst->alg.export = mcryptd_hash_export; 535 inst->alg.import = mcryptd_hash_import; 536 if (crypto_hash_alg_has_setkey(halg)) 537 inst->alg.setkey = mcryptd_hash_setkey; 538 inst->alg.digest = mcryptd_hash_digest_enqueue; 539 540 err = ahash_register_instance(tmpl, inst); 541 if (err) { 542 crypto_drop_ahash(&ctx->spawn); 543 out_free_inst: 544 kfree(inst); 545 } 546 547 out_put_alg: 548 crypto_mod_put(alg); 549 return err; 550 } 551 552 static struct mcryptd_queue mqueue; 553 554 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb) 555 { 556 struct crypto_attr_type *algt; 557 558 algt = crypto_get_attr_type(tb); 559 if (IS_ERR(algt)) 560 return PTR_ERR(algt); 561 562 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) { 563 case CRYPTO_ALG_TYPE_DIGEST: 564 return mcryptd_create_hash(tmpl, tb, &mqueue); 565 break; 566 } 567 568 return -EINVAL; 569 } 570 571 static void mcryptd_free(struct crypto_instance *inst) 572 { 573 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst); 574 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst); 575 576 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) { 577 case CRYPTO_ALG_TYPE_AHASH: 578 crypto_drop_ahash(&hctx->spawn); 579 kfree(ahash_instance(inst)); 580 return; 581 default: 582 crypto_drop_spawn(&ctx->spawn); 583 kfree(inst); 584 } 585 } 586 587 static struct crypto_template mcryptd_tmpl = { 588 .name = "mcryptd", 589 .create = mcryptd_create, 590 .free = mcryptd_free, 591 .module = THIS_MODULE, 592 }; 593 594 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name, 595 u32 type, u32 mask) 596 { 597 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME]; 598 struct crypto_ahash *tfm; 599 600 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME, 601 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME) 602 return ERR_PTR(-EINVAL); 603 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask); 604 if (IS_ERR(tfm)) 605 return ERR_CAST(tfm); 606 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) { 607 crypto_free_ahash(tfm); 608 return ERR_PTR(-EINVAL); 609 } 610 611 return __mcryptd_ahash_cast(tfm); 612 } 613 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash); 614 615 int ahash_mcryptd_digest(struct ahash_request *desc) 616 { 617 return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc); 618 } 619 620 int ahash_mcryptd_update(struct ahash_request *desc) 621 { 622 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 623 624 return crypto_ahash_update(desc); 625 } 626 627 int ahash_mcryptd_finup(struct ahash_request *desc) 628 { 629 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 630 631 return crypto_ahash_finup(desc); 632 } 633 634 int ahash_mcryptd_final(struct ahash_request *desc) 635 { 636 /* alignment is to be done by multi-buffer crypto algorithm if needed */ 637 638 return crypto_ahash_final(desc); 639 } 640 641 struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm) 642 { 643 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base); 644 645 return ctx->child; 646 } 647 EXPORT_SYMBOL_GPL(mcryptd_ahash_child); 648 649 struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req) 650 { 651 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req); 652 return &rctx->areq; 653 } 654 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc); 655 656 void mcryptd_free_ahash(struct mcryptd_ahash *tfm) 657 { 658 crypto_free_ahash(&tfm->base); 659 } 660 EXPORT_SYMBOL_GPL(mcryptd_free_ahash); 661 662 static int __init mcryptd_init(void) 663 { 664 int err, cpu; 665 struct mcryptd_flush_list *flist; 666 667 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list); 668 for_each_possible_cpu(cpu) { 669 flist = per_cpu_ptr(mcryptd_flist, cpu); 670 INIT_LIST_HEAD(&flist->list); 671 mutex_init(&flist->lock); 672 } 673 674 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN); 675 if (err) { 676 free_percpu(mcryptd_flist); 677 return err; 678 } 679 680 err = crypto_register_template(&mcryptd_tmpl); 681 if (err) { 682 mcryptd_fini_queue(&mqueue); 683 free_percpu(mcryptd_flist); 684 } 685 686 return err; 687 } 688 689 static void __exit mcryptd_exit(void) 690 { 691 mcryptd_fini_queue(&mqueue); 692 crypto_unregister_template(&mcryptd_tmpl); 693 free_percpu(mcryptd_flist); 694 } 695 696 subsys_initcall(mcryptd_init); 697 module_exit(mcryptd_exit); 698 699 MODULE_LICENSE("GPL"); 700 MODULE_DESCRIPTION("Software async multibuffer crypto daemon"); 701 MODULE_ALIAS_CRYPTO("mcryptd"); 702
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.