~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/crypto/mcryptd.c

Version: ~ [ linux-6.6-rc1 ] ~ [ linux-6.5.2 ] ~ [ linux-6.4.15 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.52 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.131 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.194 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.256 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.294 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.325 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /*
  2  * Software multibuffer async crypto daemon.
  3  *
  4  * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
  5  *
  6  * Adapted from crypto daemon.
  7  *
  8  * This program is free software; you can redistribute it and/or modify it
  9  * under the terms of the GNU General Public License as published by the Free
 10  * Software Foundation; either version 2 of the License, or (at your option)
 11  * any later version.
 12  *
 13  */
 14 
 15 #include <crypto/algapi.h>
 16 #include <crypto/internal/hash.h>
 17 #include <crypto/internal/aead.h>
 18 #include <crypto/mcryptd.h>
 19 #include <crypto/crypto_wq.h>
 20 #include <linux/err.h>
 21 #include <linux/init.h>
 22 #include <linux/kernel.h>
 23 #include <linux/list.h>
 24 #include <linux/module.h>
 25 #include <linux/scatterlist.h>
 26 #include <linux/sched.h>
 27 #include <linux/slab.h>
 28 #include <linux/hardirq.h>
 29 
 30 #define MCRYPTD_MAX_CPU_QLEN 100
 31 #define MCRYPTD_BATCH 9
 32 
 33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
 34                                    unsigned int tail);
 35 
 36 struct mcryptd_flush_list {
 37         struct list_head list;
 38         struct mutex lock;
 39 };
 40 
 41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
 42 
 43 struct hashd_instance_ctx {
 44         struct crypto_ahash_spawn spawn;
 45         struct mcryptd_queue *queue;
 46 };
 47 
 48 static void mcryptd_queue_worker(struct work_struct *work);
 49 
 50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
 51 {
 52         struct mcryptd_flush_list *flist;
 53 
 54         if (!cstate->flusher_engaged) {
 55                 /* put the flusher on the flush list */
 56                 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
 57                 mutex_lock(&flist->lock);
 58                 list_add_tail(&cstate->flush_list, &flist->list);
 59                 cstate->flusher_engaged = true;
 60                 cstate->next_flush = jiffies + delay;
 61                 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
 62                         &cstate->flush, delay);
 63                 mutex_unlock(&flist->lock);
 64         }
 65 }
 66 EXPORT_SYMBOL(mcryptd_arm_flusher);
 67 
 68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
 69                              unsigned int max_cpu_qlen)
 70 {
 71         int cpu;
 72         struct mcryptd_cpu_queue *cpu_queue;
 73 
 74         queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
 75         pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
 76         if (!queue->cpu_queue)
 77                 return -ENOMEM;
 78         for_each_possible_cpu(cpu) {
 79                 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
 80                 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
 81                 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
 82                 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
 83                 spin_lock_init(&cpu_queue->q_lock);
 84         }
 85         return 0;
 86 }
 87 
 88 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
 89 {
 90         int cpu;
 91         struct mcryptd_cpu_queue *cpu_queue;
 92 
 93         for_each_possible_cpu(cpu) {
 94                 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
 95                 BUG_ON(cpu_queue->queue.qlen);
 96         }
 97         free_percpu(queue->cpu_queue);
 98 }
 99 
100 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
101                                   struct crypto_async_request *request,
102                                   struct mcryptd_hash_request_ctx *rctx)
103 {
104         int cpu, err;
105         struct mcryptd_cpu_queue *cpu_queue;
106 
107         cpu_queue = raw_cpu_ptr(queue->cpu_queue);
108         spin_lock(&cpu_queue->q_lock);
109         cpu = smp_processor_id();
110         rctx->tag.cpu = smp_processor_id();
111 
112         err = crypto_enqueue_request(&cpu_queue->queue, request);
113         pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
114                  cpu, cpu_queue, request);
115         spin_unlock(&cpu_queue->q_lock);
116         queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
117 
118         return err;
119 }
120 
121 /*
122  * Try to opportunisticlly flush the partially completed jobs if
123  * crypto daemon is the only task running.
124  */
125 static void mcryptd_opportunistic_flush(void)
126 {
127         struct mcryptd_flush_list *flist;
128         struct mcryptd_alg_cstate *cstate;
129 
130         flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
131         while (single_task_running()) {
132                 mutex_lock(&flist->lock);
133                 cstate = list_first_entry_or_null(&flist->list,
134                                 struct mcryptd_alg_cstate, flush_list);
135                 if (!cstate || !cstate->flusher_engaged) {
136                         mutex_unlock(&flist->lock);
137                         return;
138                 }
139                 list_del(&cstate->flush_list);
140                 cstate->flusher_engaged = false;
141                 mutex_unlock(&flist->lock);
142                 cstate->alg_state->flusher(cstate);
143         }
144 }
145 
146 /*
147  * Called in workqueue context, do one real cryption work (via
148  * req->complete) and reschedule itself if there are more work to
149  * do.
150  */
151 static void mcryptd_queue_worker(struct work_struct *work)
152 {
153         struct mcryptd_cpu_queue *cpu_queue;
154         struct crypto_async_request *req, *backlog;
155         int i;
156 
157         /*
158          * Need to loop through more than once for multi-buffer to
159          * be effective.
160          */
161 
162         cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
163         i = 0;
164         while (i < MCRYPTD_BATCH || single_task_running()) {
165 
166                 spin_lock_bh(&cpu_queue->q_lock);
167                 backlog = crypto_get_backlog(&cpu_queue->queue);
168                 req = crypto_dequeue_request(&cpu_queue->queue);
169                 spin_unlock_bh(&cpu_queue->q_lock);
170 
171                 if (!req) {
172                         mcryptd_opportunistic_flush();
173                         return;
174                 }
175 
176                 if (backlog)
177                         backlog->complete(backlog, -EINPROGRESS);
178                 req->complete(req, 0);
179                 if (!cpu_queue->queue.qlen)
180                         return;
181                 ++i;
182         }
183         if (cpu_queue->queue.qlen)
184                 queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
185 }
186 
187 void mcryptd_flusher(struct work_struct *__work)
188 {
189         struct  mcryptd_alg_cstate      *alg_cpu_state;
190         struct  mcryptd_alg_state       *alg_state;
191         struct  mcryptd_flush_list      *flist;
192         int     cpu;
193 
194         cpu = smp_processor_id();
195         alg_cpu_state = container_of(to_delayed_work(__work),
196                                      struct mcryptd_alg_cstate, flush);
197         alg_state = alg_cpu_state->alg_state;
198         if (alg_cpu_state->cpu != cpu)
199                 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
200                                 cpu, alg_cpu_state->cpu);
201 
202         if (alg_cpu_state->flusher_engaged) {
203                 flist = per_cpu_ptr(mcryptd_flist, cpu);
204                 mutex_lock(&flist->lock);
205                 list_del(&alg_cpu_state->flush_list);
206                 alg_cpu_state->flusher_engaged = false;
207                 mutex_unlock(&flist->lock);
208                 alg_state->flusher(alg_cpu_state);
209         }
210 }
211 EXPORT_SYMBOL_GPL(mcryptd_flusher);
212 
213 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
214 {
215         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
216         struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
217 
218         return ictx->queue;
219 }
220 
221 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
222                                    unsigned int tail)
223 {
224         char *p;
225         struct crypto_instance *inst;
226         int err;
227 
228         p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
229         if (!p)
230                 return ERR_PTR(-ENOMEM);
231 
232         inst = (void *)(p + head);
233 
234         err = -ENAMETOOLONG;
235         if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
236                     "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
237                 goto out_free_inst;
238 
239         memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
240 
241         inst->alg.cra_priority = alg->cra_priority + 50;
242         inst->alg.cra_blocksize = alg->cra_blocksize;
243         inst->alg.cra_alignmask = alg->cra_alignmask;
244 
245 out:
246         return p;
247 
248 out_free_inst:
249         kfree(p);
250         p = ERR_PTR(err);
251         goto out;
252 }
253 
254 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
255                                           u32 *mask)
256 {
257         struct crypto_attr_type *algt;
258 
259         algt = crypto_get_attr_type(tb);
260         if (IS_ERR(algt))
261                 return false;
262 
263         *type |= algt->type & CRYPTO_ALG_INTERNAL;
264         *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
265 
266         if (*type & *mask & CRYPTO_ALG_INTERNAL)
267                 return true;
268         else
269                 return false;
270 }
271 
272 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
273 {
274         struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
275         struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
276         struct crypto_ahash_spawn *spawn = &ictx->spawn;
277         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
278         struct crypto_ahash *hash;
279 
280         hash = crypto_spawn_ahash(spawn);
281         if (IS_ERR(hash))
282                 return PTR_ERR(hash);
283 
284         ctx->child = hash;
285         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
286                                  sizeof(struct mcryptd_hash_request_ctx) +
287                                  crypto_ahash_reqsize(hash));
288         return 0;
289 }
290 
291 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
292 {
293         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
294 
295         crypto_free_ahash(ctx->child);
296 }
297 
298 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
299                                    const u8 *key, unsigned int keylen)
300 {
301         struct mcryptd_hash_ctx *ctx   = crypto_ahash_ctx(parent);
302         struct crypto_ahash *child = ctx->child;
303         int err;
304 
305         crypto_ahash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
306         crypto_ahash_set_flags(child, crypto_ahash_get_flags(parent) &
307                                       CRYPTO_TFM_REQ_MASK);
308         err = crypto_ahash_setkey(child, key, keylen);
309         crypto_ahash_set_flags(parent, crypto_ahash_get_flags(child) &
310                                        CRYPTO_TFM_RES_MASK);
311         return err;
312 }
313 
314 static int mcryptd_hash_enqueue(struct ahash_request *req,
315                                 crypto_completion_t complete)
316 {
317         int ret;
318 
319         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
320         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
321         struct mcryptd_queue *queue =
322                 mcryptd_get_queue(crypto_ahash_tfm(tfm));
323 
324         rctx->complete = req->base.complete;
325         req->base.complete = complete;
326 
327         ret = mcryptd_enqueue_request(queue, &req->base, rctx);
328 
329         return ret;
330 }
331 
332 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
333 {
334         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
335         struct crypto_ahash *child = ctx->child;
336         struct ahash_request *req = ahash_request_cast(req_async);
337         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
338         struct ahash_request *desc = &rctx->areq;
339 
340         if (unlikely(err == -EINPROGRESS))
341                 goto out;
342 
343         ahash_request_set_tfm(desc, child);
344         ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
345                                                 rctx->complete, req_async);
346 
347         rctx->out = req->result;
348         err = crypto_ahash_init(desc);
349 
350 out:
351         local_bh_disable();
352         rctx->complete(&req->base, err);
353         local_bh_enable();
354 }
355 
356 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
357 {
358         return mcryptd_hash_enqueue(req, mcryptd_hash_init);
359 }
360 
361 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
362 {
363         struct ahash_request *req = ahash_request_cast(req_async);
364         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
365 
366         if (unlikely(err == -EINPROGRESS))
367                 goto out;
368 
369         rctx->out = req->result;
370         err = ahash_mcryptd_update(&rctx->areq);
371         if (err) {
372                 req->base.complete = rctx->complete;
373                 goto out;
374         }
375 
376         return;
377 out:
378         local_bh_disable();
379         rctx->complete(&req->base, err);
380         local_bh_enable();
381 }
382 
383 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
384 {
385         return mcryptd_hash_enqueue(req, mcryptd_hash_update);
386 }
387 
388 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
389 {
390         struct ahash_request *req = ahash_request_cast(req_async);
391         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
392 
393         if (unlikely(err == -EINPROGRESS))
394                 goto out;
395 
396         rctx->out = req->result;
397         err = ahash_mcryptd_final(&rctx->areq);
398         if (err) {
399                 req->base.complete = rctx->complete;
400                 goto out;
401         }
402 
403         return;
404 out:
405         local_bh_disable();
406         rctx->complete(&req->base, err);
407         local_bh_enable();
408 }
409 
410 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
411 {
412         return mcryptd_hash_enqueue(req, mcryptd_hash_final);
413 }
414 
415 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
416 {
417         struct ahash_request *req = ahash_request_cast(req_async);
418         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
419 
420         if (unlikely(err == -EINPROGRESS))
421                 goto out;
422         rctx->out = req->result;
423         err = ahash_mcryptd_finup(&rctx->areq);
424 
425         if (err) {
426                 req->base.complete = rctx->complete;
427                 goto out;
428         }
429 
430         return;
431 out:
432         local_bh_disable();
433         rctx->complete(&req->base, err);
434         local_bh_enable();
435 }
436 
437 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
438 {
439         return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
440 }
441 
442 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
443 {
444         struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
445         struct crypto_ahash *child = ctx->child;
446         struct ahash_request *req = ahash_request_cast(req_async);
447         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
448         struct ahash_request *desc = &rctx->areq;
449 
450         if (unlikely(err == -EINPROGRESS))
451                 goto out;
452 
453         ahash_request_set_tfm(desc, child);
454         ahash_request_set_callback(desc, CRYPTO_TFM_REQ_MAY_SLEEP,
455                                                 rctx->complete, req_async);
456 
457         rctx->out = req->result;
458         err = ahash_mcryptd_digest(desc);
459 
460 out:
461         local_bh_disable();
462         rctx->complete(&req->base, err);
463         local_bh_enable();
464 }
465 
466 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
467 {
468         return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
469 }
470 
471 static int mcryptd_hash_export(struct ahash_request *req, void *out)
472 {
473         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
474 
475         return crypto_ahash_export(&rctx->areq, out);
476 }
477 
478 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
479 {
480         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
481 
482         return crypto_ahash_import(&rctx->areq, in);
483 }
484 
485 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
486                               struct mcryptd_queue *queue)
487 {
488         struct hashd_instance_ctx *ctx;
489         struct ahash_instance *inst;
490         struct hash_alg_common *halg;
491         struct crypto_alg *alg;
492         u32 type = 0;
493         u32 mask = 0;
494         int err;
495 
496         if (!mcryptd_check_internal(tb, &type, &mask))
497                 return -EINVAL;
498 
499         halg = ahash_attr_alg(tb[1], type, mask);
500         if (IS_ERR(halg))
501                 return PTR_ERR(halg);
502 
503         alg = &halg->base;
504         pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
505         inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
506                                         sizeof(*ctx));
507         err = PTR_ERR(inst);
508         if (IS_ERR(inst))
509                 goto out_put_alg;
510 
511         ctx = ahash_instance_ctx(inst);
512         ctx->queue = queue;
513 
514         err = crypto_init_ahash_spawn(&ctx->spawn, halg,
515                                       ahash_crypto_instance(inst));
516         if (err)
517                 goto out_free_inst;
518 
519         inst->alg.halg.base.cra_flags = CRYPTO_ALG_ASYNC |
520                 (alg->cra_flags & (CRYPTO_ALG_INTERNAL |
521                                    CRYPTO_ALG_OPTIONAL_KEY));
522 
523         inst->alg.halg.digestsize = halg->digestsize;
524         inst->alg.halg.statesize = halg->statesize;
525         inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
526 
527         inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
528         inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
529 
530         inst->alg.init   = mcryptd_hash_init_enqueue;
531         inst->alg.update = mcryptd_hash_update_enqueue;
532         inst->alg.final  = mcryptd_hash_final_enqueue;
533         inst->alg.finup  = mcryptd_hash_finup_enqueue;
534         inst->alg.export = mcryptd_hash_export;
535         inst->alg.import = mcryptd_hash_import;
536         if (crypto_hash_alg_has_setkey(halg))
537                 inst->alg.setkey = mcryptd_hash_setkey;
538         inst->alg.digest = mcryptd_hash_digest_enqueue;
539 
540         err = ahash_register_instance(tmpl, inst);
541         if (err) {
542                 crypto_drop_ahash(&ctx->spawn);
543 out_free_inst:
544                 kfree(inst);
545         }
546 
547 out_put_alg:
548         crypto_mod_put(alg);
549         return err;
550 }
551 
552 static struct mcryptd_queue mqueue;
553 
554 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
555 {
556         struct crypto_attr_type *algt;
557 
558         algt = crypto_get_attr_type(tb);
559         if (IS_ERR(algt))
560                 return PTR_ERR(algt);
561 
562         switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
563         case CRYPTO_ALG_TYPE_DIGEST:
564                 return mcryptd_create_hash(tmpl, tb, &mqueue);
565         break;
566         }
567 
568         return -EINVAL;
569 }
570 
571 static void mcryptd_free(struct crypto_instance *inst)
572 {
573         struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
574         struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
575 
576         switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
577         case CRYPTO_ALG_TYPE_AHASH:
578                 crypto_drop_ahash(&hctx->spawn);
579                 kfree(ahash_instance(inst));
580                 return;
581         default:
582                 crypto_drop_spawn(&ctx->spawn);
583                 kfree(inst);
584         }
585 }
586 
587 static struct crypto_template mcryptd_tmpl = {
588         .name = "mcryptd",
589         .create = mcryptd_create,
590         .free = mcryptd_free,
591         .module = THIS_MODULE,
592 };
593 
594 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
595                                         u32 type, u32 mask)
596 {
597         char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
598         struct crypto_ahash *tfm;
599 
600         if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
601                      "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
602                 return ERR_PTR(-EINVAL);
603         tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
604         if (IS_ERR(tfm))
605                 return ERR_CAST(tfm);
606         if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
607                 crypto_free_ahash(tfm);
608                 return ERR_PTR(-EINVAL);
609         }
610 
611         return __mcryptd_ahash_cast(tfm);
612 }
613 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
614 
615 int ahash_mcryptd_digest(struct ahash_request *desc)
616 {
617         return crypto_ahash_init(desc) ?: ahash_mcryptd_finup(desc);
618 }
619 
620 int ahash_mcryptd_update(struct ahash_request *desc)
621 {
622         /* alignment is to be done by multi-buffer crypto algorithm if needed */
623 
624         return crypto_ahash_update(desc);
625 }
626 
627 int ahash_mcryptd_finup(struct ahash_request *desc)
628 {
629         /* alignment is to be done by multi-buffer crypto algorithm if needed */
630 
631         return crypto_ahash_finup(desc);
632 }
633 
634 int ahash_mcryptd_final(struct ahash_request *desc)
635 {
636         /* alignment is to be done by multi-buffer crypto algorithm if needed */
637 
638         return crypto_ahash_final(desc);
639 }
640 
641 struct crypto_ahash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
642 {
643         struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
644 
645         return ctx->child;
646 }
647 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
648 
649 struct ahash_request *mcryptd_ahash_desc(struct ahash_request *req)
650 {
651         struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
652         return &rctx->areq;
653 }
654 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc);
655 
656 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
657 {
658         crypto_free_ahash(&tfm->base);
659 }
660 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
661 
662 static int __init mcryptd_init(void)
663 {
664         int err, cpu;
665         struct mcryptd_flush_list *flist;
666 
667         mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
668         for_each_possible_cpu(cpu) {
669                 flist = per_cpu_ptr(mcryptd_flist, cpu);
670                 INIT_LIST_HEAD(&flist->list);
671                 mutex_init(&flist->lock);
672         }
673 
674         err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
675         if (err) {
676                 free_percpu(mcryptd_flist);
677                 return err;
678         }
679 
680         err = crypto_register_template(&mcryptd_tmpl);
681         if (err) {
682                 mcryptd_fini_queue(&mqueue);
683                 free_percpu(mcryptd_flist);
684         }
685 
686         return err;
687 }
688 
689 static void __exit mcryptd_exit(void)
690 {
691         mcryptd_fini_queue(&mqueue);
692         crypto_unregister_template(&mcryptd_tmpl);
693         free_percpu(mcryptd_flist);
694 }
695 
696 subsys_initcall(mcryptd_init);
697 module_exit(mcryptd_exit);
698 
699 MODULE_LICENSE("GPL");
700 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
701 MODULE_ALIAS_CRYPTO("mcryptd");
702 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

osdn.jp